
LLNL-TR-789326

Solution of the Feynman
Equation for Time Evolving
Fission Chains

N. J. Snyderman, H. Chandrasekaran

September 10, 2019

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

P a g e 1 | 22

Solution of the Feynman Equation
 for Time Evolving Fission Chains

Neal Snyderman and Hema Chandrasekaran

Lawrence Livermore National Laboratory

Abstract

The partial differential equation proposed by Feynman describing the time evolution of a fission chain in

metal is solved by a method also proposed by Feynman. The partial differential equation is reduced to a

transcendental algebraic equation. The solution involves roots of a 7th order polynomial. Both the roots

and the transcendental equation are then solved numerically. Two populations are computed from the

probability generating function, the internal number of neutrons in time, and the accumulated number of

leaked neutrons in time. This same equation also describes a limit of a thermal reactor, where induced

fission is totally driven by neutrons that have thermalized and are diffusing in a moderator.

Feynman equation for time evolving fission chains

The generating function for the internal population of a time evolving fission chain is,

𝑓(𝑡, 𝑥) = ∑ 𝑃𝜈(𝑡)

∞

𝜈=0

𝑥𝜈 (1)

where 𝑃𝜈(𝑡) is the probability that, starting from a single neutron at 𝑡 = 0, there are 𝜈 neutrons in the

system at time 𝑡. The generating function can be determined from the solution to the Feynman

equation [1], (see also[2], and [5] for details),

𝜕𝑓(𝑡, 𝑥)

𝜕𝑡
=

1

𝜏
[−𝑥 + 𝑞 + 𝑝𝐶(𝑥)]

𝜕𝑓(𝑡, 𝑥)

𝜕𝑥
 (2)

where 𝐶(𝑥) is the induced fission neutron number generating function,

𝐶(𝑥) = 𝐶0 + 𝐶1𝑥 + 𝐶2𝑥2 + ⋯ + 𝐶7𝑥7 (3)

where 𝐶𝑖 is the probability that 𝑖 neutrons are created in an induced fission. The parameter 𝑝 is the

probability a neutron induces fission, and is related to multiplication through,

𝑀 =
1

1 − 𝑝𝜈̅
 (4)

P a g e 2 | 22

where 𝜈̅ = ∑ 𝜈𝐶𝜈
7
𝜈=1 is the average number of neutrons created by induced fission. Also, 𝑞 = 1 − 𝑝 is

the probability that an internal neutron leaks from the system. Feynman showed [1] that this equation

has solution of the form,

𝐺[𝑓(𝑡, 𝑥)] =
𝑡

𝜏
+ 𝐺(𝑥) (5)

where

𝐺(𝑥) = ∫
𝑑𝑥

−𝑥 + 𝑞 + 𝑝𝐶(𝑥)
 (6)

That is,

𝑓(𝑡, 𝑥) = 𝐺−1 [
𝑡

𝜏
+ 𝐺(𝑥)] (7)

This form shows the realization of the initial conditions, 𝑓(𝑡 = 0, 𝑥) = 𝐺−1[𝐺(𝑥)] = 𝑥, that there is a

single neutron in the system at 𝑡 = 0. The integral for 𝐺(𝑥) in equation (6) can be solved by factoring

the polynomial denominator and then by using partial fractions. (Feynman solved this equation in the

quadratic approximation to the polynomial 𝐶(𝑥).) The induced fission neutron number generating

function 𝐶(𝑥) from equation (3) can be re-expressed as,

𝐶(𝑥) = 1 − 𝜈̅(1 − 𝑥) + 𝜈2(1 − 𝑥)2 − 𝜈3(1 − 𝑥)3 + ⋯ (8)

where generally,

𝜈𝑖 = ∑ (
𝜈
𝑖

) 𝐶𝜈

7

𝜈=𝑖

 (9)

To keep track of the neutrons that leak from the system, the external population, another generating

function variable y can be introduced through 𝑞 → 𝑞𝑦. The generating function variable 𝑦 acts as a

parameter (and will usually be notationally suppressed in 𝑓(𝑡, 𝑥, 𝑦)). In terms of these variables the

denominator of the integral in equation (6) can be re-written

−𝑥 + 𝑞𝑦 + 𝑝𝐶(𝑥)

= 1 − 𝑥 − 1 + 𝑞𝑦 + 𝑝[1 − 𝜈̅𝑢 + 𝜈2𝑢2 − ⋯ −𝜈7𝑢7]

