
Specification of Fenix MPI Fault

Tolerance library

version 0.9

Marc Gamell, Rutgers Discovery Informatics Institute
Rob F. Van der Wijngaart, Intel Corporation
Keita Teranishi, Sandia National Laboratories

Manish Parashar, Rutgers Discovery Informatics Institute

June 21, 2016

SAND2016-5976R



Contents

1 Introduction 2

2 Initialization, Rank Failure Recovery, and Teardown 3
2.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Callback handler function recovery . . . . . . . . . . . . . . . . . 6
2.3 Proactive rank removal . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Teardown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Data Storage and Recovery 8
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Managing data storage and recovery constructs . . . . . . . . . . 9

3.2.1 Grouping data objects and ranks with data groups . . . . 9
3.2.2 Describing application data with data group members . . 12
3.2.3 Accessing redundancy policies . . . . . . . . . . . . . . . . 14

3.3 Probing and completing asynchronous operations . . . . . . . . . 15
3.4 Storing and committing application data . . . . . . . . . . . . . . 16

3.4.1 Storing group members . . . . . . . . . . . . . . . . . . . 16
3.4.2 Making stored data recoverable with data group commits 18

3.5 Recovering application data . . . . . . . . . . . . . . . . . . . . . 19
3.6 Managing data subsets . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7 Accessing data storage and recovery constructs . . . . . . . . . . 25

3.7.1 Querying group members . . . . . . . . . . . . . . . . . . 25
3.7.2 Querying committed data . . . . . . . . . . . . . . . . . . 26
3.7.3 Accessing group member attributes . . . . . . . . . . . . . 27

3.8 Removing stored application data . . . . . . . . . . . . . . . . . . 28

4 Examples 29
4.1 Protecting process and data with Fenix . . . . . . . . . . . . . . 29
4.2 Storing data objects with subsets . . . . . . . . . . . . . . . . . . 30
4.3 Recovering one member of a data group . . . . . . . . . . . . . . 31
4.4 Recovering all members of a data group . . . . . . . . . . . . . . 32

A Semantic picture of the Fenix Data recovery interface 35

References 39

1



1 Introduction

Fenix is a software library compatible with the Message Passing Interface (MPI)
to support fault recovery without application shutdown.

Current implementation
This specification is derived from a current implementation of Fenix [1] that
employs the User Level Fault Mitigation (ULFM) MPI fault tolerance module
proposal. We only present the C library interface for Fenix; the Fortran interface
will be added once the C version is complete.
End current implementation

Fenix is used (1) to repair communicators whose ranks suffered failure de-
tected by the MPI runtime, and (2) to restore state to application variables
and arrays from redundant data storage. Only communicators derived from the
communicator returned by Fenit_Init are eligible for reconstruction. After
communicators have been repaired, they contain the same number of ranks as
before the triggering failure occurred, unless the user did not allocate sufficient
redundant resources (spare ranks) and also did not instruct Fenix to create new
ranks. In this case communicators will still be repaired, but will contain fewer
ranks than before the failure occurred.

Fenix provides its own redundant data storage API to facilitate data recovery
along with process recovery, but the user can choose other data recovery options
to meet a variety of application needs. For example, data could be recovered by
approximately interpolating values from unaffected, topologically neighboring
ranks instead of by reading stored redundant data. In addition, the user may
decide to use external libraries such as GVR (Global View Resilience [2]) or
SCR (Scalable Checkpoint/Restart [3]) to restore rank data after a failure. The
crux is that the program does not have to be restarted completely.

Current implementation
Fenix uses MPI’s PMPI profiling interface. This currently means that it is
incompatible with other software tools that need access to the profiling interface
as well. It is expected that this restriction will be lifted soon via MPI extensions
similar to that proposed by Schulz and De Supinski [4].
End current implementation

We will indicate for each library function argument whether it provides an
input value (i.e. it is read by the function), an output value (i.e. it is set by the
function), or both, using [IN], [OUT], and [INOUT], respectively. If a parameter
is an opaque data type accessed by a handle and the handle itself is not changed
by a Fenix function, but the contents of the data type may be, we still label the
parameter as [INOUT], in keeping with the MPI specification.

Any Fenix function without a return type, e.g. Fenix_Init, may be imple-
mented via macros, in which case it cannot be used to resolve function pointers.
It is up to the implementation to decide which functions are macros.

Any Fenix function with optional parameters can be used as follows. As-
sume a function f(a,b,c,d), with a being a mandatory parameter and b, c,

2



and d being optional parameters can be called using only the following four
combinations: f(a), f(a,b), f(a,b,c), and f(a,b,c,d). If only a and c are
required by the application, the user will have to fill b with its default value.

2 Initialization, Rank Failure Recovery, and Tear-
down

2.1 Initialization

Fenix Init (collective operation)

void Fenix_Init(

int *status,

MPI_Comm comm,

MPI_Comm *newcomm,

int *argc,

char ***argv,

int spare_ranks,

int spawn,

MPI_Info info,

int *error);

This function must be called by all ranks in comm after MPI_Init or MPI_

Init_thread. All calling ranks must pass the same values for the parameters
comm, spare_ranks, and spawn. This function is used (1) to activate the Fenix
library, (2) to specify extra resources in case of rank failure, and (3) to create a
logical resume point in case of rank failure.

The program may rely on the state of any variables defined and set before
the call to Fenix_Init. But note that the code executed before Fenix_Init is
executed by all ranks in the system (including spare ranks).

If any Fenix Data group (see Section 3) instances were created in the program
following Fenix_Init, recovered ranks that experienced the failure, as well as
surviving ranks, may be supplied with data from a valid and consistent state
taken before the failure occurred. This behavior is controlled by the user. It is
recommended to access argc and argv only after executing Fenix_Init, since
command line arguments passed to this function that apply to Fenix may be
stripped off by Fenix_Init.

• status [OUT] - upon return, contains one of the following values, indi-
cating the current status of the calling rank:

– FENIX_STATUS_INITIAL_RANK - this is the value returned to all ranks
the first time the program is started (i.e. when the user invokes a
program manager, e.g. mpirun, to launch it, not when individual
ranks are reconstructed by Fenix to recover from a failure).

3



– FENIX_STATUS_RECOVERED_RANK - this rank replaces a failed rank
since the latest communicator restoration by Fenix. The rank was
taken either from the pool of existing spare ranks managed by Fenix,
or was newly created by Fenix using MPI_Comm_spawn.

– FENIX_STATUS_SURVIVOR_RANK - this rank was not affected by the
rank failure that triggered the latest communicator restoration by
Fenix.

The status parameter always indicates the status of a rank since the last
exit from Fenix_Init. For example, assume a certain rank receives recov-
ered status due to a failure. If it survives a subsequent failure, the status

output parameter will indicate that this rank is now a survivor rank.

• comm [IN] - communicator that includes any spare ranks the user deems
necessary. It will be used by Fenix to derive a new communicator that
can be repaired. MPI_COMM_WORLD is a valid value for comm.

• newcomm [OUT] - Output communicator to be used by the application
instead of comm. Let the number of ranks in comm be C, the number of
spare ranks S, and the number of failed ranks thus far F (F = 0 for the
first invocation of Fenix_Init). Upon exit from Fenix_Init newcomm

contains:

– (C − S) ranks if spawn = true, and

– (C − S)−max(F − S, 0) ranks if spawn = false.

Ranks in newcomm are assigned in the same order as in comm. To enable
successful recovery from failures via Fenix, the user should derive subse-
quent communicators only from newcomm.

• argc [INOUT] - pointer to the number of arguments provided by the argc
argument to main, or NULL.

• argv [INOUT] - pointer to the argument vector provided by the argv

argument to main, or NULL.

• spare_ranks [IN] - the number of ranks initially in comm that are exempted
by Fenix in the construction of newcomm. These ranks are kept in reserve
to substitute for failed ranks. When all spare ranks have been depleted and
an additional failure occurs, Fenix will attempt to restore communicators
to their original size by creating new ranks (e.g. using MPI_Comm_spawn),
provided that spawning has explicitly been enabled with spawn = true.
If this attempt fails, behavior is undefined and may result in all ranks
aborting execution. If spawning is not enabled and spare ranks have been
depleted, Fenix will repair communicators by shrinking them and will
report such shrinkage in the error return parameter.

4



Ranks to be used as spare ranks by Fenix will be available to the appli-
cation only before Fenix_Init, or after they are used to replace a failed
rank. This document refers to the latter as recovered ranks.

Note that all spare ranks that have not been used to recover from failures
(and, therefore, are still reserved by Fenix and kept inside Fenix_Init)
will call MPI_Finalize and exit when all active ranks have entered the
Fenix_Finalize call.

