
11

SANDIA REPORT
SAND2016-3730
Unlimited Release
Printed April 2016

Performance, Efficiency, and 
Effectiveness of Supercomputers
Robert W. Leland, Mahesh Rajan, Mike A. Heroux, and Doug Doerfler

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico  87185 and Livermore, California  94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, 
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's 
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.



Issued by Sandia National Laboratories, operated for the United States Department of Energy 
by Sandia Corporation.

NOTICE:  This report was prepared as an account of work sponsored by an agency of the 
United States Government.  Neither the United States Government, nor any agency thereof, 
nor any of their employees, nor any of their contractors, subcontractors, or their employees, 
make any warranty, express or implied, or assume any legal liability or responsibility for the 
accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represent that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government, any agency thereof, or any of 
their contractors or subcontractors.  The views and opinions expressed herein do not 
necessarily state or reflect those of the United States Government, any agency thereof, or any 
of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best 
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN  37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA  22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: http://www.ntis.gov/search

mailto://reports@osti.gov
http://www.osti.gov/scitech
mailto://orders@ntis.gov
http://www.ntis.gov/search


3

SAND2016-3730
Unlimited Release
Printed April 2016

Performance, Efficiency, and
Effectiveness of Supercomputers

Robert W. Leland1, Mahesh Rajan2, Mike A. Heroux3, and Doug Doerfler4

R&D S&E, Computing Science
Sandia National Laboratories

P.O. Box 5800
Albuquerque, New Mexico  87185-MS0351

Abstract

Our first purpose here is to offer to a general technical and policy audience a perspective on 
whether the supercomputing community should focus on improving the efficiency of 
supercomputing systems and their use rather than on building larger and ostensibly more capable 
systems that are used at low efficiency. After first summarizing our content and defining some 
necessary terms, we give a concise answer to this question. We then set this in context by 
characterizing performance of current supercomputing systems on a variety of benchmark 
problems and actual problems drawn from workloads in the national security, industrial, and 
scientific context. Along the way we answer some related questions, identify some important 
technological trends, and offer a perspective on the significance of these trends. 

Our second purpose is to give a reasonably broad and transparent overview of the 
related issue space and thereby to better equip the reader to evaluate commentary and 
controversy concerning supercomputing performance. For example, questions repeatedly arise 
concerning the Linpack benchmark and its predictive power, so we consider this in moderate 
depth as an example. We also characterize benchmark and application performance for scientific 
and engineering use of supercomputers and offer some guidance on how to think about these.

Examples here are drawn from traditional scientific computing. Other problem 
domains, for example, data analytics, have different performance characteristics that are better 
captured by different benchmark problems or applications, but the story in those domains is 
similar in character and leads to similar conclusions with regard to the motivating question. For 
more on this topic, see Large-Scale Data Analytics and Its Relationship to Simulation.

1 Director, Computing Research Center, Sandia National Laboratories
2 Distinguished Member of the Technical Staff, Sandia National Laboratories
3 Distinguished Member of the Technical Staff, Sandia National Laboratories
4 Distinguished Member of the Technical Staff , Sandia National Laboratories



4



5

CONTENTS
Nomenclature.................................................................................................................................................7

Introduction....................................................................................................................................................8

Summary .........................................................................................................................................8
What we mean by performance, efficiency, effectiveness, and related terms .............................................10

Should the focus be on improving the efficiency of computing systems rather than scaling them up? ......11

What is the typical performance level achieved on Linpack and why is it relevant? ..................................12

Why use a method that has very low efficiency? ........................................................................................13

What sort of performance do we achieve on actual applications?...............................................................15

How performance is more typically characterized in the supercomputing community ..............................16

The crucial distinction between scaled and fixed problem performance measurements.............................18

An integrating example in review................................................................................................................19