= −𝑀−1(𝑀 − 1) [𝐷7𝑢7 − 𝐷6𝑢6 + 𝐷5𝑢5 − 𝐷4𝑢4 + 𝐷3𝑢3 − 𝐷2𝑢2 −
1

𝑀 − 1
𝑢

+
𝑞𝑀

𝑀 − 1
(1 − 𝑦)]

(10)

where 1 − 𝑥 = 𝑢, 𝑀−1 = (1 − 𝑝𝜈̅), 𝑝(1 − 𝑝𝜈̅)−1 = 𝑝𝑀 = (𝑀 − 1) 𝜈̅⁄ , and the 𝐷𝑖 are defined,

𝐷𝑖 =
𝜈𝑖

𝜈̅
 (11)

P a g e 3 | 22

This polynomial expression in equation (10) can be factorized into the form,

−𝑀−1(𝑀 − 1)𝐷7[(𝑢 − 𝑢1)(𝑢 − 𝑢2)(𝑢 − 𝑢3)(𝑢 − 𝑢4)(𝑢 − 𝑢5)(𝑢 − 𝑢6)(𝑢 − 𝑢7)] (12)

where 𝑢1, ⋯ , 𝑢7 are the roots of the equation,

𝑢7 −
𝐷6

𝐷7
𝑢6 +

𝐷5

𝐷7
𝑢5 −

𝐷4

𝐷7
𝑢4 +

𝐷3

𝐷7
𝑢3 −

𝐷2

𝐷7
𝑢2 −

1

(𝑀 − 1)𝐷7
𝑢 +

𝑞𝑀

(𝑀 − 1)𝐷7

(1 − 𝑦) = 0 (13)

are functions of 𝑦, the generating function variable for the external population, but constants for the

internal 𝑥 distribution, with 𝑦 = 1. (The quadratic approximation, including 𝑦, and a generating function

variable 𝑧 to keep track of fissions, and therefore fission gamma-rays in time, was solved analytically in

[2].)

After factorization of the polynomial denominator, the integral over the variable 𝑢,

𝐺(𝑢 = 1 − 𝑥)

=
𝑀

(𝑀 − 1)𝐷7
∫

𝑑𝑢

[(𝑢 − 𝑢1)(𝑢 − 𝑢2)(𝑢 − 𝑢3)(𝑢 − 𝑢4)(𝑢 − 𝑢5)(𝑢 − 𝑢6)(𝑢 − 𝑢7)]

(14)

can be performed by partial fractions, which isolates each factor of
1

𝑢−𝑢𝑖
, where 𝑢𝑖 is one of the roots of

the polynomial above. The partial fraction decomposition is written as,

1

[(𝑢 − 𝑢1)(𝑢 − 𝑢2)(𝑢 − 𝑢3)(𝑢 − 𝑢4)(𝑢 − 𝑢5)(𝑢 − 𝑢6)(𝑢 − 𝑢7)]
 = ∑

𝐴𝑖

(𝑢 − 𝑢𝑖)

7

𝑖=1

Each 𝐴𝑖 can be obtained as [6]

𝐴𝑖 = lim
(𝑢→𝑢𝑖)

(
(𝑢 − 𝑢𝑖)

[(𝑢 − 𝑢1)(𝑢 − 𝑢2)(𝑢 − 𝑢3)(𝑢 − 𝑢4)(𝑢 − 𝑢5)(𝑢 − 𝑢6)(𝑢 − 𝑢7)]
)

Thus, we have,

𝐴1
−1 = (𝑢1 − 𝑢2)(𝑢1 − 𝑢3)(𝑢1 − 𝑢4)(𝑢1 − 𝑢5)(𝑢1 − 𝑢6)(𝑢1 − 𝑢7)

𝐴2 = −
1

(𝑢1 − 𝑢2)(𝑢2 − 𝑢3)(𝑢2 − 𝑢4)(𝑢2 − 𝑢5)(𝑢2 − 𝑢6)(𝑢2 − 𝑢7)

𝐴3 =
1

(𝑢1 − 𝑢3)(𝑢2 − 𝑢3)(𝑢3 − 𝑢4)(𝑢3 − 𝑢5)(𝑢3 − 𝑢6)(𝑢3 − 𝑢7)

(15)

