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Abstract. This document outlines the gradient-based digital image correlation (DIC) formulation
used in DICe, the Digital Image Correlation Engine (Sandia’s open source DIC code). The gradient-
based algorithm implemented in DICe directly reflects the formulation presented here. Every effort
is made to point out any simplifications or assumptions involved in the implementation. The focus
of this document is on determination of the motion parameters. Computing strain is not discussed
herein.

1. Formulation

The goal of the gradient-based algorithm is to determine a vector of parameters, p, of a mapping
ψ(x,p), that relates the reference position of a point, x = (x, y), to the deformed position, w,
engendered by the motion. A pictorial description of this mapping is shown in Figure 1. In the
local DIC formulation, we enforce this parameterization over a sub-region of the image such that
p is constant over a subset. The parameter vector is composed of the following parameters, u, the
horizontal displacement, v, the vertical displacement, θ, the rotation, ex, the normal extension in
the x-direction, ey, the normal extension in the y-direction, and γxy, the shear stretch such that
p = [u, v, θ, ex, ey, γxy].

To simplify the notation, we introduce auxiliary variables z(x,p) and w(x, z) = x + z. The
variable z(x,p) defines the so-called shape functions of the parameterization

z = R(θ)

[
(1 + ex)(x− cx) + γxy(y − cy)
(1 + ey)(y − cy) + γxy(x− cx)

]
+

[
u
v

]
, (1)
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Figure 1. Definition of terms used in the local DIC formulation.
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where cx and cy represent the coordinates of the subset origin (which can be specified arbitrarily)
and R(θ) is the rotation matrix given as

R =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
. (2)

When tracking rigid body motion, it is common to neglect the ex, ey, and γxy parameters. The
default settings for the tracking algorithm in DICe de-activates these terms. It is also important
to point out that ex, ey, and γxy do not accurately represent the engineering strain in the material,
but rather an averaged value over the subset. Further analysis is required to compute strains, but
this topic is not discussed in this work.

If we denote the normalized, scalar, reference image intensity field as φ0 and the normalized,
deformed image intensity field as φ, the least squares minimization problem can be stated as
follows: Find p∗ such that

p∗ = arg min
p

1

2

∫
Ω

(
φ(w(x,p))− φ0(x)

)2
dx . (3)

where Ω represent the domain bounded by the subset. Note that Ω can be of any arbitrary shape
in DICe, and need not be square or rectangular. Also note that φ(w) = φ0(x) satisfies the optical
flow constraint

φt + b · ∇φ = 0 , (4)

where φt is the time derivative of the image intensity and b ≈ z/t is the image velocity. Equation
(3) represents an underdetermined least-squares system for which the solution, in a continuous
sense, is not unique, nor is the resulting optimality system always invertable. Because of these
considerations, in the local DIC formulation, care must be taken to ensure that Ω is large enough
(on the order of three speckles or more) to get a solution to (3). Further details regarding solving
this ill-posed problem are provided in [2], suffice to point out that numerical artifacts may arise for
a given problem.

We refer to φ and φ0 as the normalized image intensities so that we can introduce various
correlation criteria. In DICe, the zero-normalized cross-correlation criteria is used such that

φ(x) =
I(x)− Ī√∫

Ω(I(y)− Ī)2 dy
and φ0(x) =

I0(x)− Ī0√∫
Ω(I0(y)− Ī0)2 dy

, (5)

where I(x) is the interpolated value of the pixel image intensity in the deformed image, I0(x) is
the interpolated reference pixel intensity and Ī and Ī0 are the mean values over the subset Ω.

1.1. Notation and identities. Before proceeding, it will be helpful to define the notation and
some useful identities. For example, the derivative of z with respect to position is

∂z

∂x
= RS , (6)

where

S =

[
(1 + ex) γxy
γxy (1 + ey)

]
. (7)

The derivatives of z with respect to each of the parameters are as follows

∂z

∂u
=

[
1
0

]
, (8)

∂z

∂v
=

[
0
1

]
, (9)
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∂z

∂θ
=

[
−sin(θ) −cos(θ)
cos(θ) −sin(θ)

] [
(1 + ex)(x− cx) + γxy(y − cy)
(1 + ey)(y − cy) + γxy(x− cx)

]
, (10)

∂z

∂ex
= R

[
x− cx

0

]
, (11)

∂z

∂ey
= R

[
0

y − cy

]
, (12)

