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Abstract

The partial differential equation proposed by Feynman describing the time evolution of a fission chain in
metal is solved by a method also proposed by Feynman. The partial differential equation is reduced to a
transcendental algebraic equation. The solution involves roots of a 7th order polynomial. Both the roots
and the transcendental equation are then solved numerically. Two populations are computed from the
probability generating function, the internal number of neutrons in time, and the accumulated number of
leaked neutrons in time. This same equation also describes a limit of a thermal reactor, where induced
fission is totally driven by neutrons that have thermalized and are diffusing in a moderator.

Feynman equation for time evolving fission chains

The generating function for the internal population of a time evolving fission chain is,

fFE0) =) R@x ()
v=0

where P, (t) is the probability that, starting from a single neutron at t = 0, there are v neutrons in the
system at time t. The generating function can be determined from the solution to the Feynman
equation [1], (see also[2], and [5] for details),

of (t,x) 1 of (t,x)

- 2
5t T[ x+q+pCx)] 9% (2)

where C(x) is the induced fission neutron number generating function,
C(x) = Co + Cyx + Cox? + -+ + Cyx”7 (3)

where C; is the probability that i neutrons are created in an induced fission. The parameter p is the
probability a neutron induces fission, and is related to multiplication through,

M = = 4)
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where 7 = Y7 _, vC, is the average number of neutrons created by induced fission. Also,q =1 —1piis
the probability that an internal neutron leaks from the system. Feynman showed [1] that this equation
has solution of the form,

GIf(60] ==+ 6 (%)
where
dx
Glx) = f g+ pC@ 2
That is,
fe0) =67 -+ 600) %

This form shows the realization of the initial conditions, f(t = 0,x) = G 1[G(x)] = x, that there is a
single neutron in the system at t = 0. The integral for G (x) in equation (6) can be solved by factoring
the polynomial denominator and then by using partial fractions. (Feynman solved this equation in the
quadratic approximation to the polynomial C(x).) The induced fission neutron number generating
function C(x) from equation (3) can be re-expressed as,

C)=1-v71—-x)+v,(1—x)% —vs(1—x)3+ - (8)

where generally,

7
v=) ()& ©)

To keep track of the neutrons that leak from the system, the external population, another generating
function variable y can be introduced through g — qy. The generating function variable y acts as a
parameter (and will usually be notationally suppressed in f(t, x, y)). In terms of these variables the
denominator of the integral in equation (6) can be re-written

—x + qy + pC(x)
=1-—x—-1+qy+pll—vu+vyu®—-—vu’]
1 (10)
=-M"'(M - 1) [D7u7 — Dgu® + Dsu® — Dyu* + Dyu® — Dyu” — =%
(1= )]
M—1v 7

wherel —x =u, Mt = (1 —pv), p(1 —pv)™! = pM = (M — 1)/, and the D; are defined,

Vi
D =— (11)
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This polynomial expression in equation (10) can be factorized into the form,

—M~H (M — 1)D7[(u — uy) (u — uz) (w — us) (U — ug) (u — us) (U — ug) (U — u7)] (12)
where uy, -+, u, are the roots of the equation,

D D D D D 1 M
W =gt gt p= g =2 Ut —
D, D, D, D7 D7 M-1)D; (M—-1)D;

1-y)=0 (13)

are functions of y, the generating function variable for the external population, but constants for the
internal x distribution, with y = 1. (The quadratic approximation, including y, and a generating function
variable z to keep track of fissions, and therefore fission gamma-rays in time, was solved analytically in

(2].)
After factorization of the polynomial denominator, the integral over the variable u,

Glu=1-x)
B M J‘ du (14)
~ M =)Dy J [(u—up)(u—up)(u = uz) (u —uy) (U — us) (u — ug) (U — uy)]

1
u-u;’
the polynomial above. The partial fraction decomposition is written as,

can be performed by partial fractions, which isolates each factor of

where u; is one of the roots of

1 _27: A,
[ —up) (u— up) (u —uz) (u — ug) (u —us)(u —ug)(u—uy)] (v —w)

Each A; can be obtained as [6]

