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Abstract

As wind farms scale to include more and more turbines, questions about turbine wake 
interactions become increasingly important.  Turbine wakes reduce wind speed and downwind 
turbines suffer decreased performance.  The cumulative effect of the wakes throughout a wind 
farm will therefore decrease the performance of the entire farm.  These interactions are dynamic 
and complicated, and it is difficult to quantify the overall effect of the wakes.  This problem has 
attracted some attention in terms of computational modelling for siting turbines on new farms, 
but less attention in terms of empirical studies and performance validation of existing farms.  

In this report, Supervisory Control and Data Acquisition (SCADA) data from an existing wind 
farm is analyzed in order to explore methods for documenting wake interactions.  Visualization 
techniques are proposed and used to analyze wakes in a 67 turbine farm.  The visualizations are 
based on directional analysis using power measurements, and can be considered to be normalized 
capacity factors below rated power.  Wind speed measurements are not used in the analysis 
except for data pre-processing.  Four wake effects are observed; including wake deficit, channel 
speed up, and two potentially new effects, single and multiple shear point speed up.  In addition, 
an attempt is made to quantify wake losses using the same SCADA data.  Power losses for the 
specific wind farm investigated are relatively low, estimated to be in the range of 3-5%.

Finally, a simple model based on the wind farm geometrical layout is proposed.  Key parameters 
for the model have been estimated by comparing wake profiles at different ranges and making 
some ad hoc assumptions.  A preliminary comparison of six selected profiles shows excellent 
agreement with the model.  Where discrepancies are observed, reasonable explanations can be 
found in multi-turbine speedup effects and landscape features, which are yet to be modelled.
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FIGURES

Figure 1.  Wind Farm Layout.  The relative positions of the turbines are shown, with turbines 
numbered from 1-67, and the met tower marked M.  The site wind rose is shown in the upper 
left.  Turbines in close proximity are connected by lines: turbines within 5 rotor diameters are 
connected using red lines; turbines between 5 and 6 rotor diameters are connected using blue 
lines; and turbines between 6 and 7 rotor diameters are connected using black lines.  Icons were 
taken from the Map Icons Collection (http://mapicons.nicolasmollet.com) and are licensed under 
Creative Commons Attribution (3.0). ............................................................................................11
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Figure 2.  Met Tower Wind Direction Correction. On the left, power variability of turbine 64 is 
plotted against the met mast measured wind direction  for winds from the south.  A peak in 𝜃𝑚
power variability is seen at approximately .  In reality, this peak should occur at the 169°
geographical bearing from turbine 64 to turbine 67, which is shown as a red line, occurring at 

.  Therefore, the wind direction offset .  On the right, power variability is 180° 𝜃𝑓 = 𝜃𝑡 ‒ 𝜃𝑚 ≈ 11°
plotted against the corrected wind direction, showing an alignment between the peak power 
variability and the geographic bearing.  Throughout this figure, the power variability curves were 
computed across wind direction bins of . ...................................................................................131°

Figure 3.  Nacelle Direction Correction for Turbine 6.  On the left (a), the residual  of the 𝜃𝑛 ‒ 𝜃𝑚
nacelle wind direction measurement  versus the met tower measurement  is shown through 𝜃𝑛 𝜃𝑚
time for turbine 6.  In addition to the additive biases that can be observed, there are several 
noticeable changes in the measurements at different time points.  In the middle (b), the time 
periods are clustered using a change detection algorithm so that an additive correction can be 
applied.  The separation of the last two groups (green and blue) is due to a period of erratic 
measurements which can be observed in the uncorrected data as a solid vertical line.  On the 
right (c), additive corrections are applied to the time period clusters and individual measurements 
significantly different from the mean are removed. ......................................................................14

Figure 4.  Pitch Correction.  On the left, the pitch schedule is shown as the variation in mean 
blade pitch against wind speed.  Data points more than one standard deviation from the pitch 
schedule (indicated by the dashed lines) are removed.  On the right, the power curve of the 
corrected data is shown (power is shown on a normalized scale).  Note that several abnormal 
operating modes were removed, including de-rated periods. ........................................................15

Figure 5.  Power Corrections.  On the left (a), the median power curve was computed using wind 
speed bins of 1 m/s, shown as a red line.  Any data greater outside of the 60th percentile was then 
removed.  This correction directly removes abnormal modes of turbine operation from 
consideration for further analysis.  On the right (b), the full collection of median power curves 
(67) exhibit a large degree of uniformity over the wind farm, indicating that the power corrected 
data is suitable for estimating power losses due to wake effects on the farm. ..............................15

Figure 6.  Wake Effect for Turbine 7.  On the left (a), power curves are shown for the upwind 
turbine 6 and the downwind turbine 7 (given westerly winds).  These curves show no wake effect 
because the individual nacelle wind speed measurements were used, which are relative.  On the 
right (b), power curves are shown for the same two turbines, this time using the upwind nacelle 
sensor to measure wind speed.  These curves show a wake effect, because the wind speed is now 
absolute for both turbines.  Throughout this figure, the power curves were obtained by averaging 
the nacelle power measurements over bins with width of 1 m/s. ..................................................16

Figure 7.  Normalized Instant Power Plots.  These plots show normalized instant power averages 
over time versus wind direction for turbines 6 and 7.  The plots are arranged to mirror the 
positions of the turbines in the wind farm, so that turbine 6 is west of turbine 7.  Thus, given a 
westerly wind, turbine 6 is upwind and turbine 7 is downwind.  In this case, turbine 6 is over-
performing relative to turbine 7, so that a bump is observed in the plot for turbine 6 at the angle 

.  Similarly, turbine 7 is underperforming due to the wake effect, and a dip is observed in the 270°
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plot for turbine 7 at the angle .  Both plots are obtained by averaging normalized instant 270°
power over time within wind direction bins of ..........................................................................171°

Figure 8.  Power Variability Plots.  These plots show power variability over time against wind 
direction for turbines 6 and 7.  They are again arranged to mirror the positions of the turbines in 
the wind farm.  Wake effects can be observed as increased variability, which manifest as bumps 
on the plots.  Thus there are bumps at  (easterly wind) for turbine 6 and  (westerly wind) 90° 270°
for turbine 7.  Both plots are obtained by averaging power variability over time within wind 
direction bins of . ........................................................................................................................181°

Figure 9.  Wind Shadow Estimates.  On the left (a), wind shadows are computed for wind 
blowing out of the north-east using k = 0.075 and  (rotor diameters).  Turbines are 𝑥∞ = 15
marked with blue dots and wind shadows are shown using gray quadrilaterals.  Turbines not in 
wind shadows are highlighted with red circles.  On the right (b), wind shadows are computed 
using the same wind direction but with an extremely high  and .  The wind front 𝑘 = 0.4 𝑥∞ = 20
computed in the two examples shows how more or less conservative wind front estimates can be 
obtained by varying  and . .......................................................................................................19𝑘 𝑥∞

Figure 10.  Power Observer versus Actual Power.  Shown here is the power observer calculation 
(red) compared to the actual power measurements (blue).  The curves are totaled over all turbines 
in the farm.  For this estimate,  and  (rotor diameters). .......................................20𝑘 = 0.075 𝑥∞ = 15

Figure 11.  Wake Effect Visualizations.  On the left (a), visualization is shown using normalized 
instant power, and on the right (b) visualization is shown using power variability.  In both cases, 
the rose plots are positioned in place of the turbine icons seen in Figure 1.  Further, the rose plots 
are colored according the radial magnitude.  For the instant power plots, over-performing turbine 
directions are colored red, while under-performing turbine directions are colored blue.  Grey 
circles show average performance (instant normal power value of 1).  For the power variability 
plots, high variability directions are colored red, and low variability directions are colored blue.
.......................................................................................................................................................22

Figure 12.  Google Earth Visualization.  This visualization shows the wind farm wake effects 
using the normalized instant power plots, complete with the labels from Figure 1.  Grey circles 
show average performance (instant normal power value of 1).  The wind farm terrain imagery 
(not shown) can also be examined for correlations between performance and local topography.22

Figure 13.  Peak Deficits.  The peak deficit for all of the profiles plotted as an average of the 
nearest five points to the bearing against Jensen’s Park model to the 3rd power, with  𝑘 = 0.075
and .  The profiles from each bin are colored coded. ........................................................23𝐶𝑇 = 0.7

Figure 14.  Wake Profiles from 3D to 12D.  On the top (a), the average normalized power wake 
profiles for the 1.25D bins are shown. There are approximately 16 profiles in each bin.  On the 
bottom (b), power variance of the wake profiles for the 1.25D bins is shown..............................24

Figure 15.  Fitted Parameters.  On the top (a), we show wake deficit and centerline for the 
normalized power wake profiles.  The fitted values outside the wake are given by 
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.  In the middle (b), we show the measured peak power 𝑎(𝑥𝐷) = 1 + 25/𝐷 × 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑥/𝐷, 10)
variability above the ambient level, with a fitted value.  On the bottom (c), we show curves 
fitting wake width in linear coordinates for power and power variability.  For reference, the Park 
model wake width is plotted for .  The power performance fit is  and 𝑘 = 0.075 𝑤𝑥 = 0.11 × 𝑥/𝐷 + 0.5
the variability fit is . .......................................................................................25𝑏𝑥 = 0.15 × 𝑥/𝐷 + 0.5

