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Abstract

We describe algorithms for creating probabilistic scenarios for the situation when
the underlying forecast methodology is modeled as being more (or less) accurate
than it has been historically. Such scenarios can be used in studies that extend
into the future and may need to consider the possibility that forecast technology
will improve. Our approach can also be used to generate alternative realizations of
renewable energy production that are consistent with historical forecast accuracy,
in effect serving as a method for creating families of realistic alternatives — which
are often critical in simulation-based analysis methodologies.

1 Introduction

Uncertainty associated with the forecasted output of renewable energy sources such as
wind and solar mandates analysis and management techniques that take stochastics into
account. A growing literature describes methods for creating and evaluating probabilistic
scenarios, which are forecasts of renewables power generation with an attached probabil-
ity. A representative sample of this literature can be found in [2, 3, 4, 5, 6, 8]. Here, we are
interested in creating probabilistic scenarios for the situation when the underlying fore-
cast methodology is modeled as being more (or less) accurate than it has been historically.
Such scenarios can be used in studies that extend into the future and may need to consider
the possibility that forecast technology will improve. Our approach can also be used to
generate alternative realizations of renewable energy production that are consistent with
historical forecast accuracy, in effect serving as a method for creating families of realistic
alternatives — which are often critical in simulation-based analysis methodologies. A gen-
eral open-source software implementation of the methods described here — a package called
mape_-maker — is publicly available at https://github.com/mape-maker/mape-maker.
Given a time series of forecasts (e.g., daily over a year), we create a set of scenarios
for renewable power production that, based on a forecast system with a specified accu-
racy, could reasonably correspond to the forecasts. We often refer to these scenarios as
actuals, to distinguish these values from historical forecasts. We can also create a set
of forecasts that could reasonably correspond to a given time series of actuals. In other
words, the process can be inverted. The correspondence between forecasts and actuals is
based on analysis of historic forecast error distributions. Subsequently, the word “reason-
ably” is replaced with mathematical criteria concerning the error distribution, temporal
correlation, and in the case of the forecast, curvature. As a preview of the output of
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this capability, consider Figure 1. This figure provides a simple example where a set of
5 alternative “actual” scenarios are constructed for a few days in July of 2013 based on
wind forecast error data from obtained from the California Independent System Operator
(CAISO) in the US for July 2013 through May 2015. The target error — specifically, the
mean absolute percentage error or MAPE — is the value that was realized in the forecast
error data. Because the scenarios are created for days in the past, we are able so show
both the forecast and realized actuals on the same plot as the constructed scenarios.

MapeMaker - Plot of simulations from 2013-07-02 to 2013-07-04, Target Mape 42.3%
Forecasts, actuals and simulation of actuals
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Figure 1: Illustration of 5 scenarios of wind production in CAISO representing alternative
actuals. The forecast and realized actuals are also shown.

1.1 Measures of Forecast Error

Let (z;); € R™ and (y;); € R" denote two time-series. For simplicity, we subsequently
refer to these time-series as x and y. We then define the following functions:

RE : R*xR — R (Relative Error)

Ty = EF

x

MARE : R"xR" — Ry (Mean Absolute Relative Error)

n
The MAPE (Mean Absolute Percentage Error) is simply the MARE (Mean Absolute
Relative Error) given as a percentage. Our software library communicates with users in
terms of MAPE, but in our discussions here it is convenient to use MARE and sometimes
MAE (Mean Absolute Error) variants.

While MAPE is a very popular way of characterizing forecast accuracy for renewables
production, it is well-known to have a number of undesirable properties (see, e.g., [7]).
One undesirable properties is that x values of zero must be ignored in the calculation.
We have organized our methods in such a way as to avoid division by zero. Most of
the development here is based on converting the MAPE target to an absolute error
conditional on the value of z, so it would be relatively straightforward extension to
convert our algorithms to use some measure of accuracy other than the MAPE.

1.2 Notation Scheme

We use X and ) to denote paired input data of length n. Note that which of these pairs
is the forecast and which is the actual depends on the user objective, i.e., what is being



simulated. For example, if one desires to obtain alternative actuals from forecasts, then
Y will be simulated actuals. Recalling the canonical goal of constructing a vector Y from
X input for a specified range of dates, we use Xgrp to denote the input data upon which
the construction is based (Simulation Input Data). It may or may not be the case that
Xsrp is a subset of X'. For the next few sections, we assume that both input datasets are
sorted according to the X values, e.g., X = (x;)i<, with n equal to the cardinality of X
such that Vi < j, z; < x;. We will return to a temporal sorting in Section 3.5 when we
consider auto-correlation.