6

NOMENCLATURE

HPC High Performance Computer
LU LU factorization
CG Conjugate Gradient
MG Multigrid methods
HPCG High Performance Conjugate Gradient
FFT Fast Fourier Transform
NSF National Science Foundation
NCSA National Center for Supercomputing Applications
LANL Los Alamos National Laboratory
SNL Sandia National Laboratories



7

INTRODUCTION

Our first purpose here is to offer to a general technical and policy audience a 
perspective on whether the supercomputing community should focus on improving the efficiency 
of supercomputing1 systems and their use rather than on building larger and ostensibly more 
capable systems that are used at low efficiency. After first summarizing our content and defining 
some necessary terms, we give a concise answer to this question. We then set this in context by 
characterizing performance of current supercomputing systems on a variety of benchmark 
problems and actual problems drawn from workloads in the national security, industrial, and 
scientific context. Along the way we answer some related questions, identify some important 
technological trends, and offer a perspective on the significance of these trends. 

Our second purpose is to give a reasonably broad and transparent overview of the 
related issue space and thereby to better equip the reader to evaluate commentary and 
controversy concerning supercomputing performance. For example, questions repeatedly arise 
concerning the Linpack benchmark and its predictive power, so we consider this in moderate 
depth as an example. We also characterize benchmark and application performance for scientific 
and engineering use of supercomputers and offer some guidance on how to think about these.

Examples here are drawn from traditional scientific computing. Other problem 
domains, for example, data analytics, have different performance characteristics that are better 
captured by different benchmark problems or applications, but the story in those domains is 
similar in character and leads to similar conclusions with regard to the motivating question. For 
more on this topic, see Large-Scale Data Analytics and Its Relationship to Simulation2.

SUMMARY

There are various ways to measure and characterize computing system 
performance. The impression left varies substantially, depending on the measurement approach 
used, the characteristics of the machine, the scale at which the problem is run, and the inherent 
computational difficulty of the problem.

Much of the confusion regarding supercomputing performance derives from 
confusing efficiency and effectiveness. An efficient algorithm exercises the computational 
hardware of a system more fully than an inefficient one. An effective algorithm uses less time to 
solve the problem than an ineffective one, generally because it requires less work3.  Often a less 
efficient algorithm is substantially more effective. In our view, the right goal is to implement the 

1 We use supercomputer here rather than the more general term High Performance Computer (HPC) to connote 
systems at the leading edge in scale and capability because that is the context in which we considered question.  
2 R. Leland, R. Murphy, B. Hendrickson, K. Yelick, J. Johnson, and J. Berry, Large-Scale Data Analytics and Its 
Relationship to Simulation,  March 2014.
3 The rigorous definition of effectiveness is more general – see R. Leland, The Effectiveness of Parallel Iterative 
Algorithms for Solution of Large Sparse Linear Systems, D. Phil. Thesis, Oxford University, 1989. The definition of 
effectiveness given here actually subsumes efficiency and may consider objectives other than minimizing 
computational time, but the distinction made in the text of our current paper is the essential one in this context.



8

most effective algorithm as efficiently as possible, even if this results in a lower efficiency of use 
than alternatives.

To achieve this goal, it is important to pursue both hardware and algorithmic 
advances contemporaneously and in proper balance. The two coevolve, and undue emphasis on 
one at the expense of the other will lead to stagnation. In some important cases, balanced 
progress has been achieved over decades such that net improvement in computational power has 
been approximately the square of Moore’s Law. Expectations are geared to this remarkable 
result, and the focus should therefore not be on improving efficiency alone, as that would 
actually work against continued progress at historical rates. Hence the answer to our motivating 
question is “no.”

The popular Linpack benchmark, which solves a dense set of linear equations, can 
be implemented quite efficiently on modern supercomputers — 80% to 90% of peak floating-
point performance is often observed. Unfortunately Linpack is a poor predictor of performance 
on modern applications, which in most cases use more effective solution algorithms with 
different character. 