Figure 16.  Initial Model.  On the top (a), individual wake components for turbine 11  are 
modelled as Gaussian bells.  On the bottom (b), all wakes for turbine 11 are modelled as the 
product of the individual Gaussian bells.  Three of the wake directions have been adjusted a few 
degrees to align with the experimental data. .................................................................................27

Figure 17.  Cosine Model.  On the top (a), individual wake components for turbine 11 are 
modelled using a Gaussian bell and a damped cosine overlay.  On the bottom (b), all wakes for 
turbine 11 are modelled as the product of the individual Gaussian bells using the damped cosine 
overlay. ..........................................................................................................................................27

Figure 18.  Power Variability Model.  On the top (a), individual wake components for turbine 11 
are modelled using Gaussian bells.  On the bottom (b), all wakes for turbine 11 are modelled as 
the sum of the individual Gaussian bells. ......................................................................................28

Figure 19.  Overall Wind Farm Performance.  On the left (a), the power averaged over all 
turbines versus wind direction is shown.  As expected, this polar plot is highly correlated with 
prevailing wind directions (NW and S), although there is also an interesting spike in the NE 
direction.  In the middle (b), the average power variability versus wind direction is shown.  The 
power variability is aligned with prevailing winds as well as a large number of closely positioned 
E-W turbine pairs.  On the right (c), a radial histogram of counts for turbine-turbine pairs within 
7 rotor diameters is shown. ............................................................................................................29

Figure 20.  Average Turbine Performance over Wind Farm.  On the left, the wind direction 
averaged normalized instant power is shown for each turbine, where red indicates high 
performance, and blue indicates low performance.  On the right, the wind direction averaged 
power variability is shown for each turbine, where red indicates high variability, and blue 
indicates low variability.................................................................................................................30

Figure 21.  Wake Effects.  On the left (a), three wake effects can be observed using instant 
normalized power plots for turbines 8, 10, and 11.  Wake deficits can be seen as dips in the 
power production when turbine 11 is in the shadow of turbines 8 or 10; a speed up channel can 
be seen as a peak in the power production when turbine 11 is facing the midpoint of turbines 8 
and 10; and shear point speedups can be seen when turbine 11 is tangent to the wake of turbine 
10 or 8.  On the right (b), the corresponding variability in power is shown..................................31

Figure 22.  Normalized Instant Power for Waked Turbines.  The x-axis gives the wind direction 
degree offset normalized by the distance between the turbines (e.g. ), where  is 𝑥𝐷 = 𝜃°𝜋180°(𝑥𝐷 𝜃°
the offset in degrees,  is the distance between the two turbines, and  is the rotor diameter).  For 𝑥 𝐷
example, when the offset is  the wind is blowing straight from the upwind to the downwind 0°
turbine.  The y-axis shows the normalized instant power for the downwind turbine.  The turbine 
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pairs selected are given in the legend, where the notation  indicates the downwind turbine 𝑑←𝑢 (𝑟)
(d), the upwind turbine (u) and the distance (r) in rotor diameters.  See also Figure 1 for turbine 
positions. ........................................................................................................................................32

Figure 23.  Power Variability for Waked Turbines.  As in Figure 22, the x-axis gives the wind 
direction degree offset from the upwind turbine.  The y-axis gives the power variability of the 
downwind turbine. .........................................................................................................................32

Figure 24.  Power Deficit Versus Distance.  Maximum instant normalized power and minimum 
power variance for a downstream turbine were collected for 854 turbine pairs.  On the left (a), 
the maximum normalized instant power is plotted versus distance behind the upwind turbine.  
The semi-empirical wind velocity deficit from Equation 4 is shown as a solid curve.  On the right 
(b), the minimum power variance for the downstream turbine versus distance is shown.............33

Figure 25.  Normalized Instant Power for Channel Speedup.  The x-axis gives the wind direction 
degree difference from the downstream turbine to the midpoint between the two upstream 
turbines.  The y-axis gives the normalized instant power.  The channel speed up effect can be 
seen as the peak at , flanked by wake deficits on either side of the peak. ..................................340°

Figure 26.  Power Variability for Channel Speedup.  As in Figure 25, the x-axis gives the wind 
offset from the midpoint between the two upstream turbines.  The y-axis gives the power 
variability.  The channel speed up is associated with low variability. ..........................................34

Figure 27.  Normalized Instant Power for Shear Speedup.  The x-axis gives the wind direction 
degree offset from the bearing between and upwind and downwind turbine pair, and the y-axis 
show the normalized instant power.  Turbines were selected so that the region between  to  0° 90°
from the downwind turbine is undisturbed (no turbines nearby).  The shear point speedup can be 
seen as improved power production between  and , as indicated by the dotted line at .15° 20° 17.5°
.......................................................................................................................................................35

Figure 28.  Power Variability for Shear Speedup.  As in Figure 28, the x-axis gives the wind 
direction degree offset from the upwind turbine.  The y-axis shows power variability. ...............35

Figure 29.  Normalized Instant Power Increase from Multiple Upstream Turbines.  The 
normalized instant power profiles are shown for 6 turbines offset from an upstream row of 
turbines.  The upstream turbine rows are all arranged from north to south...................................36

Figure 30.  Power Variability from Multiple Upstream Turbines.  The power variability profiles 
are shown for 6 turbines offset from an upstream row of turbines.  The upstream turbine rows are 
arranged North to south. ................................................................................................................36

Figure 31.  Percent Gain Parameter Search.  Percent gain (G) is shown as a function of 
parameters in the range  to  and   to  rotor diameters........................37𝑘 = 0.01 𝑘 = 0.5 𝑥∞ = 5 𝑥∞ = 30

Figure 32.  Region II Percent Gain Parameter Search.  The percent gain of the wind farm is 
uniformly higher using wind restricted speeds from 6-10 m/s, as compared to wind speeds from 
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4-20 m/s (Figure 31).  Parameters are again in the range  to  and   to  𝑘 = 0.01 𝑘 = 0.5 𝑥∞ = 5 𝑥∞ = 30
rotor diameters. ..............................................................................................................................38

Figure 33.  Region III Percent Gain Parameter Search.  The percent gain of the wind farm is 
minimal using wind restricted speeds from 10-20 m/s, as compared to wind speeds from 4-10 
m/s (Figure 31 and Figure 32).  Parameters are again in the range  to  and   to 𝑘 = 0.01 𝑘 = 0.5 𝑥∞ = 5

 rotor diameters..................................................................................................................39𝑥∞ = 30

Figure 34.  Power roses for turbines 11, 8 and 10.  In this figure, we show the power roses as 
computed using the wake model from Section 2.4.  On the left(a), we show the power rose for 
turbine 11; in the middle (b), the power rose for turbine 8; and on the right (c), the power rose for 
turbine 10. ......................................................................................................................................40

Figure 35.  Power variability roses for turbines 11, 8 and 10.  In this figure, we show the power 
variability roses as computed using the wake model from Section 2.4.  On the left(a), we show 
the power variability rose for turbine 11; in the middle (b), the power variability rose for turbine 
8; and on the right (c), the power variability rose for turbine 10...................................................41

Figure 36.  Power roses for turbines 39, 40, and 54.  In this figure, we show the power roses as 
computed using the wake model from Section 2.4.  On the left(a), we show the power rose for 
turbine 39; in the middle (b), the power rose for turbine 8; and on...............................................41
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1.  INTRODUCTION

The wind energy used by a turbine to produce electrical power causes a reduction in wind speed 
behind the turbine, also known as a wake or wind shadow [1].  The wake behind a turbine will 
dissipate with distance, but will affect nearby downwind turbines.  For a large wind farm, these 
effects will accumulate, resulting in potentially significant aggregate power loss over the entire 
farm.  In addition, wakes are turbulent, and can stress downwind turbines, possibly affecting the 
reliability and lifetime of turbines within the farm.

To mitigate the effects of turbine wakes in a wind farm, it is important to carefully site turbines 
during the design phase [1].  Research into siting wind turbines has employed semi-empirical 
numerical models of turbine wakes [2-5], as well as more exact models based on the Navier-
Stokes equations [6].   Power losses due to wake effects have also been modeled [7,8].  While 
these models provide valuable insight and guidelines, they are nevertheless incomplete and 
cannot address every practical concern in the siting of turbines when building a wind farm.  
Further, there are numerous existing wind farms, for which re-siting is not an option, but which 
might yield greater power production with improved understanding of on-site wake effects.

An alternative to using computational models for understanding and mitigating wake effects is to 
analyze data gathered from existing farms using techniques from statistics and data mining.  
Such approaches have yielded results in the areas of turbine failure prediction and condition 
monitoring, see for example [9-13], but have only been applied to limited degree in wake 
analysis [14].

In this report, Supervisory Control and Data Acquisition (SCADA) data is analyzed with the goal 
of documenting wake effects on a functioning industrial scale wind farm.  SCADA data from this 
farm is summarized, corrected, transformed, and analyzed in order to provide an estimate of 
potential power loss due to wake effects.  Finally, a simple model based on the wind farm 
geometrical layout is proposed.
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2.  MATERIALS AND METHODS

Data was gathered over a 1.5 year period in 2012 and 2013 from the SCADA system at an 
onshore wind farm in the United States.  The wind farm included 67 horizontal axis, three 
bladed, variable pitch turbines, along with one meteorological (met) tower.  In this study, 
analysis was performed on subset of the data collected from the turbines: nacelle wind speed, 
nacelle direction (position), rotor speed, blade pitch, and power output.  The met tower collected 
data on temperature, air pressure, wind speed, and wind direction.  The layout of the wind farm 
is shown in Figure 1, along with a wind rose showing the prevailing wind directions.