We use bold upper case font to denote random variables. As indicated above, the
role of the forecasts and the actuals can be reversed. If we want to compute y, then x is
the input data for the simulation. We let £ denote a random vector of errors such that
(c/'i = Yz — X; SO

Y, =z, +&, Vi <n.

We let € denote a vector of observed errors. We will focus on the modeling of € in the
following. The title of the paper and the name of our software library derives from the
requirement that simulated values § must result in a MAPE close enough to the target
MAPE. We formalize this constraint as

E[MARE(z,Y)] =,

where 7 is the target MAPE divided by 100%.

1.3 Plausibility Criteria

A main theme underlying this work that we will use to justify some of our design choices
involves what we refer to as plausibility criteria. For any requested MAPE the distribu-
tions of errors computed should be as close as possible to the original error distributions
while satisfying the target MAPE. If a user were to select the estimated MAPE as the
requested one, one would naturally expect the distribution of errors drawn from the sim-
ulated distributions to be somehow “close” to the estimated distribution. For example, if
the system of forecasts is producing a wide range of errors at very low forecasted power
output, then even if the forecast technology is improving one would expect it to still pro-
duce a relatively wider range of errors at low power regardless of the requested MAPE.
We formalize these criteria as follows in Definition 1.1.

Definition 1.1. A scenario set is said to be plausible if:

1. The error distribution for the set is close to the empirical distribution of errors, i.e,
its plausibility score is close to 1 (as defined in later in Section 3.4);

2. the computed auto-correlation coeflicients for the set are close the empirical values;
and

3. the computed curvature for the set is close to the empirical value, especially when
the scenarios are forecasts (because we observe that forecasts typically have lower
curvature than actuals.)



2 Modeling the Joint Distribution of (£, X)

Let us define Z = (£, X). Here, Z denotes a random variable with values in (—oo, +00) X
(0,+00) — or, if the production capacity cap is known by the forecaster, values in
[—cap, cap] x [0,cap]. We denote by fz the density of Z, and denote by fe and fx
the marginals of fz. Then,

fe(e) = / fz(e, z)dz, fx(z) = / fz(e,x)de
We also define the conditional density of £ given X = x as:

_ fle,2)
fx(z)

Modeling the conditional distribution of errors is important as these distributions can
vary significantly with the value of input data. For example, when the forecasts and the
actuals are both low, the errors will be biased because the power cannot be below zero.
Symmetrically, close to the maximum capacity, cap, errors are bounded by the fact that
power cannot exceed maximum production capacity.

In this context, we introduce the functional m(z) to denote the expected value of the
absolute error of the distribution conditioned on z, defined as:

fEIsz (5)

o0

m(z) = E[€] |X = 2] = / e forms (€)de

£=—00
We then introduce r to denote the mean absolute relative error, defined as:

- e (ER)) - e

In Figure 2, we provide an illustrative visualization of the relative error RE as a
function of actuals. We note that because actuals are correlated with forecasts, the
figure would be very similar if forecasts were used in instead. The data is for CAISO
wind power data, ranging from July 1, 2013 to June 30, 2015. We will use this dataset
for illustration throughout the paper, and refer to it informally as the CAISO Wind
data set. These data are available in the mape_maker software distribution; the file is
wind_total_forecast_actual _070113_063015.csv.
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Figure 2: Empirical joint distribution of ( %, X) - CAISO Wind Power

2.1 Estimating the Conditional Distribution of £|X, f5|xzx

Given the notation z € X, we use the beta distribution on [[,s + /] to model Je|x=z-
In addition to the [ and s that we will refer to location parameters, a beta distribution
requires two additional parameters — a and f, i.e., the shape parameters. We chose the
beta distribution because it has finite support that helps us avoid power values below
zero or above cap and because the shape parameters provide the flexibility necessary to
model different behaviors for each x. We then define

fS\X:x(E) = beta(s; (047 67 l? 3)) =

with

2.2 Intervals for Conditional Estimation

We now define a rule that will be used to estimate the parameters of the conditional
density based on each x of the input dataset. We choose to take a fraction a (e.g., 0.05)
of data before and after each x. Let Gx denote the empirical cumulative distribution
function. Then, let I = [G (Gx(z) — a), G (Gx(z) + a)]. Thus I? is centered on

—i -1
Z(z; a) = Sx (GX(”:)_“);GX (©x()t) with 2a fraction of the data. We fit the parameters

on the sample Er. = {g;, 1 <i < n,x; € I, }. Note that for production values near zero
and near the capacity, there could be as few as a fraction of the values used.




To compute the estimation for a particular value z’, our method uses the interval
I¢ for which Z(z;a) is closest to 2’ and uses the corresponding set Ej. to compute the
parameters for 2’. For 2/ € X that are not close to zero or cap, the closest z(z;a) to
2’ will often be just Z(2’;a). However, for very small or large values of ' and when
Xsip ¢ X, the use of the interval with the closest mean is most appropriate.

