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Abstract

The following topics are considered in this presentation: (i) Overview of evidence theory, (ii)
Representation of loss of assured safety (LOAS) with evidence theory for a 1 SL, 1 WL system,
(ii1) Description of 2 SLs and 1 WL used for illustration, (iv) Plausibility and belief for LOAS and
associated sampling-based verification calculations for a 2 SL, 1 WL system, (iv) Plausibility and
belief for margins associated with LOAS for a 2 SL, 1 WL system, (v) Plausibility and belief for
LOAS for a2 SL, 2 WL system, (vi) Incorporation of evidence spaces for link temperature curves
into LOAS calculations, (vii) Plausibility and belief for LOAS for WL/SL systems with SL
subsystems, and (viii) Sampling-based procedures for the estimation of plausibility and belief.
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NOMENCLATURE

Abbreviation

Definition

BPA Basic probability assignment

CBF Cumulative belief function
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1. Introduction

As summarized in Ref. [1], the need for an appropriate representation of uncertainty as part of
an analysis that supports an important decision is almost universally recognized [2-11].
Traditionally, probability theory has provided the language and mathematical structure for the
representation of uncertainty [12-19]. More recently, other languages and mathematical structures
for the representation of uncertainty have been introduced, including evidence theory [20-29],
possibility theory [30-36], and interval analysis [37-42]. A number of comparative discussions of
different approaches to the representation of uncertainty are available [1; 43-49].

The uncertainty to be characterized in the analysis of a complex system is often divided into
aleatory uncertainty and epistemic uncertainty, with aleatory uncertainty arising from an inherent
randomness in the future performance of the system and epistemic uncertainty arising from a lack
of knowledge about the appropriate value to use for an input to the analysis that has a fixed but
poorly known value [11; 18; 19; 50-58]. Traditionally, probability has been used to characterize
both aleatory uncertainty and epistemic uncertainty in analyses for complex systems (e.g., as in
the NUREG-1150 nuclear reactor probabilistic risk assessments [59-61] and the performance
assessments for the Waste Isolation Pilot Plant [62] and Yucca Mountain [63] radioactive waste
disposal facilities).

However, there is a growing recognition that the use of probability to represent epistemic
uncertainty can lead to a characterization of epistemic uncertainty that implies a greater level of
knowledge about the uncertainty being represented than is really the case. This concern arises
because a probability distribution characterizing epistemic uncertainty defined on an interval [a,
b] implies that a probability is also known for every subinterval [u, v] of [a, b] no matter how small
the interval [u, v] is. As an example, if available information only indicates that the correct value
for the quantity under consideration is equally likely to be in the intervals [a, c] and [c, b] for a
known value c, then assigning a probability to every subinterval [u, v] of [a, b] is an extreme over
representation of what is actually known.

Different from the assignment of a probability distribution to the indicated interval [a, b],
evidence theory provides a mathematical structure that retains the information that [a, c] and [c,
b] are equally likely to contain the appropriate value for the quantity under consideration without
the introduction of any additional resolution with respect to where this value is potentially located
within [a, b]. For this reason, evidence theory is becoming a popular alternative to probability
theory for the representation of epistemic uncertainty when limited information is available for the
characterization of where the correct value for an epistemically uncertain quantity is potentially
located.

The purpose of the following presentation is to introduce and illustrate the use of evidence
theory in representing the epistemic uncertainty present in the results of analyses of the failure of
weak link (WL)/strong link (SL) systems.

Weak link (WL)/strong link (SL) systems are important parts of the overall operational design
of high-consequence systems [64-69]. In such designs, the SL system is very robust and is intended
to permit operation of the entire system under, and only under, intended conditions (e.g., by
transmitting a command to activate the system). In contrast, the WL system is intended to fail in a
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predictable and irreversible manner under accident conditions (e.g., in the event of a fire) and
render the entire system inoperable before an accidental operation of the SL system. Given an
accident, failure of the WL system to deactivate the entire system before the SL system fails (i.e.,
degrades into a condition that could allow an accidental operation of the entire system) is referred
to as loss of assured safety (LOAS). The descriptor LOAS is used because failure of the WL system
places the entire system in an inoperable condition while failure of the SL system, although
undesirable, does not necessarily result in an unintended operation of the entire system. Thus,
safety is assured by failure of the WL system.