• spawn [IN] - used to determine whether Fenix should attempt to spawn
new ranks or not.

– If spawn = false, once spare ranks have been depleted, no new
ranks will be spawned to fill out original communicators. Subse-
quent failures will be resolved by Fenix by “compacting” survivor
ranks within their respective communicators, such that they retain
the same order as before the failure, but they are numbered succes-
sively within the shrunk communicator.

Note that this mode, in combination with requesting no spare ranks,
can be used to obtain a shrinking communicator repair mechanism.

– If spawn = true, once spare ranks have been depleted, new ranks
will be spawned to fill out original communicators.

• info [IN] - a set of key-value pairs to further modify Fenix’s process recov-
ery behavior. Both key and value are strings, i.e. null-terminated char

*. The application may pass MPI_INFO_NULL to indicate default behavior.

At least the "resume_mode" key must be recognized by the Fenix imple-
mentation. This key is used to indicate where execution should resume
upon rank failure (all active (non-spare) ranks in newcomm and in all of its
derived communicators, not only those in communicators that failed). The
following values associated to the "resume_mode" key must be supported.

– "fenix_init" - execution resumes at logical exit of Fenix_Init.

If Fenix uses MPI_Comm_spawn to spawn new processes (enabled by spawn

= true), the library may include the entire key-value dictionary of the
info parameter of Fenix_Init in the info parameter of MPI_Comm_spawn.

• error [OUT] - used to signal that a non-fatal error or special condition
was encountered in the execution of Fenix_Init, or FENIX_SUCCESS oth-
erwise. An example of such a condition is a communicator repair after all
spare ranks have been depleted under a no spawning policy (i.e. FENIX_

WARNING_SPARE_RANKS_DEPLETED).

Fenix_Init is called exactly once in a program. Spare ranks are not released
from Fenix_Init until they have been used by Fenix to repair damaged com-
municators, or until Fenix_Finalize has been called by the active ranks (at
which time remaining spare ranks automatically call MPI_Finalize and exit).

5



When a failure occurs and is recovered by Fenix, surviving ranks resume execu-
tion returning from Fenix_Init (or elsewhere depending on the "resume_mode"
key in info). Replacement ranks that are created using MPI_Comm_spawn (in-
voked by the library once the spare ranks have been depleted, subject to the
rank repair policy specified by the user) start execution at the lexical top of the
program, including MPI_Init and Fenix_Init and any preceding statements.
Consequently, spawned replacement ranks experience another control flow than
survivor ranks or spare ranks, which may affect the correctness of MPI calls
placed before Fenix_Init, especially collectives. It is the user’s responsibility
to avoid such problems.

Current implementation
Rank spawning in response to a failure is currently not supported.
End current implementation

No Fenix functions may be called before Fenix_Init, except Fenix_Initialized.

Fenix Initialized

int Fenix_Initialized(

int *flag);

• flag [OUT] - true if Fenix_Init has been called and false otherwise.

2.2 Callback handler function recovery

Fenix Callback register

int Fenix_Callback_register(

void (*recover)(int, MPI_Comm, int, void*),

void *callback_data);

This function registers a callback to be invoked after a failure has been recovered
by Fenix, and right before resuming application execution (e.g. returning from
Fenix_Init by default). If this function is called more than once, the different
callbacks registered will be called in the same order they were registered.

Fenix_Callback_register does not need to be called collectively. Callbacks
will only be invoked by survivor ranks, since spare ranks or respawned ranks had
no way to register them before a failure: they only execute code after Fenix_

Init once the Fenix recovery procedure (which includes calling all registered
callback functions) is completely finished.

FENIX_ERROR_CALLBACK_NOT_REGISTERED will be returned if there is an er-
ror while trying to register the callback function.

• recover [IN] - the callback function to be registered.

• callback_data [IN] - a pointer to application-specific data to be passed
as the last parameter when calling the callback. Note that NULL is an
acceptable value.

6



If a callback returns, Fenix will consider that no error occurred within the
callback. If an error occurs, therefore, it needs to be either solved within the
callback or escalated by using mechanisms such as Fenix_Comm_invalidate or
MPI_Abort. Callback functions need to follow the following prototype:

void my_recover_callback(

int status,

MPI_Comm newcomm,

int error,

void *callback_data);

• status [IN] - contains the status of the rank in which this callback is called.
All ranks in which a callback is called may only have a status equivalent
to FENIX_STATUS_SURVIVOR_RANK See Section 2.1 for more details.

• newcomm [IN] - contains the resilient communicator returned by Fenix_

Init.

• error [IN] - indicates any error that may have occurred during the recov-
ery process. See Section 2.1 for more details.

• callback_data [IN] - contains the pointer passed when registering the
callback (last parameter of Fenix_Callback_register). Note that this
may be NULL.

2.3 Proactive rank removal

Fenix Comm invalidate (collective operation)

int Fenix_Comm_invalidate(

MPI_Comm *comm,

int mask);

This function must be called by all ranks in comm and informs the library
that certain ranks within a communicator should be removed from the program
execution. It can be used to remove ranks proactively before they experience
a fatal error. It must be invoked with a resilient communicator managed by
Fenix, or with MPI_COMM_SELF. All calling ranks must pass the same value for
the parameter comm.

• comm [IN] - communicator whose rank(s) are slated for removal.

• mask [IN] - if non-zero, the calling rank will be removed.

7



2.4 Teardown

Fenix Finalize (collective operation)

int Fenix_Finalize(void);

This function must be called by all ranks in newcomm and cleans up all Fenix
state, if any. If an MPI program using the Fenix library terminates normally
(i.e., not due to a call to MPI_Abort, or an unrecoverable error) then each
rank in the resilient communicator, newcomm, returned by Fenix_Init must
call Fenix_Finalize before it exits. It must be called before MPI_Finalize,
and after Fenix_Init. There shall be no Fenix calls after this function, except
Fenix_Initialized.

As Fenix_Init notes, all spare ranks that have not been used to recover
from failures (and, therefore, are still reserved by Fenix and kept inside Fenix_

Init) will call MPI_Finalize and exit when all active ranks have called Fenix_

Finalize.

3 Data Storage and Recovery

3.1 Overview

Fenix provides options for redundant storage of application data to facilitate
application data recovery in a transparent manner. The library contains func-
tions to control consistency of collections of such data, as well as their level of
persistence. Functions with the prefix Fenix_Data_ perform store, versioning,
restore and other relevant operations and form the Fenix data recovery API.
The user can select a specific set of application data, identified by its location
in memory, label it with Fenix_Data_member_create, and copy it into Fenix’s
redundant storage space through Fenix_Data_member_(I)store(v) at a cer-
tain point in time. Subsequently, Fenix_Data_commit assures the consistency
and the status of preceding Fenix_Data_member_store calls across MPI ranks,
marking the data as consistent and, therefore, recoverable after a loss of ranks.
Individual pieces of data can then be restored whenever they are needed with
Fenix_Data_member_(i)restore, for example after a failure occurs. We note
that the library’s data storage and recovery facility aims primarily to support
in-memory recovery.

Populating redundant data storage using Fenix may involve dispersion of
data created by one rank to other ranks within the system (see e.g. [1]), making
the store operation semantically a collective operation. However, Fenix does not
require store and restore operations to be globally synchronizing. For example,
execution of Fenix_Data_member_store for a particular collection of data could
potentially be finished in some ranks, but not yet in others. And if certain ranks
nominally participating in the storage operation have no actual data movement
responsibility, the library is allowed to let them exit the operation immediately.

8



Consequently, Fenix data storage and retrieval functions should not be used for
synchronization purposes.

Multiple distinct pieces (members) of data assigned to Fenix-managed re-
dundant storage, can be associated with a specific instance of a Fenix data
group to form a semantic unit. Committing such a group ensures that the data
involved is available for recovery.

Appendix presents a diagram representing the data-centric view of the Data
Storage and Recovery Fenix Interface.

3.2 Managing data storage and recovery constructs

3.2.1 Grouping data objects and ranks with data groups

A Fenix data group provides dual functionality. First, it serves as a container for
a set of data objects (members) that are committed together, and hence provides
transaction semantics. Second, it recognizes that Fenix_Data_member_store is
an operation carried out collectively by groups of ranks, but not necessarily by
all active ranks in the MPI environment. Hence, it adopts the convenient MPI
vehicle of communicators to indicate the subset of ranks involved.

An instantiation of a data group is obtained with the following function.