A = i ( (u—w) >
E7 it \ [ — 1) (1 — 1) (u — 113) (u — 1) (u — 115) (L — ug) (U — 17)]

Thus, we have,

141_1 = (ug —up)(uy —uz) (g — uy) (wg — us)(uy — ug)(uy —uy)

A= : (15)
2 (ug — up)(uy — u3z) (up — ug) (U — us) (uy — ug) (U — uy)

1

45 = (ug — uz)(uy — u3) (uz — uy) (uz — us) (uz — ug) (uz — uy)
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1

S (g — ug) (ug — ug) (uz — uy) (Uy — us) (uy — ue) (Uy — uy)
As = !
(ug — us)(uz — us)(uz — us) (uy — us) (us — ue) (Uus — uy)
Ag = — !
(g — ue) (uz — ue) (Uuz — Ug) (Ugy — Us) (Us — Us) (Us — Uy)
4, = 1

(ug — uy) (U — uy) (uz — uy) (ug — uy) (us — uy)(ug — uy)

The result of integration is a sum of Log(u — u;) terms, with root dependent coefficients A; given in
equation (15), which has the form,

7
M
Glu=1-x) = W_—%;_Ai Log(u —w;)

7
MA L,
= —m Log(u—u) + Z Log(u — u)™ Al] (16)
=
MA 1—[7
1 i
= — —L f— 5 Al Al
=

One root u4is selected out, with the property that u, (y) is real and positive for y = 0, and less than 1,
and vanishes for y = 1. As a convention, a minus sign is chosen in the definition of A; so that the
coefficient A; accompanying the u; term is real and positive. (The reason for this choice will become
clear from equation (18) below). Inserting this result for G(u = 1 — x) into the functional Feynman

equation, G[f(t,x)] = % + G(x), dividing by (M-M—1)D7Al' and exponentiating, where,

a=1/Mt
(17)
a' =ad; (M -1)D,
gives the equation for f(t, x),
(1= f —wlll = f —u] " [1 = f —ua /M [1 — f —w, ]2/ 4 [1 - f (18)

—ug]*s/1[1 — f —uglte/M[1 — f —u,]4 /4
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= e~ t[u — uy][u — up )42/ A1 [u — up] 43 A1 [u — u,JA+/ 41 [y — ug]4s/ A1 [u
— uG]Ae/x‘h [u — u7]A7/A1

where u = 1 — x in the right-hand side. The partial differential equation for f(t, x, ) has been reduced
to a transcendental equation, that must be solved numerically. (In the quadratic approximation to the
polynomial C(x), the transcendental equation becomes algebraic, and can therefore be solved explicitly
[2].) As t — oo, the right-hand side — 0, and the vanishing of the left-hand side gives the Bohnel chain as
one of the solutions,

1-f&y)—u»1-h(y)—-u(y)=0 (19)

As t — oo, there are no longer any internal neutrons in the system, so the asymptotic solution is
independent of x.

Solution of Transcendental Equation

The first step in solving the transcendental equation for f is to solve for the roots of the polynomial
equation (13). The roots of equation (13) must be solved numerically. For the internal neutron
population, the roots are constants. There are three real roots and two pairs of complex conjugate
roots. For the external neutron population, the roots depend on the generating function variable y;
there are two pairs of complex conjugate roots and three real-valued roots for y real. In order to
determine the external probabilities from the generating function, the variable y will be made complex-
valued, making all the roots complex.

Fast Fourier Transform (FFT) Inversion of Generating Function

f(t, X)

The coefficients P, (t) in equation (1) are determined from the generating function by inverse Z
transform ([3],[4]),

1 e
B, (t) = z_m-fff(t'x)x tdx 2]

where the C is a counterclockwise closed contour in the region of convergence (ROC) of f (¢, x).
Convergence of f(t,x) in equation (1) is dependent only on |x| for the following reasons:

