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Abstract—Starting with the Titan supercomputer (at the Oak
Ridge Leadership Computing Facilityy, OLCF) in 2012, top
supercomputers have increasingly leveraged the performance
of GPUs to support large-scale computational science. The
current No. 1 machine, the 200 petaflop Summit system at
OLCEF, is a GPU-based machine. Accelerator-based architectures,
however, add additional complexity due to node heterogeneity.
To inform procurement decisions, supercomputing centers need
the tools to quickly model the impact of changes of the node
architectures on application performance. We present AHEAD,
a profiling and modeling tool to quantify the impact of intra-node
communication mechanism (e.g., PCI or NVLink) on application
performance. Our experiments show average weighted relative
errors of ~19% and ~23% for five CORAL-2 (a collaboration
between multiple US Department of Energy, DOE, labs to pro-
cure exascale systems) and 12 Rodinia benchmarks respectively,
without running the applications on the target future node.

I. INTRODUCTION

As of June of 2018, 56% of FLOPS added to the
TOP500 [1] [2] list of supercomputers come from GPU-
based heterogeneous machines. This trend started with the
Oak Ridge Leadership Computing Facility’s (OLCF) Titan
supercomputer, deployed in 2012. Titan was the first GPU-
based machine to exceed 10 petaflops (PF) and as of November
2018, is still No. 9 on TOP500. OLCF has gone on to deploy
its next CPU/GPU system, the 200 PF Summit machine,
currently No. 1 on the Top500 list. While GPU-based systems
offer more FLOPS, they also increase the complexity of the
node architecture with intra-node connectivity for CPU-GPU
data movement and deeper memory hierarchies. Further, the
shrinking procurement cycles do not afford much time to
completely explore the effects of such architectural shifts on
extreme-scale applications.

Procurements traditionally start with a request for proposal
(RFP) process. The clients contribute to an RFP and specify
goals for the target systems. These goals will specify elements
such as the aggregate memory capacity, flop rate improve-
ment over preceding machines, or application speedup ratios
(compared to a figure-of-merit (FOM) reference). Vendors
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use the FOM numbers provided by the clients to guide the
design of next generation machines to achieve the target
performance goals. Unfortunately, while vendors may have
detailed simulation models of next generation systems, the
clients do not, which makes it difficult to validate vendor
proposals. Further, this can result in procurements that do not
meet the stated RFP targets.

In response to these challenges, the complex procurement
process for large machines has become a collaborative process.
For example, in 2012, a collaboration between the Department
of Energy’s (DOE) Oak Ridge (ORNL), Argonne (ANL)
and Lawrence Livermore (LLNL) National labs (CORAL)
emerged to acquire three leadership scale supercomputers in
a single request for proposal (RFP). CORAL resulted in the
acquisitions of Aurora, Sierra, and Summit. Both Summit and
Sierra, No. 1 and 2 on the TOP500 list as of November
2018, are heterogeneous node architectures, containing mul-
tiple GPUs per node. CORAL-2 is the continuation of this
collaboration for the procurement of exascale systems in 2021-
2022 time frame.

We contribute AHEAD, an application analysis tool that
can be used to model data movement in GPU-accelerated
node architectures. AHEAD, when used in concert with other
existing techniques for modeling processors and GPUs will
allow system designers to quickly understand the impact
of complex intra-node communication on application perfor-
mance. In addition we analyze our tool using the CORAL-
2 benchmark suite as a case study and identify the set of
applications where data-transfers have a significant impact on
application runtime.

In AHEAD, we use analytical modeling to understand how
a given computing platform’s characteristics influence the run-
time of target applications. Additionally, analytical modeling
is used to identify bottlenecks in the applications. Although
analytical modeling provides reasonable estimates and exhibits
high flexibility, one of its main constraints in is measuring
or estimating model parameters. This becomes even more
challenging when we are trying to project the performance
of a future system, one that we do not have a prototype of to
collect measurements in order to estimate model parameters. In
this work, we show how we partially overcome this problem
when modeling the data transfer operations on current and



future supercomputing nodes.

A. Scope of this Work:

In this work, we focus on the data transfers when offloading
computations to the GPU because: 1) data transfers contribute
significantly to the application run-time (20% on average of
GPU time for five CORAL-2 applications); 2) we want to build
a tool that allows decision makers study whether the proposed
future nodes are over/under-provisioned with regards to intra-
node connectivity resources.

B. Objectives:

Given two compute nodes A and B, where A is an ex-
isting/old node that we have access to, and B is a future/new
proposed node; Our goal is to project the impact of intra-node
connectivity changes from node A to node B on the data trans-
fer time in GPU-accelerated applications. For example, if the
CPU-GPU interface bandwidth ratio doubles, how would that
impact the data-transfer time when migrating the applications
from node A to node B.

C. Contributions:

Our contributions can be summarized in three main points:

m We develop and release an open-source' application analy-
sis tool (AHEAD). This tool extracts all GPU-related opera-
tions to build an application profile. It is also modular such
that one can plug different analytical models to estimate the
runtime of different application operations. Section V, pro-
vides more details about AHEAD and its implementation.

m We characterize five different CORAL-2 benchmark appli-
cations. Our characterization is mainly focused on the data
transfer aspect of these applications. We use AHEAD to
extract the compute kernels and data transfer operations,
and then use this information to understand the intra-node
communication’s contribution to the application runtime.
Section III, presents this characterization results.

m We create an analytical model to project GPU data transfer
time on different nodes with PCle or NVLink connectivity.
Our modeling approach extends a special case (single mes-
sage transfer) of the LogGP [3] model with a detailed rep-
resentation of both PCle and NVLink. We plug this model
into AHEAD and evaluate it using five different CORAL-
2 benchmark applications and 12 Rodinia benchmark ap-
plications. It achieves an average weighted relative error
of 19% for CORAL-2 and 23% for Rodinia. Section IV,
provides more details about the analytical model. Sections
VI and VII, present the evaluation methodology and results
respectively.