Iterative solvers using sparse matrix storage schemes make up one such modern 
category of methods for solving linear equations. The High Performance Conjugate Gradient 
(HPCG) benchmark captures the key computational characteristics of most iterative solvers. In 
our tests HPCG ran at about 2% of peak floating-point performance. Similarly the Fast Fourier 
Transform (FFT) is an important kernel algorithm that also runs at low efficiency as a fraction of 
peak (typically less than 1%) but is highly effective for signal processing and in other relevant 
domains.

More generally, system performance at scale on computational problems that arise 
in mission, commercial, or scientific work is below 20% of peak floating-point performance. For 
a set of well-tuned scientific codes, we found results that ranged between 5% and 20% and 
averaged nearly 15% of peak. Engineering codes are typically dominated by kernel operations 
like HPCG or FFT, hence efficiency for even well-tuned codes are often as low as a few 
percentage points on more challenging problems at scale. It may be just a fraction of a 
percentage point in some critically important cases, particularly if multiple scales and multiple 
physical regimes must be addressed4.   

It is important to keep in mind, however, that the proper basis of comparison is not 
some unrealizable peak rate, but rather a significant advance with respect to the previous state of 
the art. In this context the history is positive. Many government procurements of supercomputers 
are explicitly structured to achieve specific increases of speed over previous generation systems, 
and typically increases by factors of approximately 10 are achieved.

Such improvements are possible because the efficiencies reported have held 
roughly constant over the relevant time period. There is substantial and well-founded concern 

4 Note that performance may depend on many factors other than floating-point performance. For example, memory 
or communication performance dominate for some important problems. As the system scales up in size, these 
performance characteristics generally scale with it and provide benefit independently of floating-point performance.



9

that this trend is now at risk due to the erosion of Moore’s Law. This erosion is driving the 
emergence of a new architectural and algorithmic design space with many unresolved 
challenges. This topic is treated in depth in Computing Beyond the End of Moore’s Law: 
Alternatives for Sustaining Supercomputing Performance Improvements Despite Approaching 
Limits in Semiconductor Microelectronic Technology. 5

WHAT WE MEAN BY PERFORMANCE, EFFICIENCY,EFFECTIVENESS, 
AND RELATED TERMS

To measure performance of a computational system, we must specify an objective 
function. This could be cost, energy usage, or programming time, for example, but in the 
supercomputing context the objective function chosen is most commonly time-to-solution for 
some reference problem, and that is the sense we use here. Performance can be referred to as 
peak (some maximal rate that may be achieved only briefly or theoretically) or sustained (an 
average rate over some suitable time period intended to be reflective of the performance that can 
be expected in practice). Floating-point performance refers to the rate at which a computational 
system can perform arithmetic on real numbers, typically represented as 64-bit words. 
Depending on the problem, communication and memory performance can be much more 
important to overall performance. 

The performance of application codes on large systems is a function of the size of 
the problem run and the fraction of the system used. We say at scale to capture the notion of 
running a problem using all or most of a system. Performance is also a function of the demands a 
computational approach makes on a given system’s architecture. By challenging problem we 
mean a problem that stresses the weak points of a given system and therefore executes with poor 
performance relative to the typical case.

To measure efficiency, we must specify some basis of comparison against which to 
normalize performance. In assessing the efficiency of large supercomputers consisting of 
multiple processors, the general practice is to use the parallel efficiency measure, which 
compares the performance of the full system or a specific subset of the processors to the 
performance of one processor6.  Large parallel supercomputers can also be assessed by their 
performance relative to their peak floating-point performance, and we start with this 
interpretation because that is how our main question is framed.

It is important to recognize that a computational approach may be efficient without 
being effective7.  That is, an approach may execute operations at or near some peak rate but 
remain captive to a poor computational approach.  Another approach with a better algorithm 
might solve the same physical or logical problem with operations that execute less efficiently on 
a given system but with drastically fewer of them and so come out far ahead in time-to-solution. 

