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ABSTRACT

Medicine, even from the earliest days of Artificial Intelligence (AI) research, has been one of the most inspiring and
promising domains for the application of Al-based approaches. Equally, it has been one of the more challenging areas to
see an effective adoption. There are many reasons for this, primarily the reluctance to delegate to machine intelligence a
function of life-critical and patient-safety-related decision making. To address some of these challenges, medical Al,
especially in its modern data-rich Deep Learning guise, needs to develop a principled and formal Uncertainty
Quantification (UQ) discipline, just as we have seen in fields such as nuclear stockpile stewardship or risk management.
The data-rich world of Al-based learning, and the frequent absence of a well-understood underlying theory poses its own
unique challenges to straightforward adoption of UQ. These challenges, while not trivial, also present significant new
research opportunities for the development of new theoretical approaches, and for the practical applications of UQ in the
area of machine-assisted medical decision making. Understanding prediction system structure and defensibly quantifying
uncertainty is possible, and, if done, can significantly benefit both research and practical applications of Al in this critical
domain.!

Decisions deeply informed through computer modeling, throughout its seventy-years history, have shaped
both our paradigm of model-based prediction and supercomputer architectures from transistors to full
systems. Starting from well-defined questions, analytic models are sewn together over many length and time
scales to yield numerical answers. But numerical results, without a measure of their veracity do not provide
the trust needed to inform decisions. Hence, fields of activity on prediction, validation against available data,
and how to test algorithms, models, and sensitivities, feed into overall measures of confidence captured under
Uncertainty Quantification (or UQ). To achieve this confidence, UQ extends the traditional discipline of
statistical error analysis to also capture uncertainties due to possibly incomplete, inaccurate, and
contradictory input data, missing and undetected mechanisms and dependencies, expert judgment, and
variations between reasonable model forms and modeling strategies. Advancements in UQ now provide
measures of confidence necessary to inform national or international security decisions. A notable example is
the US support of a nuclear test moratorium since 1992, whereby we annually provide detailed measures of
confidence in the safety, security, and performance of the nuclear stockpile—-guaranteed through virtual

testing2.
1 UQ in Model-based Critical Decision Making

In model-based prediction, we first understand and define the questions we are posing and then define
models to answer them. Not so with data rich problems, where often neither the questions nor the underlying
models are known. In this case, artificial intelligence (AI) based methods, from novel hardware to machine
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learning (ML) techniques, seek to define the effective models that characterize emergent features in data. And
that data is often complex, multimodal, discordant, noisy and incomplete.

UQ today underpins many decision processes in nuclear security, our risk management and associated
investments, which can be at the scale of billions of dollars. Predictions without UQ are neither predictions
nor actionable. The data-rich world of ML, especially the powerful Deep Learning (DL) models, poses parallel
challenges. To develop consequential decision-support from “learned” models built on complex data sets,
there is an important need to co-develop UQ for this domain. Ultimately it is in the merging of these two
distinct worlds—model and data based—that a future path for prediction lies. To get there, an immediate
need is UQ for Al based approaches.

In this article, we first discuss some of the current role of DL in clinical decision making. We then describe the
possible place and the role for UQ, the challenges this brings forth, how these relate to previous uses of UQ,
and fruitful areas of research that we can foresee. We end by summarizing that with a principled approach
one can reap the benefits of data-driven approaches without sacrificing our ability to make and defend our
clinical decisions.

2 Machine-assisted Clinical Decision Making and Research

Although Al-based research has long played an important role in medicine, it has, nevertheless, been one of
the more challenging areas for Al to see an effective adoption. There are many reasons for this, not only social
or cultural, but also due to unfamiliar interfaces to decision-making needs and a reluctance to delegate to
machine intelligence a function of life-critical and patient- safety-related decision making. On the other hand,
the opportunities for the applications of Al in medicine are broad, and, in some areas, possibly
transformational. They range from noncontroversial and fundamental applications such as image
classification and information extraction, to much more complex, challenging, and possibly high-impact
applications such as medical and therapeutic discoveries, outcome predictions, treatment personalization and
optimizations, targeted therapies, and possibly far-reaching basic science discoveries.

These are the areas where Al could potentially have radical impacts, but also where errors can have
catastrophic consequences. Automated systems adoption, especially systems not analyzable in terms of
known causal connections, will require principled and formal UQ to play a transformative role, just as we
have seen in the nuclear security domain. UQ captures our pragmatic approaches to ascribing confidence in
predictions from some of the most complex simulations done today.

To analyze the situation, we can think broadly of the two streams in empirical sciences—those that (i) use
data to derive partial theories or “generalizable/transferable knowledge” that provide understanding and use
such knowledge to intervene; or those that (ii) use data to build models that are specific to the problem. The
latter do not necessarily provide “understanding”, but may use complex correlations in the data to directly
make actionable projections. Historically, medicine was squarely in the second category, i.e., it was mainly an
empirical science through much of its history, with the rise of statistical interpretations only in the 1950s
through the introduction of randomized clinical trials. Even with statistically orientated, and clinical trials,
most partial theories in medicine still explain an extremely small fraction of the observed phenomena and
variations®*, Even though fully mechanistic models are unlikely to be the first avenues of progress, use of
scientific insights and attempts at a cohesive framework incorporating the major clinical predictors are likely
to be increasingly useful as predictive models are able to efficiently summarize more complex correlations in
the data.