Figure 1.  Wind Farm Layout.  The relative positions of the turbines are shown, with turbines numbered from 1-67, and the met 
tower marked M.  The site wind rose is shown in the upper left.  Turbines in close proximity are connected by lines: turbines 
within 5 rotor diameters are connected using red lines; turbines between 5 and 6 rotor diameters are connected using blue lines; 
and turbines between 6 and 7 rotor diameters are connected using black lines.  Icons were taken from the Map Icons Collection 
(http://mapicons.nicolasmollet.com) and are licensed under Creative Commons Attribution (3.0).

http://mapicons.nicolasmollet.com
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Data was collected continuously (every 2 seconds) but was summarized over 10 minute intervals 
prior to analysis.  For each variable collected (e.g. wind speed), the minimum, maximum, 
average and standard deviation over the 10 minute interval was computed.   After 
summarization, there were approximately 61,000 time points per turbines available for analysis.

2.1. Data Corrections

Wind Speed Screening  
We required an operational turbine and wind speed to lie in the range of 4-20 m/s, yielding 
approximately 46,000 time points per turbine, corresponding to a site average wind speed of 
approximately 8 m/s.

Met Tower Correction  
Due to sensor inaccuracies, various corrections were performed on the wind direction 
measurements.  Following [14], the met tower was considered to have the most accurate wind 
direction sensor, but was adjusted for systematic bias by comparing the met tower sensor data 
with data gathered from two nearby turbines, as described next.

Given the measured wind direction at the met tower, denoted , the goal is to find an offset  𝜃𝑚 𝜃𝑓

such that 

,  (1)𝜃𝑡 = 𝜃𝑚 + 𝜃𝑓

where  is the true wind direction.  To find , it is necessary to estimate the true wind direction 𝜃𝑡 𝜃𝑓

.  Fortunately,  can be estimated using the geographical bearing (known exactly) of two 𝜃𝑡 𝜃𝑡

turbines near the met tower, and comparing that bearing to the power variability of the 
downwind turbine.  In theory, the power variability of the downwind turbine will peak when the 
wind direction is exactly aligned with the geographical bearing, providing an estimate of .𝜃𝑡

The power variability of a turbine is computed as 

, (2)
𝑃𝑣 =

𝜎𝑃
𝜇𝑃

where  is the power produced by the turbine, and  is the standard deviation of the power 𝜇𝑃 𝜎𝑃

produced, both taken over the ten minute intervals.  For the purpose of comparing power 
variability against wind direction, the power variability is averaged over time for a given wind 
direction, where the wind directions are binned in  intervals.1°

For the wind farm under investigation, wind direction at the met tower was compared with the 
power variability of nearby turbine 64.  Specifically, power variability was computed for turbine 
64 when turbine 64 was downwind from turbine 67.  Since turbine 64 is due north (bearing 

of turbine 67, the greatest power variability in turbine 64 should be seen in periods of 180°) 
southerly winds (bearing .  By comparing the power variability of turbine 64 with the wind 180°)

direction at the met tower, the true wind direction  can be estimated, as illustrated in Figure 2.  𝜃𝑡
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According to this analysis, the measured wind direction  was offset from the true wind 𝜃𝑚

direction  by an angle .𝜃𝑡 𝜃𝑓 ≈ 11°
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Figure 2.  Met Tower Wind Direction Correction. On the left, power variability of turbine 64 is plotted against the met mast 
measured wind direction  for winds from the south.  A peak in power variability is seen at approximately .  In reality, this 𝜃𝑚 169°
peak should occur at the geographical bearing from turbine 64 to turbine 67, which is shown as a red line, occurring at .  180°

Therefore, the wind direction offset .  On the right, power variability is plotted against the corrected wind 𝜃𝑓 = 𝜃𝑡 ‒ 𝜃𝑚 ≈ 11°
direction, showing an alignment between the peak power variability and the geographic bearing.  Throughout this figure, the 
power variability curves were computed across wind direction bins of .1°

Nacelle Direction Correction  
The nacelle direction sensors have a number of potential sources of error.  First, they are not 
typically well maintained because the direction is not often used by the turbine controllers.  
Second, the typically slow changes in yaw and long periods of inaction cause the sensors to 
experience accuracy loss in relative position.  These losses can be jumps in the position or slow 
deterioration.  Although the direction may (in some turbines) be reset by the passage of a switch, 
some sites have very monotonous wind direction and the turbines rarely trigger the reset.  
Further, calibration to magnetic north is not always performed, or is sometime re-programmed 
with turbine software updates.  This means that there can be instant jumps in directional 
determination at discrete times.  Finally, if no service records are available, sensors may be 
replaced, after which absolute direction is lost.

The largest obstacle to overcome in correcting the nacelle wind direction is the identification of 
time period clusters showing significant relative change in wind direction against the corrected 
met tower data, now considered to be ground truth.  An example of this behavior for turbine 6 is 
shown in Figure 3(a).  Note that the direction measurements are present only when a turbine is 
operational and wind speeds exceed 4 m/s, as per the initial data screen.
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Figure 3.  Nacelle Direction Correction for Turbine 6.  On the left (a), the residual  of the nacelle wind direction 𝜃𝑛 ‒ 𝜃𝑚

measurement  versus the met tower measurement  is shown through time for turbine 6.  In addition to the additive biases 𝜃𝑛 𝜃𝑚

that can be observed, there are several noticeable changes in the measurements at different time points.  In the middle (b), the 
time periods are clustered using a change detection algorithm so that an additive correction can be applied.  The separation of the 
last two groups (green and blue) is due to a period of erratic measurements which can be observed in the uncorrected data as a 
solid vertical line.  On the right (c), additive corrections are applied to the time period clusters and individual measurements 
significantly different from the mean are removed.

Each time period cluster is identified using a change detection algorithm [15].  The change 
detection algorithm proceeds sequentially through each time series searching for time points 
where the moving average experiences a change beyond a given threshold.  For the wind 
direction measurements, a moving average over 750 time points was used with a threshold of 

.  The results of the change detection algorithm applied to wind direction measurement data 20°
from turbine 6 is shown in Figure 3(b).

After the time period clusters were identified for a given nacelle, the wind direction based on the 
nacelle measurements were corrected using additive offsets, as was previously done for the met 
tower data.  Using Equation 1, an offset  is applied to the nacelle measurements for each time 𝜃𝑓

cluster such that the nacelle wind direction  is equal on average to the met tower wind direction 𝜃𝑛

 for that time period cluster.  𝜃𝑚

Finally, individual wind direction measurements for each nacelle were discarded if greater than 
one standard deviation from the mean.  An example of the corrected data for a nacelle is shown 
in Figure 3(c).  The nacelle correction left approximately 34,000 time points per turbine for 
further analysis.

Pitch Correction  
The final correction compared blade pitch versus wind speed to remove unusual instances of 
turbine operation.  Normally, blade pitch should respond predictably to variations in wind speed, 
as dictated by the turbine controller.  Unusual blade pitch response therefore indicates unusual 
turbine operation.

To perform this correction, instances of unusual turbine operation were removed if the mean 
blade pitch was more than one standard deviation from the mean blade pitch schedule, identified 
empirically by computing mean pitch vs. wind speed, using wind speed bins of 1 m/s.  The blade 
pitch correction for turbine 6 is shown in Figure 4.  Pitch correction left approximately 32,000 
time points per turbine for further analysis, or approximately 222 days in operation.
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Figure 4.  Pitch Correction.  On the left, the pitch schedule is shown as the variation in mean blade pitch against wind speed.  
Data points more than one standard deviation from the pitch schedule (indicated by the dashed lines) are removed.  On the right, 
the power curve of the corrected data is shown (power is shown on a normalized scale).  Note that several abnormal operating 
modes were removed, including de-rated periods.

Power Correction  
An alternative to pitch correction is power correction.  In this correction, data outside the range 
of 60 percentile is removed from the median power curve (power vs. wind speed), where the 
median is computed using bins on the wind speed of 1 m/s.  This correction removes power 
limited turbines as well as other abnormal modes of operation.  An example is shown in Figure 
5(a).  The power correction left approximately 24,000 time points per turbine for analysis (note 
that we do not use pitch and power corrections together).  The full collection of resulting median 
power curves shows a high degree of uniformity, as can be seen in Figure 5(b).  This indicates 
that the power corrected data contains measurements of the wind farm in modes of normal 
operation, and is hence suited for use in assessing power loss due to wake effects.
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Figure 5.  Power Corrections.  On the left (a), the median power curve was computed using wind speed bins of 1 m/s, shown as a 
red line.  Any data greater outside of the 60th percentile was then removed.  This correction directly removes abnormal modes of 
turbine operation from consideration for further analysis.  On the right (b), the full collection of median power curves (67) exhibit 
a large degree of uniformity over the wind farm, indicating that the power corrected data is suitable for estimating power losses 
due to wake effects on the farm.
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2.2. Calculations

Turbine-Turbine Power Curve Pair Analysis  
To motivate the method developed for visualizing wake effects across the entire wind farm, it is 
instructive to first consider the simpler case of two interacting turbines.  For this exercise, 
consider the relatively isolated pair consisting of turbines 6 and 7, located near the northeast 
corner of the farm.