P a g e 4 | 22

𝐴4 = −
1

(𝑢1 − 𝑢4)(𝑢2 − 𝑢4)(𝑢3 − 𝑢4)(𝑢4 − 𝑢5)(𝑢4 − 𝑢6)(𝑢4 − 𝑢7)

𝐴5 =
1

(𝑢1 − 𝑢5)(𝑢2 − 𝑢5)(𝑢3 − 𝑢5)(𝑢4 − 𝑢5)(𝑢5 − 𝑢6)(𝑢5 − 𝑢7)

𝐴6 = −
1

(𝑢1 − 𝑢6)(𝑢2 − 𝑢6)(𝑢3 − 𝑢6)(𝑢4 − 𝑢6)(𝑢5 − 𝑢6)(𝑢6 − 𝑢7)

𝐴7 =
1

(𝑢1 − 𝑢7)(𝑢2 − 𝑢7)(𝑢3 − 𝑢7)(𝑢4 − 𝑢7)(𝑢5 − 𝑢7)(𝑢6 − 𝑢7)

The result of integration is a sum of 𝐿𝑜𝑔(𝑢 − 𝑢𝑖) terms, with root dependent coefficients 𝐴𝑖 given in

equation (15), which has the form,

𝐺(𝑢 = 1 − 𝑥) =
𝑀

(𝑀 − 1)𝐷7
∑ −𝐴𝑖 𝐿𝑜𝑔(𝑢 − 𝑢𝑖)

7

𝑖=1

= −
𝑀𝐴1

(𝑀 − 1)𝐷7
[𝐿𝑜𝑔(𝑢 − 𝑢1) + ∑ 𝐿𝑜𝑔(𝑢 − 𝑢𝑖)𝐴1

−1𝐴𝑖

7

𝑖=2

]

= −
𝑀𝐴1

(𝑀 − 1)𝐷7
𝐿𝑜𝑔 [∏(𝑢 − 𝑢𝑖)𝐴1

−1𝐴𝑖

7

𝑖=1

]

(16)

One root 𝑢1is selected out, with the property that 𝑢1(𝑦) is real and positive for 𝑦 = 0, and less than 1,

and vanishes for 𝑦 = 1. As a convention, a minus sign is chosen in the definition of 𝐴𝑖 so that the

coefficient 𝐴1 accompanying the 𝑢1 term is real and positive. (The reason for this choice will become

clear from equation (18) below). Inserting this result for 𝐺(𝑢 = 1 − 𝑥) into the functional Feynman

equation, 𝐺[𝑓(𝑡, 𝑥)] =
𝑡

𝜏
+ 𝐺(𝑥), dividing by

𝑀

(𝑀−1)𝐷7
𝐴1, and exponentiating, where,

𝛼 = 1 𝑀𝜏⁄

 𝛼′ = 𝛼𝐴1
−1(𝑀 − 1)𝐷7

(17)

gives the equation for 𝑓(𝑡, 𝑥),

[1 − 𝑓 − 𝑢1][1 − 𝑓 − 𝑢2]𝐴2 𝐴1⁄ [1 − 𝑓 − 𝑢3]𝐴3 𝐴1⁄ [1 − 𝑓 − 𝑢4]𝐴4 𝐴1⁄ [1 − 𝑓

− 𝑢5]𝐴5 𝐴1⁄ [1 − 𝑓 − 𝑢6]𝐴6 𝐴1⁄ [1 − 𝑓 − 𝑢7]𝐴7 𝐴1⁄
(18)

P a g e 5 | 22

= 𝑒−𝛼′𝑡[𝑢 − 𝑢1][𝑢 − 𝑢2]𝐴2 𝐴1⁄ [𝑢 − 𝑢3]𝐴3 𝐴1⁄ [𝑢 − 𝑢4]𝐴4 𝐴1⁄ [𝑢 − 𝑢5]𝐴5 𝐴1⁄ [𝑢

− 𝑢6]𝐴6 𝐴1⁄ [𝑢 − 𝑢7]𝐴7 𝐴1⁄

where 𝑢 = 1 − 𝑥 in the right-hand side. The partial differential equation for 𝑓(𝑡, 𝑥, 𝑦) has been reduced

to a transcendental equation, that must be solved numerically. (In the quadratic approximation to the

polynomial 𝐶(𝑥), the transcendental equation becomes algebraic, and can therefore be solved explicitly

[2].) As 𝑡 → ∞, the right-hand side → 0, and the vanishing of the left-hand side gives the B𝑜̈hnel chain as

one of the solutions,

1 − 𝑓(𝑡, 𝑦) − 𝑢1 → 1 − ℎ(𝑦) − 𝑢1(𝑦) = 0 (19)

As 𝑡 → ∞, there are no longer any internal neutrons in the system, so the asymptotic solution is

independent of 𝑥.

