This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.
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2‘ Sandia AM Program (Born Qualified)

Goal: 15+ year vision to combine promise
of metal additive manufacturing (AM)
with deep materials & process
understanding to revolutionize design,
manufacturing, & qualification paradigmes.
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= Inherently flexible and agile

= Ability to create near-net shape parts




3‘ Attributes of soft ferromagnetic alloys

Excellent soft magnetic properties:
* High saturation induction
* High permeability (High B for

low H)

* Low coercivity (narrow loops)
* Low core loss (narrow loops)
e Electric motors, transformers,

switches, etc.

- However -

Poor mechanical properties:

* Result of ordered phase
transformations

* Low yield strength

* Low ductility

* High notch sensitivity

* Low fracture toughness

* Low fatigue resistance
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4‘ Fe-Co Metallurgy

Equiatomic or near-equiatomic Fe-Co alloys that undergo a y-FCC — a-BCC— a, (B,)
transformations.
= Poor composition-driven workability, binary Fe-Co difficult to process.

=  Commercialized as Fe-Co-2V (Hiperco®) in bar, sheet, strip, coil, and rod forms.
Hiperco® is a tradename of Carpenter Technologies, Reading, PA. 1700 1
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5‘ Additive Manufacturing: a processing solution?

Hypothesis: The unique thermal history of layer-by-layer AM will inhibit ordered phase
transformations in a controlled and predictable way.

Through AM, avoid workability issues that arise in conventional thermomechanical
processes through a solidification-based processing solution — enabling ideal compositions
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6‘ Additive Manufacturing tools

LENS®
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=  Open architecture LENS system on Tormach CNC
770 frame.

=  YLS-2000 Laser from IPG Photonics with 2 kW
output at 1064 nm.

=  Control the powder feed through feed wheel and
carrier gas (independently) to fluidize the powder.

Selective Laser Melting-

Renishaw AM400 pulsed laser
(Lehigh University)

|

Commercial SLM system with a 400 W laser.

70 micron beam diameter with a 250 mm x 250
mm x 300 mm build volume.

Enclosed inert atmosphere.




7‘ AM processed soft ferromagnetic alloys

LENS® Selective Laser Melting
As-built Machined Binary Fe-Co
Feses=]. EE—-1.5V %, i,
Fe-C@
Fe-6wi%S
Hypothesis Validated
* Bulk structures were produced from Fe-Co and
Hi Fe-Si alloys via LENS and SLM
iperco .

e Conventional Hiperco (Fe-Co-1.5V)
* Binary Fe-Co and Fe-6%S$i1, too brittle for
conventional thermomechanical processes!
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8‘ Measuring of atomic ordering

Varied laser power, build speed, and time between subsequent layers (interlayer interval time) to:
1. Control the degree of retained heat within LENS thin walls.
2. Impose near order of magnitude variation in predicted cooling rate.

Rosenthal Model: 97 - K (1 —T )2
dt aQ m (e}
Processing Parameters Output Parameters
Specimen Laser Power, Q Build Speed, Interlayer Interval | Rosenthal Predicted
p (W) vy (mm/s) Time, ¢ (s) Cooling Rate (K/s)
1 150 3 0.4 3.6 E3
2 150 7 0.4 9.5 E3
3 300 4 0.4 2.7E3
4 300 8 0.4 59E3
5 450 10 0.4 4.8 E3
6 150 3 11 3.6 E3
7 150 7 11 9.5 E3
8 300 3 11 1.8 E3
9 300 4 11 2.7 B3
10 300 8 11 5.9 E3




9‘ Measuring of atomic ordering

Characterization of ordering:
Tracked (100) superlattice peak count intensity relative to (200).

Ratios were normalized to an annealed condition for relative ordering. —=
Used Cobalt X-ray radiation to characterize samples - Cobalt source

required to see superlattice!