Turbines 6 and 7 are close enough (within 6 rotor diameters) that turbine 7 should experience 
wake effects given a westerly wind.  However, wake effects were not observed by plotting the 
individual power curves for the two turbines, as shown in Figure 6(a).  Fortunately, this 
observation is illusory, although the explanation is subtle.

It is important to realize that the wind speed observed by a nacelle is relative to that nacelle.  In 
other words, a downwind nacelle will observe a wind speed slower than the true wind speed, 
precisely because it is in the wind shadow of the upwind turbine.  Hence wake effects cannot be 
observed by using nacelle wind speed measurements.  For the case of two turbines, this problem 
can be solved by using the upwind turbine wind speed measurement as the true wind speed, as 
shown in Figure 6(b).

Unfortunately, the solution used for turbines 6 and 7 will not scale to the entire wind farm, due to 
the numerous wind shadows and wind directions encountered over the full dataset.  Imagine, for 
example, a row of turbines in line with the wind.  The only turbine that is not in a wind shadow 
is the leading turbine.  Thus the leading turbine will report the true wind speed, while every other 
turbine will report a wind speed slower than the true wind speed.  The last turbine in the row will 
report the slowest wind speed.  This situation is of course further complicated in an array of 
turbines, or as in the case of an actual farm, an irregular distribution of turbines.
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Figure 6.  Wake Effect for Turbine 7.  On the left (a), power curves are shown for the upwind turbine 6 and the downwind 
turbine 7 (given westerly winds).  These curves show no wake effect because the individual nacelle wind speed measurements 
were used, which are relative.  On the right (b), power curves are shown for the same two turbines, this time using the upwind 
nacelle sensor to measure wind speed.  These curves show a wake effect, because the wind speed is now absolute for both 
turbines.  Throughout this figure, the power curves were obtained by averaging the nacelle power measurements over bins with 
width of 1 m/s. 
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Directional Power Performance and Variance Plots  
Since the nacelle wind speed measurements could not be used over the entire wind farm, 
calculations of relative power were substituted.  In particular, a normalized measure of 
instantaneous power was employed.  For turbine i, the normalized instant power is defined to be

 , (3)𝑃𝑁(𝑡) = 𝑃𝑖(𝑡)/𝜇𝑃(𝑡)

where  is the power of turbine i over the ten-minute interval t, and   is the 𝑃𝑖(𝑡)
𝜇𝑃(𝑡) =

1
𝑛

𝑛

∑
𝑖 = 1

𝑃𝑖(𝑡)

average power over all turbines over the same interval (for our dataset .  For example, if 𝑛 = 67)
turbines 6 and 7 made up the entire wind farm, then the normalized instant power of turbine 6 
would be .  The normalized instant power avoids the use of wind 𝑃𝑁(𝑡) = 2𝑃6(𝑡)/(𝑃6(𝑡) +  𝑃7(𝑡))

speed measurements and can also be averaged over time and binned against wind direction to 
obtain polar plots showing the performance of a given turbine against the performance of the 
wind farm as a whole.  For the normalized instant power plots, overlapping bins  apart 1°
covering   sectors were used.  The  sectors correspond to anticipated wake effects for ± 8° ± 8°
turbines separated by 7 rotor diameters.  An example of normalized instant power plots, again 
assuming turbines 6 and 7 make up the entire wind farm, is shown in Figure 7.
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Figure 7.  Normalized Instant Power Plots.  These plots show normalized instant power averages over time versus wind direction 
for turbines 6 and 7.  The plots are arranged to mirror the positions of the turbines in the wind farm, so that turbine 6 is west of 
turbine 7.  Thus, given a westerly wind, turbine 6 is upwind and turbine 7 is downwind.  In this case, turbine 6 is over-performing 
relative to turbine 7, so that a bump is observed in the plot for turbine 6 at the angle .  Similarly, turbine 7 is 270°
underperforming due to the wake effect, and a dip is observed in the plot for turbine 7 at the angle .  Both plots are obtained 270°
by averaging normalized instant power over time within wind direction bins of .1°

In Figure 7, the mutual waking of the two turbines at  and  can be clearly observed. For 90° 270°
turbine 6, there is a hint of wake deficit from turbine 1 at  and a stronger deficit bearing  for 30° 0°
turbine 7.  The difference in the deficit is smaller at turbine 6 due the larger distance to turbine 1. 
Turbine 7 also shows an apparent increase at .  This may be an artifact of the normalization, 90°
meaning that the farm is on average is highly shadowed compared to turbine 7 in free wind speed 
at this bearing.  However, it may also be an effect due to wake effects from another wind farm 
upstream of turbine 7 (to be discussed further in the Results section).  Also note that these plots 
are slightly different from the plots generated for the entire wind farm (Figure ?), since this 
example is normalized against only turbines 6 and 7 (i.e. this example assumes the wind farm 
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consists only of turbines 6 and 7, even though the other turbines in the farm clearly affect the 
turbine 6 and 7 subset.)

A variation on the normalized instant power computation is power variability, as defined in 
Equation 2.  Power variability averages over time can be computed and binned against wind 
direction (again using overlapping bins  apart covering   sectors) as shown in Figure 8.1° ± 8°
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Figure 8.  Power Variability Plots.  These plots show power variability over time against wind direction for turbines 6 and 7.  
They are again arranged to mirror the positions of the turbines in the wind farm.  Wake effects can be observed as increased 
variability, which manifest as bumps on the plots.  Thus there are bumps at  (easterly wind) for turbine 6 and  (westerly 90° 270°
wind) for turbine 7.  Both plots are obtained by averaging power variability over time within wind direction bins of .1°

Wind Shadow Calculation  
To estimate power lost due to wake effects, an approximation of the wind speed in the absence of 
upwind turbines needs to be computed.  This can be done if the upwind turbines throughout the 
farm are identified and used to extrapolate the true wind speed for the shadowed turbines.  In 
other words, the first step is to determine the front of the wind farm in the case of different wind 
directions.

Suppose, for example, that a wind farm consists of only two nearby turbines, arranged in the 
east-west direction.  If the wind blows from the east then the western turbine is in the shadow of 
the eastern turbine, so that the eastern turbine is at the front of the farm, and the wind speed 
measured by the eastern turbine is the true wind speed.  The situation is reversed when the wind 
blows from the west, and in the case of a northerly wind, neither turbine is in the shadow of the 
other, and hence they are both at the front of the farm.

To identify the front of the farm, a simplified model of turbine wakes is used, known as the Park 
model [4, 18].  This model is also used in an effort to optimize wind farm performance using 
game theory [18].  In the Park model, the diameter of a wake increases linearly as a function of 
the distance behind the upwind turbine

, (4)𝐷𝑤(𝑥) =  𝐷𝑡 + 2𝑘𝑥

where  is the diameter of the wake as a function of the distance  behind the upwind 𝐷𝑤(𝑥) 𝑥

turbine,  is the diameter of the turbine, and  is a roughness coefficient which depends on the 𝐷𝑡 𝑘
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geography of the wind farm.  In general, for farm land , and for offshore wind plants 𝑘 = 0.075
.  Mathematically,  determines how rapidly the wake spreads behind the upwind turbine.𝑘 = 0.04 𝑘

Using the Park model and a distance  beyond which we consider that the wake has dissipated, 𝑥∞

we can estimate which turbines are in wind shadows in a wind farm, depending on the wind 
direction.  By performing this calculation for different values of  and  we can obtain different 𝑘 𝑥∞

estimates of the wind shadows within the farm.  Examples of this calculation for different wind 
directions and different values of  and  are shown in Figure 9.𝑘 𝑥∞

(a)        (b)

Figure 9.  Wind Shadow Estimates.  On the left (a), wind shadows are computed for wind blowing out of the north-east using k = 
0.075 and  (rotor diameters).  Turbines are marked with blue dots and wind shadows are shown using gray quadrilaterals.  𝑥∞ = 15
Turbines not in wind shadows are highlighted with red circles.  On the right (b), wind shadows are computed using the same 
wind direction but with an extremely high  and .  The wind front computed in the two examples shows how more 𝑘 = 0.4 𝑥∞ = 20

or less conservative wind front estimates can be obtained by varying  and .𝑘 𝑥∞

 
Power Observer Calculation  
In order to estimate power lost due to wake effects, it is necessary to estimate a wind observer 
for each turbine.  The wind observer is defined as the free uninterrupted wind speed, as if the 
wind farm was not present.  If a turbine is in an undisturbed state (not waked), the wind observer 
is just the wind speed measurement at the nacelle, assuming the nacelle anemometer has be 
adequately calibrated.  If a turbine is in a wind shadow (waked), the wind observer should be the 
free wind speed, or the wind speed the turbine would experience in the absence of any upwind 
turbine.  Fortunately, the wind observer for waked turbines can be easily estimated by using the 
wind speed measurement at the nearest non-waked turbine.  The nearest non-waked turbine is 
determined using the previous wind shadow calculation.
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Normally, the power curves would be used to estimate a power observer based on the wind 
observer, thus giving an estimate for power lost due to wake effect.  However, a power observer 
can be calculated directly using exactly the same technique that was used to estimate the wind 
observer.  Namely, the power observer for an un-waked turbine is provided by the power 
measurement at the nacelle, while the power observer for a waked turbine is estimated by using 
the nearest non-waked turbine power measurement.   An example of the power observer 
calculation compared with the measured power against wind direction is shown in Figure 10.  
Using the power observer instead of the wind observer is more robust.  No second order 
calibration is required (e.g. using the wind observer along with the power curve).  Further, 
nacelle anemometers are generally less accurate that power sensors.
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Figure 10.  Power Observer versus Actual Power.  Shown here is the power observer calculation (red) compared to the actual 
power measurements (blue).  The curves are totaled over all turbines in the farm.  For this estimate,  and  𝑘 = 0.075 𝑥∞ = 15
(rotor diameters).