Solution of Transcendental Equation
The first step in solving the transcendental equation for 𝑓 is to solve for the roots of the polynomial

equation (13). The roots of equation (13) must be solved numerically. For the internal neutron

population, the roots are constants. There are three real roots and two pairs of complex conjugate

roots. For the external neutron population, the roots depend on the generating function variable 𝑦;

there are two pairs of complex conjugate roots and three real-valued roots for 𝑦 𝑟𝑒𝑎𝑙. In order to

determine the external probabilities from the generating function, the variable 𝑦 will be made complex-

valued, making all the roots complex.

Fast Fourier Transform (FFT) Inversion of Generating Function
𝒇(𝒕, 𝒙)

The coefficients 𝑃𝜈(𝑡) in equation (1) are determined from the generating function by inverse Z

transform ([3],[4]),

𝑃𝜈(𝑡) =
1

2𝜋𝑖
∮ 𝑓(𝑡, 𝑥)𝑥−𝜈−1

𝐶

𝑑𝑥
(20)

where the 𝐶 is a counterclockwise closed contour in the region of convergence (ROC) of 𝑓(𝑡, 𝑥).

Convergence of 𝑓(𝑡, 𝑥) in equation (1) is dependent only on |𝑥| for the following reasons:

0 ≤ 𝑃𝜈(𝑡) ≤ 1 ∀ 𝜈

∑ 𝑃𝜈(𝑡)

∞

𝜈=0

= 1

|𝑓(𝑡, 𝑥)| < ∞ if ∑ 𝑃𝜈(𝑡)∞
𝜈=0 |𝑥|𝜈 < ∞, the ROC of equation (1) consists of all values of |𝑥| ≤ 1.

This ROC includes the unit circle. The inverse Z transform in equation (20) evaluated on the unit

P a g e 6 | 22

circle contour C, defined by 𝑥 = 𝑒𝑖𝜃, reduces to the Fourier transform. With 𝑥 = 𝑒𝑖𝜃, equation (20)

becomes

𝑃𝜈(𝑡) =
1

2𝜋
∫ 𝑓(𝑡, 𝑒𝑖𝜃)𝑒−𝑖𝜈𝜃

𝜋

−𝜋

𝑑𝜃 (21)

which is a Fourier series expansion. First equation (18) is solved for discrete 𝜃 and discrete 𝑡𝑖 which

when substituted in equation(21) yields the result:

𝑃𝑡𝑖
(𝜈) = ∑ 𝑓(𝑡𝑖, 𝑒𝑖2𝜋𝑛/𝑁) 𝑒−𝑖𝜈2𝜋𝑛/𝑁

𝑁−1

𝑛=0

 (22)

Equation (22) can be efficiently computed using FFT algorithms. 𝑃𝑡𝑖
(𝜈) are the internal neutron

probabilities at time 𝑡𝑖 and the computation is repeated for 0 ≤ 𝑡𝑖 ≤ 𝑡𝑠 till |𝑃𝑡𝑖−1
(𝜈) − 𝑃𝑡𝑖

(𝜈)| < 𝜖.

Internal Neutron Population Distributions

For the internal distribution, equation (13) reduces to,

𝑢7 −
𝐷6

𝐷7
𝑢6 +

𝐷5

𝐷7
𝑢5 −

𝐷4

𝐷7
𝑢4 +

𝐷3

𝐷7
𝑢3 −

𝐷2

𝐷7
𝑢2 −

1

(𝑀 − 1)𝐷7
𝑢 = 0

(23)

One root is 𝑢 = 0. The numerical solution for the roots 𝑢1, ⋯ , 𝑢7 of Eq. (18), for an 𝑀 = 10 HEU system,

are listed below:

