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Abstract

A method for providing non-diffuse transport of material quantities in arbitrary Lagrangian-
Eulerian (ALE) dynamic solid mechanics computations is presented. ALE computations are
highly desirable for simulating dynamic problems that incorporate multiple materials and large
deformations. Despite the advantages of using ALE for such problems, the method is associ-
ated with diffusion of material quantities due to the advection transport step of the computa-
tional cycle. This drawback poses great difficulty for applications of material failure for which
discrete features are important, but are smeared out as a result of the diffusive advection op-
eration. The focus of this work is an ALE method that incorporates transport of variables on
discrete, massless points that move with the velocity field, referred to as Lagrangian material
tracers (LMT), and consequently prevents diffusion of certain material quantities of interest.
A detailed description of the algorithm is provided along with discussion of its computational
aspects. Simulation results include a simple proof of concept, verification using a manufac-
tured solution, and fragmentation of a uniformly loaded thin ring that clearly demonstrates the
improvement offered by the ALE LMT method.
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1 Introduction

The ability to predict material failure is important for many solid mechanics applications. The
computational means employed for this purpose incorporate one or more of the numerous inelastic
material models available to predict the evolution of plastic strain or damage that precede material
failure. Generally speaking, failure of a real material subject to a uniform load is initiated at points
of weakness introduced by inhomogeneities in the material that exist at the micro scale. That is,
a geometrically uniform structure subjected to uniform loading will experience local deformation
and failure. This feature of real material failure is not captured in a simulation by simply apply-
ing a continuum plasticity or damage model to a uniformly loaded structure. Such a simulation
would predict simultaneous uniform failure of the entire structure (provided the numerical imple-
mentation is not sensitive to numerical roundoff, which can lead to localization). One method used
to appropriately simulate material failure initiation is to introduce a statistical spatial variation
of material properties, such as the yield or ultimate tensile strength, into the computational do-
main to capture the effect of local weakness attributed to micro structural material inhomogeneity.
This approach has proven successful for predicting the initiation of failure of geometrically uni-
form structures subjected to uniform loading that compare favorably to experimental observations
[1,2].

ALE computational methods [3, 4, 5] are ideal for dynamic solid mechanics problems that in-
clude large deformations, multiple materials and complex geometries. Material is able to move
through an arbitrary spatial mesh of elements without the problems that accompany high mesh dis-
tortion and tangling associated with pure Lagrangian Finite Element Methods (FEM). In general
the ALE computational cycle consists of three steps; the FEM Lagrangian step, the re-meshing step
and the advection (or remap) step. If a single mesh is used the re-meshing step is not performed,
and the computation is considered to be (effectively) Eulerian. The solution obtained from the
Lagrangian step is then remapped from the deformed mesh to the original mesh. Remapping al-
gorithms [5] provide the transport of node and element quantities that make ALE calculations
possible, however the remapping operation is diffusive, which causes smearing of the data being
transported. The diffusive nature of advection transport drastically reduces the effectiveness of
modeling real material failure using the aforementioned approach because the initial spatial varia-
tion of material properties is immediately washed out. The resolution of this issue is the focus of
the research presented in this paper.

Particle-in-cell computational methods in solid mechanics, such as the material point method
(MPM) [6], operate on the same principle of material transport as ALE methods; material is trans-
ported through an arbitrary spatial mesh of elements. The difference is the transport mechanism.
ALE utilizes remapping algorithms and MPM relies on the motion of discrete particles for the
transport of mass, the deformation gradient, and the material data. The concept of particle trans-
port offers a non-diffusive method of moving data through the mesh. This work applies this trans-
port method to ALE computations through the introduction of discrete, massless points referred
to as Lagrangian material tracers (LMT). These tracers are associated with the material inserted
into the mesh and are used to transport quantities associated with the constitutive behavior of the
material and include the deformation gradient, stress tensor, and history variables. These variables
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are not only carried and updated on the tracers, but their values are aggregated to the elements
in the mesh for the computation of internal forces at nodes and energy of the material in the el-
ements, similar to an MPM computation. However, there are major differences between the two
methods, the primary one being that the Lagrangian material tracers do not transport mass and that
the particle domains do not define the material interfaces. The nodal velocity solution and material
density are still advected using ALE’s well-established, high-order, monotonic remapping algo-
rithms [5, 7, 4, 8, 9, 10, 11] and the material interfaces are still computed using volume-conserving
first- and second-order interface reconstruction methods [12, 13]. In general, quantities associated
with inertial forces are transported by ALE remapping and the quantities associated with internal
forces are transported on tracers: ALE LMT is a hybrid of an ALE and MPM.

Existing ALE FEM implementations can be adapted to support ALE LMT with relative ease.
The present research was performed by adapting ALEGRA, a multi-material, multi-physics, hy-
drodynamic ALE FEM code developed at Sandia National Laboratories [5, 14, 15]. Related work
has been performed successfully by Vitali and Benson [16] for the same purpose of preserving
spatial variation of material properties in ALE in order to more accurately simulate the initiation
of material failure. However, their work applies non-diffuse transport only to the spatially varying
random variables prescribed on the initial mesh that are then applied to material failure properties.
The effective transport of spatial variability is performed by retrieving the random variable from
the original mesh configuration via a mapping operation. The ALE LMT method, as described
in concept above and in detail later, performs non-diffuse Lagrangian transport of not only the
initial prescribed spatial variability of material properties, but also of the deformation gradient,
stress tensor, and material history variables. Preservation of these quantities in ALE LMT ensures
full consistency of the material state and affects the overall solution of the motion and not just
the localized initial failure predicted using ALE, as in [16]. However, preserving the integrity of
these additional quantities in ALE LMT (which should be a substantial improvement for problems
involving damage and other extreme and localized changes in the material state) adds complexity
to the method that currently results in inaccuracies (relative to standard ALE) that will require
additional work to resolve (see the discussion in Section 4 of this paper).