2.1 The Current Roles and Applications of Al

The role of Al in medicine ranges from the well-established tasks of recognition of medical conditions and
symptoms with human-like or superhuman accuracy from visual sources, to more novel applications such as



outcome prediction, augmentated cognition, and ultimately guiding medical discoveries and therapy
development.

Recently, approaches based on DL have had the most significant impact in the area requiring interpretation of
medical images, as DL-structured neural networks are particularly suitable for recognition of visually
manifested conditions such as changes in tissue, lesions and growth, etc. The applications of DL techniques
based on transfer learning have reported performance comparable to that of the human experts®,’© or
better’. '8Additionally, DL methods have been used in the predictive scenarios related to quality of care, and
clinical outcomes where large neural networks were used as function estimators in place of classical

predictive models, with reported performance better than the state-of-the-art, classical model approaches’. -
11

Finally, there is a growing application of Al techniques in discovery-oriented biomedical
subdisciplines. Some are in more applied areas such as drug discovery, and some are in more fundamental
science areas such as the study of chemical reactions’,? and assistance in the exploration and discovery of the
molecular characteristics of medical phenomena from the available data using deep learning and other Al
methods®.>!*. In most of the presented cases, the applications of Al are based on the DL neural networks,
trained on a very large number of labeled data sets, and their learning tuned with the large number of
hyperparameters. The most commonly applied neural network architectures are Convolutional Neural
Networks (CNNs) for the analysis of images, Recurrent Neural Networks (RNNs) for analyzing time series and
prediction, and sequence recognizers (e.g. LSTMs'®) for the analysis of text, though the architecture of the
network is itself often the subject of exploration'.® Unlike statistical approaches where mathematical models
are used to explain variations observed in data, and to propose the margin of errors on inferences, with these
recent applications, different learning architectures are combined with a large number of DL network
parameters to form universal approximators. These are then “trained” to reconstruct the outcome of some
generative function, without an explicit attempt to specify the exact mathematical model behind the process.

Figure 1. Some of the sources of uncertainty in today’s DL pipeline.
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3 The Role for UQ in DL

To understand the role of UQ in DL, we need to understand the lifecycle of a typical DL process, and how UQ
might fit into it. Unlike classical scenarios that start with the formulation of models reflective of physical
reality, almost all DL scenarios start with the collection of the potentially relevant, and the most
comprehensive data set available for decision-making scenarios (for example, an early detection of the onset
of sepsis). Collection and organization of data is often followed, unless data is already labeled, by “labelling” of



the data to mark the phenomena of interest (e.g. patterns of vital signs characteristic of the pre-septic
patients). These data are then used for training the DL model to meet some performance goals (e.g. accuracy
and precision in prediction of patients with pre-septic clinical features). To enable this, the authors of the DL
process first select the most suitable DL architecture for this kind of predictive application, and then train the
DL network with the labeled data. This training process is iterative, and involves the optimization of a variety
of the learning parameters, which will be “tweaked” until the network is trained to a sufficient level of
performance. Next, the trained model is validated against the validation dataset - the dataset that has not
been previously “seen” by the network. If the performance of the model meets the desired performance
criteria, the model will be deemed potentially usable in intended scenarios (e.g. early onset of sepsis
surveillance). Obviously, there are many steps in such scenarios where there are uncertainties that would
need to be quantified. The obvious ones are uncertainties related to the (i) collection and selection of the
training data and how well it represents and covers the actual medical phenomena, (ii) accuracy and
completeness of the labelling of the training data, (iii) selection and understanding of the actual DL model,
and its performance bounds and limitations, and (iv) uncertainties related to model’s performance against
the operational data (clinical inference). While still non-exhaustive, we propose that all of these steps
(illustrated in figure 1) would need to be quantified in order to arrive at even crude, overall measures of the
uncertainty of the DL-based decision model.

4 Anticipated Challenges

We see at least four overlapping groups of challenges associated with the uncertainty quantification of the
data-driven approaches such as DL:

1. Absence of theory: Unlike the physical world which is governed by the well-understood laws of physics, the
domains where the DL is usually applied, such as medicine, do not have such “hard laws”. Although we use
compensating mathematical techniques that take certain assumptions in order to account for the random
noise, or some other well-known problem in working with the data, we are ultimately operating without the
fundamental, underlying mathematical model which we could otherwise use to ground our uncertainties and
to bound any assumptions we make.