Real Part Imaginary Part

0.000000000000 0.000000000000

-0.104093723091 0.000000000000

2.183256334534 7.038915914296

2.183256334534 -7.038915914296

2.480453594573 3.783574671759

2.480453594573 -3.783574671759

5.330347424049 0.000000000000

The numerical solution of the transcendental equation (18) for the internal distribution uses as a

starting solution, the analytic solution from the quadratic approximation, which corresponds to the

high M limit,

P a g e 7 | 22

𝑓(𝑡, 𝑥) = 1 −
(1 − 𝑥)𝑒−𝛼𝑡

1 +
𝑀 − 1

𝜈̅ 𝜈2(1 − 𝑥)(1 − 𝑒−𝛼𝑡)

(24)

The pseudo-code for calculating the numerical solution 𝑓(𝑡, 𝑥) to the transcendental equation (18) is

given below:

Algorithm 1: Computing the solution 𝑓(𝑡, 𝑥) to the transcendental equation (18) for internal neutron

population

Internal-Neutron-Population-Generating-Function (Multiplier, M)

in: HEU or Pu nuclear data, multiplication of the system

out: (n by m) array of internal neutron generating function 𝑓(𝑡, 𝑥 = 𝑒𝑖𝜃), n values of t, m values of 

1: Get nuclear data and compute 𝐶𝑖, 𝜈𝑖, and 𝐷𝑖 for 𝑖 = 1, 2, . . ,7 in equation (9) and equation (11)

2: Compute the roots of the polynomial in equation (23)

3: Choose 0 ≤
𝒕

𝝉
≤ 50 ( = 1 shake) array and 0 ≤ 𝜃 ≤ 𝜋 array (non-linearly spaced arrays) and

𝜃𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =
𝜋

6

4: for each 𝑡𝑖 ∈ 𝑡 do

5: for each 𝜃𝑗 ∈ 𝜃 do

6: Compute approximate solution to internal population generating function using

equation (21)

𝑓(𝑡𝑖, 𝜃𝑗)
𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒

= 1 −
(1 − 𝑒𝑖𝜃𝑗)𝑒−𝛼𝑡𝑖

1 +
𝑀 − 1

𝜈̅
𝜈2(1 − 𝑒𝑖𝜃𝑗)(1 − 𝑒−𝛼𝑡𝑖)

7: if 𝜃𝑗 ≤ 𝜃𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) then

initial solution = 𝑓(𝑡𝑖 , 𝜃𝑗)
𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒

else

initial solution = 𝑓(𝑡𝑖 , 𝜃𝑗−1) +
 𝑓(𝑡𝑖,𝜃𝑗−3)−𝑓(𝑡𝑖,𝜃𝑗−2)

2

end

8: compute exact solution 𝑓(𝑡𝑖 , 𝜃𝑗) to the transcendental equation (18) using the initial

solution from step 7

9: end for

10: end for

11: return 𝑓(𝑡, 𝜃) ⊳ complex-valued

P a g e 8 | 22

Figure 1 shows the plot of the solution to the transcendental equation 𝑓(𝑡, 𝑥 = 𝑒𝑖𝜃) with 𝑀=10. Note

that as 𝑡 → ∞, 𝑓(𝑡, 𝑥) → 1, that is 𝑃0
𝑖𝑛𝑡(𝑡) → 1 as 𝑡 → ∞, and all other 𝑃𝜈

𝑖𝑛𝑡(𝑡) → 0.

Figure 1: Solution 𝒇(𝒕, 𝒙) to the transcendental equation (15) for internal neutron population

P a g e 9 | 22

Figure 2 shows the evolution of 𝑷𝝂(𝒕) in time. At each time step, the solution 𝒇(𝒕𝒊, 𝒙) is computed
which is then inverted using FFT to give 𝑷𝒕𝒊

(𝝂). Thus, all the internal neutron distributions evolve

simultaneously one time-step at a time.

Figure 2: Simultaneous Evolution of Internal Neutron Probabilities 𝑃𝜈(𝑡) in Time

Figure 3: Zoomed-in version of Figure 2

P a g e 10 | 22

Figure 4 shows the individual internal neutron number distributions obtained after completing the

building up of 𝑃𝜈(𝑡). This plot can be viewed as taking slices out of Figure 2 along the time axis.