II. BACKGROUND

Over the past few decades, the area of analytical per-
formance modeling has witnessed huge attention. We cover
analytical performance models of GPU-accelerated systems.
The goals of these models can be divided into three categories:

Thttps://bitbucket.org/HazemAbdelhafez/ahead/

GPU Compute-kernels Time Estimation: In this category,
the proposed models [4] [5] [6] [7] [8] aim to estimate the
runtime of compute kernels running on the GPU. However,
none of them incorporate the data transfer time before and
after the kernel. Thus, we believe that complementing any
of the proposed models here with data-transfer modeling will
yield a better estimate of the GPU runtime.

GPU-related Data-transfers Time Estimation: In this cate-
gory, we cover prior work on estimating the data transfer time
between a CPU and a discrete GPU within a single compute
node.

In LogGP model [3], the time taken to transfer n bytes
between two processors connected with a data link, can be
expressed as follows:

T=L+0+nxG (1)

where L is the link latency, O is additional overhead associated
with the transfer, and G is the inverse of the link bandwidth.

Werkhoven et al. [9] extend this model to incorporate over-
lapping (multiple data transfers on different streams) impact on
the transfer time. However, for a single data transfer stream,
the model is reduced to the LogGP model. G is calculated
as the average bandwidth for different data sizes. This model
helps developers select a computation-communication overlap-
ping strategy to reduce the runtime.

Neugebauer et al. [10] present a detailed theoretical and
experimental analysis of PCle interconnect performance. Al-
though the main use case in their work is understanding the
PCle performance impact on the networking of the host ma-
chine, we find the theoretical model of the PCle they presented
helpful in estimating data transfer time for GPU accelerated
applications. We use the theoretical model they presented in
Subsection IV-A to estimate the effective bandwidth of PCle
at different data sizes.

GPU Compute-kernels and Data-transfers Time Estima-
tion: This category includes previous work that aims to esti-
mate both the compute-kernels and data-transfers time of an
offloaded portion of a given application on the GPU. Meswani
et al. [11] presented a performance estimation framework for
hardware-accelerated applications. The main idea behind this
framework is identifying common compute patterns in high-
performance applications, automatically identifying those that
are most likely going to benefit from hardware, and estimating
the impact of a target hardware accelerator on them.

Boyer et al. [12] extend Grophecy [7] to incorporate data
transfer time in the end-to-end runtime estimation which
reduced the relative error from 255% to 9%.

Limitation in Current Approaches: We found that the clos-
est prior work to ours are the models presented by Werkhoven
et al. [9] and Boyer et al. [12]. Both of them are simple enough
and at the same time achieve good prediction results. However,
both models require direct access to target hardware platforms
to collect transfer bandwidth measurements at different data
sizes. This constraint makes it infeasible to project data-
transfers time on future nodes.



Our Approach: We leverage technology specific knowledge
to estimate the effective transfer bandwidth at different trans-
action sizes. Consequently, we can project the data-transfer
time over PCle and NVLink interfaces using data sheets or
vendor provided information, and without requiring direct
access to the hardware, except for fine tuning of specific model
parameters.

III. CORAL-2 APPLICATION BENCHMARK
CHARACTERIZATION

We use the CORAL-2 application benchmarks as a case
study for our work. In CORAL-2, there are four scalable
science applications, six throughput applications, two data
science and deep learning suites, and seven Skeleton appli-
cations that stress-test specific performance aspects of a target
machine. We focus on GPU-related data-transfers time estima-
tion, therefore, we characterize data-transfers in five CORAL-
2 applications that: 1) are mainly throughput-sensitive (four
out of the five), and 2) readily support CUDA. Three out of
the six throughput applications officially support CUDA, one
of them depends on Unified Memory (QuickSilver), which is
out of scope. We use alternative, mostly non-optimized GPU
implementations of the rest of the applications to carry out
our study.

Our characterization aims to: 1) quantify the significance of
data-transfer operations compared to the compute kernels on
the GPU, and 2) reveal the distribution of data-transfer sizes
within each application to better understand the connectivity
bottlenecks of each application. Table I shows the compute
kernels time, the data-transfer time, the percentage ratio of
data-transfer time to the total time (kernels plus data transfers),
and the number of data-transfer operations per application on
a Summit node (the CPU/GPU machine at OLCF). Moreover,
it shows that data-transfer operations represent a major part of
the GPU-accelerated portion of the application with an average
of 20% across the five applications.

We inspected the timeline of the five applications to make
sure that there aren’t overlapped transfers or compute kernels
running on different CUDA streams. We found that both
Laghos and Pennant have only a single default stream for all
CUDA operations, Minife and Lammps have an extra stream
beside the default one, but it is only used for initialization
operations and data transfer operations are called sequentially
on a single stream. For QMCPACK, we found that there
are two additional streams beside the default one, however,
with visual inspection of a section of the timeline we found
that the application follows a kernel launch pattern across
the streams that also leads to a sequential execution of data
transfer operations.

Fig. 1a shows the size-based distribution of the data transfer
operations across the five applications. These statistics are
input configuration dependent. This means that for different
input configurations, we could witness a shift in these statis-
tics. For instance, more computing iterations on the GPU
would reduce the data-transfer time to compute-time ratio and
a bigger problem size can lead to bigger transaction sizes.

Fig. 1b shows the time-based distribution of the data transfer
operations. This figure adds a rather important information not
included in the size-based distribution figure. For example,
although the majority of data transfers for Minife (95%) are
less than 10 Bytes in size, we can see from Fig. 1b that the
majority of the data transfer time is consumed by transfers
of size greater than 1 MB in size. This means that Minife is
throughput sensitive, the same applies for Lammps. We can
also see a similarly interesting pattern in Pennant, where in
Fig. la it seems that the majority of the transactions are less
than 10 Bytes. However, in Fig. 1b, we can see that these tiny
transactions consume around 60% of the data transfer time,
while the rest of the time is consumed by transactions greater
than 1 MB.