The next section briefly reviews the governing continuum equations of motion for a deformable
solid. Section 3 presents the ALE LMT method in which the discrete form of the governing
equations are developed. The steps of the Lagrangian part of the computational cycle are provided,
in which LMT transport of material quantities takes place, and the subsequent remapping step is
outlined. ALE LMT simulation results for three problems are provided in Section 4. A simple
problem of rigid body motion is used to demonstrate non-diffuse transport provided by LMT.
A code verification of the ALE LMT method in ALEGRA is performed using a manufactured
solution for a solid mechanics problem that incorporates geometric and material nonlinearities.
The method is then applied to the problem of fragmentation of a thin ring subjected to centrifugal
loading. A comparison with ALE results reveals the potential of ALE LMT for extending the
range of applicability of ALE to problems of real material failure modeling using random spatial
variation of material properties. Section 5 concludes and discusses future method research and
development efforts.



2 Governing Continuum Equations of a Deformable Solid

Consider the deformation of a solid body in time ¢ € R. Let Qo C R3 be the initial, or reference,
configuration of the body at # = 0 with boundary dQ°. The initial position of material points are
denoted as X € Qo U JdQ°. Let Q C R? be the current configuration of the body at a time 7 > 0
with boundary dQ. The material point locations in Q are denoted as x € QU JQ. A one to one
mapping, x =x(X, 7), X =X(x,t), exists between the material points positions in the initial and
final configurations, and the displacement is defined as u(x, ) = x — X. The deformation gradient
is defined as F = dx/dX = Vu+1, for which V denotes the gradient with respect to the current
configuration, I is the second order identity tensor and J = detF > 0. The material velocity is
defined to be v(x,7) = u, where the superimposed dot denotes the material time derivative of a
quantity.

The governing equations are the conservation of mass and momentum. The conservation of
mass is

p+p(V-v)=0 V x€Q (1)

where p(x, t) is the material density. The conservation of momentum is
V.o+b=pv V xe€Q 2)
where (X, t) is the symmetric Cauchy stress tensor and b(x, ¢) is the body force per unit volume.

The initial conditions at ¢t = 0 are

v=v" V Xeo’ (3)
and the boundary conditions are

V=V V xe€dQ’ @)

T=0-n V xe€dQ’

where velocity and traction boundary conditions are applied on dQ¥ and dQT respectively, with
(0Q"UIQY) C dQ, IQ"NIQT = 0, and where n(X, ¢) is the unit normal vector on dQ.

Material models are applied for all x € (QUdQ). The complete constitutive model, which
provides the full stress tensor, is expressed symbolically as follows:

o=f(FI) &)

where the quantity I represents a set of history variables.

Equations (1) — (5) represent a complete set of equations for the initial boundary value problem
for a deformable solid. For future reference the variational, or weak, form of the conservation of
momentum in equation (2) is

/pv-wdsz:/ r-wd(agf)—/vW:ch+/b-wdQ ©)
Q Q7 Q Q

where w(x, ¢) is an admissible variation of the solution for whichw=0 V x&€ JQ".
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3 The ALE LMT Method

The basic ALE LMT method is presented in this section. The discrete governing equations are de-
veloped and the Lagrangian, remeshing, and remapping steps that comprise the ALE LMT compu-
tational cycle are summarized. For the sake of simplicity, only single-material ALE computations
are considered.

3.1 Spatial Discretization for ALE LMT

A spatial discretization of an ALE LMT problem is illustrated in Figure 1 for which a typical
finite element discretization is utilized. The computational domain consists of a set of elements
{Qe}levil connected by a set of vertices, or nodes {x;}? ;. The material domain, Q (represented
by the shaded region in Figure 1), is also associated with the set of discrete points, referred to as
Lagrangian material tracers (LMT) {x,} . A local set of tracers {x, }", C Q, is defined for each
Q, € Q.

Figure 1. Spatial discretization of ALE LMT

The standard finite element method approximation used to represent the velocity field solution
is

N
v(x,t) = Zvi(t)Ni(x) @)
i=1
where the subscripti = 1,2, ..., N denotes quantities at the nodes x; and the approximating “shape”

functions N;(x) have the property that Y | N;(x) = 1. The approximation in equation (7) is also
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applied to the solution variation w(X, ¢), and both expressions are substituted into (6). The final
result is .
mivi — f;nt + fl?xl‘ (8)
Equation (8) is the spatially discrete conservation of momentum for which the nodal internal forces
fi"' are
1

(i — / G - VNi(x)dQ ©)
Q
the external nodal forces are
gt — / bN:(x)dQ+ [ TNi(x)d(9Q7) (10)
Q QT
and the lumped nodal mass m; is
m; :/ le(X)dQ (11)
Q

The integral for ff”’ in (9) is evaluated numerically over all Q, in the support of N;(x). The
contribution from €, is

nll‘lt

| 0N ~ ¥ 0,6, VNi(y,)3(v,) (12)
e n=1

where the subscript n = 1,2,...,n™ denotes a quantity evaluated at a Gaussian quadrature point
v, (local element coordinates), w, is the weight and J is the Jacobian of transformation for the
element computed from the following isoparametric representation of the element geometry

Xl'Ni(I//n> (13)
1

N
X; =

=

The quantity &, in equation (12) is defined as the aggregated element stress computed from the
tracers {Xt}f’:‘”l C Q,
Ge= Y, T.(x)0x, (14)
X[EQe
where the weighting function 7, determines the influence of each tracer on an element. For proof
of concept in this paper the tracer weighting function is simply defined as
L) = 5 (1s)
X)=—
¢ Net
which has the undesirable properties that individual element stresses jump each time a tracer
crosses an element boundary, and that the volume of the material in the element represented by
the tracer is not accounted for. These properties are the likely cause of the inaccuracies relative
to standard ALE highlighted during code verification in section 4.2 and could likely be mitigated
using the concepts developed by Sadeghirad et.al. [17] for the MPM method.