Figure 4: Individual Internal Neutron Number Distributions

Figure 5: Zoomed-in version of Figure 4

P a g e 11 | 22

The pseudo-code for computing the probability distribution of internal neutron population is given

below:

Algorithm 2: Computing the probability distribution of internal neutron population from the generating

function 𝑓(𝑡, 𝑥)

Internal-Neutron-Probability-Distribution-Function 𝑓(𝑡, 𝑥)

in: 𝑛 × 𝑚 array of internal neutron generating function 𝑓(𝑡, 𝑥 = 𝑒𝑖𝜃), n values of t, m values of 

out: 𝑛 × 𝑚 array of internal neutron probability distribution function 𝑃(𝑡, 𝜈), n values of t, m values of 𝜈

1: Generate a uniformly spaced 0 ≤ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 ≪ 𝜋 array of length 𝑁𝜈

Generate a uniformly spaced 0 ≤
𝑡

𝜏
 ≪ 50 array 𝑡𝑢𝑛𝑖𝑓𝑜𝑟𝑚

2: for each 𝑡𝑖 ∈ 𝒕 do

3: Interpolate real part of 𝑓(𝑡𝑖, 𝜃) over 𝜃 and get the interpolant F1

Interpolate imaginary part of 𝑓(𝑡𝑖 , 𝜃) over 𝜃 and get the interpolant F2

4: 𝑓(𝑡𝑖 , 𝜃𝑢𝑛𝑖𝑓𝑜𝑟𝑚) = 𝐶𝑜𝑚𝑝𝑙𝑒𝑥 (𝐹1(𝜃𝑢𝑛𝑖𝑓𝑜𝑟𝑚), 𝐹2(𝜃𝑢𝑛𝑖𝑓𝑜𝑟𝑚))

⊳ 𝑓(𝑡𝑖, 𝜃𝑢𝑛𝑖𝑓𝑜𝑟𝑚) is over 0 to 𝜋 and complex-valued

𝑓(𝑡𝑖 , 𝜃𝑢𝑛𝑖𝑓𝑜𝑟𝑚
2𝜋) = [𝑓(𝑡𝑖, 𝜃𝑢𝑛𝑖𝑓𝑜𝑟𝑚) ; 𝑓𝑙𝑖𝑝(𝑓∗(𝑡𝑖, 𝜃𝑢𝑛𝑖𝑓𝑜𝑟𝑚))]

⊳ assemble solution over entire 2𝜋 by stacking the solution over 𝜋 and its reflection along

the real-axis; remove coincident points at 0 and  and concatenate

5: 𝑃(𝑡𝑖 , 𝝊) = 𝑓𝑓𝑡(𝑓(𝑡𝑖, 𝜃𝑢𝑛𝑖𝑓𝑜𝑟𝑚
2𝜋)

Normalize the 2D probability 𝑃(𝑡 , 𝜐) for all t

⊳ Probability for all internal neutrons at time 𝑡𝑖, real-valued

6: end for

7: for each 𝑘 𝜖 𝑁𝜈 do

8: Interpolate 𝑃(𝑡 , 𝜐𝑘) over 𝑡𝑢𝑛𝑖𝑓𝑜𝑟𝑚 and get the interpolant F

𝑃(𝑡𝑢𝑛𝑖𝑓𝑜𝑟𝑚 , 𝜐𝑘) = 𝐹(𝑡𝑢𝑛𝑖𝑓𝑜𝑟𝑚)

9: end for

P a g e 12 | 22

In Figure 6 through Figure 11, a few internal neutron probability distributions are shown for internal

neutrons = {0,1, 5, 10, 20, 40}.

Figure 6: Probability Distribution 𝑃0(𝑡) of 0 internal neutron

Figure 7: Probability Distribution 𝑃1(𝑡) of 1 internal neutron

P a g e 13 | 22

Figure 8: Probability Distribution 𝑃5(𝑡) of 5 internal neutrons

Figure 9: Probability Distribution 𝑃10(𝑡) of 10 internal neutrons

P a g e 14 | 22

Figure 10: Probability Distribution 𝑃20(𝑡) of 20 internal neutrons

Figure 11: Probability Distribution 𝑃40(𝑡) of 40 internal neutrons

P a g e 15 | 22

External Neutron Population Distributions
The numerical solution for the external distribution starts with the analytic approximation,

𝑓(𝑡, 𝑦) = 1 − 2𝑞𝑀(1 − 𝑦)
1 − 𝑒−𝛼′𝑡

1 − 𝑒−𝛼′𝑡 + √1 + 4𝑞𝑀(𝑀 − 1)𝐷2(1 − 𝑦)(1 + 𝑒−𝛼′𝑡)
 (25)

where

𝛼′ = 𝛼√1 + 4𝑞𝑀(𝑀 − 1)𝐷2(1 − 𝑦)

The roots 𝑢1, ⋯ , 𝑢7 of the equation (13) are functions of 𝑦, the generating function variable for the

external population and they trace the contours in the complex plane as shown in Figure 12.