Connect the atomic ordering
parameters with the LENS
processing conditions

Intensity(Counts)

250

200

15.0

10.0

50

x10°

Relative 100

Ordering s 00

Parameter s, 1100)
200/,

Cu Ka radiation does not
detect (100) superlattice

/

RN KB

(1?0) Superlattice peak

7(110)

n -

y;
ko Abatgiagier? 'M--\NAAAPM,-NkN\"NWwl«mdm,p,—n‘v‘.ﬂjl",\k¢Jw\fy~.MWV//

00-044-1433> Wairauite - CoFe

Co radiation scan

Cu Ka radiation detecting the
fundamental (200) peak

\WV-MM-«W'\WM.M_ AR, A s A A At ; -, & vt et

(111)‘ (200)

40 50

60 70 80
Two-Theta (deg)




10‘ Reduced ordering in AM-processed material L
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» Hypothesis validated: X-ray measurements suggest AM samples 30-60% less ordered than annealed sample.

» The interlayer interval time had significant effects on ordering. With increased interval time, ordering dropped due to
increased cooling rate and sharper thermal gradient.




11‘ Refined as-built microstructure

» Fine equiaxed grains
throughout the cylinder.

» Crystallographic texture was
weak (near-random).

Implications of disordered fine
grain Fe-Co alloys?

Build Direction




»| Retained soft ferromagnetic performance

3 - Annealed

As-built

As-built condition exhibited a
more ‘sheared’ hysteresis
loop - magnetically harder

Magnetic Induction, B (T)

-3 -
Applied Field, H (kA/m)




Magnetic properties comparable to conventional

i3 I Hiperco

Goal is high permeability, low coercivity, and high full-field/saturation induction

» Annealed LENS condition: higher
permeability and lower coercivity

» Values were within extremes of
conventionally processed Fe-Co alloys.

» Tuning of post-processing annealing
will continue to improve performance.

Condition Specimen Full-field Induction, Coercivity, Maximum
p Buo, (T) H.,(A/m)  Permeability, u»
. 1 2.3 1013 511
. e’_\é'ob_‘iﬂstv 2 2.24 966 532
' 3 221 1006 512
Average - 2234+-0.5%  995+-2% 518 +/-2%
1 2.30 383 1639
Annealed 2 2.28 351 1733
Fe-Co-1.5V 3 2.26 439 1571
4 2.30 431 1517
Average - 229+-0.7% 401 +-9% 1615 +/- 5%
Fe-Co _ 2.4[25]* 150[25]  5000-8000[25]
90-200[62]
Fe-Co-2V - 2.3[25]* 95-160[63]  4000-8000[25]
393[25]
Fe-Co-2V (as- - 22[25]* 2900[25] -

rolled, 90%)




14‘ High strength and high ductility Fe-Co
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AM (SLM) processed binary Fe-Co
showed high strength and ductility
compared to conventional
(commercial) Hiperco with extensive
necking and ductile fracture.

AM binary FeCo
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s | Implications for next-generation electromagnetic devices
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= AM opens the door for processing of ideal soft ferromagnetic alloy
compositions that are impractical with conventional methods.

= Preliminary results suggest revolutionary performance with
opportunities to tailor microstructure and magnetic/mechanical
properties.




«| Summary

1. AM was shown to enable ideal soft ferromagnetic alloy compositions in bulk that
are impractical to produce with conventional thermomechanical processing.

2. Fe-Co alloys were characterized by more ideal microstructures with reduced
atomic ordering.

3. AM processed soft ferromagnetic alloys retained a soft magnetic performance
with high saturation induction, which could then be tuned via annealing.

4. Mechanical properties of the soft magnetic alloys were superior to available data
on the binary Fe-Co alloy.
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Is an AM multiscale microstructure responsible?

Tensile

axis

Potential mechanism: multiscale microstructural features (nm - pm) with atomic
disorder lead to increased dislocation pinning (for strength) and dislocation

accommodation for greater ductility/work hardening'3. ;| & 1y erar, Science, 2009

2. Y. M. Wang., et al., Nat. Mater., 2018
3. J. E. Flinn, et al., Metall Trans A., 1992




Temperature / °C

8‘ Why? Physical metallurgy tells us

|

Phase transformations from a-BCC— a, (B2) or a, (DO;) lead to low ductility
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Conventional mitigation tactic: modify the alloy chemistry
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