We will now describe how our method fits the parameters of the beta distributions.
Because every estimated quantity will depend on a, we drop a as a subscript or function
parameter for notational simplicity.

2.3 Fixing [, s and Estimating «, [
2.3.1 Constraints on the Location Parameters

An informed choice of the location parameters will avoid simulating errors leading to y
values lower than 0 or greater then the cap of the dataset. We now define the func-
tion Ymaz, Which returns the maximum possible simulated value at x according to a
conditional distribution fex—,. Because the inverse of the corresponding cumulative dis-
tribution function (CDF) evaluated at one, Fg_‘;:x(l) = [ + s, is the maximum of the

error simulated; F; gpl(:x (0) = [ is the minimum; and because we want to avoid simulating
values above the cap or below zero we have

ymax(:c) =T+ ngl(:z(l)
=x+s+1
< cap.

Similarly,

Yminsl @) = 2+ Fé‘_pl(:gc(o)
—F B
> 0.

These two conditions give

> —x

s<cap—2x—1L.

Thus, we can define the estimators of the location parameters for each x as:

5.« | —a& if mm(si, T; € Ix) < —x
i) = { mm(ai, g II) else
3(z) = { cap—x—f(x) ifmax(ai, x; ELE) > cap —
N ma:c(ai, T; € [m) — i(x) else

2.3.2 Choosing the Shape Parameters by the Method of Moments

The mean and variance of a beta(a, 3, [, s) distribution are:



2(a+pB)2a+8+1)

We can now choose shape parameters by solving these two equations for o and 3

fulz) =

8(z)? (a4 B)*(a+ B +1)

to obtain &(x) and f(z).
For any xz € X U Xg;p assign

2.4 Selecting a

We now develop an empirical way to select the best a. If a is small, the sample on which
to fit the distribution will be small since /¢ is small. Fitting a distribution on very little
data is of course dangerous. On the other hand, if a is large, then the sample is too large
to provide us with an estimation of the conditional density. In the extreme where a = 1,
every conditional density will be equal to the density of the relative error.

One way to select a is to compute a discrepancy score between the empirical distri-
bution function and the one obtained by estimating each conditional distributions with
2a of the data. Let g be the empirical joint density of (X,e). Let f be the joint density
of (X, &) taken as f,(z,e) = fx(z) * f§|x:x(5)' We choose a to minimize the deviation
between the real density and the simulated density:

D0 = [ [(ola.e) = futw.2)dede.

3 Adjusting the conditional densities to fit a MARE
target

We will use a tilde to specify the distributions and variables that we are simulating.

e While € is the random variable of the error with properties that can be estimated
from X, € is the random variable of error defined by a distribution that we will
develop with desired properties for the simulation.

e We make use of three conditional distributions : the population density, fex—., the
estimated density fex—s, and a simulation density, fex—-



We are now interested in modeling the conditional distribution of £|X so that the
expected relative absolute error of the simulated random variable & is :

Rl > EIX=n s

n
SI1D geXern

3.1 Adjusting the shape parameters so that it fits a target MAE

We want to adjust each conditional distribution so that the global distribution of &
satisfies the targeted MARE and so that they keep the same shape parameters as the
original distributions. To do this we compute analytically the mean absolute error of a
beta distribution when « and f are fixed. Let [ < 0 and s+ 1 > 0. Let b(-;a, 8,1, s) be
an arbitrary beta density function with parameters («, 8,1, s) for which we define a mean
absolute error function of [ and s given values for o and 3 as

s+l

v(l, s;a, B) :/ lelb(e; o, B, 1, $)de.

=l

We will make two remarks:

limv(l,s;,5) =0, VI<O0
s—0

s
v(l,s;a, B) > P

Since v is continuous ( it is a sum of continuous functions ), the intermediate value
theorem applies which means that v(l, s; «, 8) can achieve any value and in particular,
the value needed to in order to hit the specified error target.

Thus, once we are given «, 3, and a target value for the absolute error at a particular
value of x, we need to find the intersection between a hyperplane defined by the target
and the surface defined by v(l, s; «, ) to establish values for [ and . For z € R, we will
want to choose the solution that minimize the distance to the estimated values [ () and
$(z) while hitting a target mean absolute error m(z) and without changing the shape
parameters.

s.t. leR, se Ry
0>1>—=z (1)
0<s<cap—xz—1

v(l,s;8(x), B(x)) = m(z)

However, in our case, since there are bound constraints on 1 and s (see section 2.3.1),
v cannot hit every target m(x). We compute a maximum target function that can be hit
as:

Maa(@) = max - v(l,s;6(x), f(a))



The target function m must then be bounded for every z by :
m(z) < Minas(T) (2)

Given a mean absolute error target function m satisfying inequality (2) we obtain for

any x, a beta distribution of parameters Sxm = (&(x), B(a:), [(x),5(x)) that satisfies the
mean absolute error target and that is the closest possible to the estimated distribution.
We now proceed to allocate an error target to each x € Xg;p that we will call m that
depends on the target MARE and on a weight function.