0< B(t)<1Vv

;Pv(t) —1

lf(t,x)] < oo if Y72 PR,(t) |x|¥ < oo, the ROC of equation (1) consists of all values of |x| < 1.
This ROC includes the unit circle. The inverse Z transform in equation (20) evaluated on the unit
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circle contour C, defined by x = e‘?, reduces to the Fourier transform. With x = e'®, equation (20)
becomes

T
Pv(t)zg ff(t,elg)e_”’e do 21)

which is a Fourier series expansion. First equation (18) is solved for discrete 8 and discrete t; which
when substituted in equation(21) yields the result:

N-1

Pti(v) — Zof(ti’ elZnn/N) e—lVZnn/N (22)
n=

Equation (22) can be efficiently computed using FFT algorithms. Ptl,(v) are the internal neutron
probabilities at time t; and the computation is repeated for 0 < ¢; < t; till |Pti_1(v) — Pti(v)| < e.

Internal Neutron Population Distributions

For the internal distribution, equation (13) reduces to,

u —&u6+%u5—&u +—u——u"——u=0
Dy D, D7 D D (M - 1)D, (23)

One root is u = 0. The numerical solution for the roots u4, -+, u, of Eq. (18), for an M = 10 HEU system,
are listed below:

Real Part Imaginary Part
0.000000000000 0.000000000000
-0.104093723091 0.000000000000
2.183256334534 7.038915914296
2.183256334534 -7.038915914296

2.480453594573
2.480453594573
5.330347424049

3.783574671759
-3.783574671759
0.000000000000

The numerical solution of the transcendental equation (18) for the internal distribution uses as a
starting solution, the analytic solution from the quadratic approximation, which corresponds to the

high M limit,
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Ft) =1 (1 —x)e
' 1+ 720,00 - e (24)

The pseudo-code for calculating the numerical solution f(t, x) to the transcendental equation (18) is
given below:

Algorithm 1: Computing the solution f(t, x) to the transcendental equation (18) for internal neutron
population

Internal-Neutron-Population-Generating-Function (Multiplier, M)
in: HEU or Pu nuclear data, multiplication of the system

out: (n by m) array of internal neutron generating function f(t, x = eie), n values of t, m values of @

1: Get nuclear data and compute C;, v;, and D; fori = 1, 2,..,7 in equation (9) and equation (11)
2: Compute the roots of the polynomial in equation (23)
3: Choose 0 < % < 50 (t=1shake)arrayand 0 < 8 < m array (non-linearly spaced arrays) and

3

0. .. =
critical 6

4: foreacht; €t do
5: foreach 6; € 6 do
6: Compute approximate solution to internal population generating function using
equation (21)
(1 _ ei@j)e—(lti
f(ti’ Hj)approximate -7 M-1 i0;
14+ ——v,(1—€")(1—eat)
v
7: if 9] < gcritical) then
initial solution = f(tl-, Hj)appmximate
else
ti0j_3)—f(ti0;-
initial solution = f(t;,6,_1) + F(t60)-5) 1 (t46-2)
2
end
8: compute exact solution f(tl-, Bj) to the transcendental equation (18) using the initial

solution from step 7

9: end for
10: end for
11: return f(t,0) > complex-valued
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Figure 1 shows the plot of the solution to the transcendental equation f(t,x = eie) with M=10. Note
thatast — oo, f(t,x) — 1, thatis P{*(t) » 1 as t — oo, and all other Pi*(t) — 0.
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Figure 1: Solution f(t, x) to the transcendental equation (15) for internal neutron population
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time (t/7)

Figure 2 shows the evolution of P, (t) in time. At each time step, the solution f(t;, x) is computed
which is then inverted using FFT to give Py, (v). Thus, all the internal neutron distributions evolve

simultaneously one time-step at a time.
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Figure 3: Zoomed-in version of Figure 2



Figure 4 shows the individual internal neutron number distributions obtained after completing the
building up of P,(t). This plot can be viewed as taking slices out of Figure 2 along the time axis.
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Figure 4: Individual Internal Neutron Number Distributions
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Figure 5: Zoomed-in version of Figure 4

Page 10| 22



The pseudo-code for computing the probability distribution of internal neutron population is given
below:

Algorithm 2: Computing the probability distribution of internal neutron population from the generating
function f(t, x)