Finally, the power observer calculations are used to estimate the total power lost over the wind 
farm due to wake effects.  This loss is given as the potential percent improvement

, (5)

𝐺 =

∑
𝑖

𝑃𝑜𝑏𝑠,𝑖 ‒ 𝑃𝑎𝑐𝑡,𝑖

∑
𝑖

𝑃𝑎𝑐𝑡,𝑖

× 100
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where  is the potential percentage improvement in power (gain),  is the power observer for 𝐺 𝑃𝑜𝑏𝑠,𝑖

turbine i, and  is the actual power measured for turbine i.  The potential percentage gain for 𝑃𝑎𝑐𝑡,𝑖

the calculation shown in Figure 10 is 3.0%.

Finally, we note that for this particular wind farm, the difference between the average observed 
wind power and the wind power observer (an estimate of the free wind power) is very small.  
Therefore, in our analysis, there is almost no difference in using normalized power from 
Equation (5), versus the wind power observer.  In addition the observer is not calibrated for 
complex landscapes.

2.3. Visualization

Colored Polar Plots
The normalized instant power and power variability polar plots can be used to visualize wake 
effects across an entire wind farm.  To facilitate viewing multiple plots simultaneously, a color 
scale can be added to the plots.  For the instant power visualization these colors highlight 
over/under performing turbines, and for the power variability visualization the colors highlight 
high/low power variance per turbine.  The color scales are computed to be comparable across the 
entire farm (i.e. the same scale is used for every plot in the entire visualization).  Visualizations 
of the wind farm are given in Figure 11.  Wake effects are easily seen using these images.

Note that the average power in the normalized power computation is taken over periods where 
most of the farm is operational, but not necessary the entire farm.  Specifically, average power is 
computed when at least 62 turbines are operational, or 5 turbines are not operational.  This 
measure avoids ignoring periods when the farm is operational except for a few down turbines (or 
turbines with previously discarded measurements).
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(a)        (b)

Figure 11.  Wake Effect Visualizations.  On the left (a), visualization is shown using normalized instant power, and on the right 
(b) visualization is shown using power variability.  In both cases, the rose plots are positioned in place of the turbine icons seen in 
Figure 1.  Further, the rose plots are colored according the radial magnitude.  For the instant power plots, over-performing turbine 
directions are colored red, while under-performing turbine directions are colored blue.  Grey circles show average performance 
(instant normal power value of 1).  For the power variability plots, high variability directions are colored red, and low variability 
directions are colored blue.

The visualization can also be displayed using Google Earth (http://www.google.com/earth) for 
improved interactivity.  An example of a fully interactive visualization is shown in Figure 12.

http://www.google.com/earth
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Figure 12.  Google Earth Visualization.  This visualization shows the wind farm wake effects using the normalized instant power 
plots, complete with the labels from Figure 1.  Grey circles show average performance (instant normal power value of 1).  The 
wind farm terrain imagery (not shown) can also be examined for correlations between performance and local topography.

2.4. Model

Fitted Parameters
Based on the data visualization described above, a wake model has been deriving from an 
analysis using selected wake profiles.  From 316 turbines with direct wakes, we identified 230 
within a 12 rotor diameter (12D) range.  Out of these, a total of 99 wake profiles were chosen 
based upon the upstream turbine being relatively undisturbed and un-waked.  The wake profiles 
were sorted in 1.25D bins (±2/3D) and averaged based on bearing to the upstream turbine, with 
about 16 wake profiles in each bin.  A small subjective correction of the direction was applied 
when the individual profile appeared to be slightly off centerline.  This correction was motivated 
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by the uncertainty of the directional data, and the fact that the upstream turbine inflow profiles 
appear to have a large effect on the downstream profiles.

The peak deficit for all of the profiles agree with the Park model [4], shown in Figure 13 plotted 
as an average of the nearest five points to the bearing against the Park model to the 3rd power, 
with  and .  The Park model (sometimes known as Jensen’s Park model) is given 𝑘 = 0.075 𝐶𝑇 = 0.7

by

, (6)

𝑈𝑥

𝑈0
= 1 ‒

1 ‒ 1 ‒ 𝐶𝑇

1 + 2𝑘
𝑥
𝐷

where  is the upstream wind velocity,  is the wind downstream velocity at a distance  𝑈0 𝑈𝑥 𝑥

behind the turbine,  is the coefficient of thrust, and  is an empirical decay constant, given as 𝐶𝑇 𝑘

0.075 for flat land.  Note that other combinations of  and  could have been used had the full 𝑘 𝐶𝑇

details of the rotor been available.

Figure 13.  Peak Deficits.  The peak deficit for all of the profiles plotted as an average of the nearest five points to the bearing 
against Jensen’s Park model to the 3rd power, with  and .  The profiles from each bin are colored coded.𝑘 = 0.075 𝐶𝑇 = 0.7

When observing Figure 13, is it important to remember that each point represents a long period 
of measurement.  However, even though these examples were selected to have relatively free 
upstream inflow, there are still obstacles from outside the wind farm.

The average normalized power wake profiles for each bin are shown in Figure 14(a).  The 
standard deviations of the profiles are approximately the same across all ranges and directions 
and are on the order of 0.07. The possible range of the analysis is limited by this standard 
deviation to about 11D.  The power variance is shown in Figure 14(b).
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  (a)

  (b)

Figure 14.  Wake Profiles from 3D to 12D.  On the top (a), the average normalized power wake profiles for the 1.25D bins are 
shown. There are approximately 16 profiles in each bin.  On the bottom (b), power variance of the wake profiles for the 1.25D 
bins is shown.

The average profiles shown in Figure 14 were fitted with a Gaussian bell with an offset to 
accommodate for the non-zero value outside the wake and a directional offset and summarized in 
Figure 15.  These fitted curves are used in the model to follow.  

The wake centerline is clearly offset within a few degrees, corresponding to approximately 

0.14D at an axial distance of  .  The offset seems to diminish with distance, although 
𝑥
𝐷

= 5

detecting the offset at larger distances is difficult.  Possible reasons for a wake failing to 
propagate from directly from the upstream to downstream turbine include: (a) all of the turbines 
investigated operate systematically with a small yaw error, (b) the Coriolis force produces a 
minor curving of the wakes, and (c) there is a systematic wind shear.
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 (a)

 (b)

 (c)

Figure 15.  Fitted Parameters.  On the top (a), we show wake deficit and centerline for the normalized power wake profiles.  The 
fitted values outside the wake are given by .  In the middle (b), we show the measured 𝑎(𝑥 𝐷) = 1 + 25/𝐷 × 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑥/𝐷, 10)
peak power variability above the ambient level, with a fitted value.  On the bottom (c), we show curves fitting wake width in 
linear coordinates for power and power variability.  For reference, the Park model wake width is plotted for .  The 𝑘 = 0.075
power performance fit is  and the variability fit is .𝑤(𝑥) = 0.11 × (𝑥/𝐷) + 0.5 𝑏(𝑥) = 0.15 × (𝑥/𝐷) + 0.5

The average centerline deficit fits well with the Park model to the 3rd power using the assumed 
values of  and , as shown in Figure 15(a).  The power variability in the far wake is 𝑘 𝐶𝑇

approximately proportional to , but flattens out for , as shown in Figure 15(c).  ((𝑥 𝐷)0.5) ‒ 3 𝑥/𝐷 < 5
The width of the wake in Figure 15(c) has been plotted in linear coordinates using 

 rather than in the observed coordinates to better compare with the Park model.  𝑦/𝐷 = 𝑤 × (𝑥/𝐷)
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As can be seen, there is reasonable agreement, especially considering our arbitrary choice of 
  If the deficit curve in Figure 15(c) was computed using  (often suggested by 𝑘 = 0.075. 𝑘 = 0.11

experimental data), a  value of approximately 0.85 would provide a good fit.𝐶𝑇

Wake Model
For an individual turbine facing an upstream turbine, we have observed the centerline deficit be 
proportional to the Park model adjusted for upstream deficit.  If we assume the wake is described 
by a Gaussian bell in polar coordinates, we can express the wake power deficit  at any given 𝑝𝑗

bearing by the product of all turbines in the wind farm:

 (7)

𝑝𝑗(𝜃) =
𝑁

∏
𝑖 = 0

𝑝𝑖(𝜃𝑖,𝑗)(1 ‒ (1 ‒ 𝑑(𝐶𝑇,𝑘𝑖,
𝑥𝑖,𝑗

𝐷 )3)𝑒
‒ (𝜃 ‒ 𝜃𝑖,𝑗

𝑤𝑥𝑖,𝑗 )2),

where ,  is the Park model (Equation 6) deficit of the upstream turbine with the 𝑖 ≠ 𝑗 𝑑(𝐶𝑇,𝑖,𝑘𝑖,𝑥𝑖,𝑗/𝐷)
width  in the direction  and distance , the deficit of the upstream turbine is given by 𝑤𝑖,𝑗 𝜃𝑖,𝑗 𝑥𝑖,𝑗

, and the wake width is obtained from the curve fit shown in Figure 15(c).𝑝𝑖(𝜃𝑖,𝑗)

 (a)

 (b)
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Figure 16.  Initial Model.  On the top (a), individual wake components for turbine 11  are modelled as Gaussian bells.  On the 
bottom (b), all wakes for turbine 11 are modelled as the product of the individual Gaussian bells.  Three of the wake directions 
have been adjusted a few degrees to align with the experimental data.