3.2 Changing the conditional distributions
3.2.1 Weight functions
Let’s define Q,,,, as the set of functions wy,,, defined on Xg;p such that

! Z Wagrp (%) = 1.

n
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We call them weight functions. Weight functions will be used to assign a target MAE
to obtain from each of the conditional distributions & |X =z, for all x € Xgyp. It can
also be seen as the function that weights the contribution of the Absolute Error of each
conditional distribution to the Mean Absolute Relative Error of the simulation.

3.2.2 Target function generator

We also define the following functional that we call target function generator.

m : Xeip X Ry X Qxgyp — R (Target function generator)
T, T, w —  Taw(z), £ >0

For a fixed 7 and w, m(., 7,w) is a target function. Since the target function will be
used to directly adjust the conditional distribution, it must respect the inequality (2).
Finally, we say that a target mare 7 is feasible for a given w € Qyy,,, if

Ve e X, m(z,7,w) < Mypae(T)

3.2.3 Zero power input

We recall that the zero input does not count in the computation of the MARE. How-
ever, we want the distribution of the simulated errors to be drawn from the estimated
distribution. In other words :

Vi e Ry, 1(0) =1(0) and 5(0) = 3(0)
We assign
m(0) = m(0)

To avoid big discontinuities in the parameters of the beta distributions, we could take as
1(0) = lim, 0 ¢(x), §(0) = lim,_,o 5(z),



3.2.4 Convergence to the requested MARE

Using the function m to assign target MAE for each SID input will allow us to hit the
targeted MARE using the simulation distribution. Indeed, let us define the random
variable £|X with density fex—.(€) = b(e,Spm), € € (—cap,cap). If we establish the
distribution parameters as described in Section 3.1 and solve program (1) with m(z) =
m(z; 7, wxg,,) We have,

/ ’€|b(€,c§x7m)d8 — T?L(CL’, f,wXSID), Vo € XSID-

Then, the expected MARE with the errors drawn from these distributions and with the
inputs in the Xg;p is :

o[ 3 €] !Xzfc}: 1 3 Es[|€] X = 4]

£
nsip

@ n i
z€XgID 51D z€XsID
1 Tl e pes)
n Z T
SID S
/"Z
= n E : WXs1p (23)
SID o
— 7
. . . . . . 1 o
This is true with any weight function for which .——3" . waq,(z) = 1. We now

proceed to describe the construction of a sensible weight function.

3.3 Weight function for Xg;p = X

We recall the plausibility criteria: we want our simulations of errors to be as close as
possible to the population distribution. In particular, suppose that we want to do a
simulation with a target MARE that happens to be the same as the MARE for the
original data (X and ))) and further suppose that we want to simulate using values
from the entire data set (i.e., Xs;p = X). Then we expect the simulated conditional
distributions to be equal to the estimated conditional distributions. In other words,

Xsip =X, F=rsn = VYreX,i(z)=Iz) and 5(x) = 3(z)

Solving the linear program (1) defined in subsection 3.1, leads to I(z) = I(z) and §(z) =
$(x), Vo € X.
If we define the following wy function,

. m(x f;’_oo |5|]E£ X=z(€)de
Ve € X, Ox(z) := an(”):f aml

First, we can verify that we have % Y sex Wx(x) = 1. It is thus a weight function.

The choice of this weight function is natural when Xg;p = X because it is the ratio
of the expected relative error simulated at x over the mean relative error when the errors
are distributed according to the estimated joint distribution. However, choosing it when
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Xsip # X would satisfy our requirement for plausibility but it would prevent us from
hitting the requested MARE.

Figure 3 illustrates that for the full CAISO wind dataset, the weight function presents
a hyperbolic shape. The low values account for the biggest part of the MAPE.