Internal-Neutron-Probability-Distribution-Function f (¢, x)
in: n X m array of internal neutron generating function f(t,x = eie), n values of t, m values of 8

out: n X m array of internal neutron probability distribution function P(t,v), n values of t, m values of v
1: Generate a uniformly spaced 0 < Gypiform < T array of length N,
Generate a uniformly spaced 0 < % K 50 array tynifrorm
2: foreacht; €t do

3: Interpolate real part of f(t;, 0) over & and get the interpolant F1
Interpolate imaginary part of f(t;, 0) over 6 and get the interpolant F2

4: f(ti: euniform) = Complex (Fl( Buniform)'Fz( Buniform))
> f(ti, Ouniform) is over 0to 7 and complex-valued

f(tiJ eigiform) = [f(ti' Huniform) ;flip(f*(ti' Buniform))]

= assemble solution over entire 2m by stacking the solution over m and its reflection along
the real-axis; remove coincident points at 0 and © and concatenate

5: P(ti V) = fft(f(tb Higiform)
Normalize the 2D probability P(t ,v) for all t

= Probability for all internal neutrons at time ¢;, real-valued

6: end for
7: foreachke N, do

8: Interpolate P(t,vy) over typnirorm and get the interpolant F
P(tuniform 'vk) = F(tuniform)

9: end for
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In Figure 6 through Figure 11, a few internal neutron probability distributions are shown for internal
neutrons ={0,1, 5, 10, 20, 40}.

®— Full solution
®  Quadratic approximation

0.6 -

0.2

0.1§

® 1 I L 1 1 1 I I 1
0 5 10 15 20 25 30 35 40 45 50
time (t/7)

Figure 6: Probability Distribution P, (t) of 0 internal neutron

T T T 1
—&— Full solution
—®— Quadratic approximation

0.1+

0 5 10 15 20 25 30 35 40 45 50
time (t/7)

Figure 7: Probability Distribution P; (t) of 1 internal neutron
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—®— Full solution
—®— Quadratic approximation
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35 40 45
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25
time (t/7)

20

Figure 8: Probability Distribution Ps(t) of 5 internal neutrons
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20
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Figure 9: Probability Distribution P;((t) of 10 internal neutrons
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—®— Full solution
~—®  Quadratic approximation

5 10 15 20 25 30 35 40 45
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Figure 10: Probability Distribution P, (t) of 20 internal neutrons
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Figure 11: Probability Distribution P,,(t) of 40 internal neutrons
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External Neutron Population Distributions

The numerical solution for the external distribution starts with the analytic approximation,

1—e 't

— et 4 [T+ 4qM(M — 1)D,(1 — y)(1 + e~2't) (25)

f(t,y) =1-2qM(1 —y) .

where

a’' = a1+ 4qM(M — 1)D,(1 — y)

The roots u4, -*+, u, of the equation (13) are functions of y, the generating function variable for the
external population and they trace the contours in the complex plane as shown in Figure 12.

g Loci of roots of Bohnel polynomial as a function of y = em, << wforM=10
T T T T T

imaginary part
<
I
(c))
(]
|

2 - -
4L (o) 1
-6 -
-8 | | | | | |
-10 -5 0 5 10 15
real part

Figure 12: Loci of roots of the polynomial equation (13)

The root corresponding to the t — oo Béhnel fission chainis uy, h(y) = 1 — u4(y). It is the root in
Figure 12 that is real and positive for y = 0, and goes to zero for y = 1.

Figure 13 shows the plot of the solution to the transcendental equation f(t, x=1y= eie).
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Figure 13: Solution to the transcendental equation f(t,x =1,y= eie).

Ast - oo, f(t,y) = h(y).