Fenix Data group create (collective operation)

int Fenix_Data_group_create(

int group_id,

MPI_Comm comm,

int start_time_stamp,

int depth);

This function must be called by all ranks in comm. All calling ranks must
pass the same values for all parameters.

• group_id [IN] - identifier of the group, unique among all active MPI ranks.
If a group with this group_id was already created in the past and has not
been deleted, the start_time_stamp and depth parameters of this invo-
cation will be ignored, since Fenix automatically determines the correct
values based on the previous invocation. The recreated group will logically
be the same as the one previously in existence.

Note that group_id functions as a handle to the group, to be used in
creating data members associated with the group, storing these members,
committing the group, as well as recovering data after a failure: the group
is identified by group_id in Fenix_Data_member_store and Fenix_Data_

member_restore calls, for example.

The user-supplied group_id must be a nonnegative integer less than FENIX_

GROUP_ID_MAX, with the latter value guaranteed to be at least 230.

9



• comm [IN] - all ranks inside this communicator need to call this function
at the same logical time. They all participate as a logical unit in the
storage and recovery of the data stored by the corresponding Fenix_Data_

member_store call. comm should be a resilient communicator managed by
Fenix, or derived from a communicator managed by Fenix (i.e. newcomm

output parameter of Fenix_Init).

• start_time_stamp [IN] - subsequent commits related to this group have
a sequence number that uniquely identifies the commit within this group.
This unique logical sequence number is called the commit time stamp.
The start_time_stamp is the sequence number of the first commit to be
written to this group and can be defined by the user (for example, set
to zero); this identifier will be incremented by one unit automatically by
Fenix each time this group is committed.

The user-supplied start_time_stamp must be a nonnegative integer less
than FENIX_TIME_STAMP_MAX, with the latter value guaranteed to be at
least 230.

• depth [IN] - the number of successive consistent commits (see Fenix_

Data_commit) of this group whose associated members are retained by
Fenix, in addition to the last one, and can be recovered by calling Fenix_

Data_member_(i)restore. For example, a depth of 0 means Fenix will
keep only the necessary members to restore the most recent consistent
commit, while it will mark the previous ones for deletion. The data not
necessary to restore older commit calls may be removed by Fenix. A depth
of -1 means Fenix will not remove any committed data automatically.

The size and layout of the chosen communicator may affect the level of Fenix’
fault tolerance capability.

Current implementation
Specifically, if the buddy rank mechanism is used for redundant data storage (the
default method, see [1]), there have to be at least two ranks in the communicator
to be able to recover data after a rank failure. However, if these ranks are
collocated on the same processor or within the same node, they are more likely
to fail together than if they are located on different nodes. In general, the
communicator should be chosen such that it is possible to define a buddy rank
that is outside the expected failure envelope of the rank that created the data
to be stored.
End current implementation

The rationale behind the use of the group_id parameter is that it allows
Fenix to cache information about the group and use that at a later time. After
a loss of ranks, replacement ranks would not know about the group itself, but
given that label group_id is a value set and known by the application, the
application can query Fenix to retrieve the cached information and use it to
reconstruct the group logically. The ranks can then use the group to retrieve
redundantly stored application data.

10



The predefined constant FENIX_DATA_GROUP_WORLD_ID constitutes a group_

id as if created by calling:

Fenix_Data_group_create(

FENIX_DATA_GROUP_WORLD_ID, // group_id

newcomm, // communicator

0, // start_time_stamp

0); // depth

where newcomm is the communicator returned by the last time Fenix_Init

returned. In other words, this is a convenient constant to represent all ranks
returned by Fenix_Init via a reserved group_id, an initial time stamp of zero,
and garbage collection depth of zero (i.e. Fenix will keep only the last consistent
commit).

Applications that do not need the flexibility of the more generic Fenix group-
ing mechanism can, therefore, avoid having to create a specific group and can
use this generic group instead.

A Fenix data group can be deleted using the following functions. Along with
the group, any application data associated with the group (see section 3.4.1) will
also be deleted. Because this may take significant time, an asynchronous version
is included.

Fenix Data group delete (collective operation)

int Fenix_Data_group_delete(

int group_id);

• group_id [IN] - id of the group to be destroyed.

This function must be called by all ranks in the communicator comm associated
with the group identified by group_id. All calling ranks must pass the same
value for the parameter. When a data group is no longer needed, its resources
can be released (and its group_id be made available for use in other groups)
with this function. This function will recursively delete all its members and
commits.

This collective operation marks the group object maintained by the library
for deallocation. Any pending operations that use this group will complete
normally; the object is actually deallocated only if there are no other active
references to it.

Fenix Data group idelete (collective operation)

int Fenix_Data_group_idelete(

int group_id,

Fenix_Request *request);

• request [OUT] - handle to the asynchronous store operation.

11



This function has the same effect as Fenix_Data_group_delete, except that
it returns immediately, possibly before the data or meta-data associated with
the group have been deleted. The operation can be finalized by waiting on the
returned request.

3.2.2 Describing application data with data group members

Fenix data groups are composed of members that describe the actual application
data. A member joins a group with the following function.

Fenix Data member create (collective operation)

int Fenix_Data_member_create(

int member_id,

void *buffer,

int count,

MPI_Datatype datatype,

int group_id);

This function must be called by all ranks in the communicator comm asso-
ciated with the group identified by group_id. All calling ranks must pass the
same values for the parameters member_id, datatype, and group_id.

• member_id [IN] - integer within the named group group_id that uniquely
identifies the data in buffer.

The user-supplied member_id must be a nonnegative integer less than
FENIX_MEMBER_ID_MAX, with the latter value guaranteed to be at least
230.

• buffer [IN] - the address of the data to be copied to the redundant storage
maintained by Fenix. Note that this parameter may also be specified
using the function Fenix_Data_member_set_attribute. The latter is
critical for non-survivor ranks (FENIX_STATUS_RECOVERED_RANK) after a
failure. In that case data group members are implicitly recreated by the
library when the programmer calls Fenix_Data_group_create, but any
pointer to the application data is invalid and must be supplied explicitly
by the user for each group member. Survivor ranks will use the buffer
pointer specified before the failure, unless it is overwritten by Fenix_

Data_member_set_attribute.

• count [IN] - maximum number of contiguous elements of type datatype

of the data to be stored1. This parameter does not need to be the same
in all ranks calling this function.

• datatype [IN] - data type of each element in buffer.

1To avoid problems related to using an int to identify sizes (such as 32-bit integers not
being big enough to address all the memory, we will use MPI_Count once it is adopted by the
MPI Forum.

12



• group_id [IN] [optional; default value: FENIX_DATA_GROUP_WORLD_ID] -
identifier of the group that will be associated with this member.

Fenix Data member delete (collective operation)
When a data group member is no longer needed, it may be deleted by the

following functions. Along with the data group member, any application data
associated with the member (see section 3.4.1) will also be deleted. Because
this may take significant time, an asynchronous version is included.

int Fenix_Data_member_delete(

int member_id,

int group_id);

This function must be called by all ranks in the communicator comm asso-
ciated with the group identified by group_id. All calling ranks must pass the
same values for the parameters. This function marks all storage required to
store data and meta-data related to member_id for deallocation, being the data
in the calling rank, in any other rank, or in any other storage facility within the
system. Any pending operations that use this member of the group will com-
plete normally; the objects are actually deallocated only after all operations
involving this member have completed.

This function needs to be called collectively, at the same logical time, by
all ranks associated with the communicator used when creating group_id. All
ranks must provide the same values for the parameters.

• member_id [IN] - unique integer within the named group that uniquely
identifies the data in buffer.

• group_id [IN] [optional; default value: FENIX_DATA_GROUP_WORLD_ID] -
group id of collection of data.

Fenix Data member idelete (collective operation)

int Fenix_Data_member_idelete(

int member_id,

int group_id,

Fenix_Request *request);

This function has the same effect as Fenix_Data_member_delete, except
that it returns immediately, possibly before the data or meta-data associated
with the member have been deleted. The operation can be finalized by wait-
ing on the returned request. This operation has no optional parameters; all
parameters are required.

• request [OUT] - handle to the asynchronous store operation.

Note that members can be created or deleted from a group (identified by
group_id) at any point between the calls to Fenix_Data_group_create and
Fenix_Data_group_(i)delete related to group_id.

13



3.2.3 Accessing redundancy policies

The resilience of data in Fenix’ redundant data storage depends on the specified
policy, which can be queried and set on a per-group basis using the following
functions. This policy defines the default redundant storage policy for all group
meta-data not explicitly stored in Fenix’ redundant storage by the programmer,
as well as for all group members’ data.