∂z

∂γxy
= R

[
y − cy
x− cx

]
, (13)

Another useful expression is that the derivative of the deformed position with respect to the aux-
iliary variable is the identity tensor

∂w

∂z
= I , (14)

where I is the identity tensor. As part of taking the directional derivative of the objective function
(3), to establish the optimality system, we will require the derivative of the image intensity with
respect to the parameters, for instance,

∂φ(w)

∂u
=
∂φ(w)

∂w
· ∂w

∂z

∂z

∂u
. (15)

We can re-write the expression above using the following substitution

∂φ(w)

∂w
= (RS)−1 ∂φ(w)

∂x
= G , (16)

which was obtained from the relation

∂φ(w)

∂x
=
∂w

∂z

∂z

∂x

∂φ(w)

∂w
. (17)

We evaluate the term (RS)−1 as

(RS)−1 = S−1R−1 =
1

(1 + ex)(1 + ey)− γ2
xy

[
(1 + ey) −γxy
−γxy (1 + ex)

] [
cos(θ) sin(θ)
−sin(θ) cos(θ)

]
. (18)

The term ∂φ(w)/∂x represents the image gradients of the deformed image. If the rotation θ and
the stretches ex, ey, and γxy are small, the deformed image gradients will be nearly identical to the
reference image gradients. In the case of large deformation the deformed image gradients must be
used. There is an input parameter in DICe that enables the user to select the reference or deformed
image gradients. Using the reference gradients whenever the rotation and stretches are small saves
computation time because only the gradients need only to be computed once, rather than for each
frame. In (16) G represents the transformed image gradients, taking into account the change of
variables. Again, if the rotations and stretches are small G ≈ ∂φ(w)/∂x. This approximation is
used in the implementation in DICe. After substitution we write

∂φ(w)

∂u
= G · ∂z

∂u
. (19)

Similarly,

∂φ(w)

∂v
= G · ∂z

∂v
, (20)

∂φ(w)

∂θ
= G · ∂z

∂θ
, (21)
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∂φ(w)

∂ex
= G · ∂z

∂ex
, (22)

∂φ(w)

∂ey
= G · ∂z

∂ey
, (23)

and

∂φ(w)

∂γxy
= G · ∂z

∂γxy
. (24)

1.2. Root finding. The roots of the objective function (3) are determined by taking the derivatives
of the function with respect to the parameters leading to a scalar equation for each parameter, p ∈ p.
This set of equations is then solved using a Newton-Raphson approach. The scalar equation for
each parameter is written ∫

Ω

(
φ(w)− φ0(x)

)∂φ(w)

∂p
dx = 0 , (25)

where p is replaced by u, v, θ, ex, ey or γxy. These are the six residual equations, Ru, Rv, Rθ, Rex ,
Rey , and Rγxy . Given a guess for the solution (within the zone of convergence), pn, the iterative
update equation for pn+1 is pn+1 = pn + δp where δp is obtained from solving the linear system

Kδp = −r , (26)

where K is the tangent matrix, and r is the vector of residuals Ru through Rγxy . The elements of
the tangent matrix are

Kpm =

∫
Ω

∂Rp
∂m

dx , (27)

where p and m = u, v, θ, ex, ey, or γxy.

1.2.1. Simplification of the tangent terms. In computing the elements of Kpm we neglect all second
order and higher terms, i.e. ∂2φ(w)/∂p2 ≈ 0, leading to the following tangent matrix