In general, the quantity f3, denotes the aggregation of a quantity 8 onto , from the values of
{B }ﬁvjl corresponding to the set of tracers {x, }f]:e’l C Q.. The ALE LMT solution method requires
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the aggregation operation for the quantities associated with nodal internal forces that include o, F,
as well as I, which is used for the so-called “background material”, discussed below.

The ALE LMT method was intended to be used for shock and multi-physics problems where
materials may expand significantly and transition from solid to liquid and gaseous phases. It would
be possible to accommodate large expansions by introducing new tracers in elements that have a
material present without tracers for that material. However, creating tracers introduces additional
complexity, and traditional ALE methods are proficient at handling liquids and gases, which can
usually be represented by an equation of state alone. Hence, the ALE LMT method maintains the
state of the materials in each element so that the material properties can be smoothly transitioned
to standard ALE advection methods when no tracers are present. When no tracers are present,
standard ALE methods are used to compute element quantities (instead of aggregation from trac-
ers). The materials stored in the element are referred to as “background materials” because their
properties are not used until necessary. Note that maintaining the background material requires
additional storage and computation that is not leveraged in standard solid-mechanics applications
with small deformations (provided a few tracers per element are used).

3.2 The Lagrangian Step

The ALE LMT computational cycle consists of two basic processes; an updated Lagrangian step
and a remap (advection step). During the Lagrangian step, the discrete equations of motion are
integrated over a time step At. Let the superscript k = 1,2,... denote a quantity evaluated at a
discrete time %, and define the time step between two discrete times as At = KL ik Let \lfe
s, o, 1,
VX, pk, F¥, o¥ and TF are available. These quantities are updated to xi*!, V;H_j, Vil pktl
Fit1 Gf“ and ]Ii<+1 at the end of the Lagrangian step using a central difference or predictor-
corrector (midpoint) [18] time integration scheme. The following computations outline the basic
Lagrangian step used in ALEGRA [19]. For the sake of brevity some details of the algorithm are
excluded which include incorporation of artificial viscosity, hourglass control and the treatment of

multi-material elements [20].

denote the volume of element e. At the beginning of the Lagrangian step the quantities, x

’ )

1. Compute the lumped mass matrix:

mi="Y / PEN;(x)dQe (16)
0.cQ’ e

2. Perform the aggregation of tracer stress and history variables on elements (the latter to pre-
serve the background material):

of=Y TL(x)of, It=Y T.(x)I} (17)

Xy GQE Xy GQe
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10.

11.

12.

13.

. Evaluate the velocity gradient Vv,

. Compute the nodal internal forces:

fint,k: Z /Qé-le{'VNi<X>dQe
Q.0

Compute the nodal external forces:

k= Y / DN (X)dQe + | TNi(x)d(997)
Q.c0 Q. o0Q7

. Compute the nodal accelerations:

1 .
‘.,5.( =— (ﬁnt,k +fth’k)

3

Update the nodal velocities:

. Update the nodal positions:

k+3
X = xb Ay 2

k+1

N
vkt = ) (ijLé ® N;(x ))
e i i\Xe

i=1
Update deformation gradient on Lagrangian material tracers Ff“:

Fi+! — pr. (I+Aer’;+1> Vox €Q

Update element volumes:
VAL = det (1 Iy Vv’;“) vk

Update element densities:

k
pk—H — pk Ve
e e Vek+1

Perform the aggregation of tracer deformation gradient on elements:

FI;: Z Te<Xt>Ff

X[ng

13

(18)

(19)

(20)

21

(22)

(23)

(24)

(25)

(26)

27)

(28)



14. Evaluate complete constitutive model to update stress and history variables on tracers (and
perform the same operation to update the element quantities using the aggregated quantities
F&H 6K and TF)

{0, I} :f(Ff“,af,Hf) Y ox €Q (29)

15. Update tracer positions:

N 1
XK —xk 4 AtZVerzNi(Xf) (30)
i=1

Transport of the element quantities, o, I and F on Lagrangian material tracers accomplished
during the Lagrangian step of the cycle and their values computed for the K+ 1 time step. The ALE
computational cycle requires that the remaining material quantities be transported from the mesh
defined by the updated mesh node positions {xf“}fy: | to a target mesh M defined by {x}*}¥ .
For the Eulerian representation X%MI = X?.

3.3 The Remap Step

The Lagrangian step of the ALE LMT computational cycle is followed by a remeshing step and
then a remapping step. During the remap process of an ALE computational cycle the updated
variables at time t*T! are mapped back to the target mesh elements defined by the node positions
XM € Q. All quantities, except for those associated with Lagrangian material tracers (stress,
deformation gradient, and history variables), are remapped (in this implementation, the aggregated
material quantities are remapped to ensure a smooth transition when all tracers for a material are
transported out of an element). A complete description of the basic ALE remapping algorithm is
provided by Peery and Carroll [5]. The advection transport equation is provided by the following
conservation law for a scalar quantity ®:

= +V-(ov)=0 31)

The use of advection transport to remap element-centered quantities from the deformed La-
grangian mesh to the stationary spatial mesh relies on an arrangement of elements that is locally
rectangular in two dimensions (see Figure 2). The elements are four node quadrilateral or eight
node hexahedral for two and three dimensions respectively. Element centered variables that are

remapped after the Lagrangian step in a standard ALE computation include pé‘“, G’e‘“, F’;“, and

I¥+1. The advected quantities at the end of the remap step are denoted by pX*!, 65“, F5H! and
g1

The remapping computation is dimensionally split into sweep directions o = 1,...,nd, where
nd is the dimension of the problem [21, 5]. Figure 3 illustrates the elements considered for a
one dimensional sweep direction, & = 1, of material in an element €2,. During a single sweep,
volumetric fluxes are only computed across element faces that are normal to the sweep direction
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2
Q e+l

(oL Q

e-1

Sweep 2

e
Qweﬂ

—_
Sweep 1

2
Q e-1

Figure 2. Local arrangement of 2D quadrilateral elements con-
sidered for remapping of element centered variables in Q.

after mapping to a locally rectangular coordinate system. As a result only the elements that share
a face with €, are considered during remap, excluding elements that share only vertices with Q,
(corner elements). The single-sweep discretization includes coordinates for the three element cen-
ters (e — 1, e, e+ 1) and the adjoining faces (e — %, e+ %) across which volume flux is computed.
Element-centered quantities are considered to be a continuous function of volume coordinates
along the sweep direction (hence the diffusion that occurs with discontinuous functions such as
material damage). Although the presentation of remapping is expressed in terms of volumes and
volume fluxes, it should be noted that some element-centered quantities are considered to be func-
tions of mass coordinates along the sweep direction and are associated with mass fluxes across
element faces.