Fenix Data group get redundancy policy

int Fenix_Data_group_get_redundancy_policy(

int group_id,

int policy_name,

void *policy_value,

int *flag);

This function is used to query the library for the type of policy it applies
to safeguard all meta-data and application data (group members) by dispersing
copies of that data.

• group_id [IN] - identifier of the group whose policy is sought.

• policy_name [IN] - name of policy whose value is sought.

• policy_value [OUT] - value of corresponding policy.

• flag [OUT] - true if a policy value was extracted; false if no policy is
associated with the key.

Fenix Data group set redundancy policy (collective operation)

int Fenix_Data_group_set_redundancy_policy(

int group_id,

int policy_name,

void *policy_value,

int *flag);

This function must be called by all ranks in the communicator comm as-
sociated with the group identified by group_id. All calling ranks must pass
the same values for the parameters group_id, policy_name, and the contents
pointed by policy_value.

This function is used to define the type of policy the library applies to
safeguard all meta-data and application data (group members) by dispersing
copies of that data.

• group_id [IN] - identifier of the group whose policy is sought.

• policy_name [IN] - name of policy whose value is sought.

14



• policy_value [IN] - value of corresponding policy.

• flag [OUT] - true if a policy value was set; false if no policy is associated
with the key, or if the policy is read-only (this could be a policy that is
set at the time the library is built or initialized). Upon successful return
of this function, all calling ranks are guaranteed to have the same value
in the memory position pointed by flag.

At least the following policy name must be defined: FENIX_DATA_POLICY_

PEER_RANK_SEPARATION which determines one of the simplest types of data
redundancy, namely preserving a copy of the data on a peer rank within the
same communicator used in the creation of a data group. In this case, the
policy_value input parameter is the rank_separation, and has a default value
equivalent to half of the size of the communicator associated with the group
(size(comm)/2). A single copy of the data stored locally on rank my_rank will
also be stored on rank (my_rank+rank_separation) mod comm_size, where
comm_size equals the size of the communicator associated with the relevant
data group. We note that depending on the layout of the ranks of the com-
municator across the physical resources of the system (nodes, racks, cabinets),
different values of the rank_separation parameter should be selected to obtain
the desired data resilience. For example, assuming a communicator spanning
ranks mapped to nodes distributed in two physical cabinets (where ranks 0 to
cabinet_size-1 are in one cabinet and ranks cabinet_size to (2*cabinet_
size)-1 are in the other), rank_separation can be set to cabinet_size so
that all stored members in the group are replicated in both cabinets.

Group redundancy policies can only be set before the first store operation of
a member of group_id, or the first commit operation of the group_id. When
a member is first stored or the group is first committed, group redundancy is
considered frozen and cannot be changed even after a failure.

3.3 Probing and completing asynchronous operations

In many instances programmers can identify useful work to do by the application
while a potentially costly Fenix operation is taking place. For this purpose
Fenix supports asynchronous operations that return control to the application
immediately, but that need to be probed and/or finished later. The functions
needed, Fenix_Data_wait and Fenix_Data_test, are described here.

The user must always call Fenix_Data_wait in order to guarantee the suc-
cessful completion of a non-blocking collective or non-collective operation (un-
less Fenix_Data_test returns with flag = true). Users should be aware that
Fenix implementations are allowed, but not required, to synchronize ranks dur-
ing the completion of a non-blocking collective operation.

Fenix Data wait

int Fenix_Data_wait(

Fenix_Request request);

15



Waits for a non-blocking operation identified by request. One is allowed to
call Fenix_Data_wait with a null or inactive request argument. In this case the
operation returns immediately.

• request [IN] - handle to the asynchronous store operation.

Fenix Data test

int Fenix_Data_test(

Fenix_Request request,

int *flag);

Tests for the completion of a non-blocking operation identified by request.

• request [IN] - handle to the asynchronous store operation. One is allowed
to call Fenix_Data_test with a null or already completed request. In such
a case the operation returns with flag = true.

• flag [OUT] - The call returns immediately with flag = true if the op-
eration is already completed. The call returns flag = false, otherwise.

3.4 Storing and committing application data

3.4.1 Storing group members

Fenix Data member store (collective operation)

int Fenix_Data_member_store(

int member_id,

int group_id,

Fenix_Data_subset subset_specifier);

This function must be called by all ranks in the communicator comm asso-
ciated with the group identified by group_id. All calling ranks must pass the
same values for the parameters. This function is used to safeguard the data
associated with a particular member of the data group. This function will place
one or more copies of data residing in buffer (supplied in the call to the function
Fenix_Data_member_create) in Fenix’ redundant data storage.

Current implementation
After creating a local copy in memory of this member, Fenix will transfer this
local copy to its final destination(s), e.g. non-volatile memory, a peer’s memory,
a file on a local hard disk.
End current implementation

This function may fail if not enough memory can be allocated to store data
of the specified size. All ranks in the communicator that participated in Fenix_

Data_group_create must call this function at logically the same time, with the
same member_id.

16



When the call returns, the application can safely modify the data in buffer

marked for safeguarding, since it has already been saved. The saved data, how-
ever, will only be available for recovery after being time stamped via commiting
the group. This can be done using its group identifier, its member identifier,
and the logical time stamp of the commit.

Multiple calls to Fenix_Data_member_store with the same member_id with-
out intervening commits will lead to storing (parts of) the same application data
object. Depending on the value of subset_specifier, this may lead to over-
writing the data (loss of data), or incremental storage of the full data.

• member_id [IN] - integer label that uniquely identifies a member of the
data group (see Fenix_Data_member_create). FENIX_DATA_MEMBER_ALL

will store all members associated with the specified group.

• group_id [IN] [optional; default value: FENIX_DATA_GROUP_WORLD_ID] -
identifier of the group associated with this member.

• subset_specifier [IN] [optional; default value: FENIX_DATA_SUBSET_

FULL] - specifier of the subset of data to be stored. The choice of this
parameter needs to result in identical subsets in all ranks calling this
function, which minimizes the need for the library to coordinate between
the rank whose member needs to be safeguarded and the agent managing
Fenix’ non-local redundant data storage (which could be another rank
in the system), thus resulting in performance improvement. Users are
encouraged to use this function instead of Fenix_Data_member_storev

(see below) whenever possible. When a subset_specifier different than
FENIX_DATA_SUBSET_FULL is supplied, Fenix will only store the positions
in the application buffer that are in the subset.

Fenix Data member storev (collective operation)

int Fenix_Data_member_storev(

int member_id,

int group_id,

Fenix_Data_subset subset_specifier);

This function is the same as Fenix_Data_member_store, except that actual
subsets realized by the choice of parameter subset_specifier can be different
in different ranks.

Fenix Data member istore (collective operation)

int Fenix_Data_member_istore(

int member_id,

int group_id,

Fenix_Data_subset subset_specifier,

Fenix_Request *request);

17



This function has the same effect as Fenix_Data_member_store, except that
it returns immediately, even before the data has been stored safely. Data in the
application buffer marked for safeguarding may be overwritten once a call to
Fenix_Data_wait on request has returned.

Current implementation
Fenix_Data_member_istore copies the application data into local memory be-
fore returning and starts the asynchronous transfer to its final destination.
Therefore, in the current implementation, marked data in the application buffer
may be overwritten once the call Fenix_Data_member_istore returns.
End current implementation

The result of multiple calls to Fenix_Data_member_istore with overlapping
subsets and without intervening calls to Fenix_Data_wait is undefined.

This operation has no optional parameters; all parameters are required.

• request [OUT] - handle to the asynchronous store operation.

Fenix Data member istorev (collective operation)

int Fenix_Data_member_istorev(

int member_id,

int group_id,

Fenix_Data_subset subset_specifier,

Fenix_Request *request);

This function is the same as Fenix_Data_member_istore, except that actual
subsets realized by the choice of parameter count in function Fenix_Data_

member_create and parameter subset_specifier can be different in different
ranks.

3.4.2 Making stored data recoverable with data group commits

Fenix Data commit (collective operation)

int Fenix_Data_commit(

int *time_stamp,

int group_id);

This function must be called by all ranks in the communicator comm asso-
ciated with the group identified by group_id. All calling ranks must pass the
same value for the parameter group_id. This function is used to freeze the cur-
rent state of a data group, together with all its application data that has been
stored in Fenix’ redundant storage, and label it with a time stamp, thus creating
a consistent snapshot of the stored application data. All ranks in the commu-
nicator that was used in the creation of the data group must call this function

18



at the same logical time. Only data that has been committed is eligible for
recovery through Fenix_Data_member_restore. An application needs to call
Fenix_Data_wait for all pending asynchronous Fenix_Data_member_istore

and Fenix_Data_member_istorev operations in the group before committing.