Figure 12: Loci of roots of the polynomial equation (13)

The root corresponding to the 𝑡 → ∞ B𝑜̈hnel fission chain is 𝑢1, ℎ(𝑦) = 1 − 𝑢1(𝑦). It is the root in

Figure 12 that is real and positive for 𝑦 = 0, and goes to zero for 𝑦 = 1.

Figure 13 shows the plot of the solution to the transcendental equation 𝑓(𝑡, 𝑥 = 1, 𝑦 = 𝑒𝑖𝜃).

P a g e 16 | 22

Figure 13: Solution to the transcendental equation 𝑓(𝑡, 𝑥 = 1, 𝑦 = 𝑒𝑖𝜃).

 As 𝑡 → ∞, 𝑓(𝑡, 𝑦) → ℎ(𝑦).

Algorithm 3: Computing the solution 𝒇(𝒕, 𝒙 = 𝟏, 𝒚 = 𝒆𝒊𝜽) to the transcendental equation (18) for

external neutron population

External-Neutron-Population-Generating-Function (Multiplier, M)

in: HEU or Pu nuclear data, multiplication of the system

out: 𝑛 × 𝑚 array of external neutron generating function 𝑓(𝑡, 𝑥 = 1, 𝑦 = 𝑒𝑖𝜃), n values of t, m values of



P a g e 17 | 22

1: Get nuclear data and compute 𝐶𝑖, 𝜈𝑖, and 𝐷𝑖 for 𝑖 = 1, 2, . . ,7 in equation (9) and equation (11)

2: Choose 0 ≤
𝒕

𝝉
≤ 50 ( = 1 shake) array and 0 ≤ 𝜃 ≤ 𝜋 array (non-linearly spaced arrays) and

𝜃𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =
𝜋

6

3: for each 𝑡𝑖 ∈ 𝑡 do

4: for each 𝜃𝑗 ∈ 𝜃 do

5: if j =1 then Compute the roots of the polynomial in equation (13) end if

⊳ roots of the polynomial are functions of 𝑦 = 𝑒𝑖𝜃𝑗 but not of t

6: Compute approximate solution to external population generating function using

equation (22)

𝑓(𝑡𝑖 , 𝜃𝑗)
𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒

= 1 −
2𝑞𝑀(1 − 𝑒𝑖𝜃𝑗) (1 − 𝑒−𝛼′𝑡𝑖)

1 − 𝑒−𝛼′𝑡𝑖 + √1 + 4𝑅2𝐹(1 − 𝑒𝑖𝜃𝑗)(1 + 𝑒−𝛼′𝑡𝑖)

where 𝛼′ = 𝛼√1 + 4𝑅2𝐹(1 − 𝑦), and where 𝑅2𝐹 = 𝑞𝑀
𝑀−1

𝜈̅
𝜈2.

7: if 𝜃𝑗 ≤ 𝜃𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙) then

initial solution = 𝑓(𝑡𝑖, 𝜃𝑗)
𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒

else

initial solution = 𝑓(𝑡𝑖, 𝜃𝑗−1) +
 𝑓(𝑡𝑖,𝜃𝑗−3)−𝑓(𝑡𝑖,𝜃𝑗−2)

2

end

8: compute exact solution 𝑓(𝑡𝑖 , 𝜃𝑗) to the transcendental equation (18) using the initial

solution from step 7

9: end for

10: end for

11: return 𝑓(𝑡, 𝜃) ⊳ complex-valued

The algorithm for computing the probability distribution for each leaked neutron (external neutron)

from the generating function 𝑓(𝑡, 𝑥 = 1, 𝑦 = 𝑒𝑖𝜃) is identical to computing internal neutron probability

distribution. In Figure 14 through Figure 19, a few external neutron probability distributions are shown

for external neutrons = {0,1, 5, 10, 20, 40}.