The individual components of the Gaussian bells are shown for turbine 11 in Figure 16(a) and 
the joint product in in Figure 16(b) is compared to the experimentally observed values.  The 
deficits align with the wakes, but it is clear the speedup effects are neglected.  The model is 
therefore expanded with a cosine overlay:

,(8)
𝑝𝑗(𝜃) =

𝑁

∏
𝑖 = 0

𝑝𝑖(𝜃𝑖,𝑗)(𝑎(𝑥𝑖,𝑗)𝑒
‒ (𝜃 ‒ 𝜃𝑖,𝑗

𝛼𝑖,𝑗 )2

(1 ‒ cos (𝜃 ‒ 𝜃𝑖,𝑗

𝛽𝑖,𝑗
)) + (1 ‒ (1 ‒ 𝑑(𝐶𝑇,𝑘𝑖,𝑥𝑖,𝑗)3)𝑒

‒ (𝜃 ‒ 𝜃𝑖,𝑗
𝑤𝑥𝑖,𝑗 )2

)) 

where , and we assume that ,  and , using 𝑖 ≠ 𝑗 𝛽 = 1.5𝑤 𝛼 = 2𝛽 𝑎(𝑥/𝐷) = 1 + 25/𝐷 × 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑥/𝐷,10)
the fitted curve in Figure 15(a).  With the cosine variation of the initial model, the results 
improve, as seen in Figure 17.  

   (a)

  (b)
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Figure 17.  Cosine Model.  On the top (a), individual wake components for turbine 11 are modelled using a Gaussian bell and a 
damped cosine overlay.  On the bottom (b), all wakes for turbine 11 are modelled as the product of the individual Gaussian bells 
using the damped cosine overlay.

The individual components of the Gaussian bells are shown for turbine 11 in Figure 17(a) and 
the joint product in Figure 17 is compared to the experimentally observed values. As can be seen 
the agreement is much higher with these preliminary choices of parameters.

Finally, the wake power variability is modelled by:

(9)
𝑝𝑣𝑎𝑟𝑗(𝜃) = 𝑣0 +

𝑁

∑
𝑖 = 0

𝑣(𝑥𝑖,𝑗) ∙ 𝑒
‒ (𝜃 ‒ 𝜃𝑖,𝑗

𝑏(𝑥𝑖,𝑗))2

,

where ,  is the background power variability (~0.15) and , ) are the amplitude and 𝑖 ≠ 𝑗 𝑣0 𝑣(𝑥𝑖,𝑗) 𝑏(𝑥𝑖,𝑗

width found from the fitted curve shown in Figure 15(b).  The results are illustrated in Figure 18.

  (a)

  (b)

Figure 18.  Power Variability Model.  On the top (a), individual wake components for turbine 11 are modelled using Gaussian 
bells.  On the bottom (b), all wakes for turbine 11 are modelled as the sum of the individual Gaussian bells.



31

3.  RESULTS

3.1. Visualization

In this section, a more detailed analysis of the wind farm is provided, using the normalized 
instant power and power variability plots, as well as other simpler curves.  To start, it is 
interesting to understand the overall performance of the farm in relation to wind direction.  
Although it is not useful to take the average of the normalized instant power plots (since they are 
normalized they average to 1), it is useful to consider the average turbine power relative to wind 
direction, as shown in Figure 19(a).  As expected, this plot is highly correlated with the wind 
rose for the site, albeit with an unusual spike in production from the NE.  The power variability 
plots, unlike the instant normalized power plots, can be averaged, since they are computed 
independently per turbine.  The power variability averages over the wind farm is shown in Figure 
19(b).  There are three large lobes of variability at , , and .  The lobes at  and  90° 270° 340° 90° 270°
are most likely associated with turbulence generated by closely positioned E-W turbine pairs, as 
there are a significant number of turbines in the  neighboring direction.  This can be 90° ‒ 270°
seen comparing the turbine to turbine bearing, as shown in Figure 19(c), to the variance 
distribution.  The high variance at  is aligned with the main wind direction, and a large 340°
nearby wind farm to the NE.  There is less variation along the other main wind direction to the 
SSE, but the neighboring wind farms in this direction are further away and shadow only the east 
part of the farm.
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Figure 19.  Overall Wind Farm Performance.  On the left (a), the power averaged over all turbines versus wind direction is 
shown.  As expected, this polar plot is highly correlated with prevailing wind directions (NW and S), although there is also an 
interesting spike in the NE direction.  In the middle (b), the average power variability versus wind direction is shown.  The power 
variability is aligned with prevailing winds as well as a large number of closely positioned E-W turbine pairs.  On the right (c), a 
radial histogram of counts for turbine-turbine pairs within 7 rotor diameters is shown.

In Figure 11 it is apparent that individual turbine performance and variation is related to position 
within the wind farm, where turbines towards the center of the farm have lower performance and 
higher variability.  This is more easily visualized by averaging the normalized instant power and 
power variability plots over all wind directions, as shown in Figure 20.
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(a)        (b)

Figure 20.  Average Turbine Performance over Wind Farm.  On the left, the wind direction averaged normalized instant power is 
shown for each turbine, where red indicates high performance, and blue indicates low performance.  On the right, the wind 
direction averaged power variability is shown for each turbine, where red indicates high variability, and blue indicates low 
variability.

Detailed Wake Analysis  
In addition to providing an overview of the wind farm, the normalized power and power 
variability plots can be used to understand wake effects on a more detailed scale.  Four distinct 
features have been observed in the data:

 wake deficit effects,
 speed up channels from two upstream turbines, 
 shear point speedup from one upstream turbine, and
 shear point speedup from multiple upstream turbines or an upstream farm.

Wakes are characterized by a power deficit in the direction of a neighboring turbine and a 
distinct increase in power variance. In Figure 21, two distinct wake effects can be seen at turbine 
11, originating from turbines 8 and 10.  The first effect is the wake deficits, seen as dips in the 
normalized power plot of turbine 11 facing turbines 8 and 10, as well as peaks in the power 
variability.

The second observed effect is a speed up when a turbine is facing the midpoint of two upwind 
turbines.  Here the power is higher than nominal, also seen in Figure 21 when turbine 11 is 
facing the midpoint between turbines 8 and 10.  This effect is generally not included in the 
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standard wind farm modeling tools, even though it is apparently significant.  Somewhat 
surprising, the power variance in this direction is significantly lower than average. 

A third effect, which is a potentially new discovery, occurs when the upstream wake is barely 
touching the downstream turbine, causing an increase in power.  This occurs in Figure 21, for 
example, when increased power is observed at turbine 11 just south of the downstream sector of 
turbine 10.  Surprisingly, this is also associated with a low variance.  We call this effect shear 
point speedup.

Both types of speedup effects seem to be amplified in cases of multiple upstream turbines and 
even a whole upstream wind farm.  Finally, the three effects are also observed as products of the 
landscape, i.e. clusters of trees or buildings (data not shown).

     
(a)        (b)

Figure 21.  Wake Effects.  On the left (a), three wake effects can be observed using instant normalized power plots for turbines 
8, 10, and 11.  Wake deficits can be seen as dips in the power production when turbine 11 is in the shadow of turbines 8 or 10; a 
speed up channel can be seen as a peak in the power production when turbine 11 is facing the midpoint of turbines 8 and 10; and 
shear point speedups can be seen when turbine 11 is tangent to the wake of turbine 10 or 8.  On the right (b), the corresponding 
variability in power is shown.