TABLE 1

CORAL-2 DATA TRANSFER PERCENTAGE RATIO TO TOTAL COMPUTE
AND TRANSFER TIME

Kernels(s) | Transfers(s) (%{‘;‘;}f:') % | Count
gmcepack 1.01 0.53 . 400K
lammps 2.88 2.23 43.64 2K
minife 0.96 0.02 2.04 0.4K
pennant 196.05 0.18 0.09 75K
laghos 3.32 0.82 19.81 | 520K

IV. MODELING GPU-RELATED DATA TRANSFERS

In a typical GPU accelerated application, several data trans-
fer operations are usually performed to move data between
the main system memory and the GPU global device memory.
Each data copy operation transfers the data across one or more
data links within a compute node. A data link in this context is
an abstraction for a physical interface (e.g. PCI link, NVLink,
memory bus, etc.) between two or more components in the
node.
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Fig. 1. CORALZ2 data transfer operations analysis

We extend LogGP model with interface-related information
to estimate the transfer time. What differentiates our modeling



approach is that it requires fewer number of measurements
than existing approaches. This is critical for projecting the
performance on future nodes.

As we mentioned in section II, the LogGP model according
to equation 1 requires three parameters to estimate the transfer
time of a single link: latency, overhead and effective band-
width. In literature, latency and overhead are usually combined
together and measured as a single attribute. We measure them
by transferring a single byte between the main memory and

the GPU memory.

To calculate the effective bandwidth instead of measuring
it through micro-benchmarking, we define the effective band-
width for a transaction of size n bytes as:

BWesy = (n* Link_BW) /i 2)

where 7 is the effective transferred bytes (the sum of n bytes
plus the overhead bytes O, added by the interface protocol
layers).

In this section, we explain how both PCle and NVLink
interfaces work briefly, then we present how to calculate the
effective transferred bytes for both of them. We combine this
information with their theoretical bandwidth to estimate data
transfer time.

A. Estimating Effective Transferred Bytes Over PCle

Peripheral Component Interconnect express (PCle) is a
serial-based communication interface for point-to-point con-
nections in computer systems [13]. It implements a packet-
based protocol. Fig. 2 shows a typical architecture of PCle in a
computer system. In this architecture a Root Complex (RC) is
the main component that connects the CPU and memory to the
PClIe devices (endpoints). Currently, there are four generations
of the PCle specification with the fifth one expected to be

standardized in 2019 [13].

Endpoint 2

Endpoint 3

Root

I

|—-{ Endpoint 4

Fig. 2. PCle architecture
PCle specification defines three layers for any PCle link as
follows:

m Physical Layer: A PCle link incorporates 1,2,4,8,16, or
32 lanes. Each lane is a physical transmit/receive pair.
Each lane supports a specific raw data transfer rate in
each direction (transmit/receive) as shown in Table II. To
maintain a DC balance on the transmission wire, PCle uses
an encoding scheme. For instance, Gen 1 and 2 use 8b/10b
encoding scheme. This means that for each 8 bits of data, 10
bits are actually transmitted. For Gen 3 and 4, the encoding
scheme was replaced with a 128b/130b scheme. Thus, the
physical layer efficiency for Gen 1,2 and 3,4 are 80% and
98.4% respectively. The theoretical bandwidth of a PCle
link can be calculated using equation 3.

Link_BW = #_of_Lanes x Lane_BW xn 3)

where 7 is the encoding efficiency mentioned earlier. The
per-lane unidirectional bandwidth for different PCle gener-
ations is shown in Table II.

m Data Link Layer (DLL): It is responsible of managing
packet (re-)transmission and its integrity. It handles the
ACK/NAK packets which control the retry mechanism in
case of a packet drop. It also generates cyclic redundancy
codes (CRC) when transmitting a packet and checks them
on reception.

m Transaction Layer: All data transfers via PCle are trans-
ferred as Transaction Layer Packets (TLPs). The Transaction
Layer comprises the Configuration space which is necessary
for communication with the application layer.

TABLE I
PCIE TRANSMISSION RATES AND BANDWIDTH

l l PCIe 1 l PCle 2 l PCle 3 l PCle 4

Raw Bit Rate (GT/s) 2.5 5.0 8.0 16.0
Lane Bandwidth (GB/s) 0.25 5 ~1.0 ~2.0

Each layer in the PCle stack adds overhead bytes to carry
on its designated tasks. Fig. 3 illustrates the generic format of
a PCle packet.

Transaction Layer Packets: There are several TLPs, however
in our model we are only interested in three TLPs: Memory
Read Request (MRd), Memory Write Request (MWr), Com-
pletion with Data (CpID). The MRd packet is used by an
endpoint to request data from the system’s main memory, and,
if successful, the reply to this request is typically one or more
CpID packets containing the requested data. A MWr packet
is used by an endpoint to write data to the main system’s
memory.

PCle Transmission Parameters: A Maximum Payload Size
(MPS) parameter set at system configuration by the Root
Complex (RC) determines the maximum amount of data in
the TLP payload. The payload can range from 0 to 4KB but
typical values for MPS are 128B or 256B. If there are multiple
endpoints connected to the RC, the RC sets the MPS to the
minimum supported value by any of the connected devices.

A Maximum Read Request Size (MRRS) parameter is set by
each endpoint and it determines the maximum number of bytes
that can be requested by a single read request. Thus, to read
n bytes of data, the number of read requests sent is [ 1755z |-
An endpoint can send read requests with M RRS > MPS,
however, the receiver will satisfy this request with fixed-size
packets of size determined by the Read Completion Boundary
(RCB). The RCB parameter determines the amount of data in
the payload of a reply packet to a read request. Thereby, the
number of packets required to satisfy a read request of MRRS
size is [%%%S] where RCB < MPS.

To understand how the previous parameters fit in our
modeling approach of GPU data transfers, we illustrate how
to calculate the total number of sent bytes for memory reads
and writes as follows:

Memory Read Over PCle: To satisfy a read request (e.g.
cudaMemCpyHostToDevice) from the system’s main memory,




a requester sends several MRd packets governed by the MRRS
size. Once the first MRd packet is received at the RC, it starts
sending the requested data simultaneously as it receives the
remaining MRd packets. So, in total, the number of bytes
transferred to read n bytes of data from the main memory
is:

= MRd_O + MRRS + (RgB

First Read Request

1%CpID_O4n  (4)

Data-packets Overhead

Memory Write Over PCle: Write requests (e.g. cudaMemCpy-
DeviceToHost) have lower overhead compared to read requests
since there are only write packets. Thereby, the total number
of bytes sent over PCle to write n bytes to the main memory
is:

n
MPS

MRd_O, MWr_O and CpID_O are the overhead bytes
for read, write and read-completion packets. They can be 8
(32-bit addressing) or 12 (64-bit addressing) bytes in length.