• time_stamp [OUT] [optional; default value: NULL] - absolute sequence
number of the committed data. NULL is a valid parameter, in which case
the automatically incremented sequence number is not returned to the
application.

The time_stamp parameter will be a nonnegative integer less than FENIX_

TIME_STAMP_MAX, with the latter value guaranteed to be at least 230.

Upon successful return of this function, all calling ranks are guaranteed
to have the same value in the memory position pointed by time_stamp.

• group_id [IN] [optional; default value: FENIX_DATA_GROUP_WORLD_ID] -
identifier of the group to commit.

Note that not all members in the group need to be stored (with Fenix_

Data_member_store or any other variant) in order for a commit to succeed.
For example, the following scenario is valid.

1 // Create members

2 Fenix_Data_member_create (0, &a, 1, MPI_INT , mygroup);

3 Fenix_Data_member_create (1, &b, 1, MPI_INT , mygroup);

4 // Store members as part of commit with time stamp 0

5 a = myrank;

6 b = myrank +1;

7 Fenix_Data_member_store (0, mygroup);

8 Fenix_Data_member_store (1, mygroup);

9 Fenix_Data_commit (&ts, mygroup); // after this , ts=0

10 // Store only member ’b’ for commit with time stamp 1

11 b = myrank +100;

12 Fenix_Data_member_store (1, mygroup);

13 Fenix_Data_commit (&ts, mygroup); // after this , ts=1

3.5 Recovering application data

After a failure is recovered and control is returned to the application (for ex-
ample, by returning from Fenix_Init), the application may need to restore
previously saved and committed data objects. The first step is to recreate the
groups using the repaired communicators, which can be done using Fenix_

Data_group_create, as explained in Section 3.2.1. Members, however, do not
need to be recreated, since both their meta-data (in particular, the member_id,
the count, and the datatype) and application data are saved in the redundant
storage.

Fenix Data member restore (collective operation)

19



int Fenix_Data_member_restore(

int member_id,

void *data,

int max_count,

int time_stamp,

int group_id);

This function must be called by all ranks in the communicator comm asso-
ciated with the group identified by group_id. All calling ranks must pass the
same values for the parameters member_id, time_stamp, and group_id. This
function is used to retrieve explicitly stored and committed data. This func-
tion can only be used if the size of the communicator used to store the data
is the same as that at the time of data recovery (this implies non-shrinking
communicator recovery in case of a loss of rank).

The application will be able to recover explicitly stored and committed data
group members by allocating a buffer and, using Fenix_Data_member_restore,
requesting Fenix to fill it with the data from a particular member at a particular
time stamp (commit).

If the size of the buffer to allocate is unknown for a particular rank, it can
be queried by using the functions described in Section 3.7.3.

Parameters:

• member_id [IN] - this value must match the member id that was supplied
when Fenix_Data_member_store was called.

• data [OUT] - the requested stored data will be written contiguously at
this local address. If NULL, no attempt will be made to fetch and restore
data. This is useful for selective recovery of application data. Each rank in
the communicator associated with the data group will receive the selected
data from the corresponding rank in the communicator used at the time
the data was stored and committed.

• max_count [IN] - the requested stored data, if found, will only be recovered
if its size is max_count times the size of datatype or less.

• time_stamp [IN] [optional; default value: FENIX_LATEST_DATA_GROUP_

COMMIT] - the time stamp of the requested committed member. The special
value of FENIX_LATEST_DATA_GROUP_COMMIT will always recover the latest
committed data by Fenix in group.

• group_id [IN] [optional; default value: FENIX_DATA_GROUP_WORLD_ID] -
group that contains the requested data.

In case a member is selected for recovery in a commit that did not include
that particular member, that data member will be restored using the value of
the most recent commit C prior to the requested commit (time_stamp) that did
include the member. In case the user explicitly deleted the member or commit
where the loaded data was supposed to be found (C), the application data will

20



not be restored and the contents of the memory pointed by data will not be
modified.

The behavior when restoring members not included in a commit can be seen
in lines 20 through 23 of the following scenario.

1 // Create members

2 Fenix_Data_member_create (0, &a, 1, MPI_INT , mygroup);

3 Fenix_Data_member_create (1, &b, 1, MPI_INT , mygroup);

4 // Store members for commit with time stamp 0

5 a = myrank;

6 b = myrank +1;

7 Fenix_Data_member_store (0, mygroup);

8 Fenix_Data_member_store (1, mygroup);

9 Fenix_Data_commit (&ts, mygroup); // after this , ts=0

10 // Store member ’b’ for commit with time stamp 1

11 b = myrank +100;

12 Fenix_Data_member_store (1, mygroup);

13 Fenix_Data_commit (&ts, mygroup); // after this , ts=1

14 // Store member ’a’ for commit with time stamp 2

15 a = myrank +200;

16 Fenix_Data_member_store (0, mygroup);

17 Fenix_Data_commit (&ts, mygroup); // after this , ts=2

18

19 // Restore members

20 Fenix_Data_member_restore (0, &new_a , 1, 1, mygroup);

21 // new_a now contains "myrank" (line 5)

22 Fenix_Data_member_restore (1, &new_b , 1, 1, mygroup);

23 // new_b now contains "myrank +100" (line 11)

When restoring a group member m with time stamp ts that contains a hole
(i.e. in commit ts, a subset was used to store m that did not cover all elements
of m), previous time stamps of m will be inspected, starting from ts − 1 and
working backwards, until a value v of the hole is found in ts − i (being i > 0).
The hole in the buffer data will then be filled using v. If no value for the hole
is found, the position of the hole in the application’s buffer data will be not
overwritten.

Fenix Data member irestore (collective operation)

int Fenix_Data_member_irestore(

int member_id,

void *data,

int max_count,

int time_stamp,

int group_id,

Fenix_Request *request);

This function has the same effect as Fenix_Data_member_restore, except
that it returns immediately, possibly before the application data has been re-
stored. Data in buffer data is not guaranteed to be consistent until a call to
Fenix_Data_wait on the request has returned. This operation has no optional
parameters; all parameters are required.

21



• request [OUT] - handle to the asynchronous data recovery operation.

The above functions assume that the size of the communicator used during
storage of the data before the commit operation equals that present at the
time of the restoration operation. All ranks within the communicator call this
function, and Fenix can establish a one-to-one mapping between ranks that
stored data before the commit and those that are requesting data at the time of
the restoration. However, when the communicator has shrunk, such a mapping
no longer exists. In this case, or in other instances in which more control is
desired, the user can specify explicitly for each calling rank what is the source
rank whose stored data needs to be retrieved from Fenix’ redundant storage.
This is accomplished by the following two functions.

Fenix Data member restore from rank (collective operation)

int Fenix_Data_member_restore_from_rank(

int member_id,

void *data,

int max_count,

int time_stamp,

int group_id,

int source_rank);

This function works the same way as Fenix_Data_member_restore, except
that the source rank for the data to be recovered is specified explicitly.

Parameters:

• source_rank [IN] - specifies the rank (in the communicator associated
with group_id) that performed the data store and whose data we are
trying to recover.

Fenix Data member irestore from rank (collective operation)

int Fenix_Data_member_irestore_from_rank(

int member_id,

void *data,

int max_count,

int time_stamp,

int group_id,

int source_rank,

Fenix_Request *request);

This function works the same way as Fenix_Data_member_irestore, except
that the source rank for the data to be recovered is specified explicitly. This
operation has no optional parameters; all parameters are required.

Parameters:

22



• source_rank [IN] - specifies the rank (in the communicator associated
with group_id) that performed the data store and whose data we are
trying to recover.

We note that these functions do not require that the communicator has
shrunk, and can be used for any recovery pattern consistent with their definition,
as long as the value for source_rank is valid.

3.6 Managing data subsets

Fenix data group members are used to provide resilient caches for sets of appli-
cation data that are contiguous in memory. Each set is represented by a pair
consisting of {start_pointer,count}. Subsets represent logical subsets of such
sets. They allow the user to indicate which elements (zero or more elements be-
tween 0 and count) will be selected for a particular Fenix_Data_member_store
operation or its variants (see example in Section 4.2). They provide a conve-
nient mechanism to reduce the burstiness of data traffic to the final destination
of stores (such as IO subsystems) accessed by Fenix_Data_member_store calls.
They also provide a way to store only the elements of a group member that
changed since the last commit.

An example of the usage of subsets id as follows. Assume an array of ten
elements set initially to a particular set of values. An application iteratively
changes the elements in the array, one element per iteration. In this scenario,
the application can decide to initially store the entire array, and then, at a
specific iteration, store only the changed element by selecting it with subsets.