5 J. Shalf, R. Leland, Computing Beyond the End of Moore’s Law: Alternatives for Sustaining Supercomputing 
Performance Improvements Despite Approaching Limits in Semiconductor Microelectronic Technology, March 
2014.[SAND2015-8039J]
6 Ideally this division of labor across processors should result in a proportional decrease in execution time.
7 R. Leland, The Effectiveness of Parallel Iterative Algorithms for Solution of Large Sparse Linear Systems, D. Phil. 
Thesis, Oxford University, 1989.



10

This distinction is at the root of much of the confusion over measurement of performance and 
efficiency of supercomputers. The confusion can be considerable when considering a variety of 
parallel architectures running challenging problems at scale.

SHOULD THE FOCUS BE ON IMPROVING THE EFFICIENCY OF 
COMPUTING SYSTEMS RATHER THAN SCALING THEM UP?

As a percentage of peak floating-point performance, system performance at scale on 
computational problems that arise in mission, commercial, or scientific work is generally below 
20%. It is often as low as a few percentage points on more challenging problems at scale, and 
may be just a fraction of a percentage point in some critically important cases. Should the 
community therefore focus on improving efficiency on these key problems rather than focusing 
on building bigger, ostensibly more capable systems that run at very low efficiency?

Our basic answer is that it should not. The question presents a false dichotomy, and 
it is important to pursue both objectives in proper balance. Improvements in mathematical 
algorithms reduce the work required to achieve a given accuracy in the solution, and in most 
cases these advances can be implemented to advantage on subsequent architectures as well8.  In 
some cases, algorithmic advances are specifically tuned to a given architecture and are not as 
transferable to future systems. These can provide quite important advances for specific needs, 
but tend to provide a narrow and unsustainable benefit. In other cases, algorithms have been 
provably optimized or nearly so, and the only real path to greater performance is better hardware9.
  The right goal is to implement the most effective algorithm for a given hardware system as 
efficiently as possible, even if this results in a lower efficiency of hardware use than alternatives 
might yield.

Our more nuanced answer has to do with the manner in which computational 
science proceeds. Typically when an advance in architecture occurs, capable teams across the 
technical community think hard about how to exploit this by developing more effective 
algorithms. Eventually these algorithms mature and are packaged and shared across the technical 
enterprise. Researchers striving to improve on the status quo eventually innovate with respect to 
the accepted algorithms. As these new methods evolve, they inspire advances in next-generation 
architecture. By this process architecture and algorithms co-evolve in the manner music and 
dance often co-evolve. If we were to rely solely on one or the other, we expect things would 
stagnate. Instead, we have experienced in some important cases roughly the same rate of 
progress in hardware and software capability over many decades. As a result, the rate of 
improvement in computational performance in many relevant areas has actually been 

8 The reduction in work tends to be more important in practice than the efficiency of the implementation. For 
example, in the early days of massively parallel computing, algorithms were at times proposed that made more 
efficient use of the hardware, but made less real progress toward the solution. Eventually the view took hold that, in 
most cases, the best parallel algorithm was a good parallel implementation of the best serial algorithm.
9 This is arguably the case for linear solvers, where solvers that have a computational complexity that is linear in the 
problem size are known for a relatively broad class of problems. More work is needed to make these general and 
robust in all cases, but dramatic gains in algorithmic efficiency cannot be expected in these cases because we are 
already within a constant factor of an optimal solution.



11

approximately the square of Moore’s Law. Expectations are geared to this remarkable result, and 
a focus on efficiency alone would actually work against continued progress at historical rates.

WHAT IS THE TYPICAL PERFORMANCE LEVEL ACHIEVED ON 
LINPACK AND WHY IS IT RELEVANT?

The Linpack benchmark requires the computer to solve a set of linear equations 
corresponding to a random, dense matrix using a method based on Gaussian Elimination. As 
shown in Figure 1, performance at scale on a well-tuned implementation of Linpack is often in 
the range of 80%–90% of peak floating-point performance. This high fraction of peak floating-
point performance is achievable for several reasons: (1) the dense structure of the data causes the 
necessary memory references to occur in a very predictable manner which can be optimized, (2) 
the high computational intensity of the algorithm allows for a high degree of re-use of data once 
they are brought in from main memory and also masks the cost of communicating data between 
processors, and (3) computer architecture has evolved over many years to deliver high 
performance on this class of problems. 