A=

T« MWr_O+n 5)

T H 7 i H

PLi DL LI TU i pome LoD PR

Start; Sequence | Header ! Payload H N 1 LCRC ! End
H B ; (Optional) } H

Fig. 3. PCle packet format.

B. Estimating Effective Transferred Bytes Over NVLink

NVLink is an interconnect technology developed by
NVIDIA to replace GPU-GPU communication within a com-
pute node [14]. It can also support CPU-GPU communication
and Currently only IBM Power processors support NVLink.

NVLink is a packet-based interface. Each packet can contain
several (FLow control unITs) Flits. The size of a single Flit is
128 bits. An NVLink packet contains a header Flit, and two
optional Flits, Address Extension (AE) Flit, and Byte Enable
(BE) Flit. The rest of the Flits can carry payload data up to
16 Flits (MaxPayload of 256 bytes). Fig. 4 shows a typical
NVLink packet format.

128 Bits

< >
< >

CRC | Header |
Address Extension (AE)
Byte Enable (BE)
Payload 0

DL Header

| Paylo.ad 15 |

Fig. 4. NVLink packet format.

The header Flit contains 25 bits for error correction (CRC
data), 83 bits as transaction information (e.g. control flow,
packet type, address), and 20 bits for Data Link (DL) layer
information (e.g. packet length, application identifier) [14].

To read n bytes of data, a total of [g7—75—0] read
requests are sent from the requester to the data store. We
assume that there is no AE or BE Flit, up to 16 Flits can
carry back the requested data, and that the read requests are
pipe-lined same as in PCle case. Therefore, total number of

bytes transmitted over an NVLink interface to read n bytes
can be calculated as shown in Equation 6. However, to write
n bytes of data, only data packets are transmitted, therefore,
the number of bytes required to write n bytes can be calculated
as given in Equation 7.

n

n= Flit_si —
e + (Ma:rPayload

1% Flit_size +n 6)

First Read Request

Data-packets Overhead
_.n
MazxPayload

An NVLink is composed of several lanes, each lane has
a specific signaling rate that determines how many bits are

transferred per second. Therefore, an NVLink unidirectional
bandwidth can be calculated as given in equation 8

NV Link_BW = #_of_Lanes x Lane_BW ®)

n=1_ 1% Flit_size +n @)

Each NVLink chip can support several number of NVLinks,
hence, the total bandwidth per chip can be calculated as
BW =4 _of_Links x NV Link_BW.

C. Estimating Data-Transfer Time

In CUDA-based applications, host memory can be allo-
cated as either a pageable memory allocated with malloc, or
page-locked (pinned) memory allocated with cudaHostAlloc.
The GPU cannot directly access pageable memory, therefore,
to copy data from a pageable host memory to the device
(GPU) memory, the data has to be copied first from the
pageable memory buffer to a temporary page-locked buffer
in the device’s driver mapped memory region, then to the
device memory over an interconnect interface such as PCle
or NVLink.

To copy data from a page-locked host memory to the device
memory, there is no need for a temporary buffer and the GPU
can either update the pinned memory data directly or transfer
the data over the interconnect interface to the device memory.
Figure 5 shows reads and writes with pageable and page-
locked memory respectively. Therefore, each CUDA memory
copy operation is translated to different path on a compute
node.

Host Memory Host Memory
Pageable Page-locked Page-locked
Buffer R Buffer 1 Buffer
7y ! 7y
> Read Memory Memory
..... > Write Buffer Buffer

GPU Device Memory GPU Device Memory

Pageable host memory Page-locked host memory

Fig. 5. CUDA memory copy from pageable (left) and page-locked (right)
host memory

We model the transfer time of a memory copy operation of
n bytes to/from a pageable host memory as given in equation
9, and for a pinned host memory we use equation 10. In both
equations, BW,; is the effective bandwidth of either PCle



or NVLink which we show how to calculate in Equation 2.
In Equation 9, we multiply n by two to incorporate the effect
of reading/writing in a temporary pinned buffer. We measure
(L+0) as a single attribute by measuring the transfer time of a
single byte. Memory_BW is the theoretical peak bandwidth
of the host memory calculated as follows: Memory_BW =
Bus_Width * Frequency * Trans fers_per_cycle

T =L+O0 +2n/Memory_BW +n/BW,;¢ )

T =L+O0+n/BW.sy (10)

It is worth mentioning that there is an additional type
of memory transfer present in nearly all GPU-accelerated
applications, this transfer moves data from a specific GPU
memory location to another. It can be invoked by specifying
the device-to-device flag in the CUDA memory copy APIL
We model this type of transfer as a simple linear relationship
where the time taken to transfer n bytes is calculated as given
in equation 10. However, instead of using BW _ef f, we use
the theoretical GPU memory bandwidth. We measure (L + O)
for this type of memory copy operation by transferring a single
byte.

Moreover, in multi-GPU systems, one can use our NVLink
or PCle models presented in this section to estimate the data
transfer time in GPU-GPU communication.

One of our design goals for the model, is to estimate the
transfer time on a future node we do not have access to.
Basically, a node that is proposed by a vendor (e.g. Summit)
to replace an old one (e.g. Titan). Hence, all the information
we know about this node is the interconnect technology
(PCIe, NVLink), memory bandwidth, CPU cores count and
frequency, etc.

Although our model uses just a single measurement for
single byte transfer time (L+O) and the effective interface
bandwidth to estimate the transfer time for different transaction
sizes, ignoring (L+O) reduces the estimation accuracy when
we cannot measure it on a future node.