The following topics are considered in this presentation: (i) Overview of evidence theory (Sect.
2), (i1) Representation of loss of assured safety with evidence theory for a 1 SL, 1 WL system
(Sect. 3), (iii) Description of 2 SLs and 2 WLs used for illustration (Sect. 4), (iv) Plausibility and
belief for LOAS and associated sampling-based verification of LOAS calculations for a 2 SL, 1
WL system (Sects. 5 and 6 ), (iv) Plausibility and belief for margins associated with LOAS for a
2 SL, 1 WL system (Sects. 7-13), (v) Plausibility and belief for LOAS for a 2 SL, 2 WL system
(Sect. 14), (vi) Incorporation of evidence spaces for link temperature curves into LOAS
calculations, (Sect. 15), (vii) Plausibility and belief for LOAS for WL/SL systems with SL
subsystems (Sect. 16), and (viii) Sampling-based procedures for the estimation of plausibility and
belief (Sect. 17).
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2. Evidence Theory

This section provides an introduction to evidence theory. The following areas related to
evidence theory are addressed: (i) definition of an evidence space (Sect. 2.1), (i1) definition of
belief and plausibility associated with an evidence space (Sect. 2.2), (iii) cumulative and
complementary cumulative summaries for belief and plausibility (Sect. 2.3), (iv) functions defined
on evidence spaces (Sect. 2.4), and (v) product evidence spaces (Sect. 2.5). With respect to
terminology, evidence theory is sometimes referred to as Dempster-Shafer theory in recognition
of the work of A.P. Dempster and G. Shafer in the early development of what is now generally
referred to as evidence theory [20-23].

2.1 Evidence Space Definition

Evidence theory and probability theory are actually closely related. As will be described, an
evidence theory representation for uncertainty corresponds to the use of an incompletely defined
probabilistic representation for uncertainty. For this reason, a natural starting point in a discussion
of evidence theory is an explanation of the relationship between (i) evidence theory representations
for uncertainty and (ii) the better-known probability theory representations for uncertainty. As now
described, a probability theory representation for uncertainty is formally based on a probability
space (Xp,Xp,mpy ), and an evidence theory representation for uncertainty is formally based on

an evidence space (X,,X,,m;,). As will become apparent, the components of a probability
space (X, X, mpy ) and the components of an evidence space (X,X,m;y ) have many things
in common.

As indicated by the notation (X,,X,,mp, ), the formal definition of a probability space

involves three components:

— A set X, that contains everything that could potentially occur in the particular “universe”
under consideration,
— A set X, of subsets of &, with the properties that (i) if £ € X, then £ € X, where £°

denotes the complement of £, and (ii) if {£} is a countable collection of elements of X, then
U, & eXp and N E e Xy,

— A function m,y defined for elements of X, with the properties that (i) mpy (X,)=1.0, (ii)
it £eX,,then 0<mp,(£)<1.0, and (iii) if {£} is a countable collection of disjoint elements of

Xp, then mpy (V; &) = zimPX (&)-

With respect to terminology, (i) the set X, is called the sample space or universal set, (ii) the
elements of X, are called elementary events, (iii) the elements of X, are called events, and (iv)
the function mpy is called a probability measure and defines the probability mp, (£) for each
element £ of X, . In computational implementation, mp, (£) is usually replaced by a density
function d with the property that
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mp(E) = jg d(ede. @.1)

An important take away point here is that probability is defined for sets (i.e., for subsets of the
associated sample space X', contained in X, ). It is convenient to think of X, as containing all

possible subsets of X', ; however, for certain theoretical reasons, the subsets of X, contained in

X, must be restricted as indicated above.

As indicated by the notation (X;,X,,m, ), the formal definition of an evidence space also
involves three components:

— A set X, that contains everything that could potentially occur in the particular “universe”

under consideration,
— A countable set X of subsets of &,

— A function my, defined for elements of X, with the properties that (i) mg, (£)>0 for
EeXp, @) mpy (6)=0 for Ec Xy and € ¢ Xz, and (iii) )., muy (£)=1.0.
€AE

With respect to terminology, (i) the set &', is called the sample space or universal set, (ii) the
elements of X, are called elementary events, (iii) the elements of X, are called focal elements
rather than events as is the case for probability spaces, and (iv) the function my is called a belief

measure rather than a probability measure and defines the basic probability assignment (BPA)
mpy (€) for each element £ of X.

As examination of the preceding definitions for a probability space (Xp,,X,,mp, ) and an
evidence space (X,X;,mg,) shows, these two spaces have much in common. However, they
differ significantly in the resolution at which uncertainty is represented. Specifically, a probability
space represents uncertainty by the probabilities defined for the events contained in the set X, .
For continuous distributions (e.g., uniform, triangular, normal, ...), X, will contain an
uncountably infinite number of events (e.g., subintervals of an interval [a,b] for a uniform or
triangular distribution defined on [a,b]). In contrast, X, will contain (i) at most a countable
number of focal elements and (ii) only a finite number of focal elements in a typical analysis.