Another example of an array in a contiguous memory layout is illustrated
by Figure 1. In this example, the second and third Fenix_Data_member_store

calls store subsets of an array by block patterns. Fenix provides a data type to
allow users to define the relative location and size of individual blocks.

Current implementation
During the store call and its variants, Fenix decides how to perform the actual
store, based on the data size and granularity of blocks, as well as the performance
of underlying IO subsystems. See Fenix_Data_member_store for more details.
End current implementation

Fenix Data subset create

int Fenix_Data_subset_create(

Fenix_Data_subset *subset_specifier,

int num_blocks,

int* array_start_offsets,

int* array_end_offsets);

Creates a subset based on num_blocks pairs of {start_offset,end_offset}.
When applying a Fenix_Data_subset value to Fenix_Data_member_store

calls, the values of array_start_offsets and array_end_offsets must be

23



Initial member store

Second member store

Commit (time stamp 0)

Third member store

Commit (time stamp 1)

num blocks = 4

array end offsets

Commit (time stamp 2)

num blocks = 3

array start offsets

array end offsets

array start offsets

Figure 1: Incremental member store using subsets. Gray areas indicate the data
being saved by Fenix_Data_member_store operations.

less than the count of the entire data object (value of count) defined by the
corresponding Fenix_Data_member_create call.

• subset_specifier [OUT] - name of the subset specifier, to be used in
storing data.

• num_blocks [IN] - the number of contiguous data blocks, which also de-
fines the number of elements in array_start_offsets and array_end_

offsets.

• array_start_offsets [IN] - an integer array, which indicates the in-
dex of the first elements for each data block (the start_offset in the
pair {start_offset,end_offset}). The value indicates the number of
data elements from the beginning of the data registered at Fenix_Data_

member_create.

• array_end_offsets [IN] - an integer array, which indicates the index of
the last element for each data block (the end_offset in the pair {start_
offset,end_offset}). The value indicates the number of data elements
from the beginning of the data registered at Fenix_Data_member_create.

The constant FENIX_DATA_SUBSET_FULL of type Fenix_Data_subset repre-
sents the default subset specifier; it selects all the data indicated by the user via
the count parameter specified in the call to Fenix_Data_member_create.

Fenix Data subset delete

int Fenix_Data_subset_delete(

Fenix_Data_subset *subset_specifier);

24



Deletes a previously-created subset.

• subset_specifier [INOUT] - name of the subset specifier, as returned by
the subset_specifier parameter in Fenix_Data_subset_create. The
handle is set to FENIX_SUBSET_NULL.

3.7 Accessing data storage and recovery constructs

These functions provide the means to access and alter the information and
attributes for Fenix’s data recovery and its internals. The status of individ-
ual stored objects can be queried by pointing to the corresponding Fenix data
group and the member_id. Examples in Section 4.3 and Section 4.4 show how
these functions can be used. All functions in this section have local completion
semantics and do not have to be called collectively, except Fenix_Data_member_
get_attribute.

3.7.1 Querying group members

Fenix Data group get number of members

int Fenix_Data_group_get_number_of_members(

int *number_of_members,

int group_id);

• number_of_members [OUT] - number of available distinct member of this
group. Manually deleted members are not included in this number.

• group_id [IN] [optional; default value: FENIX_DATA_GROUP_WORLD_ID] -
Fenix data group whose information is sought.

Fenix Data group get member at position

int Fenix_Data_group_get_member_at_position(

int position,

int *member_id,

int group_id);

• position [IN] - sequence number of the requested Fenix_Data_member.
position must be a value between 0 and number_of_members-1, (number_
of_members as returned by Fenix_Data_group_get_number_of_members).
The member positions will be returned in the order the user added mem-
bers to the Fenix data group, i.e. oldest first, newest last (e.g. the first
member added by the user will have position 0). Deleted members will
not be included in this list.

• member_id [OUT] - the unique identifier of the Fenix_Data_member sought.

• group_id [IN] [optional; default value: FENIX_DATA_GROUP_WORLD_ID] -
Fenix data group whose information is sought.

25



3.7.2 Querying committed data

Fenix Data group get number of commits (collective operation)

int Fenix_Data_group_get_number_of_commits(

int *number_of_commits,

int group_id);

This function must be called by all ranks in the communicator comm asso-
ciated with the group identified by group_id. All calling ranks must pass the
same value for the parameter group_id.

• number_of_commits [OUT] - number of available, distinct, consistent
commits of this group. Deleted commits (either deleted manually or
deleted through garbage collection –i.e. see depth of Fenix_Data_group_
create) are not included in this number.

Upon successful return of this function, all calling ranks are guaranteed
to have the same value in the memory position pointed by number_of_

commits.

• group_id [IN] [optional; default value: FENIX_DATA_GROUP_WORLD_ID] -
Fenix data group whose information is sought.

Fenix Data group get commit at position

int Fenix_Data_group_get_commit_at_position(

int position,

int *time_stamp,

int group_id);

This function must be called after calling Fenix_Data_group_get_number_

of_commits but before any commit is created or deleted in the group identified
by group_id.

• position [IN] - sequence number of the requested Fenix_Data_commit.
position must be a value between 0 and number_of_commits-1 (number_
of_commits as returned by Fenix_Data_group_get_number_of_commits).
The commit positions will be returned in the reverse order in which the
user executed them, i.e. oldest last, newest first (e.g. the most recent
completed commit will have position 0).

• time_stamp [OUT] - the unique identifier of the Fenix_Data_commit

sought.

• group_id [IN] [optional; default value: FENIX_DATA_GROUP_WORLD_ID] -
Fenix data group whose information is sought.

26



3.7.3 Accessing group member attributes

Certain properties can be assigned to members of Fenix data groups. These
properties, called attributes, can be queried and defined using the following
functions.

Fenix Data member get attribute (collective operation)

int Fenix_Data_member_get_attribute(

int member_id,

int attribute_name,

void *attribute_value,

int *flag,

int group_id,

int source_rank);

This function must be called by all ranks in the communicator comm asso-
ciated with the group identified by group_id. All calling ranks must pass the
same values for the parameters member_id, attribute_name, and group_id.

Parameters:

• member_id [IN] - unique integer within group associated with group_id

that identifies the data in Fenix’s redundant data storage.

• attribute_name [IN] - name of the particular attribute, consisting of the
prefix FENIX_DATA_MEMBER_ATTRIBUTE_, followed by a suffix. At least the
following suffixes must be valid: BUFFER, COUNT, DATATYPE, and SIZE.

• attribute_value [OUT] - the attribute value of the particular member
of the target data group.

• flag [OUT] - true if an attribute value was extracted; false if no attribute
is associated with the key.

• group_id [IN] [optional; default value: FENIX_DATA_GROUP_WORLD_ID] -
Fenix data group whose information is sought.

• source_rank [IN] [optional; default value: the calling rank in the commu-
nicator associated with group_id] - for attributes that are rank-dependent
(such as FENIX_DATA_MEMBER_ATTRIBUTE_COUNT), specifies the rank (in
the communicator associated with group_id) that contains the attribute
that is sought.

Fenix Data member set attribute

int Fenix_Data_member_set_attribute(

int member_id,

int attribute_name,

void *attribute_value,

int *flag,

int group_id);

27



This function can be used to set an attribute related to a member. Attributes
can only be set before the first store operation of member_id or commit operation
of group_id that occur after returning from Fenix_Init. When a member is
stored or a group is committed, attributes are considered frozen until the next
failure occurs. After a failure, the execution will be returned from Fenix_

Init, at which point attributes can be reset before any subsequent stores. In
particular, at least the attribute FENIX_DATA_MEMBER_ATTRIBUTE_BUFFER must
be writable after a failure is recovered.

• member_id [IN] - unique integer within group associated with group_id

that identifies the data in Fenix’s redundant data storage.

• attribute_name [IN] - name of the particular attribute. Attribute names
with the suffix COUNT and DATATYPE are read only.

• attribute_value [IN] - the attribute value of the particular member of
the target data group.

• flag [OUT] - true if the attribute value was set; false if no attribute is
associated with the key or if the attribute is read-only.

• group_id [IN] [optional; default value: FENIX_DATA_GROUP_WORLD_ID] -
Fenix data group whose information is sought.

3.8 Removing stored application data

Data and meta-data associated with a specific commit operation can be manu-
ally marked for deletion using the following functions.