The Linpack benchmark is important in part because it is the basis for the Top500 
ranking of supercomputers. The Top 50010 list is the most widely quoted performance rating 
system for supercomputers, and the results posted there tend to dominate popular discourse 
concerning supercomputing. It is also important today because it serves as a fairly severe test of 
reliability for large systems11.  

10 See http://www.top500.org.
11 The system must stay up long enough to complete the benchmark calculation. This means current generation large 
systems must work without an uncorrected fault or stoppage for a day or more, a difficult challenge given their large 
number of working parts. System reliability and resiliency challenges are growing with system scale and 
complexity, and the Linpack benchmark captures this issue fairly well.

http://www.top500.org


12

Figure 1: Performance as a percentage of peak floating-point performance for the Top 10 systems listed on the 
current (November 2013) Top 500 list. Systems are evaluated by running the Linpack benchmark at scale. Linpack 
measures time to complete solution of a set of dense linear equations with random entries. Note that well-tuned 
implementations often achieve 80% to 90% of maximally achievable performance on Linpack.

WHY USE A METHOD THAT HAS VERY LOW EFFICIENCY?

Staying with our linear systems example, we note that computational methods have 
advanced considerably since Linpack was introduced in the late 1970s. Most problems of interest 
today are solved using iterative methods (which guess an answer and improve it based on 
feedback) applied to sparse representations (which encode the essential interactions with far less 
data). These sparse iterative methods do not execute as efficiently as Linpack but have much 
lower time-to-solution because they are more effective algorithms. To illustrate this, we note that 
Linpack uses an algebraic form of Gaussian elimination called LU factorization (LU) that has a 
run time proportional to n3 where n is the number of unknowns in the system of equations. In 
contrast, the iterative Conjugate Gradient (CG) method typically has a computational complexity 
of n(5/4) with appropriate up-front pre-conditioning work. Members of a special class of iterative 
solvers called Multigrid methods (MG) iterate on multiple different representations of the 
problem with different resolution and cleverly combine candidate solutions at different levels to 
achieve a run time of order n. If n is large, say a million, the difference between n3 and n 
corresponds to a reduction in work by a factor of a trillion. So if you are able to run MG on such 
a problem at 1% efficiency rather than LU at 90% efficiency, you are wise to do so.



13

    

Figure 2: Here peak floating-point performance (in GFLOP/s) is shown by the blue line as a function of the number 
of computational nodes. Problem size scales with the number of nodes. The red line shows the performance of High 
Performance Linpack (HPL), a reference version of the Linpack benchmark. The green line shows the performance 
of High Performance Conjugate Gradient (HPCG) a reference version of the iterative Conjugate Gradient method. 
HPCG is currently proposed as a replacement for (or adjunct to) Linpack in the Top500 list. Note the performance 
as a percentage of peak for HPCG is poor by comparison — approximately 2%. Yet at scale it will solve a sparse 
problem to the same accuracy dramatically faster than HPL. Cielo, the machine used for these tests, is the current 
generation supercomputing platform deployed by Los Alamos and Sandia National Laboratories to support their 
stockpile computing. Cielo has a peak performance of approximately 1.4PF.

Figure 2 illustrates this situation with run-time data obtained from a current 
generation supercomputing system. The High Performance Conjugate Gradient (HPCG) 
benchmark implements a Conjugate Gradient (CG) iterative solver. Because CG is a very 
effective algorithm, it is widely used in scientific and engineering simulations and is therefore a 
much better general predictor than Linpack of the performance to be expected from a portfolio of 
scientific and engineering codes running on a new platform. Note that the efficiency as a 
percentage of peak floating-point performance here is less than 2%, but due to the power of the 
algorithm it is still a much more effective approach where applicable. 