ARE/MARE ratio in function of the actuals

—— ARE/MARE

10 4

04 =

T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500

Figure 3: wy(z) = ") ratio for the CAISO wind dataset.

xr

3.4 Weight function for Xs;p and an arbitrary r

Let us define the following Real that we call the plausibility score :

1 .
PXSID = Z UJX(:L’)

n
SID SRy

When Xg;p # X, the distribution of the SID is different from the distribution of the input
dataset. Thus we do not necessarily have Px,,, = 1. A goal of our method is to meet the
requested MARE, at least in expectation, no matter the Xg;p. If Py, is greater than
1, it means that the distribution of Xs;p has more data in the range where the weight
function takes high values. This means that if use Wyutasetx, We are going to simulate too
many errors with high values. While it has some physical sense, we are nonetheless going
to simulate a greater MAPE than expected. Symmetrically, if Py,,, is smaller than one,
we are going to retrieve a lower MAPE than expected. This is illustrated in Figure 4),
the density for the Xs;p between December 2013 and March 2014 indicates more values
at lower power than for the entire dataset, X'. If we simply used wy(z), for z € Xg/p,
then meeting the target AREs for each z would result in a MARE much greater than
specified. In other words, since the ARE/MARE ratio is very high for the low power
input, and since these inputs are over represented under the distribution of the December
2013 - March 2014 SID, we are going to simulate too many errors with a high target of
mean absolute error. To meet the target MARE, a re-scaled weight function must thus
be computed.
Let us define the following SID weight function :

~

~ wWx
\V/l' S XSID7 WXSID<1’> = P
Xs1D
With the re-scaled factor, we have $ Y wexsyp P¥srp (T) =180 Dxg;p € Qgyp-
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Finally, for a given feasible 7 € R, we compute a wy,,, which allocates the absolute
errors across Xgrp based on the allocation from X. With these two parameters we can
compute m(x; 7,0xs,,), © € Xsrp. According to Section 3.2.4, defining € from this
target function, will get us Eg [m > eeXsin W%] =,

We can also get the feasibility region for the target mare. For a given 7 to be a feasible
target mare, it must satisfy Vo € X, m(x, 7, Oxg, ) < Mimae(2). Thus the feasibility region
is :

~ . m S
RXSID = PXSID min ( p— ( )

€ X,
swx() S SID)

density of sub-dataset versus all dataset
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Figure 4: Comparison test density versus all dataset density

3.5 Simulating Without Auto-correlation

This is now straightforward. First, to obtain a simulation of errors, we are simulating a
vector identically and independently distributed uniformly on [0, 1], (Uy)i<pg,,- Then

gt S|X s (Ut> Vit S nsrp-

Let, 3
Y=+ F5_|X zt(Ut)7 Vit < ngip

" E[MARE(z,Y)] = 7.

While we are hitting the target mare, the entire auto-correlation of the errors sim-
ulated relies solely on the auto-correlation of the input. In the extreme case where the
errors are not depending on the input i.e Fg|x o = F5|X z0s Vi < mgrp - which is the
case for the middle power range for the CAISO wind data - then our simulations would
have a null auto-correlation function. Implementing a base process to replace (U;)i<ns;p,
will generate the needed auto-correlation to satisfy the second point of the plausibility
criteria.

4 Inferring a Base Process

The idea is to simulate a Base Process U, of marginal Uniform in [0,1] depending on the
past p lags U;_;, © < p and the past q lags of errors over the base process d; ;, i < q .

12



Then, as previously in section 3.5, we would simulate the errors via the transformation
Fgx—z,(Us)-

We model Z; = ¢! (U,;) € (—00,00) as a Gaussian Process and more specifically as
an ARMA process. Heuristically, we will show that this method gets us a good auto-
correlation function for the simulations.

Inspired by the ARTA fit method (see [1]). We denote the CDF for the standard
normal distribution ¢ and the CDF of the conditional distribution £|X = z, which is a

beta distribution fit using X, Fejx—s,. Let us define the following time-series (Z;);:

Vi<n, Z;= gb_l(ps\xzxt(ft))

We use the notation (Zt)t for the base process time-series of the dataset. Its empirical
distribution is close to a standard Gaussian. Indeed, in section 2.3 we are estimating
the conditional distribution so that &|X = z; has distribution that is approximated by
]ES\sz thus, F’g|xzxt(5t)&2/l[0, 1] and Zt&/\/'((), 1). We fit on this base process an ARMA
process. The standard definition of an ARMA process of order p and ¢ uses (a;);<, and
(b;)i<q as coefficients so we temporarily reuse those symbols in this section.

Definition 4.1. {Z;} is a base process if

o {Z;} follows an ARMA process of order p and ¢ :

p

q
Z,= Z aplisq + Z byi—pn + 0

h=1 h=1
Where {d;} are the iid Gaussian error of mean 0 and variance o3.
o Var[Z, =1, E[Z;] =0, so that for all ¢, Z; ~ N(0,1).

We run a grid search over multiple (p, ¢) and we select the ARMA model to minimize
the BIC criterion. The (a;)i<, and (b;);<, found during the process define a function that
enables us to generate base processes which will create the auto-correlation that we are
looking for; however, fitting an ARMA imposes no constraint on the variance of noise ;.