Qe—1
& . 4
e-1 e-Y% € e+l e+1

Figure 3. Discretization of a single remap sweep direction, o =
1,...,nd, for 2D element Q,
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The integral form of equation (31) leads to the following discrete form used to update the
element-centered scalar quantity @,

w(x

—lvoa—1 , ~ ~
£ = (wg‘ Yol 4 g IAVe‘i%—i—wf‘_%AVe‘fl) (32)

€+§

2

where AVe‘i‘tl denotes the volumetric flux of material in the one-dimensional sweep direction «,
2

across the left (e — 1) or right (e + 3) faces of Q, for a single sweep, V0 = VX! and 0 = of*!.

Advection of @ is assumed to take place during the current time step Az. The volume of €, after a
sweep in the o direction is defined as follows:

VeOC — Vea_l —|— Avetil + AVeoi 1 (33)
2

[S7]

The new volume of €, after remap is
R nd
PE — R L Y (AVK‘L +AVE l) (34)
a=1 2 2

and (f)f“ = wgd . The volumetric flux across an element face for a single sweep is expressed as
follows:
(04 _ [0 04
avE = Ar/am (v-m)?, ,d (ageiQ (35)
ei%
However, the actual computation of of AVe‘i ; 1s accomplished by computing the volume of the ele-

ment formed by the coordinates of the face ét the k and £+ 1 time steps (see reference [5]). Figure
4 depicts these swept volumes across the the four faces of a 2D quadrilateral element €, which ex-
periences a uniform volume expansion mode of deformation. Positive and negative volume fluxes
correspond to material volume leaving and entering the element respectively.

The quantity, (Z):‘jtl , in equation (32) is interpolated, in general, from expressions of ® as a
2

function of volume coordinates along the sweep direction. Many of these functional forms exist
and comprise a widely researched topic. Schemes for approximation of (D:;‘ range in complexity
2

and provide various orders of accuracy and properties. Several schemes are available for use in
the ALEGRA code. The first-order donor method is summarized in [5]. Details on the popular
second-order method developed by Van Leer is provided in [7]. Second and third order accurate
schemes implemented into ALEGRA can be found in [20].

The remapping scheme is intended for the transport of scalar quantities, but ambiguity arises
regarding the appropriate way to apply the remapping algorithm to second-order tensor quantities,
such as o and F. The present remapping algorithm operates on each tensor component, treating
it as a scalar. The matter is further complicated by the restriction that detF > 0 must be satisfied,
which would result in a constrained remapping scheme for F. This issue was partially addressed in
[22] by remapping the components of second-order tensors U and R, which represent the stretch
and rotation tensors respectively, that result from the polar decomposition F = U - R. Experience
has proven that the component by component advection of ¢, U and R provides good results for
most applications.
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Figure 4. Illustration of swept material volumes across the faces
(shaded areas) of a 2D quadrilateral element Q,

The remapping operation provides a transport mechanism for quantities, but is a diffusive pro-
cess that tends to smear these quantities over the mesh. This characteristic is particularly disad-
vantageous for applications of material failure in computational solid mechanics. Discrete features
such as localized strain, damage and spatial variability of strength properties are important for
such applications, but are lost due to the diffusivity of advection transport. The use of Lagrangian
material tracers for ALE simulations of solids eliminates these disadvantages by providing a non-
diffusive transport mechanism for stress, deformation gradient and history variables. The pitfalls of
component by component advection of second-order tensor quantities are also completely avoided.

4 ALE LMT Simulations

Results for three ALE LMT simulations are presented and compared to their corresponding ALE
simulation results. The calculations were performed using the ALEGRA code. The first problem
is a proof of concept used to demonstrate the principle of non-diffuse transport in ALE using
Lagrangian tracers. The second problem is a manufactured solution utilized for verification of
ALE LMT as a computational method. The last problem is an application to modeling the failure
of a uniformly loaded thin ring.
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4.1 Proof of Concept: Rigid Body Motion With Initial Damage

The principle of using Lagrangian material tracers for non-diffuse transport in ALE computations
is demonstrated by the problem of 2D rigid body rotation of a bar about its center of mass. A
comparison of ALE and ALE LMT results are provided in Figure 5. The exact motion prescribed

(a) ALEt=0 (b) ALELMT =0
(¢c) ALEt =1, (d) ALELMT ¢t =¢,

() ALE ¢ = 101, (f) ALE LMT ¢ = 10z,

Figure 5. Bar rotation problem with prescribed initial damage:
Comparison of ALE & ALE LMT damage results (blue corre-
spond to D = 0 and red corresponds to D = 1)

at the nodes is
x; = Xjcos(ot) —Y;sin(ot)

yi = Yicos(wt) + X;sin(wt) (36)

18



where (x;,y;) and (X;,Y;) are the current and reference coordinates for node i respectively, and o is
the angular speed. It is easily verified that the motion described by equation (36) is a pure rotation
for which F~! = F” and J = 1. The bar dimensions are 6cm x 2cm and the rate of rotation
is @/(2m) = 100Hz corresponding to a rotational period of 7, = 0.01s. The spatial domain is
discretized into 0.25 cm x 0.25 cm four node quadrilateral elements. The elements in the material
domain initially contain 4 tracer points evenly spaced along the element edges (see Figure 1). The
constitutive model governing the material response is arbitrarily chosen to be the Johnson Cook
fracture model [23] . The damage variable, D, plotted on the initial configurations in Figures Sa
and b, is initially prescribed to a value of 1 in a local region at the right side of the bar. Since the
motion given in equation (36) is purely rotational, stress does not develop in the bar preventing the
accumulation of further damage.