To overcome this, we found that we can use the measured
overhead value from the old node (Titan) when calculating
the transfer time on the new node (Summit). This overhead
represents a constraint that makes it difficult to project data-
transfers on future nodes with high accuracy. Nonetheless,
we noticed that the changes in the fixed overhead between
different machines, varies slightly compared to changes in the
link bandwidth. The exact values used in this study for the
parameters of the models discussed in this section are included
in AHEAD’s source code repository.

V. IMPLEMENTATION

In this section, we detail our implementation of AHEAD.
It consists of three main components: Analyzer, Filter and
Estimator. Assuming that we have two nodes A and B, our
tool can be used to project the impact on runtime of operations
on node B using only application traces from a run on node
A, along with node B characteristics.

The first step in using AHEAD is to run the application
using a profiler on node A to record the application operations
in an SQLITE database file. Then, the Analyzer extracts all
GPU-related operations from the trace file. Next, the Filter
extracts only the relevant operations’ details (data transfer
in our case) to feed them to the Estimator. The Estimator
applies a user-pluggable model to estimate the runtime of
the operations on a node B for which we have hardware
characteristics. In our case, we extract data transfer operations
using AHEAD, then we plug our data-transfer model, and
estimate the transfer time on Node B. Fig. 6 shows AHEAD
components, workflow and the evaluation steps that we discuss
later in Section VI.

H Analyzer Filter
SQLITE :
Estimated

Format % ;

' All GPU-related Transfer time
Application Trace 0 : Node B on Node B

perations

on Node A Charaterisics

AHEAD Workflow 3 Pluggable Model

Extracted Data

Transfer Time

Application Trace
on Node B

Calculate
Error %
| Evaluation Steps

Ground Truth

Fig. 6. AHEAD components, workflow and evaluation steps

VI. EXPERIMENTAL METHODOLOGY

This section presents the applications and hardware we use
in the evaluation of the model. We also discuss our evaluation
procedure and alternative approaches we compare against.

A. Applications

We evaluate our model using one bandwidth micro-

benchmark, five CORAL-2 applications [15], and twelve Ro-
dinia benchmark [16] applications.
Bandwidth Micro-benchmark: To compare our model to
existing models and to better understand its shortcomings,
we develop a bandwidth micro-benchmark that initiates data-
transfers with different sizes and records the timing of each
transfer. We run each experiment 100 times and calculate the
average time to reduce the variation.

CORAL-2 Applications: To evaluate our model’s capability

to estimate data-transfers time, we evaluate it against five

CORAL-2 applications. These applications are:

m Lammps: An open source large-scale parallel simulator
for Atomic/Molecular dynamics. It can run on a single
processor or multiple processors using message-passing
techniques. It also supports several accelerators such as
GPUs and Intel Xeon Phis.

m OMCPACK: An open source ab initio quantum Monte
Carlo package for electronic structure of atoms, molecules
and solids. It is memory bandwidth sensitive when run in
production.

m Pennant: A mini-app for hydrodynamics on unstructured
meshes in 2D. It exhibits irregular memory access patterns.

m MiniFE: A proxy application for unstructured implicit finite
element codes. It supports GPUs.



m Laghos: A mini-app for solving time-dependent Euler equa-

tions in a moving Lagrangian frame for compressible gas.
Rodinia Benchmarks: To further illustrate the limitations
and strengths of our model, we extend our evaluation to
include Rodinia heterogeneous benchmarks [16]. We select
12 applications to cover several application categories (two
applications from each category). The applications we choose
are: Hotspot3D, Heart Wall, Back propagation, CFD solver,
B+ Tree, Breadth-first search, Lower-upper decomposition,
Needleman-Wunsch, DWT2d, huffman, LavaMD, and SRAD.

B. Hardware

Supercomputer Nodes: We evaluate our model using five
CORAL-2 applications on two nodes from two different
supercomputers at Oak Ridge National Lab (ORNL). The first
one is Titan [17] and the second is Summit [18] (Titan’s
successor and currently world’s fastest supercomputer). Titan
has a single 16-core AMD Opteron CPU and a single NVIDIA
Kepler GPU (K20x). The main memory is 32 GB in size and
the GPU memory is 6 GB with 250 GB/s aggregate bandwidth.
The CPU-GPU interface is PCle Gen 2 with x16 lane width,
bringing the total bandwidth to 8 GB/s.

Summit has a more complicated node topology with two
IBM POWERY CPUs, six NVIDIA Volta V100 GPUs. Each
processor is connected to a 256 GB of DRAM, bringing the
total memory per node to 512 GB. Each GPU has 16 GB
of HBM2 memory with aggregate bandwidth of 900 GB/s.
Moreover, the main node inter-connect is NVLink V2.0. Fig.
7, shows a full Titan node topology and only half-node of
Summit.
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Kepler
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8 GB/s X86

V100 I
Nvidia Volta

V100

HBM2 900 GB/s <>
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Fig. 7. Titan and Summit architectures

Commodity Hardware: We evaluate our model using Rodinia
benchmark applications on two data-center class servers. In
the rest of the paper we refer to these servers as Node-
1 and Node-2 respectively. Node-1 has 2x Intel Xeon ES5-
2670 v2 (Ivy Bridge), 10 cores each with 512 GB of DDR3
memory. Additionally, it has 2x NVIDIA Tesla K20C (GK110)
GPUs, each with 5 GB device memory. Node-2 has 2x Intel
Xeon E5-2650 (Sandy Bridge), 10 cores each with 256 GB
DDR3 memory. It also has 2x NVIDIA GeForce GTX TITAN
(GK110) GPUs each with 6 GB device memory. Both nodes
have a Gen2.0 PCle interface.