So we are free to specify o5 so that we get Var(Z,] = 1.
Then, we can simulate directly the error by

€ = Fixeo, (0(Zy), ¥t <ngmp

and also get the result for the expected MARE established in section 3.5.

5 Enforcing Curvature

Let (y;); € R™ denote an simulation output time series. We define curvature at a point ¢
in (y;)i as
Si =Ytz — 2Yir1t Y Vi<n-—2,
i.e., a second difference.
Methods described in Section 4 successfully model temporal correlation between the

errors while satisfying a target MARE. However, some scenarios might not “look right”
because of their lack of smooth curvature. This is especially unsatisfying in the case
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(a) Ilustration of forecast scenarios without curvature adjustment.
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(b) Mlustration of the same forecast scenarios with curvature adjustment
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of forecasted renewables power production, which are much less sharp and erratic when
compared to actual quantities.

We now concretely illustrate this issue with analysis of the CAISO wind power pro-
duction data introduced previously. In Figure 5(a), we show baseline scenarios resulting
from our proposed methods, i.e., without adjustment for curvature. As is clearly ob-
served, the simulated forecasts in this case closely mirror the actuals — and not the one
“true” forecast. In contrast, we show in Figure 5(b) a closely related set simulated fore-
casts — obtained by the procedure we now describe — that instead exhibit significantly
more smooth and realistic curvature. Ultimately, the need for such adjustment depends
entirely on the application.

In order to adjust the curvature of a forecast while still acheiving a target MARE,
one approach is to a posteriori adjust a time series that already satisfies a target MARE
such that specific curvature characteristics are imposed. We now formalize this general
approach.

We introduce a minimization problem in which we penalize deviations from both a
target second difference and the simulated forecast error. Per earlier analysis, we can
simulate (&;); using an ARMA base process. Then, define d € R, and let W and W.
denote user inputs in R.

We then let (y;); denote the solution of the following mathematical program:

n 2 2
min Z Wi (Iyz —2yi1 + Yia| — d) + Wk <yz — T — 5z'>
A

st.  y €10, cap|”

(3)

For practical computation, we now transform this mathematical program so that the
objective function is quadratic and constraints are linear — such that widely available
mathematical programming solvers can be leveraged. The transformation yields the
following equivalent mixed-integer linear program (MILP), with 3n additional variables,
n equality constraints, and 3n inequality constraints (6n if we consider that the three
real vectors are negatively bounded by 0):

n 2 2
s.t. yeR, AT ER, A eRY, be {0,1}"
yi < cap (4)
M= =vyi— 2y +yie, Vi<n
AF £ by
)\l_ < (1 - bi)dmax

where d,,., denotes a large constant; a safe value is 4cap.

To verify equivalence of the two mathematical programs, we note that if y; — 2y; 1 +
Yi—2 > 0, then because b; € {0,1}, A\; is equal to 0 with the two last equations. Then
N =y —2yi 1 +yioand A + )\, =y — 2y 1 +yi_2. We use the same reasoning when
Yi — 2yi1 t yi2 <.

Numerous open source and commercial solvers are available for such a mathematical
program. However, solution time does generally increase with n. In many applications
the restrictions on curvature are motivated by aesthetic or heuristic considerations. Thus,
it can be reasonable to specify a “loose” optimality gap to avoid excessive computation
time.
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6 Putting it all Together

In this section we summarize the process to deliver a simulation with correct targets.

6.1 Procedures for estimation

First, as shown in Algorithm 1, we preprocess the data and estimate the conditional
distributions using the methods explained in section 2.3. This results in a set of beta
distribution parameters for each input from the whole dataset called S. To estimate
the parameters we recall that the user should specify a data fraction (e.g., 0.05), for the
sampling. (The software provides an option to produce a curve for the scores described
in Section 2.4.)

Algorithm 1 Estimating the beta distributions

Input: x, y, a > Input time-series and percent of data
Output: S,
1: procedure COMPUTING_ESTIMATION_PARAMETERS(z, ¥, a)
2 X + sort(z)
3 for r € X do > Applying the methodology explained in section 2.3
4: Compute the interval of estimation I and sample E¢ .
5: f( ) — I_a
6 Z(a:( a)), ( (x,a)) < Bounds(E%, x) > See section 2.3.1
i &(Z(z,a)), B(Z(z,a)) < Moments(mean(E?), std(E?)) > See section 2.3.2
8 for x € X do > Take the closest computed point of estimation
9: x’ — argmin|z(z',a) — |
10 (&, 3.1,3)(3(a, a))
11: return S

Next, as shown in Algorithm 2, we estimate the partitioning of the mean absolute per-
cent errors according to the input and we encode this information in the weight function.
An important feature of this procedure is the computation of r; which is the expected
mean absolute relative error from the conditional distributions (which may be close in
value to, but is different from, 7.) This procedure is explained in section 3.3.