Fenix Data commit delete (collective operation)

int Fenix_Data_commit_delete(

int time_stamp,

int group_id);

This function must be called by all ranks in the communicator comm asso-
ciated with the group identified by group_id. All calling ranks must pass the
same values for the parameters. This function removes irretrievably the stored
members and meta-data associated with a specific Fenix_Data_commit call. It
can be used in addition to, or instead of, the implicit garbage collection that
Fenix performs, which is controlled by the depth parameter in Fenix_Data_

group_create.

• time_stamp [IN] - the time stamp of the requested commit. The special
value of FENIX_LATEST_DATA_GROUP_COMMIT will always remove the latest
data consistently committed by Fenix. The special value of FENIX_ALL_

DATA_GROUP_COMMIT can be used to remove all data consistently commit-
ted by Fenix.

28



• group_id [IN] [optional; default value: FENIX_DATA_GROUP_WORLD_ID] -
group whose time stamped, committed data should be removed.

Fenix Data commit idelete (collective operation)

int Fenix_Data_commit_idelete(

int time_stamp,

int group_id,

Fenix_Request *request);

This function has the same effect as Fenix_Data_commit_delete, except
that it returns immediately, possibly before the data has been removed. The
operation can be finalized by waiting on the returned request. This operation
has no optional parameters; all parameters are required.

• request [OUT] - handle to the asynchronous delete operation.

We note that redundant application data may also deleted as a side ef-
fect of the functions Fenix_Data_group_(i)delete and Fenix_Data_member_

(i)delete. See Sections 3.2.1 and 3.2.2.

4 Examples

4.1 Protecting process and data with Fenix

This example shows two versions of the same mini-example application, a non-
fault-tolerant version, and an augmented version with Fenix that tolerates fail-
ures in an on-line manner.

1 /* Non -fault -tolerant version */

2 int main()

3 {

4 int it;

5 int A[100], B[50];

6

7 initialize(A, B);

8

9 for(it=0 ; it <1000 ; it++) {

10 work1(A, MPI_COMM_WORLD);

11 if(A[0] > 200) {

12 work2(A, B, MPI_COMM_WORLD);

13 }

14 }

15 }

1 /* Fault tolerant version with Fenix */

2 int main()

3 {

4 int it;

5 int A[100], B[50];

29



6 int status , error;

7 MPI_Comm new_comm_world;

8

9 Fenix_Init (&status , MPI_COMM_WORLD , &new_comm_world ,

10 &argc , &argv ,

11 10, // num_spare_ranks

12 0, // spawn

13 MPI_INFO_NULL ,

14 &error);

15 if( !error && status == FENIX_STATUS_INITIAL_RANK ) {

16 /* no failure occurred */

17 it = -1;

18 initialize(A, B);

19 Fenix_Data_member_create (990, &it, 1, MPI_INT);

20 Fenix_Data_member_create (991, A, 100, MPI_INT);

21 Fenix_Data_member_create (992, B, 50, MPI_INT);

22 Fenix_Data_member_store(FENIX_DATA_MEMBER_ALL);

23 Fenix_Data_commit ();

24 } else if(!error) {

25 /* ranks recovered from a failure , now restore data */

26 Fenix_Data_member_restore (990, &it , 1, FENIX_LATEST_COMMIT);

27 Fenix_Data_member_restore (991, A, 100, FENIX_LATEST_COMMIT);

28 Fenix_Data_member_restore (992, B, 50, FENIX_LATEST_COMMIT);

29 } else {

30 // There was an error in Fenix

31 MPI_Abort(MPI_COMM_WORLD , -1);

32 }

33

34 for( ; it <1000 ; ) {

35 it++;

36 Fenix_Data_member_store (990);

37 work1(A, new_comm_world);

38 if(A[0] > 200) {

39 work2(A, B, new_comm_world);

40 Fenix_Data_member_store (992);

41 }

42 Fenix_Data_member_store (991);

43 Fenix_Data_commit ();

44 }

45 }

4.2 Storing data objects with subsets

1 /* Non -fault -tolerant version */

2 int main()

3 {

4 int it;

5 double A[10000];

6 const int lda = 100;

7

8 initialize(A);

9

10 for(it=0 ; it <100 ; it++) {

11 work1(A[lda*it + it]);

12 }

13 }

30



1 /* Fault tolerant version with Fenix */

2 int main()

3 {

4 int it;

5 int A[10000];

6 int offsets [100];

7 int sizes [100];

8 int start_offset_A [100], end_offset_A [100];

9 const int lda = 100;

10 int status;

11 Fenix_Data_subset subset_LU;

12

13 Fenix_Init (&status , ...);

14 if( status == FENIX_STATUS_INITIAL_RANK ) {

15 /* no failure occurred */

16 it = 0;

17 initialize(A);

18 Fenix_Data_member_create (990, &it, 1, MPI_INT);

19 Fenix_Data_member_create (991, A, 10000, MPI_DOUBLE);

20 Fenix_Data_member_store(FENIX_DATA_MEMBER_ALL);

21 Fenix_Data_group_commit ();

22 } else {

23 /* ranks recovered from a failure , now restore data */

24 Fenix_Data_restore (990, &it , 1, MPI_INT , FENIX_LATEST_COMMIT

);

25 Fenix_Data_restore (991, A, 10000, MPI_DOUBLE ,

FENIX_LATEST_COMMIT);

26 }

27

28 for( ; it <100 ; it++) {

29 Fenix_Data_member_store (990);

30 /* Create a subset */

31 for( j = it; j < 100; j++ ) {

32 start_offset_A[j] = j*100 + j;

33 end_offset_A[j] = start_offset_A[j] + lda;

34 }

35 Fenix_Data_subset_create (&subset_LU , 100-it , start_offset_A ,

end_offset_A);

36

37 work1(A[lda*it + it]);

38 Fenix_Data_member_store (991, FENIX_DATA_GROUP_WORLD_ID ,

subset_A);

39

40 Fenix_Data_group_commit ();

41 Fenix_Data_subset_delete (& subset_LU);

42 }

43 }

4.3 Recovering one member of a data group

This example assumes that ranks have the knowledge of (1) the group identifier
group_id, (2) the size of the communicator associated with that group (same
size as mycomm), (3) the features of the member sought (in particular, member_
id, count, and datatype) and (4) the specific time stamp ts of the sought
consistent commit.

1 Fenix_Init (&status , MPI_COMM_WORLD , &new_comm_world ,

31



2 &argc , &argv ,

3 num_spare_ranks ,

4 0, // spawn

5 MPI_INFO_NULL ,

6 &error);

7 if( !error && status != FENIX_STATUS_INITIAL_RANK ) {

8 // Failure successfully recovered

9 my_get_communicator_from_world(new_comm_world , &mycomm);

10 Fenix_Data_group_create(group_id , mycomm ,

11 0, // These last two params are ignored ,

12 0); // since group_id already existed

13 int dt_size;

14 MPI_Type_size(datatype , &dt_size);

15 assert(size != MPI_UNDEFINED);

16 uint8_t recovered_data = (uint8_t *) malloc(count*dt_size);

17 Fenix_Data_member_restore(

18 member_id , &recovered_data , count ,

19 ts, group_id);

20 // At this point , the application has its recovered data in

21 // all positions of member_pointers .

22 // Now , the application should inspect these elements to try

23 // and determine what to do with the recovered data.

24 }

4.4 Recovering all members of a data group

This example assumes that ranks have the knowledge of (1) the group identifier
group_id as well as (2) the size of the communicator associated with that group
(same size as mycomm).

This example assumes that the recovered rank have no knowledge about the
application data contained in the members that were stored. This is a corner
case, since the application should be aware of the data associated with a member
identifier in a group.