The motion is applied, and after a single revolution the local damage pattern has been un-
physicaly smeared over half the bar by the ALE simulation while the damage pattern has been
maintained by the ALE LMT computation (Figure 5c and d). After ten revolutions the ALE LMT
method has maintained the original damage pattern for the most part, however the some smearing
of the damage is observed (Figure 5f).

Since the motion of the bar is completely rigid, computational results reflect only the trans-
port of material quantities provided by either the remap algorithm of Section 3.3 or the motion of
the tracers. Currently, the ALEGRA code allows transport of o, F and I (which includes D) by
both remapping and tracer motion during the ALE LMT computation, and the aggregation of these
quantities from tracers to the elements overwrites the remapping result. However, if remapping
occurs in an element where there are no tracers, the results for o, F and I reflect only remap trans-
port and are susceptible to diffusion. This case is illustrated in Figure 6 which displays the final
configuration of the ALE LMT result (Figure 5f) with the tracers superimposed. It is immediately
apparent that smearing of D occurs in regions where there are no tracers.

One important computational consideration for ALE LMT is the presence of two different
transport mechanisms for material quantities, advection and Lagrangian tracer motion. These
mechanisms are very different. Remapping is essentially an averaging of quantities in neighboring
cells weighted by the flux of material through the cell faces. LMT transport is based on averaging
of tracer quantities in a cell that move according to the nodal velocity solution computed during the
Lagrangian step. There is no reason to expect that the motion produced by these two algorithms
will be identical. As a consequence, the situation of asynchronous transport of the same material
variable, depicted in Figure 6, can eventually occur. However, it should be noted that the result
displayed is after 350,000 computational cycles. It should be possible to better synchronize the
transport mechanisms, but this is a topic for further research.

4.2 Code Verification: Generalized Vortex Manufactured Solution

Code verification of the ALE LMT method is provided by the method of manufactured solutions
(MMS) [24]. The manufactured solution for the so called 2D generalized vortex problem, de-
veloped by Kamojjala et. al. [25] for verification of the convected particle domain interpola-
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Figure 6. Bar rotation problem with prescribed initial damage at
t = 10z, with Lagrangian material tracers displayed

tion (CPDI) method [17], is utilized due to it’s straightforward applicability to particle-in-cell
approaches. The dynamic solid mechanics problem involves a non-trivial deformation field that
incorporates geometric and material nonlinearities, but does not require the enforcement of veloc-
ity or traction boundary conditions.

The initial configuration of the generalized vortex problem is depicted in Figure 7 as a two-
dimensional annulus of hyperelastic solid material with inner radius R, = 0.75m and outer radius
Ry, = 1.25m. The position of a material point X in the initial configuration is expressed in terms
of cylindrical coordinates (R, ®) corresponding to the orthonormal basis vectors {Eg,Eg}. The
prescribed motion is

x(X,t) = Rcos(® + ) E; + Rsin(@+ a)E, 37)
where
a(R,t) = g(t)h(R) (38)
and
h(R) = (16(R—1)2 — 1) g(t) = %(1 _cos(2nt)) (39)

The motion described by equations (37) - (90) is simple shear with a superimposed rotation. The
energy function form for the hyperelastic material model is

Y(F) = % (F:F' —2) —pIn(J)+ %(111(1))2 (40)

where A = 577 Pa and u = 385 Pa are the Lame material constants, which correspond to a Young’s
modulus of £ = 1000 Pa and a Poisson’s ratio of v = 0.3. The Cauchy stress o is obtained from
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Figure 7. Initial configuration of generalized vortex problem

equation (40) as follows:
14

T F’ 41)

c=J

The basic MMS approach is employed in order to obtain a body force function b(X, ) =
b,E,+bgEyg, for which the deformed angular coordinates, » = R and 0 = ® + o/(R, ), of a material
point are associated with the deformed basis vectors {E,,Eg}. Equations (37)-(41) are combined
with the conservation of momentum in equation (2) and the relationships, v = x and F = dx/dX.
Details of the MMS analysis for the generalized vortex problem are provided in Appendix A. The
final results for the components of b(X, 7) are

by = —m?sin? (21 )R (16(R— 1)2—1)* + % (1 —cos(27t))*R (1024(R—1)° — 64(R— 1))’
0
42)
b =272 cos(2ar)R (16(R— 1)> —1)° — ZL (1—cos(27t)) 64 (96R® — 240R? + 188R — 45)
0
(43)

where the initial mass density of the material is pg = 1000kg/m?>. The resulting body force function
is used to drive the simulation, and the motion generated should be that of equation (37). Itis easily
verified that the resulting velocity solution is

v(X,1) = (TR(16(R — 1)* — 1)*sin(27t)) (— sin(® + o) E; +cos(® + ) E,) (44)

Figure 8 displays the two ALE LMT discretizations considered for the generalized vortex prob-
lem. Let /& denote the element size metric which is equal to the side length of a square element
in the rectangular mesh (8b) and the radial cell spacing for the radial mesh (8a). The mesh reso-
lution parameter n is used to define the element size such that h = hy /2", where hy = 0.1m is the
smallest mesh size considered. The Lagrangian material tracer density parameter p denotes the
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number of uniformly spaced tracers per cell per linear dimension. The cases of n =0,1,2,3,4,5
and p = 0,3,6,9 are considered for each discretization.
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(a) radial mesh (b) rectangular mesh

Figure 8. ALE LMT discretization of the generalized vortex
problem (n =1, p =3).