The next phase, shown in Algorithm 3, is estimation of the underlying base_process
that generates auto-correlation in the time-series of the errors. This is done by using the
CDF B of the beta distribution whose parameters have been inferred in step 1. Then
we operate a grid search over the p and g parameters to select the order of the model
that minimize the BIC criterion. We save the coefficients. Recalling that we want the
marginal of Z ~ N(0,1), we set the variance of the errors of the base process so that
Var|Z;] = 1. This procedure is explained in section 4.

6.2 Procedures to deliver the target mare

First, as shown in Algorithm 4, given a target mare 7, and a Xs;p we verify that 7 is
feasible. Ifit is, we aim at targeting a mean absolute error for each conditional distribution
with input in the Xg;p. For this we compute a target function using the estimated weight
function (see section 3.4).
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Algorithm 2 Estimating the weight function

Input: S’a;, X
Output: wy
1. procedure COMPUTING_ESTIMATED_WEIGHT_FUNCTION(S,, X)
2 T < 0
3 for I e X do > Applying the methodology explained in section 3.3
4 ) < [ |elbeta(e; Sx(x))de .
5: mmm( ) < maxv(l,s,a(z),3(z)) > See constraints on target function (2)
6 wx () #
7 T — T + M(x)
8 Ty $— |7??\
9 Wy < wX
10: return w;(

Algorithm 3 Fitting the Base Process ARMA process

Input: z, &, S,
Output: (ai)igp, (bi)igqy as

~

1: procedure FIT_ARMA_PROCESS(z, &£, S,)

2 for i € [1,len(z)] do > Estimating the base process see section 4
3 Zl — ¢_1<B(€Z‘,S/y($i)))

4: BIC + +o0

5 p, ¢4 0,0

6 for p/, ¢ €10,5)* do > Grid Searching
7 tempBIC < BIC(ARMA(Z, (p',0,¢'))

8 if tempBIC < BIC then

9: BIC + tempBIC

10: p,q<7p,q

11: (@)isp, (bi)icq = ARMA(Z, (p,0,q))

12: o5 < argmin, (std(ARM A((a;)i<p, (b;)i<q,0) — 1)?

13: return (a;)i<p, (b;)i<p, 05

Algorithm 4 Inferring a target function for the SID

Input: 3, Xoip, T, Wy

Output: m
1: procedure COMPUTING_SIMULATION_TARGET_FUNCTION(S, Xs/p, 7, Ox)
2: Pxgp <0 > Computing the Plausibility score
3: for s € Xg;p do )
4: PXSID — PXSID + &252 §
5 Fonar < P, min (2228 s € Xgyp)
6: if 7 > 7,4, then
T Report Error
8: (I}XSID «— P;U;D
9: for s € Xsrp do > Applying the function as explained in section 3.4
10: m(s) < TsOxg,p(S)
11: return m
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Second, as shown in Algorithm 5, according to a target function m, we assign adjusted
parameters for each conditional distribution whose input is in the Xq;p. We move the
location parameters from the estimated ones while keeping the shape parameters. See
section 3.2.

Algorithm 5 Inferring the simulation beta distributions

Input: m, S, Xsip

Output: S;
1: procedure ADJUSTING_SIMULATION_PARAMETERS(m, S, Xsip)
2 for 0 € Xsrp do > Applying the methodology explained in section
3: z < closest(6, X) > not necessarily Xs;p C X
4 a(0), 6(0) « a(z), B(x) .
Bt [(0),3(0) <= Programi(a(d), 8(4), 6, m(d)) > See equation 1
6 Ssm = (a(6), 5(6),1(6),5(6))
7 return S;,

6.3 Procedure to simulate the output

Using methods summarized in Algorithm 6, we simulate a base process sample of length
|Xsrp| and use the simulated conditional distributions to obtain conditioned errors. We
directly get the simulation by summing the errors and the input data. Finally, if the user
asks for it, we optimize the curvature a posteriori, see section 5.