P a g e 18 | 22

Figure 14: Probability Distribution 𝑃0(𝑡) of 0 external neutron

Figure 15: Probability Distribution 𝑃1(𝑡) of 1 external neutron

P a g e 19 | 22

Figure 16: Probability Distribution 𝑃5(𝑡) of 5 external neutrons

Figure 17: Probability Distribution 𝑃10(𝑡) of 10 external neutrons

P a g e 20 | 22

Figure 18: Probability Distribution 𝑃20(𝑡) of 20 external neutrons

Figure 19: Probability Distribution 𝑃40(𝑡) of 40 external neutrons

P a g e 21 | 22

Conclusions

The populations computed here are foundational for different neutron counting distributions, both for

fast neutron counting, and for thermal neutron counting from a limit of a reactor theory (see below).

One motivation for pursuing new ways to solve the Feynman equation is that fast computing methods

are needed to compare to counting data in real time. Solving differential equations [5] is time expensive.

This method can be parallelized, numerically solving the generating function transcendental equation

for each time on a separate processor. For computing time interval distributions, besides the internal

distribution, only the external population 𝑃0(𝑡) and it’s first two time-derivatives are needed, so there is

no need for the numerical FFT. It is possible that this method can be fast enough for real time analysis of

HEU problems (where the rate of initiation of fission chains is low).

Another motivation for this form of solution is historical, completing a path pursued by Feynman in his

original work on fission chains, and implemented by him only in quadratic polynomial approximation for

the internal population, and here solved completely.

The same equation (1) can also describe a limit of a thermal reactor [7], where all induced fission is from

neutrons that have thermalized and diffuse in a moderator. The translation of the parameters in the

equation can be read off from,

𝜕𝑓(𝑡, 𝑤, 𝑣)

𝜕𝑡
= 𝜆[−𝑤 + 𝑞𝑡ℎ𝑣 + 𝑝𝑡ℎ𝐶𝑡ℎ(𝑤)]

𝜕𝑓(𝑡, 𝑤, 𝑣)

𝜕𝑤

where the generating function variable 𝑤 tracks internal thermal neutrons, 𝑣 tracks thermal neutrons

lost from the multiplying medium, 𝐶𝑡ℎ(𝑤) is the thermal neutron induced fission neutron number

generating function, 𝜆 is the moderator diffusion constant, 𝑝𝑡ℎ is the probability a thermal neutron

induces fission, and 𝑞𝑡ℎ = 1 − 𝑝𝑡ℎ is the probability a thermal neutron is lost from the multiplying

system. This reactor is driven completely by thermal neutrons, the multiplication of the HEU is

approximately 𝑀0 = 1. Fast neutrons are created by induced fission but thermalize with probability

 𝑠 = 1. A slight generalization of this reactor problem, for 𝑠 ≠ 1 and including an additional fast leaked

fast neutron population, can be also be solved from this work by a dictionary.

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy (DOE) by Lawrence

Livermore National Laboratory under contract DE-AC52-07NA27344. This work was developed under

DOE funding. We thank Bart Ebbinghaus and Sean Walston for their support and encouragement.

References

[1] R. P. Feynman, “Statistical Behavior of Neutron Chains,” LA-591 Los Alamos (1946).

[2] M. K. Prasad and N. J. Snyderman, “Statistical Theory of Fission Chains and Generalized Poisson

Counting Distributions,” Nuclear Science and Engineering: 172, 300 (2012).

P a g e 22 | 22

[3] D. H. Chambers, H. Chandrasekaran, and S. E. Walston, “Fourier Method for Calculating Fission Chain

Neutron Multiplicity Distributions,” Nuclear Science and Engineering: 184 244 (2016).

[4] J. K. Cavers, "On the Fast Fourier Transform Inversion of Probability Generating Functions," Journal

of the Institute of Mathematics and its Applications, 22, 275 (1978).

[5] K. S. Kim, L. F. Nakae, M. K. Prasad, N. J. Snyderman, and J. M. Verbeke, "Time Evolving Fission Chain

Theory and Fast Neutron and Gamma-Ray Counting Distributions,” Nuclear Science and Engineering:

181, 1 (2015).

[6] E.B. Saff and A.D. Snider, Fundamentals of Complex Analysis with Applications to Engineering and

Science, Pearson Education Inc. (2003).

[7] K. S. Kim, L. F. Nakae, M. K. Prasad, N. J. Snyderman, and J. M. Verbeke, “Fission Chain Restart

Theory,” Nuclear Science and Engineering: 188, 57 (2017).