Figures 9 and 10 display comparisons between the exact and ALE LMT numerical velocity
field magnitude solutions at ¢+ = 0.25s for the radial and rectangular meshes respectively. The
exact solution is obtained by prescribing the exact velocity solution of equation (44) at nodes and
the numerical ALE LMT solution is obtained by prescribing the MMS body force function result
in equations (42) and (43). Sets of diagnostic Lagrangian material tracers are superimposed on the
plots in order to illustrate the deformation of material. The array of radial lines placed at various
angular positions at t = 0 is deformed substantially by # = 0.255s. At this time it easily verified
from equations (38) and(44) that the maximum angular displacement and velocity magnitude are
o =28.7° and ||v|| = wm/s respectively for radial position R = 1 m. Exact and numerical solutions
agree well by visual comparison for both radial and rectangular mesh types. A region non-zero
velocity outside the material domain is noticeable in the ALE LMT results for the rectangular
mesh but is absent from the radial mesh results. This is most likely attributed to the nature of the
advection transport of the velocity field, which is based on flux of material in the normal direction
to the cell faces. Since the circumferential mesh lines in the radial mesh are aligned with the
motion of the material, a radial mesh is generally expected to provide a better result than that of a
rectangular grid of the same resolution.

Error analysis of the ALE LMT nodal velocity solution at # = 0.25 s for various tracer densities
are displayed in Figures 9 and 10 for the radial and rectangular meshes respectively. Convergence
is achieved for both cases using the L, error norm, which is computed with respect to the exact
velocity solution. Use of a radial mesh over a rectangular mesh generally results in a higher rate of
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Figure 9. Comparison between the exact (left) and ALE LMT
(right) velocity magnitude solutions for the generalized vortex
problem with a radial mesh (n =1, p = 3).

convergence for this problem which agrees well with that of the standard ALE case of p =0 (no
tracers). ALE LMT error results for a rectangular grid result in a slower convergence rate than that
of standard ALE. Particle density has no apparent effect on convergence rate for either mesh type.
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Figure 10. Comparison between the exact (left) and ALE LMT
(right) velocity magnitude solutions for the generalized vortex
problem with a rectangular mesh (n =1, p = 3).

There is no fundamental reason ALE LMT should be less accurate than standard ALE. It is
most likely that noise is introduced in the solution when tracers cross element boundaries. The
very basic weighting function 7, introduced in equation (14) is a likely culprit. However, the
ALE LMT method preserves information that is critical for the integrity of simulations involving
damage. This significant improvement is demonstrated below.
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Figure 11. ALE LMT velocity solution error at ¢t = 0.25s for
radial mesh.
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Figure 12. ALE LMT velocity solution error at t = 0.25s for
rectangular mesh.
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4.3 Application: Simulation of a Rotating and Expanding Ring

The ALE LMT method is applied to the problem of the fragmentation of an expanding ring sub-
jected to centrifugal loading. The simulations are based on experiments performed by Benson and
Grady [26], in which uniform tensile load is applied to the ring using an electromagnetic field.
The thin aluminum 1100-0 ring has an outer diameter of 32mm and 1mm X 1mm square cross sec-
tion. Experimental results show that material failure of the ring due to circumferential tension is
preceded by ductile necking of the ring cross section which are localized at relatively even spaced
locations along the ring’s circumference.

The 2D Eulerian simulations of the expanding ring problem follow closely from the 3D La-
grangian ALE simulations performed by Bishop and Strack [1] who applied a constant pressure to
the inner radius of the ring. Consider a 2D polar coordinate system with coordinates (r,0). The
radially constructed Eulerian mesh of 16,920 quadrilateral finite elements, displayed in Figure 13,
corresponds to the lowest resolution mesh used in [1] with Ar = 0.25mm. The origin is located at
r = 0. The inner and outer radius of the mesh are 30.75mm and 42mm respectively.
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» \\gn\‘{{\\ﬂt'{m\ L

(a) radial mesh (b) close up view

Figure 13. Eulerian mesh of cells for expanding ring problems:
16,920 cells

The ring material is modeled using the isothermal, rate-independent form of the Johnson-Cook
isotropic plasticity model [28], for which the corresponding hardening function is

6 =oy+Heg, (45)

where & is the Von Mises stress, €, is the equivalent plastic strain history variable, oy is the initial
yield stress, H is the hardening modulus and # is the hardening exponent.
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The localized failure of a geometrically uniform structure subjected to spatially uniform load-
ing is attributed to inhomogeneity in the material. In order to capture this feature of failure of
real materials, a statistical approach is utilized, for which the aleatory uncertainty (uncertainty in
spatial variation) and size effect of o, are accounted for (see [1] and [27]). The value of oy is taken
from a Weibull probability distribution function with the following form:

1

_[(VInR\"
Gy = Oy (vg) (46)
The median value of initial yield stress for aluminum 1100 is 6, = 80M Pa, the reference volume
is V = 1 em?, the Weibull modulus is m = 25, R is a random number from a uniform distribution
ranging from O to 1 and V is the volume of a discrete finite element. An initial yield stress range of
63.2MPa < 6, < 88.2 M Pa results from application of equation (46) to the discretized ring. Figure
14a displays a plot of oy on the initial configuration. A close up view of the spatial variation of oy,

in a ring sector is also provided in Figurel5a. The remaining material parameters in equation (37)
are constant values of H = 20MPa and n = 0.34

The centrifugal loading of ring is simulated by the application of a prescribed body acceleration
(external force) to the mesh nodes. The body acceleration field a(r,7) is applied to the mesh node
radial positions r;(¢) = x;e, + yiey, where e, and e, are the global Cartesian unit basis vectors and
(xi,yi) are the corresponding cartesian coordinates of a node. The body acceleration function is

a=or) (—%ex - —ey) “47)

where r = 4 /xl-2 + yl.2 and the angular acceleration « is
a(t)=a (H(t)—H({t—1t))+o(H(t—t,) —H(t —1)) (48)
The Heaviside function, H(x), for any argument x is defined to be

o=} 228

Equation (48) represents two square pulse angular accelerations functions applied at + = 0 and
t =t,. The first pulse accelerates the ring to an angular speed of w; = 5 X 103 rad /s and its
amplitude and duration are o; = 1 x 103 rad/s? and t; = @; /oy respectively. The second pulse
accelerates the ring to an angular speed of @, = 9 x 103 rad /s. It has an amplitude of o = 1 x 10°
and is applied after the the ring has rotated one revolution at time ¢, = 27/®; + @; /(20). The
duration of the second pulse is #, — ), where 1, = (0, — @;)/ 0 +1).