Wake Deficit Profiles
To further illustrate the four wake effects observed using the instant power and power variability 
plots, profiles for various turbines are shown.  The wake deficit, for example, is straightforward 
to detect when the wake is produced by a single upstream turbine which is relatively undisturbed.  
In this case, the power variance has a very clear peak in the direction of the upstream turbine, 
and the power produced has a corresponding minimum.  Wake profiles showing wake deficits 
for 10 turbines pairs in terms of normalized instant power are shown in Figure 22, with the 
corresponding power variance profiles shown in Figure 23.
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Figure 22.  Normalized Instant Power for Waked Turbines.  The x-axis gives the wind direction degree offset normalized by the 

distance between the turbines (e.g. ), where  is the offset in degrees,  is the distance between the two 
𝑥 𝐷 = 𝜃°( 𝜋

180°)(
𝑥
𝐷 𝜃° 𝑥

turbines, and  is the rotor diameter).  For example, when the offset is  the wind is blowing straight from the upwind to the 𝐷 0°
downwind turbine.  The y-axis shows the normalized instant power for the downwind turbine.  The turbine pairs selected are 
given in the legend, where the notation  indicates the downwind turbine (d), the upwind turbine (u) and the distance (r) 𝑑←𝑢 (𝑟)
in rotor diameters.  See also Figure 1 for turbine positions.
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Figure 23.  Power Variability for Waked Turbines.  As in Figure 22, the x-axis gives the wind direction degree offset from the 
upwind turbine.  The y-axis gives the power variability of the downwind turbine.

The detection of a wake deficit is straightforward when the wake is produced by a single 
undisturbed upstream turbine.  In particular, the power variance signature is a very clear peak in 
the direction of the upstream turbine.  However, in a multi-turbine wake situation, detecting 
wake effects is more difficult.  For example, turbine 62 waked by turbine 63 shows a clear wake 
deficit and an increased variance, but has two distinct side lobes where the power increases over 
the nominal value outside the core of the wake.  This is most likely due to wakes upstream of 
turbine 63 in an adjacent upstream wind farm.  It is also interesting to observe that the peak 
variance is exactly pointing towards turbine 63, but the wake deficit is a few degrees off to the 
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left.  Turbine 10 waked by turbine 11 exhibits the opposite behavior, where the wake is 
symmetric, but the variance profile is asymmetric.  In general, however, the variance profiles are 
symmetric.

In addition to individual wake deficit profiles, a generic wake deficit effect can be observed 
across the entire wind farm.  To see this effect, 854 turbine pairs were selected within 25 rotor 
diameters and an undistributed direct path between them (to observe potential wake effects).  
From these pairs, the minimum power deficit and maximum variance of the downwind turbine 
were recorded.  These values are shown in Figure 24 versus distance between turbine pairs.  For 
the normalized instant power in Figure 24(a), the semi-empirical expression for wind velocity 
deficit described by the Park model [4] is also shown (Equation 6).  Reasoning that annual 
energy production is typically quasi-linear with wind speed averaged over time, the wind 
velocity deficit is compared with the normalized instant power in Figure 24(a) to surprisingly 
good effect.  For the wind velocity deficit,  was taken to be 0.075 and  was set to 1.𝑘 𝐶𝑇
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Figure 24.  Power Deficit Versus Distance.  Maximum instant normalized power and minimum power variance for a downstream 
turbine were collected for 854 turbine pairs.  On the left (a), the maximum normalized instant power is plotted versus distance 
behind the upwind turbine.  The semi-empirical wind velocity deficit from Equation 4 is shown as a solid curve.  On the right (b), 
the minimum power variance for the downstream turbine versus distance is shown.

Channel Speedup Profiles  
It has been observed from the normalized instant power plots that there is a significant 
performance improvement when a turbine is facing the midpoint between two upwind turbines.  
The physical explanation could be that the wakes of the two upstream turbines displace airflow, 
which accelerates as in an ordinary channel contraction.  Even minor speedup effects would 
boost the performance of the downstream turbine.  For the selected profiles in the Figure 25, the 
boost is between 1.1 and 1.3 times average.  The profiles also display a wake deficit next to the 
peak, as the downstream turbine faces either one of the two upstream turbines.

Two turbines (17 and 58) show an excessive over performance (1.4 to 1.5 time average) facing 
what could be described as a duct or channel from the east, formed by rows of multiple 
neighboring turbines (these turbine profiles are not plotted).  See Figure 12.
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Channel speedups exhibit a lower variance than the average of the farm, as seen in Figure 25, a 
might be expected from multiple upstream turbines.  Speculatively, this could be explained by 
the two upstream wakes displacing each other away from the downstream turbine, thus reducing 
wake turbulence.  Further, if there is a speedup effect in a channel type arrangement, turbulence 
will generally be suppressed due to contraction.
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Figure 25.  Normalized Instant Power for Channel Speedup.  The x-axis gives the wind direction degree difference from the 
downstream turbine to the midpoint between the two upstream turbines.  The y-axis gives the normalized instant power.  The 
channel speed up effect can be seen as the peak at , flanked by wake deficits on either side of the peak.0°
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Figure 26.  Power Variability for Channel Speedup.  As in Figure 25, the x-axis gives the wind offset from the midpoint between 
the two upstream turbines.  The y-axis gives the power variability.  The channel speed up is associated with low variability. 

Shear Point Speedup Profiles  
For shear point speedup, the upstream obstacle, in this case a turbine wake, forces the incoming 
wind to go around and thus speedup along the side of the farm.  This is seen as an increased 
power in the downstream turbine.  The shear point speedup effect is investigated for seven 
turbines, shown in Figure 27 and Figure 28.   Within the dataset, the increase occurs  to  15° 20°
from the bearing of the upstream turbine, with a magnitude of 1.1 to 1.22 times the nominal farm 
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level.  This magnitude is less than the speedup channel effect, but still significant. Again, this 
effect is associated with a wake presence.  Effects like these have been observed in connection 
with buildings upstream to wind turbines, (see, e.g., Corscadden et al., [16]).  Building speedup 
is also seen in this data set (for example turbine 7, bearing ), but is not investigated further.80°
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Figure 27.  Normalized Instant Power for Shear Speedup.  The x-axis gives the wind direction degree offset from the bearing 
between and upwind and downwind turbine pair, and the y-axis show the normalized instant power.  Turbines were selected so 
that the region between  to  from the downwind turbine is undisturbed (no turbines nearby).  The shear point speedup can 0° 90°
be seen as improved power production between  and , as indicated by the dotted line at .15° 20° 17.5°
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Figure 28.  Power Variability for Shear Speedup.  As in Figure 28, the x-axis gives the wind direction degree offset from the 
upwind turbine.  The y-axis shows power variability.

Shear Speedup for Multiple Upstream Turbines
Turbines 1, 6, 30, 31, 44 and 45 exhibit a narrow and a very high increased performance peak 
close to due north.  At first, this was misinterpreted as a normalization issue; however, it is due 
to a displacement from multiple upstream turbines.  Turbines 1 and 6 face a long row of turbines 
in an upstream wind farm at approximately .  The  is comparable to what is observed for 15° 15°
the shear point speedup from a single turbine.  Several other turbines, for example 7, 20, 29 and 
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43, also show the speedup, but the wake profiles are masked by a combination of speedup and 
waking.  The wake profiles for these turbines are shown in Figure 29 and Figure 30.

Turbines 44 and 45 are waked by a turbine and turbine 31 is facing multiple roughness elements. 
These three turbines show less performance increase than turbines 1, 6 and 30.  All the turbines 
show a high variability towards the shear point to the left and slope down to an all low of 0.12 to 
the right.  The increase in power variability seen in Figure 30 from  to  can be attributed to 25° 40°
landscape roughness by farm buildings and clusters of tall trees (data not shown).

-40 -30 -20 -10 0 10 20 30 40
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Absolute Bearing

N
or

m
al

iz
ed

 In
st

an
t P

ow
er

 

 
1  NS Row
6  NS Row
30  NS Row
31  NS Row
44  NS Row
45  NS Row

Figure 29.  Normalized Instant Power Increase from Multiple Upstream Turbines.  The normalized instant power profiles are 
shown for 6 turbines offset from an upstream row of turbines.  The upstream turbine rows are all arranged from north to south.
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Figure 30.  Power Variability from Multiple Upstream Turbines.  The power variability profiles are shown for 6 turbines offset 
from an upstream row of turbines.  The upstream turbine rows are arranged North to south.
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3.2. Wake Loss Quantification

Using the power observer calculation, percent gain was estimated for parameters in the range 
 to  and   to  rotor diameters.  This calculation was done over the full 𝑘 = 0.01 𝑘 = 0.5 𝑥∞ = 5 𝑥∞ = 30

range of wind speeds, from 4-20 m/s, with results shown in Figure 31.  The results indicate that 
the power observer calculation is stable with no gain beyond 6% expected, even using unrealistic 
parameters.  

0
0.1

0.2
0.3

0.4
0.5

5
10

15
20

25
30
0

2

4

6

8

k

Percent Gain Parameter Search for Wind Speed 4-20 m/s

x


G

Figure 31.  Percent Gain Parameter Search.  Percent gain (G) is shown as a function of parameters in the range  to 𝑘 = 0.01

 and   to  rotor diameters.𝑘 = 0.5 𝑥∞ = 5 𝑥∞ = 30

Another interesting experiment can be performed if we examine data for wind speeds in the 
range from 6-10 m/s.  In this wind speed range, known as Region II, the turbines are spinning 
freely without the application of pitch control to the blades.  This is in contrast to higher wind 
speeds (Region III), where blades are pitched in order to limit potential damage.  Since the 
blades are pitched, additional wind energy is available for downwind turbines (because the thrust 
on the rotor is reduced by pitching).