This behavior is not specific to linear solvers. Figure 3, taken from the historic 
records of the HPC Challenge benchmark12, shows a similar result for the distinct Fast Fourier 
Transform (FFT) algorithm, which is a critical kernel computation in signal processing and many 
other domains of science and engineering. The communication pattern of the FFT severely 
stresses the interconnect performance of large distributed systems and hence performance as a 
fraction of peak remains less than 1%. It is nevertheless a very effective algorithm which leads to 
dramatically lower time-to-solution for problems at scale.

12 See http://icl.cs.utk.edu/hpcc.

http://icl.cs.utk.edu/hpcc


14

      

0 20 40 60 80 100

K Computer

Cray XT5-HE AMD Opteron

Red Storm Cray XT5 AMD
Opteron

IBM P5-575 Power 5

IBM Blue Gene PowerPC440

Emerald Rackable Opteron

Performance, %age of peak

Percentage of peak (FLOP/s) performance at scale

HPCC-FFT Linpack

Figure 3: This chart shows the performance as a fraction of peak floating-point speed for various leading systems of 
their era on Linpack and the Fast Fourier Transform (FFT). The FFT algorithm provides a fundamental capability 
in signal processing and many other fields of science and engineering. Note that the FFT algorithm presents a 
challenging communication pattern to large, distributed systems and as a result performance is a small fraction of 
peak floating-point performance.

WHAT SORT OF PERFORMANCE DO WE ACHIEVE ON ACTUAL 
APPLICATIONS?

Figure 4 shows performance as a percentage of peak floating-point performance for 
five different applications running on the National Science Foundation (NSF) Blue Waters 
system housed at The National Center for Supercomputing Applications (NCSA) at the 
University of Illinois at Urbana-Champaign. These scientific applications are running on a Cray 
system with a peak speed of 13 PetaFLOP/s (13E15 floating-point operations per second) and 
have been carefully tuned to achieve these performance levels, which are in the 5% to 20% of 
peak range and average nearly 15%. In another sample data set from the National Center for 
Atmospheric Sciences we note that their primary climate and weather codes (CESM, WRF, and 
POP)13  measured less than 5% of the peak floating-point performance on production runs using 
as few as 8 nodes (256 cores).

Engineering applications typically have somewhat less regularity in geometry and 
typically employ less structured methods than scientific applications and so tend to perform less 
well. For reasons explained in the next section, we do not have a good data set to share regarding 
performance of these codes as measured by fraction of peak floating-point performance. We can 
say, however, that these applications tend to be dominated by a kernel operation, often HPCG or 

13 D. Del Vento, T. Engel, S. Ghosh D. Hart, R. Kelly, S. Liu, and R. Valent, “System-Level Monitoring of Floating-
Point Performance to Improve Effective system Utilization,” in 2011 International Conference for High 
Performance Computing, Networking, Storage and Analysis (SC11).



15

FFT or something with similar performance. So the performance observed in these kernel 
operations (a few percent of peak floating-point performance) is likely reflective of performance 
of the over-all application. When the simulations require spanning multiple scales and multiple 
physical regimes, the performance may be lower still due to the added complexity and overhead 
of representing interactions across scale and regime.

                

Figure 4: Percentage of peak floating-point performance delivered for representative applications run on the NSF 
Blue Waters system at the NCSA located at UIUC. Performance on these scientific applications is in the range of 
5%–20% of peak floating-point performance and averages approximately 15%. 

HOW PERFORMANCE IS MORE TYPICALLY CHARACTERIZED IN THE 
SUPERCOMPUTING COMMUNITY

Except in the case of Linpack for the Top 500 List, researchers in the 
supercomputing field generally do not emphasize floating-point performance in reporting their 
results.14 More typically they are concerned with how favorably the solution time scales and so 
report speed-up (in the simple case, the run time on one processor divided by the run time on 
multiple processors) or parallel efficiency, the speed-up normalized to p, the number of 
processors used. 