The role of the BPA my, (£) for a focal element € of an evidence space (X, X, myy) is to

define the amount of probability or credence that can be assigned to the possible occurrence or
truth, as appropriate, of £ with no additional specification of likelihood for the individual subsets
of £. Or, put another way, m, (£) is the amount of probability assigned to the set £ but with no

specification of how this probability is spread over subsets of £. As indicated above, the
assignment of BPAs for individual focal elements is made subject to the restriction

deXE My (€)=1.0.
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The definition of focal elements and associated BPAs is illustrated with a notional evidence
space (7;,T;,my;) for link failure temperature, with the notational use of “T” selected to be

suggestive of “temperature”. For this evidence space,

T, ={T:450 < T <950 °C} =[450,950 °C], 2.2)
Ty ={7,,7,.7;,7,,75} (2.3)

and

7, =[450,750 °C],7, =[550,700 °C],7; =[600,725 °C], 2.4
7, =[650,850 °C], 75 =[800,950 °C]. ’
Further, the focal elements (i.e., 7,,7,,7;,7,,7; ) are assumed to correspond to ranges of link

failure temperatures obtained in each of five separate analyses. To numerically specify the
“credibility” or “relevance” of these results for use in later analyses, a BPA needs to be assigned
to each of these focal elements. If all analyses were felt to be equally credible, then the assignment

my (T,)=1/5 for i=1,2,3,4,5 (2.5)

would be appropriate. However, if the results of the individual analyses were not felt to be of equal
quality or relevance, then a different assignment of BPAs would be appropriate. For example, the
assignments

My (T,) =1/10,mup (Ty) =1/ 5,mpp (T3) = 2/ 5,mpp (T3) =1/ 5,m (T5) =1/10  (2.6)

might be made based on an assessment of the quality or relevance of the individual analyses.

Another possibility is that the focal elements in Eq. (2.4) are the outcome of an expert review
process with the temperature range associated with each focal element supplied by a different
“expert”. If the individual experts are felt to be equally creditable, then the assignment of BPAs as
in Eq. (2.5) would be appropriate. If the individual experts were not felt to be equally creditable,
then different BPAs could be assigned to the individual focal elements to incorporate the assessed
credibility of the individual experts. However, ranking experts is a difficult and potentially risky
undertaking.

The evidence space (7, T,,my;) with the properties summarized in Fig. 2.1 as defined in

Egs. (2.2), (2.3), (2.4) and (2.6) is used in several following examples. However, an arbitrary
evidence space (X, X, m;) will continue to be used in the general definitions of evidence space

properties.
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Fig. 2.1 Summary of evidence space (7, T, m.;) used to illustrate the definitions of belief and

plausibility (Note: In the simplified notation used in later sections, the evidence space
(75, T, ,mg) will be represented by (7, T,m;)).

Subsequent sections will deal primarily with evidence spaces. Therefore, to simplify notation
and with limited risk of confusion, the subscript “E” will be omitted from the representations for
evidence spaces in these sections. Also, focal elements for an evidence space will, when practical,
be represented by the letter used to represent the sample space with integer subscripts used to
identify the individual focal elements (e.g., the focal elements for an evidence space (X,X,m, )

will be represented by X, X,,...,&X,, with nX corresponding to the number of focal elements).

2.2 Definition of Belief and Plausibility

The assignment of BPAs in the development of an evidence space (X,X,m, ) is not the final

step in an evidence theory representation of uncertainty. Rather, this assignment provides the basis
for the determination of belief and plausibility for subsets of the sample space X . Specifically,
belief and plausibility for a subset S of X are defined by

Bel(S)= 3, my(X) 2.7)
X,eX and X;,cS
and
PIS)= Y my), 2.8)

X, eX and F=X,NS
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respectively, with X={&],&,,.. X }. In words, Bel(S) is the sum of the BPAs for all focal
elements that are subsets of &, and PI(S) is the sum of the BPAs for all focal elements that
intersect S. Given their definitions, (i) Bel(S) provides a measure of the extent to which the

available information (i.e., the focal elements and their BPAs) fully supports the proposition that
S contains the element x of X' of intertest (e.g., the failure temperature for a specific link in a
system of WLs and SLs), and (i1) PI/(S) provides a measure of the extent to which the available

information supports the weaker proposition that S could (i.e., might) contain the element x of X
of interest. Belief and plausibility are the basic uncertainty measures used to express the outcomes
of evidence theory analyses.