Algorithm 3: Computing the solution f (t, x=1y= eie) to the transcendental equation (18) for
external neutron population

External-Neutron-Population-Generating-Function (Multiplier, M)

in: HEU or Pu nuclear data, multiplication of the system

out: n X m array of external neutron generating function f(t,x =1y= eie), n values of t, m values of
0
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1: Get nuclear data and compute C;, v;, and D; fori = 1, 2,..,7 in equation (9) and equation (11)

2: Choose 0 < % < 50 (t=1shake)arrayand 0 < 8 < m array (non-linearly spaced arrays) and
Vs

9 gy frd
critical 6

3: foreacht; €t do
4: for each 6; € 6 do
5: if j =1 then Compute the roots of the polynomial in equation (13) end if

o roots of the polynomial are functions of y = e'% but not of t

6: Compute approximate solution to external population generating function using
equation (22)
ZqM(l _ ei@j) (1 _ e—alti)

f(

ti, 9]) .
“pproximate 1—e—a"iy J 1+ 4Ryp(1— e )(1 +e~™)

where @’ = ay/1 + 4R,(1 — y), and where R,y = quvz.

7: if 9] < gcritical) then

initial solution = f(t;, 6;
tial solutio f(t“ej)approximate

else

F(ti.0;-3)—-f(ti0j-2)
2

initial solution = f(tl-, Hj_l) +

end

8: compute exact solution f(tl-, Hj) to the transcendental equation (18) using the initial
solution from step 7

9: end for
10: end for
11: return f(t,0) > complex-valued

The algorithm for computing the probability distribution for each leaked neutron (external neutron)
from the generating function f(t,x =1,y= eie) is identical to computing internal neutron probability
distribution. In Figure 14 through Figure 19, a few external neutron probability distributions are shown
for external neutrons ={0,1, 5, 10, 20, 40}.
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1e T T T T T I T ]
—&— Full solution
—®&— Quadratic approximation
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Figure 14: Probability Distribution P, (t) of 0 external neutron
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Figure 15: Probability Distribution P, (t) of 1 external neutron
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~—®— Full solution
—®— Quadratic approximation

10 20 25 35 40 45 50

time (t/7)

30

Figure 16: Probability Distribution Ps(t) of 5 external neutrons
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20 25

time (t/7)

30 as 40 45 50

Figure 17: Probability Distribution P;((t) of 10 external neutrons
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5 10 15 20 25 30 35 40 45 50
time (t/7)
Figure 18: Probability Distribution P, (t) of 20 external neutrons
x107 _
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Figure 19: Probability Distribution P, (t) of 40 external neutrons

Page 20| 22



Conclusions

The populations computed here are foundational for different neutron counting distributions, both for
fast neutron counting, and for thermal neutron counting from a limit of a reactor theory (see below).
One motivation for pursuing new ways to solve the Feynman equation is that fast computing methods
are needed to compare to counting data in real time. Solving differential equations [5] is time expensive.
This method can be parallelized, numerically solving the generating function transcendental equation
for each time on a separate processor. For computing time interval distributions, besides the internal
distribution, only the external population P, (t) and it’s first two time-derivatives are needed, so there is
no need for the numerical FFT. It is possible that this method can be fast enough for real time analysis of
HEU problems (where the rate of initiation of fission chains is low).

Another motivation for this form of solution is historical, completing a path pursued by Feynman in his
original work on fission chains, and implemented by him only in quadratic polynomial approximation for
the internal population, and here solved completely.

The same equation (1) can also describe a limit of a thermal reactor [7], where all induced fission is from
neutrons that have thermalized and diffuse in a moderator. The translation of the parameters in the
equation can be read off from,

of (t,w,v) _
at B

of (t,w,v)

A=W + qunw + P CH ()] ==

where the generating function variable w tracks internal thermal neutrons, v tracks thermal neutrons
lost from the multiplying medium, Ct*(w) is the thermal neutron induced fission neutron number
generating function, 1 is the moderator diffusion constant, p;, is the probability a thermal neutron
induces fission, and q;, = 1 — p¢p, is the probability a thermal neutron is lost from the multiplying
system. This reactor is driven completely by thermal neutrons, the multiplication of the HEU is
approximately My, = 1. Fast neutrons are created by induced fission but thermalize with probability

s = 1. A slight generalization of this reactor problem, for s # 1 and including an additional fast leaked
fast neutron population, can be also be solved from this work by a dictionary.
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