C. Evaluation Metrics

Data-transfer Time: In GPU accelerated applications, there
are two distinct times consumed by GPU operations:

m CPU time: The time spent by the CPU to launch the
operation on the GPU or waiting for GPU operation to finish
(synchronous operations).

m GPU time: The time spent by the GPU to fulfill the
operation.

y C_start C_end,

‘ CPU Time ‘

GPU Time

G_start G_end

Fig. 8. CPU and GPU timing relations
Fig. 8 shows an example timeline of a simple CUDA memory
copy operation on both the CPU and the GPU. Generally, the
following rules apply: 1) C_start < C_end, 2) G_start <
G_end, and 3) C'_start < G_start. Other than these timing
rules, any combination is possible. For example, G_start can
be <,=,o0r > C_end. Based on this discussion, CPU time
can be calculated as C_end — C_start and GPU time as
G_end — G_start. To measure transfer bandwidth, we use
the GPU time as such: BW = W.
Our decision to use the GPU time is based on three ob-
servations: 1) in asynchronous operations, CPU time does
not reveal any insight about what is happening on the GPU
because the API call returns immediately, 2) CPU time exhibits
high variability depending on several factors such as, CUDA
runtime API version, driver implementation, operating system,
warm/cold caches and CPU utilization, and 3) GPU time is
the metric that is impacted directly by hardware characteristics
(PClIe or NVLink, memory bandwidth, etc.), and it shows con-
sistent behavior over several iterations and between different
applications.
Error Calculation: Since we are evaluating a predictive
model, our main evaluation metric is the Weighted Mean
Absolute Percentage Error (WMAPE). WMAPE is basically a
weighted relative error. The reason why we choose WMAPE
is the fact that each data transfer operation can have a different
contribution to the overall transfer time, thus, reporting only
the relative error might over-signify the error from small-
sized transactions (which exhibit a highly variable error). In
mathematical notations, weighted absolute percentage error
for a single transfer operation can be calculated as follows:
lOO*W,;*MiT:Pil where A; and P; are the actual and projected
transfer times for transaction ¢, W; = %A_ where n is the
total number of data transfer operationsf:Flinélly, WMAPE is
calculated as the average over all transactions. Fig. 6 shows a
high-level view of our evaluation steps.

D. Alternative Approaches for Comparison

The current approach used to estimate the impact of hard-
ware changes on data transfer performance is using back-
of-the-envelope calculations (basically, comparing the theo-
retical peak bandwidth values to estimate how data-transfer
operations will behave on new hardware). Although simple
and fast, this approach does not always provide accurate
estimations, especially for latency-sensitive applications. A



different approach is to leverage existing work such as the
ones presented by Boyer et al. [12] or Werkhoven et al. [9]
to estimate data transfer time in heterogeneous applications.
However, both approaches require direct access to the target
hardware to collect characterization measurements to fill the
model parameters. To compare our work against existing
approaches, we use the peak bandwidth instead of measuring
the effective bandwidth at a relatively large transaction size
(e.g. 512 MB). We refer to this approach in the Results section
as Peak Bandwidth, and we also compare against Back-of-the-
envelope calculations.

VII. EVALUATION RESULTS
A. Bandwidth Micro-benchmark

To understand the sources of error in our approach, we use

a bandwidth micro-benchmark for different data sizes. Figs.

9 and 10 show the projected data transfer bandwidth on a

Summit node and Node-2 for different data sizes, host memory

types (pageable, pinned), and transfer directions (host-to-
device, device-to-host).
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Fig. 9. Summit node projected data transfer bandwidth (y-axis) for different
data sizes (x-axis) for pinned host memory (top row), and pageable host
memory (bottom row).
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Fig. 10. Node-2 estimated data transfer bandwidth % (y-axis) for different
data sizes (x-axis) for pinned host memory (top row), and pageable host
memory (bottom row).

In both figures, our model achieves closer projection to
the ground truth (measured values) compared to the other
alternative techniques. On the bottom half of the figures,
we plot the projected bandwidth for pageable host memory
transfers. One can notice an irregular behavior at 256KB and 1
MB transfer sizes. This observation is consistent on all nodes.
Assuming that there is an overlap between pageable to page-
locked transfers and page-locked to GPU memory transfers,

we can relate this irregular behavior to different factors such
as GPU driver implementation, cache size, CPU utilization,
etc.

B. CORAL-2 Applications

We evaluate our modeling approach against five CORAL-2
applications.

Fig. 11 shows the BoxPlot for WMAPE of data transfer
time estimation on Summit node for two approaches. The first
is our approach, it leverages the NVLink model we introduced
in Section IV. The second approach uses the theoretical peak
bandwidth.

The third approach uses the theoretical peak bandwidth
without the single byte overhead measurement, which is the
Back-of-envelope approach. However, we excluded it from the
plot as it exhibits high errors and diminishes the plots of the
other approaches.

Our approach performs similarly (QMCPACK, Pennant, and
Minife) or better (Lammps and Laghos) compared to using
the Peak bandwidth in the model. In QMCPACK, the transfer
time is dominated by latency/overhead-sensitive transactions,
and therefore, both approaches have similar relative estimation
errors. Moreover, the variability is high due to the difference in
Overhead values we use from the actual values on the Summit
node. For Minife, there is a dominant transaction of size
greater than 512 MB, therefore, using the peak bandwidth ap-
proximates what our NVLink model estimates (NVLink V2.0
has almost 95% efficiency at large transfers). For Pennant,
most transactions are from pageable host memory buffers,
and as we mentioned earlier, our model does not capture the
intricate operational details of the pageable memory transfers,
therefore, both our approach and using peak bandwidth yield
similar errors and variability.

Our Approach Error Peak Bandwidth Error
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Fig. 11. CORAL-2 data-transfer time estimation error. For each box, the

top and bottom sides represent the first and third quartiles (Q1 and Q3). The
bottom whisker is calculated as (Q1 - 1.5*IRQ) and top whisker is calculated
as (Q3+1.5*¥IRQ), where IRQ is the inter-quartile range.

C. Rodinia Applications

To further illustrate the strengths and weaknesses of our
model, we evaluate it against several applications from Rodinia
benchmark. Tables III and IV, show the average and standard
deviation values of WMAPE for a default-size run and 4X
the default size run respectively. This covers a wide-range of
data transfer operations and exposes differences between the
evaluated approaches.

For both problem sizes, on average our approach does
consistently better than alternative approaches. We investigated
the source code and application trace of those applications.