Algorithm 6 Simulating a sample of output

Input: m, S, Xsip, (a;)i<p, (bi)i<p, 05, Sstm which implies Fgl)l( 2,
OUtPUt: (gi)iS”SID

1: procedure COMPUTING_ESTIMATION_PARAMETERS (M, S, Xsip, (i)i<p, (bi)i<p, 05)
) (Zi)i<ng;p < createArmaSample((a;)i<p, (bi)i<ps 05, NsiD)

3 for i € [1, nsm] do

£ &=k, (0(=)

5: Yi = T; + 52

6 if Curvature is True then

i (U:)i<ng;p < Optimization,(€,d, z, cap) > See Program 4
8

return (¥;)i<ng, p

7 Evaluation

We used computed scores to evaluate our simulations based on the similarity with the

empirical data and with the satisfaction of the target. We want to assess the quality of

the convergence of the metrics with respect to : the number of scenarios simulated (let us

denote it M), the length of the input array (let us denote it n;), the type of simulation.
We study three types of simulations:

e A) IID base process, ¢;
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e B) ARMA base process, ¢y

e C) ARMA base process and curvature optimization, ¢3

7.1 Target MAPE Score
The score function for achieving the target MAPE is

M
Smare(M, 4, k) = | > (7% 100% — MAPE((%:)i<n, x((2:)i<n,)))2-

=1

7.2 Validation of the base process

Let p be the maximum lag of auto-correlation we wish to assess.
Let us define the functional

ﬁ((gz)z<nv ] n _ ] 0_2 Z €l+j8’L

If £ =0, p((&i)i<n,J) is the estimation of the auto-correlation of the errors of the
input dataset at lag j. p((¢r(x;) — Ti)i<n,, J) is the estimation of the auto-correlation at
lag j of the errors simulated by the MAPE_maker of type k& with an SID starting at the
beginning of the dataset and of length n;.

p

M
Sauto,correlation(Ma Ny, k;p) = Z Z 51 i<n .7 ﬁ((ﬁbk(%) - Ii)igm ) j))z

i=1 j=1

7.3 Validation of the curvature

Let us define the functional

n—2

1

D((yi)izn) = — > Y= 2y + yie
=0

M
Ssecond_difference(Ma Ty, k) = Z y'L z<n — D(¢k(xz)z§nt))2

=1

7.4 Score function

The score function is the sum of those three targets weighted :

S(Ma Ny, k7p7 Wiy Wac, wsd) = Wy, * Smare(M7 Ny, k)+
Wae * Sauto_correlation(Ma Ny, kv p)+

Wsq * Ssecond,difference(Mz Ny, k)
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7.5 Behavior of the scores as M grows

To illustrate the behavior of the simulated scenarios as the number of scenarios created,
M, grows we conducted experiments using the CAISO wind dataset and created scenarios
for three days. Figure 5 shows that for this example, the achieved MARE is close to the
target MARE as soon as there are about 4 scenarios. The scenarios that use curvature
correction result in a value that is closest to the target, which makes sense because
Program 4 corrects for the MARE after the scenarios are created. However, the other
scenarios are reasonably close. Figure 6 demonstrates that for processes that are not
iid, the autocorrelation score is quit good almost regardless of the number of scenarios.
Figure /reffig:curveconverge shows that the curvature (second differences) score does
not depend on the number of scenarios generated and that the methods are ordered as
expected.

Convergence of the simulations mare (20 simulations)

¥ —¥- mare target mape 200.0%, base_process iid seed:1
1‘:1 —#- mare target mape 200.0%, base_process ARMA seed:1
‘-1 == mare target mape 200.0%, base_process ARMA + curvature seed:1
21 4 "».:‘l — target mare
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%
&
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Figure 5: MARE score as a function of the number of scenarios created by simulation.

8 Conclusions

We have described methods for creating scenarios that make use of a history of forecast
errors. The corresponding software is available for download and use. Although we used
wind data from CAISO in our illustrations, the method can be used for any situation
where there is a history of forecasts and actuals. In particular, the software has been
used to create scenarios for load, solar, and wind for the rts-gmlc data https://github.
com/GridMod/RTS-GMLC.
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Convergence of the simulations error_auto_correlation (20 simulations)

o i e i i i i S o i i i o i o e i o i o i

4 z
10 F

=¥- error_auto_correlation target mape 200.0%, base_process iid seed:1
&1 “= error_auto_correlation target mape 200.0%, base_process ARMA seed:-1
error_suto_correlation target mape 200.0%, base_process ARMA + curvature seed:1

1
:
]

I
= target error_auto_correlation

error_auto_correlation

! ML i Lol it - e e b kv e - o .y bty - ki« Wy - Py
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Number of Simulations

Figure 6: Sum of the absolute difference of the auto-correlation score as a function of the

number of scenarios created by simulation.

The use of solar requires pre- and post-processing of the input data to work well.
Instead of power values, the forecasts and actuals should be presented as fractions of
capacity and with the value of cap set to one during the day and zero at night. This
is because solar power is always zero at night and because the concept of “low power”
changes during the day.

Future research includes consideration of error measures other than the MAPE. On
the purely software front, we are working to parallelize computations. The software and
the methods described here are intended to be an addition to the kit of tools available
for dealing with uncertainty in power generation planning and operations.
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Convergence of the simulations curvature (20 simulations)
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Figure 7: Second difference score as a function of the number of scenarios created by simulation.
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