∫
Ω



∂φ(w)
∂u

∂φ(w)
∂u

∂φ(w)
∂u

∂φ(w)
∂v

∂φ(w)
∂u

∂φ(w)
∂θ

∂φ(w)
∂u

∂φ(w)
∂ex

∂φ(w)
∂u

∂φ(w)
∂ey

∂φ(w)
∂u

∂φ(w)
∂γxy

∂φ(w)
∂v

∂φ(w)
∂u

∂φ(w)
∂v

∂φ(w)
∂v

∂φ(w)
∂v

∂φ(w)
∂θ

∂φ(w)
∂v

∂φ(w)
∂ex

∂φ(w)
∂v

∂φ(w)
∂ey

∂φ(w)
∂v

∂φ(w)
∂γxy

∂φ(w)
∂θ

∂φ(w)
∂u

∂φ(w)
∂θ

∂φ(w)
∂v

∂φ(w)
∂θ

∂φ(w)
∂θ

∂φ(w)
∂θ

∂φ(w)
∂ex

∂φ(w)
∂θ

∂φ(w)
∂ey

∂φ(w)
∂θ

∂φ(w)
∂γxy

∂φ(w)
∂ex

∂φ(w)
∂u

∂φ(w)
∂ex

∂φ(w)
∂v

∂φ(w)
∂ex

∂φ(w)
∂θ

∂φ(w)
∂ex

∂φ(w)
∂ex

∂φ(w)
∂ex

∂φ(w)
∂ey

∂φ(w)
∂ex

∂φ(w)
∂γxy

∂φ(w)
∂ey

∂φ(w)
∂u

∂φ(w)
∂ey

∂φ(w)
∂v

∂φ(w)
∂ey

∂φ(w)
∂θ

∂φ(w)
∂ey

∂φ(w)
∂ex

∂φ(w)
∂ey

∂φ(w)
∂ey

∂φ(w)
∂ey

∂φ(w)
∂γxy

∂φ(w)
∂γxy

∂φ(w)
∂u

∂φ(w)
∂γxy

∂φ(w)
∂v

∂φ(w)
∂γxy

∂φ(w)
∂θ

∂φ(w)
∂γxy

∂φ(w)
∂ex

∂φ(w)
∂γxy

∂φ(w)
∂ey

∂φ(w)
∂γxy

∂φ(w)
∂γxy


dx . (28)

1.2.2. Initialization procedure. For each frame, the initial guess for the solution p is set to the
solution from the previous step. This initialization method places stringent requirements on the
frame rate to capture high speed motion. In practice, the motion should be less than two or three
pixels per frame for this initialization method to work. Other methods for determining the initial
guess are available in DICe, but using the previous frame’s solution is the default initialization
method. This method is also fastest computationally.

1.2.3. Jump tolerances. To ensure that the root finding does not converge on another local min-
imum, jump tolerances are used such that if the converged solution is more than the prescribed
number of pixels from the previous solution or if the angle changes by more than the set toler-
ance tracking is aborted. The details of how to enforce the jump tolerances are given in the DICe
reference manual [3].
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2. Other algorithmic details

2.1. Filtering. Filtering of the reference and deformed images is performed using a 5, 7, 9, 11, or
13 point Gauss convolution filter. If the filter coefficients for each point are denoted cg, the mask
matrix is computed as cTg cg. The mask coefficients, cg are given in the tables below.

Table 1. 5 point Gauss filter coefficients

0.0014 0.1574 0.62825 0.1574 0.0014

Table 2. 7 point Gauss filter coefficients

0.0060 0.0606 0.2418 0.3831 0.2418 0.0606 0.0060

Table 3. 9 point Gauss filter coefficients

0.0007 0.0108 0.0748 0.2384 0.3505 0.2384 0.0748 0.0108 0.0007

Table 4. 11 point Gauss filter coefficients

0.0001 0.0017 0.0168 0.0870 0.2328 0.3231 0.2328 0.0870 0.0168 0.0017 0.0001

2.2. Quadrature. Single point quadrature is used to evaluate the integrals in the optimality sys-
tem where the integration points correspond to the pixel centroids in the reference image. Using this
quadrature scheme (which is not exact given the irregularity of φ) leads to the following expression
for the residual equations

n∑
i=1

(
φ(wi)− φ0(xi)

)∂φ(wi)

∂p
= 0 , (29)

where n is the number of pixels in the subset. The tangent terms can also be re-written in terms
of summations over pixels rather than integrals.

2.3. Computing image gradients. Image gradients in x are computed using a row filter with
coefficients 1/12[1,-8,0,8,-1]. The image gradients in y are computed using a column filter with the
same coefficients. Additional smoothing of the computed gradients is available via setting an input
parameter, but the default setting is non-smoothed gradients.

When image gradients are computed in the deformed image, the gradient values must be in-
terpolated given the deformed position of the pixel. The interpolation method used for image
intensity interpolation is also used for gradient interpolation. If only the reference image gradients
are computed, interpolation is not necessary.

2.4. Interpolation. The default interpolant in DICe is the Keys fourth order interpolant. The
details of ththis interpolant can be found in [1]. Bilinear and bicubic polynomial interpolants are
also available as settings in the input parameters.
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Table 5. 13 point Gauss filter coefficients

0.0001 0.0012 0.0085 0.0380 0.1109 0.2108 0.2611 0.2108
0.1109 0.0380 0.0085 0.0012 0.0001
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