Thus, it might be expected that the percent gain of the wind farm would increase using data with 
wind speeds restricted from 6-10 m/s.  In fact, this is the case, as can be seen in Figure 32 using 
data restricted to Region II wind speeds.  It is worth noting, however, that the Region II restricted 
data yields a smaller data set, with approximately 10,000 time points per turbine (as opposed to 
the original data, which was restricted to wind speeds in the range 4-20 m/s).
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Figure 32.  Region II Percent Gain Parameter Search.  The percent gain of the wind farm is uniformly higher using wind 
restricted speeds from 6-10 m/s, as compared to wind speeds from 4-20 m/s (Figure 31).  Parameters are again in the range 

 to  and   to  rotor diameters.𝑘 = 0.01 𝑘 = 0.5 𝑥∞ = 5 𝑥∞ = 30

In using a large value of k, e.g. k = 0.15 and a large distance requirement, it is only the front 
turbines which are included in the power observer, thereby reflecting the maximum potential 
gain of about 7% in region II.  By decreasing k, turbines deeper in the array are included in the 
power observer, and thereby the net gain is less than if only the front row is used.  On the other 
hand, some of these interior turbines may include speedup effects, as discussed in the previous 
section.  

Finally, the percent gain computed over region III is shown in Figure 33.  As might be expected, 
gains are minimal in region III, due to the fact that the turbines are extracting less energy from 
the wind than is actually present, so that wake effects are minimal.  Again, however, we note that 
the region III dataset is smaller, representing by only 3,000-4,000 time points per turbine.
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Figure 33.  Region III Percent Gain Parameter Search.  The percent gain of the wind farm is minimal using wind restricted 
speeds from 10-20 m/s, as compared to wind speeds from 4-10 m/s (Figure 31 and Figure 32).  Parameters are again in the range 

 to  and   to  rotor diameters.𝑘 = 0.01 𝑘 = 0.5 𝑥∞ = 5 𝑥∞ = 30

3.3. Modelling Wakes

In the examples below, we demonstrate the wake model developed in Section 2.4.  For our 
demonstration, 16 wakes were used to make up the composite power rose.  In Figure 34, turbines 
11, 8, and 10 are shown.  These turbines are relatively lightly waked, and show good agreement 
for turbines 11 and 8, while turbine 10 has some clear discrepancies.  In Figure 35, turbines 39, 
40, and 54 are shown.  These are relatively heavily waked, and gain show good agreement for 
turbines 39 and 40, while turbine 54 has some clear discrepancies.
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(a) (b) (c)

Figure 34.  Power roses for turbines 11, 8 and 10.  In this figure, we show the power roses as computed using the wake model 
from Section 2.4.  On the left(a), we show the power rose for turbine 11; in the middle (b), the power rose for turbine 8; and on 
the right (c), the power rose for turbine 10.

Observing Figure 34, all three turbines shows various degrees of increased productivity in the 
 direction, which is also seen in neighboring turbines.  There are two straight rows of 270°

turbines from another wind farm at  and some additional turbines in the  direction.  As 285° 270°
previously discovered, rows of turbines typically coincide with a speedup at approximately  15°
off center, so it seem reasonable to assume the increased productivity originates from the upwind 
turbines.

In the Northern direction, turbine 11 shows a strong peak which drops into a wake from turbine 8 
at .  This is speed up is from the row of turbines 2, 4 and 8.  The signature of reduced power 18°
variability is also observed (Figure 35).  The effect is not seen on turbine 8 as it is facing 2 and is 
directly waked by 4, with increased power variability, seen in Figure 35.  Turbine 10 is also 
affected by turbines 2, 4 and 8, but in addition there are potentially two channels between 
turbines 2 and 3 at bearings  and turbines 3 and 5 at bearing .350° 10°
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(a) (b) (c)

Figure 35.  Power variability roses for turbines 11, 8 and 10.  In this figure, we show the power variability roses as computed 
using the wake model from Section 2.4.  On the left(a), we show the power variability rose for turbine 11; in the middle (b), the 
power variability rose for turbine 8; and on the right (c), the power variability rose for turbine 10.

Turbines 8 and 10 show a distinct spike at a  bearing.  Five other turbines in the vicinity, and 20°
several others around the wind farm, also show this peak.  Other than noise, there is no obvious 
explanation for this discrepancy.   Finally, the discrepancies seen in the easterly direction seem 
to be associated with landscape and building features. 

(a) (b) (c)

Figure 36.  Power roses for turbines 39, 40, and 54.  In this figure, we show the power roses as computed using the wake model 
from Section 2.4.  On the left(a), we show the power rose for turbine 39; in the middle (b), the power rose for turbine 8; and on 
the right (c), the power rose for turbine 54.

Observing Figure 36, turbines 39 and 40 are in a very complex wake situations. The model 
emulates this well, but we notice the importance of directional accuracy.  When turbine 39 is 
waked from turbines 53 and 52, at  and , respectively, these two bearings had to be 218° 240°
adjusted by  and  to show the two quasi symmetrical dimples in this direction.  Although ‒ 4° 4°
there are potentially many speedup channels for turbines 39 and 40, the only clear speed up 
effect is for turbine 40 is aimed in between turbines 34 and 35, which are very close.  However, 
compared to the three previous turbines, the neighboring turbines are much closer and most of 
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them are in deeply waked situations themselves, so it is reasonable that the wakes are dominated 
by the nearest neighbor in this case. 

Similar speedup effects are seen for turbine 54, which has two potentially strong channels at  5°
and , near turbine 41 and between turbines 57 and 50, respectively.  Strongs effects are also 260°
found at  and .  The model appears to under predict the performance of turbine 54 between 45° 95°

 and .  However, all neighboring upstream turbines (56, 57, 58, 51 and 59), show a 120° 190°
significant and nearly homogeneous over performance in this sector.  It is difficult to pinpoint the 
cause as the nearest upstream wind farm is almost 5,000 meters away.

4. CONCLUSIONS AND FUTURE WORK

Based on an annual nominal directional power performance analysis, four wake effect 
mechanisms inside a 67 turbine wind farm have been identified.  The analysis shows that 
directional decomposition of turbine performance within the farm just as powerful as classic 
power curve analysis, while providing a deeper insight into actual performance.  The results have 
also been obtained without the use of wind speeds.  However, it is clear that prior to data 
analysis, the data preparation and validation is critical.  The scrubbing of the data for sensor 
calibration errors and abnormal operational situations are the two most important issues.   
Furthermore, automatic processing is needed.

In analysis, individual wake profiles and speed-up effects were clearly identified.  These are not 
normally considered in general wake analysis.  An individual turbine’s average yearly 
operational situation is complex: even small wind direction changes can have large effects.  
Wakes were analyzed against nearest neighbor, but in the future, a multi-wake analysis could be 
extracted from the data as well.  It is proposed that a superposition principle could be explored, 
similar to those applied in classic wind farm models [2-4].  It may also be desirable to revisit the 
data and explore different wake states based on power performance, i.e. restrict to region III rotor 
thrust of the power curve and analyze the wind farm when near nominal power, as was seen in 
Horns Rev data [17].

The data analysis has accurately corrected the turbine yaw position.  The capture of the wakes 
and their characteristics may be sufficiently accurate to determine yaw errors in the upstream 
turbine based on a wake steering effect.

The wake losses identified are in reasonable agreement with classical models for wake losses. 
Comparing the observations to existing wake models, these only take into account the wake 
losses (i.e. recovery to nominal wind speed), but do not include the upside from speedup effects, 
due to channel or shearing points that has been observed.  This new discovery seems to be absent 
from the existing knowledge base and is essential to understand, in order to improve wind farm 
performance. 

Further, the suppressed variability of the speed up effect could be affecting turbine loading and 
reliability in a positive way, opposite the manner in which increased variability is known to have 
an adverse effect.  Future correlation of turbine failures with directional observance could 
improve the understanding of wind farm operations with respect to reliability.
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In addition to the strict statistical analysis of the SCADA data, we also developed an automatic 
method for quantifying wakes losses and applied it to the same 67 turbine wind farm.  We found 
that wake losses are at most 7%.   Further, most of the losses occur when the wind is blowing in 
the east or west directions.  These losses coincide with the layout of the farm, since there are 
more turbines closely sited in the east-west direction than in the north-south direction.  On the 
other hand, these losses do not contribute greatly to the overall losses of the wind farm because 
the wind does not often blow from the east or west.  In other words, the wind farm is well sited, 
and wake losses are minimized.

This is not to say, of course, that other wind farms are not as well sited, or that wake losses 
couldn’t be greater.  In particular, the study Marden et al.[17] on the Horns Rev wind farm in 
Denmark claims potential improvements of 25% using a strategy for optimizing wind turbine 
control to minimize wake losses.  To further benchmark the calculations used in this paper, a 
comparison with the results of Marden et al. [17] on the Horns Rev data should be undertaken.

Further, it would be interesting to perform these calculations on additional wind farms, thus both 
benchmarking the method and potentially pinpointing farms that might benefit from advanced 
control techniques.  Finally, if our quantification method could be generalized to use only a wind 
rose collected over time, wake losses in the US fleet could be quantified.  The result could 
potentially provide an absolute measure by compiling regional annual energy production data.

Lastly, we developed an ad-hoc model for wake losses and tested the model fit against the 
empirical data with reasonable success.  The ad-hoc model is interesting because it only depends 
on geometry so could be applied without SCADA data.  However, it needs significant further 
development and testing.
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