2. Absence of causal models: In addition to the absence of underlying mechanistic theory, one also has to
contend with the fact that DL is essentially exploiting correlations in the data, without paying attention to any
causal link. This may not seem like a limitation since prediction does not need causal relation. In fact, once a
low-dimensional representation is arrived at describing certain correlations (e.g., the difference between
cancerous and matched normal cells), it can raise hypotheses that can be tested. The absence of a causal
connection, however, means garnering limited conclusions from DL models; furthermore, it is imperative to
understand how the training data must be similar to prediction data.

3. Sensitivity to imperfect data: As we discussed before, DL learns from data, and often uses subtle
multivariate correlations to improve its predictions. Real world data is usually imperfect—typically
containing missing elements and errors—and these imperfections have patterns that can confound
prediction. Specific UQ methods, therefore, need to be developed to quantify the sensitivity of models to
imperfect data.

4. Computational Expense: The training of the DL models is computationally expensive, and any further re-
computation and re-evaluation of the models, aimed, for example, at the calculation of uncertainty bounds
might currently be prohibitively expensive. Fortunately, computing capacity in support of DL is growing

exponentially, and techniques are being developed!” to approximate some of the UQ-relevant calculations.

To note, ad hoc solutions, such as sensitivity analysis and study of model variability, have sometimes been
employed to mitigate some the problems we outline. A need to systematize a similar situation is what actually
led us to develop the formal approach to UQ in US national security sciences. The wider application of DL in
the biomedical field now requires an extension of these methods to this emerging field.



5 Needs for New Research

Just as the challenges in applying UQ for DL are significant, the opportunities for new and important research
are equally exciting. Even though a review of the ongoing research in this area is beyond the scope of this
article, in this section we describe a few major research directions that, we expect, could improve the
situation. In the end, it is possible that the entire new field of UQ for DL might need to be developed.

5.1 Quantifying and limiting overfitting

Overfitting, or the problem of a model performing well on the training set, but generalizing poorly for unseen
datasets, is one of the fundamental problems of all data-centric methods, and therefore DL.

In classical models, we evaluated models’ performance by information criteria that strongly penalized the
number of parameters estimated from the data, and strong guarantees against overfitting relied on proving
that the assumptions did not allow one to fit random noise. With DL, and the large number of model
parameters involved as well as the capacity of DL networks to memorize random noise'8, classical
approaches do not work.

The research question in the context of DL is: what is a scheme that informs us about the bounds of
overfitting. Some approaches, such as attempts to empirically learn generalizable patterns with insertion of
random noise!%?’, or the use of cross-validation to determine the progression of generalizable learning, move
us forward in this problem space, while still carrying the problem of overfitting®!. Despite these advances,
further research is needed in the criteria that can be used to provide provable limits on overfitting assuming
fair sampling in the training data.

5.2 Understanding DL

Advances in understanding of how DL works internally will allow for a more effective UQ of interpreting DL.
This is an active area of research, with a common approach focusing on interpreting the relationship between
the input and output of a DL algorithm, and providing an explanation of the results, not only on individual
instances, but of general method. In addition, there are ongoing studies that attempt to understand what DL
does,?? and how it learns??

5.3 Training DL to provide its own uncertainty estimates

Ultimately, an effective way of addressing some of the mentioned UQ problems might be to re-shape the DL
engine itself to provide an uncertainty estimate on its predictions. In other words, instead of trying to analyze
a trained DL network, or the training procedure, one can use the characteristics, architecture, and
computational capabilities of the DL process to learn to analyze its own uncertainty. We propose this based
on the realization that, ultimately, uncertainty in generalization depends on the density of training points in
an appropriately defined neighborhood of the prediction target. In high-dimensional problems, typical to the
medical setting (images, large numbers of phenotypes, etc.), every point, however, can be isolated in some
other dimension, and a density of points makes sense only after irrelevant dimensions, are projected out -
this is difficult to do just by analyzing the network from outside. On the other hand, the network itself can be
used to study this uncertainty empirically and provide the uncertainty bounds. A particularly fruitful
approach seems to be the use of Generative Adversarial Networks (GANs) for detecting out-of-sample

cases.?426

6 Summary

Data-driven methods are emerging as the foundations of evidence-based decision making, and the future of
data-driven scientific discovery. To fully realize their potential, we need to overcome significant hurdles in



understanding the precision and uncertainty in purely data-driven predictions. Fortunately, there is a
unifying structure to this problem in its various guises of complex predictive correlations in large data sets
and engineering black boxes. These have been studied in other scientific disciplines and decision-making
arena, and we can learn from those. The details of the medical applications and DL networks are, however,
significantly different since the theoretical foundations are far less developed and there are deep
psychological and sociological implications in delegating to machines decisions that affect the life or health of
human beings. Nevertheless, progress in understanding the structure of these predictive systems, merging
model and data driven approaches with strongly defensible UQ, and the formalization of the UQ for DL
discipline will be needed to make DL and other data-centric tools and methods practically useful. UQ for DL
will likely not be simply a set of tools or procedures to apply, but a more complex wrap-up of disparate
methods that in total help bound the overall confidence in predictions.
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