TABLE III
RODINIA APPLICATIONS WMAPE WITH DEFAULT DATA SIZE, EACH CELL REPRESENTS THE AVG/STD

| backprop | hotspot3D | heartwall | cfd | b+tree | bfs | Ilud | nw | dwt2d | huffman | lavaMD | srad |

Our Approach | 16.5/18.2 | 73.5/32.7 | 1.1/1.4 | 2.1/59 | 8.2/22.1 | 45/17.1 | 4.1/1.8 | 68.4/59.1 | 0.5/0.3 | 0.2/0.5 | 20.8/18.6 | 0.0/0.1

Peak BW | 25.4/27.3 | 105.8/40.3 | 2.2/2.7 | 4.8/12.9 | 12.9/34.4 | 7.0/26.3 | 15.1/3.2 | 99.1/74.7 | 0.8/0.7 | 0.5/1.2 | 32.7/28.6 | 0.1/0.3

BackOfEnv. | 25.6/27.5 | 105.9/40.3 | 2.2/2.7 | 4.9/13.1 | 13.0/34.6 | 7.0/26.5 | 18.1/4.7 | 99.2/74.7 | 4.7/2.8 | 0.7/1.4 | 32.9/28.7 | 0.9/0.9
TABLE IV

RODINIA APPLICATIONS WMAPE WITH 4X DEFAULT DATA SIZE, EACH
CELL REPRESENTS THE AVG/STD

|backprop| cfd | bfs | lud | nw |dwt2d | lavaMD

15.9/18.0
24.7/26.8
24.7/26.8

17.5/40.2
25.4/57.6
25.6/57.9

9.3/34.5
13.3/49.3
13.4/49.5

69.4/ 4.6
103.0/10.1
103.5/10.1

74.9/59.5
107.5/75.1
107.5/75.1

0.3/0.3
1.1/1.6
1.1/1.9

29.2/19.0
44.3/28.6
44.3/28.6

Our Approach
Peak BW
BackOfEnv.

We found that nearly all of them use pageable host memory
allocations except Huffman which has few pinned memory
allocations. As shown in Fig. 10, The estimation error varies
with the transaction size for the pageable-based host memory
transactions. This explains the variability in errors.

VIII. DISCUSSION AND LESSONS LEARNED

Based on the evaluation, we list a couple of lessons learned.

Lesson-1: Bandwidth intensive applications. We no-
ticed that pageable host memory allocations are frequent in
CUDA applications. This is supported by statistics from both
CORAL-2 and Rodinia. We suspect developers use pageable
memory allocations as pinned memory allocations (i) take
more time to allocate and (ii) they may slow down the overall
application if the allocated memory size is too large compared
to the total available memory. However, we argue that nowa-
days, computing systems, especially in HPC environments,
contain large amounts of system memory in comparison to
GPU memory. For instance, each Summit node has a total
of 512 GB of system memory and an aggregate of 96 GB
of GPU memory. We recommend that application developers
follow a simple trade-off analysis to choose between pageable
and pinned memory allocations. This analysis [19] simply
compares the time needed to allocate and transfer pinned
memory to/from GPU, versus a pageable allocation. At a
certain data size (system dependent), there is a break-even
point, after which pinned memory allocation overhead is
usually amortized by its faster throughput. Additionally, the
allocation overhead is amortized over the number of iterations
in which data is transferred back and forth between the host
and the accelerator.

Lesson-2: Latency sensitive applications. Finally, if the
application is latency sensitive, then there might not be a huge
gain choosing pageable vs. pinned memory allocation as the
application performance is limited by an almost fixed overhead
and link latency. Although there are significant advances in
the CPU-GPU interface bandwidth (525% increase from Titan
to Summit), the latency sensitive applications might not fully
benefit from such improvement. In fact, a one byte transfer
time on Summit takes 42% more time than Titan. Hence, it
is essential that vendors consider improving the link overhead
and latency as much as improving the bandwidth

Lesson-3: Overheads related to CUDA API use. Con-
sidering the impact of CUDA API calls is essential. For
example, our profiling reveals that in QMCPACK, there are
several CUDA kernels that have several Constant input argu-
ments. Constant variables have positive performance impact in
some CUDA applications (as they are allocated in dedicated
additional cache on the GPU - the constant memory). By
inspecting QMCPACK we noticed that there are several cu-
daCpyTo/FromSymbol operations, prepare the values of these
arguments, transferring them either from the host memory or
from the GPU memory itself. The main problem here is the
significant overhead associated with each transfer (range of
few microseconds per transaction from application runtime).
Moreover, they inefficiently utilize the GPU device bandwidth
and the CPU-GPU interface bandwidth. Using our tool, we are
able to determine that the Device-to-device Symbol copying
operations represent ~42% of the total data-transfer operations
and ~38% of the total data transfer time for this application.

Lesson-4: Transfer time from the CPU perspective has
high variability. Usually, when the CPU launches a GPU-
related operation, it invokes several system calls before the
operation actually starts on the GPU. The time it takes to
complete those calls is highly variable and depends on the
CPU core utilization, on how busy the GPU is for synchronous
operations, and cache occupancy. Moreover, for proprietary
APIs, such as CUDA runtime APIs, it becomes even more
challenging to model understand what is happening under the
hood. However, we noticed that while modeling the operations
time on the GPU helps us better understand the impact of
hardware changes on those operations, it sometimes does not
reflect the impact on the runtime from an application user
perspective.

IX. LIMITATIONS AND FUTURE WORK

We presented a data-transfer model that uses data-sheet
information to estimate the bandwidth of CPU-GPU connec-
tivity. We summarize our model’s limitations:

m Our model does not capture the non-linearity in pageable
host memory-based data copying. It is accurate for pinned
memory transactions but provides only rough estimates for
pageable ones. This could be alleviated by scaling the
measured pageable-based transfers bandwidth on old nodes
using new bandwidth values of the new machines, or tracing
CUDA driver low-level system calls to understand how
pageable transfers work. One possible explanation for this
non-linearity could be that there is a transaction size thresh-
old below which the driver allocates memory in pinned
buffers regardless of what the developer specified. Above
this threshold, the driver follows the allocation scheme and



transfer mode specified by the application developer (e.g
synchronous transfer from a pageable buffer allocation).
Based on our evaluation results, this threshold could be a
value between 256 KB and 1 MB.

m While our model estimates the raw data transfer time in het-
erogeneous applications, additional information is needed
to incorporate the effect of overlapping between transfer
operations and other operations (e.g. compute kernels, other
data copying, etc.). AHEAD can be extended to incorporate
existing work attempts to model this overlapping.

m This study focused on estimating data transfer operations
in isolation from any other interference. As a result it
considered single-threaded, single-process application runs
and excluded the impact of interference between several
threads/processes on the effective data bandwidth. This is
challenging because it depends on the run parameters of the
application and implementation specific details (how many
threads/processes, task or data parallelism, communication
patterns between these threads/processes, etc.)

m For latency-sensitive applications, our model provides rea-
sonable estimates of the data transfer time if a one-byte data
transfer is relatively similar between the old and new node.
This appears to be the case for the procurement scenarios
we target.