An illustration of belief and plausibility is provided by the evidence space (7,T,m;)
summarized in Fig. 2.1. Only focal elements 7, and 75 are subsets of the set S=[500,750 °C]
indicated in Fig. 2.1, with the result that

Bel(S)= Y my(T)=m(T,) +my(T;)=02+04=06. 2.9)
7;€T and 7;,cS

Focal elements 7,, 7,, 75 and 7, intersect S and focal element 75 does not intersect S, with
the result that

4
PI(S) = > mp(T;) = mp(T,)=0.1+02+0.4+0.2=0.9. (2.10)
T,€T and D=T;NS i=1

Similarly, only 7 is a subset of S° =[450,500) U (750,950] and only 7, 7, and 7 intersect
S¢, with the result that

Bel(S8°) =m;(75)=0.1 (2.11)
and
PI(S)=my(T))+mp(Ty)+mp(T5)=0.1+0.2+0.1=0.4. (2.12)

The indicated subset and intersection properties involving the 7's, S and S° can be easily seen
in Fig. 2.1.

As noted earlier, evidence spaces and probability spaces have certain similar characteristics.
In fact, an evidence space is actually an incompletely defined probability space. The conversion
of an evidence space (X, X, m, ) with focal elements &}, &,..., X, into an associated probability

space (X,,Xp,mp, ) can be performed by defining density functions d,(x),i =1,2,...,nX, on X
with the properties that
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[, d(x)dr=1.0 and d;(x)=0 forxeX;. (2.13)

Then, a density function for a probability space (X,,X,,mp,) consistent with the original
evidence space is defined by

d(0) =Y my (X (x,). (2.14)
i=1

With completion, the following relation

Bel(S) < prob(S) = mpy (S) = Isd(x)dx < PI(S) (2.15)

holds for § € X, which in normal situations simply means that S is a subset of X, = X’. The

preceding is a very important property of evidence spaces. Specifically, evidence spaces have no
specified uncertainty structure internal to individual focal elements. However, if a probabilistic
structure is added internal to the individual focal elements of an evidence space as indicated in
Egs. (2.13) and (2.14), the result will be a probability space in which resultant set probabilities are
bounded below and above by corresponding beliefs and plausibilities.

A widely-used procedure is to assume a uniform distribution over a set of values for a quantity
when no distribution is known or specified. As an example, the imposition of a uniform distribution
over each focal element of the evidence space (7,T,m;) summarized in Fig. 2.1 is illustrated.

This evidence space has five focal elements (i.e., 7,,7,,7;,7,,75). Corresponding density
functions d,(T),i =1,2,...,5,that are uniform over the five focal elements and equal to zero
elsewhere are defined by

1/[750 °C —450 °C]=3.33x107 °C™" fori=1and T € 7,=[450,750 °C]
1/[700 °C =550 °C] = 6.67x107 °C™" fori=2 and T e 7,=[550,700 °C]
d.(T)=41/[725 °C—600 °C]=8.00x107 °C™" fori =3 and T € 7,=[600,725 °C] (2.16)
1/[850 °C — 650 °C]=5.00x107* °C™" fori =4 and T e T,=[650,850 °C]
1/[950 °C —800 °C] = 6.67x107* °C™" fori =5 and T € 7,=[800,950 °C]

and
d(T)=0 if T¢7, fori=12,3,4,5. (2.17)
As a reminder, the density function for a uniform distribution over an interval a <x<b is

d(x)=1/(b-a). Given the preceding definitions for the density functions d,(7),i =1,2,...,5, the
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resultant density function defining a piecewise uniform distribution over 7 =[450,950 °C] is
defined by

5
d(T) =Y my(T,)d,(T)
i=l

= (1/10)d,(T) +(1/5)d,(T) + (2 / 5)d;(T) + (1/ 5)d, (T) + (1/10)d(T) (2.18)
=(2.86x107* °C™)6,(T) +(1.33x107 °C™)5,(T) +(3.20x107° °C™")5,(T)
+(1.00x107° °C™)8, (T) +(6.67x107™* °C™)5,(T)

with

1if TeT,

5"(”:{0 if TeT, @19)

for i =1,2,...,5. In turn, the probability p(S) for the set S=[500,750 C] considered in Egs. (2.9)
and (2.10) is given by

p(S)=[ d(TMT = j57050°d(T)dT ~0.78. (2.20)
As should be the case,
0.6 = Bel(S) < p(85)=0.78 < PI(S)=0.9 (2.21)
with Bel(S)=0.6 and P/(S)=0.9 determined in Egs. (2.9) and (2.10).

The sample space X and focal elements for an evidence space (X, X,m, ) are usually related
by

x=x (2.22)
X;eX

as is the case with evidence space (7, T,m; ) for which

(%]

i
7;eT i=l

[450,950 °C]=T = J 7; =(J7; =[450,950 °C]. (2.23)

However, there is no gain or loss in uncertainty information if the union of focal elements is a
proper subset of X, because

Bel(S)=PI(5)=0 for Sc X with SNA&, =0 for X, eX (2.24)
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As an example, the sample space 7, =[450,950 °C] for the evidence space (7,T,m;)
summarized in Fig. 2.1 could be redefined as 7 =[400,1000 °C] with no change in the supplied
uncertainty information because

Bel(S8)=PI(S)=0 for S c[400,450 °C) or S < (950,1000 °C] (2.25)
after this redefinition of 7 .