The uniform loading of the ring is produced by the centrifugal force resulting from rotational
motion. After application of the first pulse the ring is rotating at a constant angular speed of @;.
The resulting stress state is tension in the circumferential direction for which 0 < g9 < &y and
0, = 0,9 = 0. The value of w; was obtained by trail and error in order to satisfy ogg < Gy. A
rapid increase in the centrifugal force is then realized by application of the second loading pulse
for which ogg > G,. The plastic response of the material causes the ring to expand radially.
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Figure 14 displays comparisons of oy between ALE and ALE LMT simulations at three discrete
times within 0 <7 <7,. A pink dot is used to trace the position of a single material point in the
calculations. Initially, the ring incorporates the same spatial variation of o, for both methods
(Figure 14a). A normal ALE simulation transports the values of oy using a remapping algorithm
while o), is transported by discrete points using ALE LMT. After only a quarter rotation the loss
of the spatial variation of oy is very apparent. The two results are compared in Figure 14b after
the ring completes a full revolution. The spatial variability of the o, remains intact when LMT
is employed, but is completely absent due to diffusive advection transport of the ALE simulation.
This difference is clearly observed in Figure 15.

Comparisons of ALE and ALE LMT are displayed in Figure 16. The configurations are col-
ored according to the equivalent plastic strain, with red corresponding to €, > 0.5. The comparison
displayed in Figure 16b clearly shows the improved performance of ALE LMT for predicting the
fragmentation of the ring, which can be deduced from the necking locations on the image on
the right of Figure 16b. The physically realistic development of localized deformation (necking) is
only possible because the Lagrangian material tracers provide a non-diffusive transport mechanism
for the spatially varied initial yield stress field. If LMT is not utilized the result is an unrealistic
uniform plastic strain in the ring (left image in Figure 16b). It is important that spatial variability
of strength related quantities, such as o, be maintained in order to simulate failure of real ma-
terials. Uniform geometry and loading does eventually lead to localized failure as a result of the
material inhomogeneity that random variation of strength properties is intended to represent. This
is certainly the case of the expanding ring experiments preformed in [26].

28



@
C

(a) initial configuration t = Ous
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(b) one quarter revolution r = 336us
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(c) one revolution t = 1287us

Figure 14. Comparison of spatial variation of o, for ALE (left)
and ALE LMT (right); 63.2MPa < 6, < 88.2MPa
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(a) ALE ¢ = Ous (b) ALELMT ¢ = Ous
(c) ALE t = 1287us (d) ALELMT ¢ = 1287us

Figure 15. Close up view of a ring sector comparing spa-
tial variation of o, between ALE (left) and ALE LMT (right)
63.2MPa < 6, < 88.2MPa
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(a) 1 = 1360s
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Figure 16. Comparison of equivalent plastic strain (red corre-
sponds to €, > 0.5) for ALE (left) and ALE LMT (right)

(b) t = 1370us
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5 Conclusions

The ALE LMT method has been presented and is clearly an improvement to statistical material
failure modeling approaches in ALE. The hybrid ALE and particle-in-cell method uses massless
points to provide a non-diffuse transport mechanism for material history variables and the deforma-
tion gradient and stress tensors. This concept is demonstrated by the preservation of a prescribed
initial damage pattern on a solid subjected to rigid body motion. Verification of the ALE LMT
method was performed using the generalized vortex manufactured solution, which incorporates
large deformations and a non-linear material model. Use of the method for simulating a thin ring
subjected to uniform centrifugal loading not only preserves the inhomogeneity in the material prop-
erties as the ring rotates, but predicts localized necking associated with realistic failure initiation.
Lagrangian tracer transport of the deformation gradient and stress also eliminates the ambiguity
associated with remapping these second order tensor quantities, which violates restrictions on the
deformation rate or gradient.

Future ALE LMT research and development efforts are dedicated to improvement in accuracy,
robustness, and performance. Methods to improve the synchronicity between motion of material
quantities provided by the two transport mechanisms present in the method are currently being
considered. This type of improvement plays a key role for the concept of dynamic tracer creation
for material regions of large volumetric expansion where the density of tracers is too low to re-
tain localized damage regions and destruction of tracers for material regions of large volumetric
compression where the tracer density has become unnecessarily large. This type dynamic tracer
population control could drastically improve the efficiency of ALE LMT. Adoption of the particle
domain representation used in CPDI could also potentially improve the accuracy of the method
and decrease the number of tracers necessary to discretize a domain.
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A Generalized Vortex Manufactured Solution

The following development of the generalized vortex manufactured solution was first performed
in [25] and is included in the present work for convenience. Consider a two-dimensional annulus
with inner radius R, and outer radius R}, depicted in Figure 7. The position of a material point in
the initial configuration is expressed in terms of cylindrical coordinates (R, ®,Z) corresponding to
the orthonormal basis vectors {Eg,Eg,Ez} as follows:

X = X(R,0) = REj (50)

The following rotational motion is prescribed for the body

x=0Q- X (51)
where Q is
cos(ar) —sin(a) 0
Q= sin(ex) cos(a) O (52)
0 0 1
and
o(R,t) = g(t)h(R) (53)
For future reference, the following relationship is defined
dQ
_— = A . —= . A 54
o Q=0Q (54
where the axial tensor A is
0 -1 0
A= 1 0 O (55)
0O 0 O
and has the following properties for any vector s.
A-s=Ezxs s-A=sxEy (56)
The deformation gradient is computed from equation (51) as follows:
dx dQ
F=—= — X
dX Q-+ dX 57)
The second term in (57) is expressed using (54) and the chain rule as follows:
dQ do dR
— X=—(A-Q-X)® —= 58
dX dR (A-Q-X)e dX (58)