A more typical plot characterizing supercomputing performance would look like 
that in Figure 5. Here the parallel efficiency of HPL and HPCG are shown, and it is clear they 
both scale well despite the major discrepancy in their performance as a fraction of peak floating-
point performance. This approach distills out what is generally of greatest interest to 
supercomputing researchers, which is the scaling behavior rather than the performance of the 
single processor implementation15.

14 Some evidence for that is the difficulty we had in obtaining current data in this form for this paper.
15 There is logic to this in that the individual processors are typically commodity parts (microprocessors) with 
designs that are determined by the broader market.  It is the over-all system design (including the software stack) 
that has some flexibility in implementation.



16

Figure 5: Plot showing the parallel efficiency of HPL (for solving the Linpack benchmark) as a function of system 
scale overlaid with a similar plot of efficiency data for HPCG. Both algorithms scale well (maintaining near perfect 
efficiency), although they have dramatically different performance as a percentage of peak. 

The other common approach is to show speed-up relative to some reference 
calculation. In the classical definition of speedup this reference basis is the single processor 
performance on that problem, but more recently it has been common to compare to the run time 
for the same problem instance on some previous generation supercomputer. This is typically in a 
procurement context, where performance criteria will be set to ensure the new supercomputer 
runs the work-load some factor faster than did the old system. An example from a procurement 
recently conducted jointly by Los Alamos National Laboratory (LANL) and Sandia National 
Laboratories (SNL) is shown in Figure 6. The average speed up over the previous platform is 
approximately a factor of 10. Cielo is a Cray system similar in design to the NSF Blue Waters 
system characterized in Figure 4, and we would expect similar scaling behavior.

Figure 6 provides another dimension of the answer to the question that motivated 
our paper. The factor of 10 performance gain 16seen in application run times between generations 
of systems here is a characteristic result that has held true for at least the last several machine 
generations. The efficiencies seen on those earlier systems were similar for similar methods 
solving similar problems. In the metric that we care most about in the supercomputing context — 
time to solution of real problems — next-generation hardware does provide a large increase in 
performance. Said another way, the proper baseline for comparison is not the peak speed of the 
current generation system, but rather the actual delivered performance of the previous generation 
system. In that metric progress remains good. There is, however, a well-founded concern that 
progress in this form is stalling out as a result of the erosion of Moore’s Law. Resolution of this 
will not be a matter of focusing solely on efficiency, but rather will involve a complicated set of 
trends and dynamics like those described here.

16 This is a scaled performance gain. See the next section for an explanation of the distinction between this and other 
possible measures of performance gain.



17

Figure 6: Performance of various engineering codes from SNL and LANL running on a current system relative to 
their performance on a previous generation system. The systems are separated by approximately four years in age, 
and on average the applications run nearly 10 times faster. Results over the previous several generations have been 
similar, although there is concern within the community that the ratio of improvement will decline over the next 
decade due to trends in the semiconductor industry reflecting the erosion of Moore’s Law.

It is also true that on occasion a new, more effective method is discovered, but that 
may come at the expense of efficiency. Recall this was the case in the shift from the LU 
factorization method of Linpack to the Conjugate Gradient (CG) method of HPCG. It is also the 
case in the shift from CG to Multigrid. Through that progression we see a trend of decreasing 
efficiency but increasing effectiveness. A focus on efficiency alone here would be counter-
productive. Of course much excellent work is devoted to optimizing efficiency of 
implementations and this is important as well, but it is far from the only consideration and often 
it is not the most important one.