The basic relational properties of belief and plausibility for an evidence space (X,X,m, ) are

Bel(S)+ PI(S°) =1, (2.26)
Bel(S) + Bel(S¢) <1, (2.27)
PI(S) + PI(S°) > 1, (2.28)
and
Bel(S) < PI(S) (2.29)

for S ¢ A and S°denoting the complement or S. The set S defined in Fig. 2.1 and the beliefs
and plausibilities

Bel(S) = 0.6, PI(S) = 0.9, Bel(S) = 0.1, PI(S°) = 0.4 (2.30)

obtained in Egs. (2.10)-(2.12) provide the following examples of the general results in Egs. (2.26)
-(2.29):

Bel(S)+ PI(S°)=0.6+0.4=1, (2.31)
Bel(S)+ Bel(S§°)=0.6+0.1=0.7 <1, (2.32)
PI(S)+PI(S)=09+04=132>]1, (2.33)

and
0.6 = Bel(S) < PI(S)=0.9. (2.34)

In contrast to the relationships in Egs. (2.26)-(2.29),

p(S)+p(S9) =1 (2.35)
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is the basic relational property for probability. As indicated by the relationships in Egs. (2.26)-
(2.35), belief and plausibility provide a more nuanced, but less detailed, representation of
uncertainty than is provided by probability. Specifically, if the probability of a set S is specified,

then the probability of S¢ is also deemed to be known as indicated in Eq. (2.35). In contrast, belief
Bel(S) for a set Splaces a bound 0 < Bel(S°) <1- Bel(S) on possible values for Bel(S°) as

indicated in Eq. (2.27) but does not completely determine Bel(S°). Similarly, plausibility PI(S)
for a set Splaces a bound 1- PI/(S) < PI(S°)<1on possible values for P/(S°)but does not
completely determine PI/(S¢) as indicated in Eq. (2.28).

2.3 Cumulative and Complementary Cumulative Summaries for Belief and
Plausibility

The examples for belief and plausibility in Egs. (2.9) and (2.10) are for a single subset of the
sample space 7 . For evidence spaces in which the sample space X is an interval [x,,,x,,. ] of

real numbers, plots of cumulative belief functions (CBFs), cumulative plausibility functions
(CPFs), complementary cumulative belief functions (CCBFs) and complementary cumulative
plausibility functions (CCPFs) provide detailed summaries of the beliefs and plausibilities
associated with the evidence space. Specifically, CBFs, CPFs, CCBFs and CCPFs are defined by

plots for x,, <x<x,, ofthe points

(x, Bel([x,,,,x])) for CBFs, (2.36)

(x, PI([x,,,x])) for CPFs, (2.37)

(x,Bel((x,x,,])) for CCBFs, (2.38)
and

(x, PI((x,x,,])) for CCPFs. (2.39)

As examples, the CBF, CPF, CCBF and CCPF for the evidence space (7, T,m;) summarized in
Fig. 2.1 are (1) defined in Eqgs. (2.36)-(2.39) and (ii) shown as plots in Fig. 2.2.
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Fig. 2.2 Example CBF, CPF, CCBF and CCPF plots for the evidence space (7,T,m;)

summarized in Fig. 2.1.

Further, the CBF, CPF, CCBF and CCPF in Fig. 2.2 are formally defined by
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CBF(T) = Bel{[450,T]} for 450<T <950
0 for 450<T <650

iy (T5) =02 for 650 < T <700
> mp(T;)=0.6 for 700<T <750

i (2.40)
> iy (T)=0.7 for 750 <1 <850

> iy (T;)=0.9 for 850 <T <950

Z; mp, (7)) =1.0 for T =950,

CPF(T) = PI{[450,T]} for 450 <T <950
My (1) = 0.1 for 450 <T <550

> mp(T;)=0.3 for 550 <T <600
=13 mp(T,)=0.7 for 600<T <650 @40

! mp(T;)=0.9 for 650 <1 <800

> my(T;)=1.0 for 800 < T <950,

CCBF(T) = Bel{(T,950]} for 450 <T <950
37 My (T))=0.9 for 450 <T <550

Z; My, (TM;)=0.7 for 550 <T < 600
=337 gy (TM) = 0.3 for 600 <1 <650 (242}

> iy (TM) =0. 1 for 650 <1 <800
0 for 800 <7 <950,

and
CCPF(T) = PI{(T,950]} for 450 <T <950
3 My (T,)=1.0 for 450 <T <650
> amr(T)=0.8 for 650<T <700
={mp(T)+>." ,my(T;)=04 for 700 <7< 750 (2:43)

> mp(T;)=0.3 for 750 <1 <850

> mp(T;)=0.1 for 850 <T < 950.
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For plotting simplicity, the included and excluded points associated with the inequalities in
Eqs.(2.40)-(2.43) are not explicitly shown in Fig. 2.2.