Equations (50), (57) and (58) are combined along with the fact that R=X-Eg and Eg = A -Eg in
order to produce the following result for F.

dh
F=Q- (I +Rg Bo® ER) (59)
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An alternative expression for equation (59) is

F=Qq-fq' (60)
where
f=(I+R dhE QE (61)
= ng 2 1
and
cos(®) —sin(®) 0
q=| sin(®) cos(®) O (62)
0 0 1

and {E{,E;,E3} is the set of standard basis vectors. Since the deformation is pure shear, it follows
that
J=det(F)=1 (63)

The Lagrangian representation of the conservation of momentum is
poa = Vo -P-+ pob (64)

where a is the acceleration, P is the first Piola Kirchhoff stress tensor, b is the body force per unit
mass (body acceleration), pg is the initial material density and V| is the gradient operator with
respect to the initial configuration. The objective is to obtain b(X,#) using the prescribed motion
in equation (51), the resulting deformation gradient F in equation (60) and the momentum balance
in equation (64). In order to accomplish this, a constitutive model is required which relates F to P.
This relationship is provided through a Neo-Hookean energy function of the following form:

A
W(F) = % (F:F" —2) —pIn(s) + 5 (in(9))? (65)
The definition of P is ¥
P=_—r =12 In()F T +uF-FT) (66)
where the following result has been used:
dJ
g § e 67
IF (67)

Equations (60), (63) and (66) are combined to obtain an expression for P. The result is

P=4Qqaq (68)
where Jh
a:(f—FT):Rgﬁ(E2®E1+E1®E2) (69)

The divergence of P is computed as follows:

oP 1 0P
Vo-P=—0 Ert+ 555 FEeo (70)
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The partial derivative in the first term of (70) is obtained using equation (68). The result is

P [0Q T dq T da aq”

Since dq/dR = 0, equation (71) is reduced to the following:

P dh dh d2
ﬁ_“( SapA QA (e R,

)Q-q- (E2®E1+E1®E2)'QT) (72)

The first term in equation (70) is computed using equation (72). The result is

2

P dh\? dh _d*h
3R ER—“<R(gﬁ> A'Q"]'Eerg(dRJFRW)Q'Q'EZ) (73)

The partial derivative in the second term of equation (70) is obtained using equation (68). The
result is

1P  u [9Q ; q da aq"
RO R(8® 124 +Q g5 aa +Q 4 550 +Q qa- 5o 74
Since dQ/d® = 0 and da/d® = 0, equation (74) reduces to the following:
1JP u T
296~ g (Q@Aqad +QqaAlq) (75)

Equation (75) is combined with equation (69) along with the fact that AT .E, =E; in order to
provide the following expression for the second term in equation (70). The result is

10P dh
%00 Fe g—(Q A-q-E;1+Q-q-E») (76)

The transformation tensor to the deformed coordinates is

cos(B) —sin(B) O
r=Q-q=| sin(@) cos(6) O (77)
0 0 1
where
0 =0+ a(R,t) (78)

Equation (77) is substituted into equations (73) and (76) to produce the following results:

P dh\? dh  d*h

3R ‘Er=u <R (gd_R) A-r E2+g(dR dRz)r Ez) (79)
) dh
R96 Ep = ,LLng(A-r-E1+r~E2) (80)
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The relationships, A-r=r-A, A-E, = —E;| and A-E; = E, are combined with equations (79) ,
(80) and (70). The result is

dh _d*h dh\?
Vy-P= T 4R E, — UR E 1
0 ng (3dR+ dRz)r 21— M < dR) r-E (81)

which reduces to the following:

dh\? dh _d’h
Vo-P= —IJR< dR) E, +pug (SdR+Rd?> Eg (82)

The velocity v is obtained using equations (51), (54) and the chain rule. The result is
d
v:x:th—fQ-E@ (83)

The following expression for the acceleration is obtained from equation (83).

2

, 42 2 d’g
a=v=-R(h_ ) QEx+Rh_ QE@ (84)

Use of the relationships Er = q-E; and Eg = q - E, reduce equation (84) to the following:

dg\? d2g
— _R(1h%E) E, +RHESE,
a (dt) +Rh— 3 (85)

Equations (64), (82) and (85) are combined to solve for b(R,®,¢). The result is
b (& (1) R () Vit (RhCE - g (32 p Vg, 6
- dr ) oo \%ar a2~ po®\Car T "arz ) ) 0
The specific form of i(R) is selected based on the selected annulus geometry of R, = 3/4 and

Ry, = 5/4. The expression for A(R) is

h(R) = (16(R—1)>—1)? (87)

It is easily verified that the form in equation (87) satisfies #(3/4) = h(5/4) =0and dh/dR(3/4) =
dh/dR(5/4) = 0. The specific form of g(¢) is

1
g(t) = 5(1 —cos(2mt)) (88)
which satisfies g(0) = 0 and dg/dt(0) = 0. The function forms of i(R) and g(z) in equations

(87) and (88) lead to analytical expressions for P = P(R,0,¢) and v = v(R,®,¢) that result in the
following convenient initial and boundary conditions for the problem:

v(1/4,0,1) = v(5/4,0,1) =0 (89)

36



P(1/4,0,1) =P(5/4,0,1) =0 (90)
v(R,©,0) =0 1)

Finally, equations (87) and (88) are substituted into equation (86) to obtain the analytical form of
the components of b = b, E, + bgEg. The result is

by = —m2sin2(27n)R (16(R—1)2— 1) + % (1 —cos(2mr))? R (1024(R—1)* — 64(R— 1))
0
92)
b = 272 cos(2ar)R (16(R— 1)> — 1)° — % (1—cos(27t)) 64 (96R® — 240R? + 188R — 45)
0
93)
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