THE CRUCIAL DISTINCTION BETWEEN SCALED AND FIXED 
PROBLEM PERFORMANCE MEASUREMENTS

There is an important subtlety to these measurements which merits understanding. 
As the system on which we are running the problem scales up, there is a choice to be made 
regarding the conditions of the measurement. We can either scale the problem proportionately or 
we can hold it constant in size. This is a seemingly innocuous point, but it is actually highly 
significant. In the first case we are measuring the scaled parallel speedup/efficiency, and in the 
second we are measuring the fixed parallel speedup/efficiency. In the scaled case the size of the 
local problem on each processor stays the same, and generally the overheads which cause 
inefficiency remain relatively small. For example, in most physical problems, we need to 
compute something associated with each region of the discretized volume assigned to a 



18

processor and then communicate the state of the bounding surface of that volume to a 
neighboring processor. This volume to surface area effect is the key to good performance 
because the waiting time associated with communication is amortized by a calculation that is 
large in proportionate relationship, and these volume calculations can all proceed in parallel. As 
a result, complex problems can scale well to hundreds of thousands of processors, and perhaps 
beyond.

In the fixed case, as processors are added, the size of the local problem on each 
processor diminishes, and the proportion of the overhead climbs. In the physical example from 
above, the surface area effect quickly dominates, much as it would in the physical world. In 
practice, by the time a few hundred processors have been engaged a point of diminishing returns 
is reached and no further speedup is feasible. Amdahl’s Law, the projected limit on speedup to be 
gained by a parallel approach, is a case of this fixed-problem scaling challenge. The concept of 
scaled speedup, which broke through this conceptual barrier, is one of the most important results 
in the field17.  It also proved to be predictive of behavior — when given a larger machine, most 
scientists or engineers choose to solve a larger problem that better approximates the true solution 
of the real-world problem and hence use the scaled approach. There are contexts where fixed 
problem speedup or efficiency is the relevant measure, but generally the work done and the 
results shown reflect the scaled approach.

AN INTEGRATING EXAMPLE IN REVIEW

Consider as an integrating example the story reflected in the two plots shown in 
Figure 7. The top plot shows progress in methods for solving linear systems by indicating the 
relative speedup (on a suitable model problem) obtained with successive generations of new 
algorithms. The bottom plot shows a similar progression of speedups associated with successive 
generations of hardware platforms. From context we can conclude the scaled speedup approach 
was used, otherwise the problems would have been subdivided across larger and larger node 
counts to the point where further speed up would have been infeasible. 

The algorithm progression starts with Sparse Gaussian Elimination, which exploits 
structure in the problem to provide a more effective algorithm than the LU factorization used in 
Linpack. Iterative methods then became more popular as they were well suited to the vector-
based machines which became available in the late 1970s and early 1980s. The iterative methods 
were less efficient than LU factorization but more effective and dominated that era. Over time 
Multigrid methods were developed that were general enough and sufficiently robust to displace 
the older CG-based iterative methods in some contexts. 

All of the methods were challenged by the advent of parallel machines in the late 
1980s and early 1990s, but they were adapted successfully. Where applicable, the Multigrid 
methods proved the least efficient but the most effective. Looking back over this progression, it 
is clear that speedup derived from hardware and that from algorithms is similar, so that the over-
all performance gain is roughly the square of Moore’s Law. At this point, only constant factor 

17 J. Gustafson, G. Montry, and R. Benner, “Development of Parallel Methods for a 1024-Processor Hypercube,” 
SIAM Journal of Scientific and Statistical Computing, 1988.



19

improvements over Multigrid are possible, so progress depends mostly on hardware 
improvements in the cases where it can be used.

From Society for Industrial and Applied Mathematics Review, 2001.

Figure 7: These plots show algorithmic progress (speedup on a model problem) over many successive generations 
of algorithms for solving linear systems and compare this progress to the speedup seen in system hardware. Note 
the average improvement in algorithmic performance and hardware performance are comparable over the 25 year 
period shown.



20

Distribution 

4 Lawrence Livermore National Laboratory 
Attn: N. Dunipace (1)
P.O. Box 808, MS L-795
Livermore, CA 94551-0808

1 MS0899 Technical Library 9536 (electronic copy)