Just as belief and plausibility bound probability for a probability space (X,,X,,mp, ) that is
obtained by completing an evidence space (X,X,m, ) as illustrated in Eq. (2.21), a similar

bounding occurs for cumulative distribution functions (CDFs) and complementary cumulative
distribution functions (CCDFs) that summarize a probability space obtained by completing an
evidence space. Specifically, the probability space CDF will fall between the evidence space CPF
and CBF, and the probability space CCDF will fall between the evidence space CCBF and CCPF.

This pattern is illustrated in Fig. 2.2 for the evidence space (7, T,m; ) summarized in Fig. 2.1 and
the associated probability space defined in Egs. (2.16)-(2.21) with

T 950
CDF(T) = j d(T)dT and CCDF(T) = j d(T)dT (2.44)
450 T

for 450 °C <7 <950 °C and d(T) defined in Eq. (2.18).

From a computational perspective, generation of CBFs, CPFs, CCBFs and CCPFs is the same
as the generation of CDFs and CCDFs for discrete probability distributions. For an evidence space
(X,X,m,) with focal elements &X’,i=1,2,...,nX, (i) the CBF associated with (X,X,m, )

corresponds to the discrete CDF defined by the pairs
[max(X,),my (X,)],i =1,2,...nX, (2.45)
(i1) the CPF associated with (X, X,m, ) corresponds to the discrete CDF defined by the pairs
[min(X;),my (X,)],i=12,...nX, (2.46)
(iii) the CCBF associated with (X,X,m, ) corresponds to the discrete CCDF defined by the pairs
[min(X,),my (X)],i =1,2,...,nX, (2.47)

and (iv) the CCPF associated with (X,X,m, ) corresponds to the discrete CCDF defined by the
pairs

[max(Xi),mX(Xi)],iz1,2,...,nX. (2.48)
Discrete CDFs and CCDFs of the form indicated can be generated with standard plotting tools.

The indicated relationships in Egs. (2.45)-(2.48) are now elaborated on. Supposed an evidence
space with focal elements X;,i=1,2,...,n, is under consideration. To facilitate the following
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development of representations for CBFs, CCBFs, CPFs and CCPFs, the focal elements X are
reordered into the sequences

X.,i=12,.n, withm, =m,(X;), x, =min(X;), and the X, ordered so thatx; < x,,, (2.49)
and
X,,i=1,2,..n, within, = m, (X)), X, = max(&X,) and the X, ordered so thatX; <X,,,.  (2.50)

Given the preceding, CBFs, CPFs, CCBFs and CCPFs are, in effect, equivalent to step functions
corresponding to discrete probability distributions. Specifically, CBFs, CPFs, CCBFs and CCPFs
are defined by the following discrete probability distributions:

CBF~[%,,my (X,) |.i =1,2,..n, with [X;,CBF(¥,)] = ;@,imX(.)?j)}, (2.51)
L A

CPF~[x,,my(X)],i =1,2,..n, with [x,, CPF(x,)]= L,imx (gcj)}, (2.52)
I

CCBFN[L’:’"}( ('Xz)],l =1,2,...n, with [L,CCBF(L)] = l:li: Zn: my (')_C'J):|, (2.53)
J=i+l
and

CCPF~[ X, my (X)) |.i =1,2,..n, with [,,CCPF(X;)] = {f Z my (2?1.)}. (2.54)

J=i+l

On a technical note, if the values for several x; are the same, then these values must be combined
into a single value by adding their corresponding values for m, (&) . A similar requirement holds

for the X;.

Egs. (2.55)-(2.57) below provide an illustration of the determination of CBFs, CPFs, CCBFs
and CCPFs as indicated in Egs. (2.51)-(2.54):
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X, - o
X, LY — .
X, B sssmamsmnnei . (2.55)
X, oo
A .
X=X x> e—-- . i
X, =4, Xy —> @-mmmmmemeeeee o [L"CPF(L‘)] = I:Ei’ZmX (-)_(j):|
T=X,  x o = (2.56)
Xy =45 Xy > @rmmmmmmeees *  |[x»CCBF(x))] { Z my (X, )}
X, = &) Xy —> @-———- ° J=i+l
A_f'] =X, @ ° X, i
X, =X, oo, [%.,CBF (%)) = { D my (X )}
X=X, e ¢ X, = a (2.57)
X, =X o0 X, [X,,CCPF(x;)] { Z my (X, )}
_5 =X B st ® — X; J=itl

Eq. (2.55) shows the five focal elements associated with an evidence space (X,X,m, ). Then, Eq.