1 Fenix_Init (&status , MPI_COMM_WORLD , &new_comm_world ,

2 &argc , &argv ,

3 num_spare_ranks ,

4 0, // spawn

5 MPI_INFO_NULL ,

6 &error);

7 if( !error && status != FENIX_STATUS_INITIAL_RANK ) {

8 // Failure successfully recovered

9 my_get_communicator_from_world(new_comm_world , &mycomm);

10 Fenix_Data_group_create(group_id , mycomm ,

11 0, // These last two params are ignored ,

12 0); // since group_id already existed

13 int number_of_members;

14 Fenix_Data_group_get_number_of_members(

15 &number_of_members , group_id);

16 uint8_t ** member_pointers = (uint8_t **)

17 malloc(number_of_members*sizeof(uint8_t *));

18 int *member_counts = (int *)

19 malloc(number_of_members*sizeof(int));

20 MPI_Datatype *member_datatypes = (MPI_Datatype *)

21 malloc(number_of_members*sizeof(MPI_Datatype));

32



22 for(int m=0 ; m<number_of_members ; m++) {

23 int member_id;

24 Fenix_Data_group_get_member_at_position(

25 m,

26 &member_id ,

27 group_id);

28 int flag;

29 Fenix_Data_member_get_attribute(member_id ,

30 FENIX_DATA_GROUP_MEMBER_ATTRIBUTE_COUNT ,

31 (void *) &member_counts[m], &flag , group_id);

32 assert(flag);

33 MPI_Datatype datatype;

34 Fenix_Data_member_get_attribute(member_id ,

35 FENIX_DATA_GROUP_MEMBER_ATTRIBUTE_DATATYPE ,

36 (void *) &member_datatypes[m], &flag , group_id);

37 int dt_size;

38 MPI_Type_size(member_datatypes[m], &dt_size);

39 assert(size != MPI_UNDEFINED);

40 member_pointers[m] = (uint8_t *) malloc(count*dt_size);

41 int commit_time_stamp;

42 Fenix_Data_group_get_commit_at_position(

43 0, &commit_time_stamp , group_id);

44 Fenix_Data_member_restore(

45 member_id , &( member_pointers[m]), member_counts[m],

46 commit_time_stamp , group_id);

47 }

48 // At this point , the application has its recovered data in

49 // all positions of member_pointers .

50 // Now , the application should inspect these elements to try

51 // and determine what to do with the recovered data.

52 }

Acknowledgments

We thank Josep Gamell, Robert L. Clay, and Michael A. Heroux for their help,
consistent support, and insightful discussions. We also thank George Bosilca
and Ichitaro Yamazaki at University of Tennessee, Knoxville for the useful dis-
cussions in MPI-ULFM and realistic use cases of the persistent data storage
interface of Fenix.

The research presented in this work is supported in part by National Sci-
ence Foundation (NSF) via grants numbers CNS 1305375, ACI 1339036, ACI
1310283, ACI 1441376 and IIS 1546145, and by the Director, Office of Ad-
vanced Scientific Computing Research, Office of Science, of the US Department
of Energy Scientific Discovery through Advanced Computing (SciDAC) Insti-
tute for Scalable Data Management, Analysis and Visualization (SDAV) under
award number DE-SC0007455, the DoE RSVP grant via subcontract number
4000126989 from UT Battelle, the Advanced Scientific Computing Research and
Fusion Energy Sciences Partnership for Edge Physics Simulations (EPSI) under
award number DE-FG02-06ER54857, the ExaCT Combustion Co-Design Cen-
ter via subcontract number 4000110839 from UT Battle, via the SIRIUS grant
number DE-SC0015160, and through a grant from Sandia National Laborato-

33



ries. The research at Rutgers was conducted as part of the Rutgers Discovery
Informatics Institute (RDI2).

Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

34



A Semantic picture of the Fenix Data recovery
interface

The diagram below represents a data-centric view of the Data Storage and
Recovery Fenix Interface.

1

1

*

Fenix Data group get number of commits()

Fenix Data group get commit at position()

Fenix Data group get number of members()

Fenix Data group get member at position()

MPI Comm

Fenix Data wait()

Fenix Data test()

*

*

*

*

1

*

1
int group id

int start time stamp

int depth

Fenix Data group create()

Fenix Data group delete()

Fenix Data group

Fenix Data group idelete()

int member id

void *buffer

int count

MPI Datatype datatype

Fenix Data member

int time stamp

Fenix Data commit()

Fenix Data commit delete()

Fenix Data commit idelete()

Fenix Data commit

int store rank

Fenix Data stored member

Fenix Data subset

int num blocks

int* array start offsets

int* array end offsets

Fenix Data subset create()

Fenix Data subset delete()

Fenix Data group get redundancy policy()

Fenix Data group set redundancy policy()

Fenix Data member create()

Fenix Data member delete()

Fenix Data member get attribute()

Fenix Data member set attribute()

Fenix Data member idelete()

Fenix Data member store()

Fenix Data member storev()

Fenix Data member istore()

Fenix Data member istorev()

Fenix Data member restore()

Fenix Data member restore from rank()

Fenix Data member irestore()

Fenix Data member irestore from rank()

Five types of logical data classes exist: Fenix_Data_group, Fenix_Data_

member, Fenix_Data_commit, Fenix_Data_stored_member, and Fenix_Data_

subset. For each data class, the middle part of each box describes user-
accessible fields, in which underlined fields are the unique identifiers of particular
instances of each data class. Particular instances from Fenix_Data_stored_

member can be uniquely identified by the pair (member_id, time_stamp), since
this data class can be seen as an associative class product of including particular
members in a particular commit. The bottom part of each box includes functions
used to create, delete, or manipulate different instances. Functions inside the

35



two bubbles with dotted lines are functions associated with Fenix_Data_group,
and can be used to discover the unique identifiers for Fenix_Data_member and
Fenix_Data_commit associated with a particular group, respectively. Note that
these data classes are not directly exposed to the user and Fenix implementa-
tions can actually choose to use a different layout for internal implementation.
This diagram serves as a way to understand the effect and relationship of the
different functions.

36



Fenix Function Index

Fenix_Callback_register, 6
Fenix_Comm_invalidate collective, 7
Fenix_Data_commit_delete collective, 28
Fenix_Data_commit_idelete collective, 29
Fenix_Data_commit collective, 18
Fenix_Data_group_create collective, 9
Fenix_Data_group_delete collective, 11
Fenix_Data_group_get_commit_at_position, 26
Fenix_Data_group_get_member_at_position, 25
Fenix_Data_group_get_number_of_commits collective, 26
Fenix_Data_group_get_number_of_members, 25
Fenix_Data_group_get_redundancy_policy, 14
Fenix_Data_group_idelete collective, 11
Fenix_Data_group_set_redundancy_policy collective, 14
Fenix_Data_member_create collective, 12
Fenix_Data_member_delete collective, 13
Fenix_Data_member_get_attribute collective, 27
Fenix_Data_member_idelete collective, 13
Fenix_Data_member_irestore_from_rank collective, 22
Fenix_Data_member_irestore collective, 21
Fenix_Data_member_istorev collective, 18
Fenix_Data_member_istore collective, 17
Fenix_Data_member_restore_from_rank collective, 22
Fenix_Data_member_restore collective, 19
Fenix_Data_member_set_attribute, 27
Fenix_Data_member_storev collective, 17
Fenix_Data_member_store collective, 16
Fenix_Data_subset_create, 23
Fenix_Data_subset_delete, 24
Fenix_Data_test, 16
Fenix_Data_wait, 15
Fenix_Finalize collective, 8
Fenix_Initialized, 6
Fenix_Init collective, 3

37



Fenix Collective Function Index

Fenix_Comm_invalidate, 7
Fenix_Data_commit_delete, 28
Fenix_Data_commit_idelete, 29
Fenix_Data_commit, 18
Fenix_Data_group_create, 9
Fenix_Data_group_delete, 11
Fenix_Data_group_get_number_of_commits, 26
Fenix_Data_group_idelete, 11
Fenix_Data_group_set_redundancy_policy, 14
Fenix_Data_member_create, 12
Fenix_Data_member_delete, 13
Fenix_Data_member_get_attribute, 27
Fenix_Data_member_idelete, 13
Fenix_Data_member_irestore_from_rank, 22
Fenix_Data_member_irestore, 21
Fenix_Data_member_istorev, 18
Fenix_Data_member_istore, 17
Fenix_Data_member_restore_from_rank, 22
Fenix_Data_member_restore, 19
Fenix_Data_member_storev, 17
Fenix_Data_member_store, 16
Fenix_Finalize, 8
Fenix_Init, 3

38



References

[1] M. Gamell, D. S. Katz, H. Kolla, J. Chen, S. Klasky, and M. Parashar,
“Exploring automatic, online failure recovery for scientific applications at
extreme scales,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE Press,
2014, pp. 895–906.

[2] A. Chien, P. Balaji, P. Beckman, N. Dun, A. Fang, H. Fujita, K. Iskra,
Z. Rubenstein, Z. Zheng, R. Schreiber et al., “Versioned distributed arrays
for resilience in scientific applications: Global view resilience,” Journal of
Computational Science, 2015.

[3] A. Moody, G. Bronevetsky, K. Mohror, and B. de Supinski, “Detailed model-
ing, design, and evaluation of a scalable multi-level checkpointing system,”
Lawrence Livermore National Laboratory (LLNL), Tech. Rep. LLNL-TR-
440491, 2010.

[4] M. Schulz and B. R. De Supinski, “Pn mpi tools: A whole lot greater than
the sum of their parts,” in Proceedings of the 2007 ACM/IEEE conference
on Supercomputing. ACM, 2007, p. 30.

39