We plan to tackle some of these limitations. For instance,
using micro-benchmarks, one can understand how the page-
able memory transfers interact with the underlying hardware
(caches, registers, etc.), and then develop a detailed model.
Incorporating multi-threaded/multi-process versions of those
applications is desirable as current and next generation plat-
forms comprise several inter-connected components (CPUs,
GPUs, DRAMs, etc). We believe that a graph-based model
representing each component as a vertex, and each data
interface as a dynamic edge in this graph is appropriate. This
graph-based model should help us capture the interference
impact on the data links, and it should allow us to better
model complex interactions within a compute node (e.g. GPU-
to-GPU communication). To study the overlap between oper-
ations, we believe that an application time-line reconstruction
after estimating how much time each operation would consume
on a target node, will provide reasonable estimates of the
overall runtime. For the compute time, as we discussed in
section II, there have been several models on estimating the
compute time of a GPU kernel. Therefore, incorporating any
of these models in AHEAD should be feasible, and serves
towards end-to-end performance estimation.

X. SUMMARY

This study explores the feasibility of a tool that informs
hardware procurement decisions by projecting the impact of
hardware enhancements on heterogeneous applications run-
time. To this end, (/) we build AHEAD, a tool to profile
accelerated applications at the node level, (if) characterize the
accelerated applications of CORAL-2 benchmark suite, (iii)
highlight that, for these applications, the data transfer between
the host and the device represents a major part of the runtime,

and (iv) devise on a methodology to project host to device data
transfer times that assumes that only limited information on
the target architecture is available (our methodology, requires
one estimate - a one-byte data transfer cost estimate which
can be obtained on an existing system - and the technical
sheet specifications of the data transfer interface between the
host and the accelerator).

REFERENCES

[1] Top500 supercomputers. Last accessed Dec. 2018. [Online]. Available:
https://www.top500.org/project/

[2] “New gpu-accelerated supercomputers change the balance of power
on the top500,” last accessed Feb. 2019. [Online]. Available:
https://tinyurl.com/yxwy9f53

[3] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman,
“Loggp: incorporating long messages into the logp modelone step closer
towards a realistic model for parallel computation,” in Proceedings
of the seventh annual ACM symposium on Parallel algorithms and
architectures. ACM, 1995, pp. 95-105.

[4] S. Hong and H. Kim, “An analytical model for a gpu architecture
with memory-level and thread-level parallelism awareness,” in ACM
SIGARCH Computer Architecture News, vol. 37, no. 3. ACM, 2009,
pp- 152-163.

[5] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and W.-m. W.
Hwu, “An adaptive performance modeling tool for gpu architectures,”
in ACM Sigplan Notices, vol. 45, no. 5. ACM, 2010, pp. 105-114.

[6] A.Kerr, G. Diamos, and S. Yalamanchili, “Modeling gpu-cpu workloads
and systems,” in Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units. ACM, 2010, pp. 31-42.

[7]1 J. Meng, V. A. Morozov, K. Kumaran, V. Vishwanath, and T. D. Uram,
“Grophecy: Gpu performance projection from cpu code skeletons,” in
Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 2011, p. 14.

[8] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc, “A performance analysis
framework for identifying potential benefits in gpgpu applications,” in
ACM SIGPLAN Notices, vol. 47, no. 8. ACM, 2012, pp. 11-22.

[9] B. Van Werkhoven, J. Maassen, F. J. Seinstra, and H. E. Bal, “Perfor-
mance models for cpu-gpu data transfers,” in Cluster, Cloud and Grid
Computing (CCGrid), 2014 14th IEEE/ACM International Symposium
on. IEEE, 2014, pp. 11-20.

[10] R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. Lépez-Buedo,
and A. W. Moore, “Understanding pcie performance for end host
networking,” in Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication. ACM, 2018, pp. 327-341.

[11] M. R. Meswani, L. Carrington, D. Unat, A. Snavely, S. Baden, and
S. Poole, “Modeling and predicting performance of high performance
computing applications on hardware accelerators,” The International
Journal of High Performance Computing Applications, vol. 27, no. 2,
pp. 89-108, 2013.

[12] M. Boyer, J. Meng, and K. Kumaran, “Improving gpu performance
prediction with data transfer modeling,” in Parallel and Distributed
Processing Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE
27th International. 1EEE, 2013, pp. 1097-1106.

[13] Pci-sig. Last accessed Dec. 2018. [Online]. Available: www.pcisig.com/

[14] Nvlink interface. Last accessed Jan. 2019. [Online]. Available:
www.en.wikichip.org/wiki/nvidia/nvlink

[15] Coral-2 benchmarks. Last accessed Dec. 2018. [Online]. Available:
https://asc.llnl.gov/coral-2-benchmarks/

[16] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in Workload Characterization, 2009. IISWC 2009. IEEE International
Symposium on. leee, 2009, pp. 44-54.

[17] Olcf ornl - summit node overview. Last accessed Jan. 2019. [Online].
Available: www.olcf.ornl.gov/for-users/system-user-guides/titan/

[18] Olcf ornl - titan node overview. Last accessed Jan. 2019.
[Online]. Available: www.olcf.ornl.gov/for-users/system-user-guides/
summit/system-overview/

[19] Pinned versus pageable memory transfers. Last accessed Jan.
2019. [Online]. Available: www.cs.virginia.edu/~mwb7w/cuda\_
support/memory\ _management\_overhead.html