(2.56) illustrates the reordering of focal elements as described in Eq. (2.49) and the definition of
“probabilities” to be used in the construction of CPFs and CCBFs as indicated in Egs. (2.52) and
(2.53). Similarly, Eq. (2.57) illustrates the reordering of focal elements as described in Eq. (2.50)
and the definition of “probabilities” to be used in the construction of CBFs and CCPFs as indicated
in Egs. (2.51) and (2.54). As noted after Eq. (2.54), if the values for several x are the same, then

these values must be combined into a single value by adding their corresponding values for
my (X;) . A similar requirement holds for the ..

The relationships defining CPFs, CCBFs, CBFs and CCPFs in Egs. (2.56)-(2.57) are easy to
implement in a DO loop structure but do not have a form that is intuitively suggestive of what is
being determined. As indicated below, the core relationships in Egs. (2.56)-(2.57) are cumulative
and complementary cumulative distribution functions for discrete probability distributions defined
by integrals of density functions that are linear combinations of Dirac delta functions. As described
in Sect. 5.7 of Ref. [70], a Dirac delta function §(x —a) is defined by

1 for u<a<v

Lvé‘(x—a)dx:{ foranyu <v (2.58)

0 fora<uorv<a

27



and provides a way to symbolically enter a discontinuity into the value of an integral.

For generality in the following representations for CPFs, CCBFs, CBFs and CCPFs, the
evidence space (X,X,m, ) under consideration is assumed to have n focal elements that have

been ordered as notationally indicated in Eqgs. (2.56)-(2.57) after the previously indicated BPA
adjustments have been made in the event that some focal elements have shared end points. In
practice, this could result in different numbers lower and upper focal end points. For notational
simplicity, the number of potentially reordered focal element end points is assumed to be n for
both lower and upper endpoints. In addition, the CPF, CCBF, CBF and CCPF representations are
determined for an interval [x ] with x,, <x, <X, <x,,

}’ﬂ}’l mx

For the CPF and CCBF definitions in Eq. (2.56), the underlying density function is defined by
dy(x) = Y my (X))5(x - x,). (2.59)
=1
In turn, the corresponding CPF and CCBF are formally defined by

Xmn

- [E’J‘j (zj’:l my (&;)0(x ~ E,))dx} (2.60)

[%,CPF(%)] = [ j d(x)dx}

mn

[x,0] for x,, <X<x,
= [i,z;: mX()_(j)J for x <xX<x,, and i=12,...,n—1

Li—

[x,1.0] for x, [<xX<x,,

Zn-1—

and

[%,CCBF (%) =[ j ™ d (X)dx}

= [JZJIX(Zjl my (;_rj)5(x—§j))dx} (2.61)
[x,1.0] for x,, <X<x,
= [)E,ZZZHImX()_(j)} for x,<x<x,, and i=1,2,..,n-1

[x,0] for x, <x<x,,

For the definitions of CBFs and CCPFs in Eq. (2.57), the underlying density function is
defined by
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d,(x) :ZmX(fj)&x—fj). (2.62)
j=1
In turn, the corresponding CBF and CCPF are formally defined by

[ CBF (%)] = [x j d, (x)dx}

[z

mn

(ijlmx (fj)é(x—fj))dx} (2.63)
[x,0] for x,, <X <X,

= [i,z;zlm)((fj)} for X, <x<Xx,, and i=12,..,n—-1
[x,1.0] forXx, <x<x,

n

and
[%,CCPF(%)] = [x j”” d, (x)dx}

- [ 5[ (Z” my (X,)6(x - fj))de (2.64)
[%1.0] for x,, <F<X

[i,Z;’_ZiHmX(Xj)} for ¥, <<%, and i=12,.,n-1
< Xy

[x,0] for X, <X

Two insights with respect to evidence spaces can be obtained from the development leading to
Eqgs. (2.59)-(2.64).

First, for a given evidence space (X,X,m, ), probability spaces (Xp,Xp,mp) and
(Xp,,Xp,,mp,) corresponding to the density functions d,(x) and d,(x) can be defined such
that (i) the CDF and CCDF for the probability space (Xp,,Xp,,mp,) exactly match the CPF and
CCBEF for the evidence space (X,X,m, ) and (ii) the CDF and CCDF for the probability space
(Xp,,Xp,,mp,) exactly match the CBF and CCPF for the evidence space (X,X,m, ).

Second, an evidence space (X, X,m, ) with
X={X.4,,..& } (2.65)

can be viewed as adaptation of a discrete probability space (X, Xp,mpy ) with
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Xp ={X,X,, X} (2.66)

Given its definition, (Xp,X,,mpy) may appear to be an unusual probability space in that its
elementary events are sets (i.e., &},X,,...,&X, belonging to X,) rather than numbers or vectors

as is more commonly the case. However, probability spaces of this form are commonly the
outcome of a review process intended to assess the epistemic uncertainty associated with a quantity
used as an input to a complex analysis with m,, (X;) equal to the assessed probability that the set

X contains the correct value for the quantity under consideration. The evidence space (X,X,m, )

derives from the probability space (Xp,X,,mpy ) through the definitions
X = U;Xi, X={X,4&,,...&)}, my(X,)=mpy(X;) for i=12,...,n (2.67)

and the introduction of belief and plausibility to measure the implications of (i) the probabilities
my (X;) = mpy (X,) assigned to the individual sets X|,X,,..., X, and (ii) the extent to which these

sets intersect subsets of X that are important to the analysis being performed.

2.4 Functions Defined on Evidence Spaces

A common and important analysis situation involves (i) an evidence space (X,X,m, ), (ii) a
function f(x) defined for x € X’ that maps X into the set

YV={y:y=f(x)forxe X}, (2.68)

(i11) a subset S of )V of particular interest, and (iv) a desire to know the belief Bel(S) and
plausibility P/(S) for S that derives from the evidence space (X,X,m, ) and the function f(x)
. There are two approaches to obtaining Bel(S) and PI(S), with both approaches producing the
same value for Bel(S) and PI(S). Both approaches are based on the assumption that the belief

and plausibility for a set of function evaluations should be the same as the belief and plausibility
for the subset of the function’s domain that results in these evaluations.

The first approach (i.e., Approach 1) involves using the function f(x)to map (X,X,m, ) into

anew evidence space (), Y,m, ) with each focal element )} and associated BPA m, (J]) defined
by

V=f(X)={y:y=f(x) forxeX,} with my(]))=m, (X)) (2.69)

for X={X,i=1,2,..,nX}. Once the new evidence space (),Y,m,) is defined, Bel(S) and
PI(S) can be determined as shown in Egs. (2.7) and (2.8).

The second approach (i.e., Approach 2) involves using the inverse of the function f(x) to map
S into the subset X of X defined by
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/'\,’S={x:xeXandf(x)eS}:{x:xeffl(S)}. (2.70)
Then, Bel(S) and PI(S) are defined by
Bel(S) = Bel(Xg) and PI(S) = PI(Xy) (2.71)
with Bel(X) and PI(X) defined with respect to the original evidence space (X,X,m, ).

In the following, Approaches 1 and 2 are illustrated with (i) the evidence space (7, Ty, m;; )

for link failure temperatures summarized in Fig. 2.1 and (ii) a notional link with time-dependent
temperature defined by

LT,

M= T @ —1)exn(rt)

(2.72)

with 0<¢#<200 min, 7(0)=17, =225°C, T, =900 °C, and r=0.022 (see Fig. 2.3). The
function f(7) is defined by

f(T)= time ¢ at which link fails for failure temperature 7'
=1/r)Yn[T\(T, -T)/T(T, —T,)] for 450<T <900 °C (2.73)
¢, for 900 °C < T,

o0

with the symbolic term 7 introduced as a way to record that the link does not fail for 900 °C < T
(see Fig. 2.3).

31



1000 . ' ’
900 | A |
75 = [800, 950 -
- o
800 L § 1
- X ~ [t, T(¢)]
S 700t . 1
v 7
S 600 f Ty = [450,750] ¢ 1
g- v
= 4
— 500 F ’ 1
% 4
e S A——
400 | Pad |
¢ J(T5) =
< F(T7) = [49.9,123)] [144.5,200] U {to
0 it
< > <>
"4
200 : ‘
0 50 100 150 200

t: Time (min)

Fig. 2.3 Components of example used to illustrate the determination of belief and plausibility for
subsets of the range of a function: (i) time-dependent link temperature 7(¢) defined in Eq. (2.72)
and (i1) function f(7T) defined in Eq. (2.73) mapping link temperature to link failure time.

For Approach 1, a new evidence space (ZM, TM,my,,) for link failure time with “TM” used
as a mnemonic for time is obtained from (i) the evidence space (7,T,m;) and (ii) the function
f(T) with resultant values of

TM=f(T)={t:t=f(T)forTeT}={:18<t <110} Ut }, (2.74)
T™ = {TM,, TM, , TM;, TM,, TM,}, (2.75)
and
TM, = £(T,) =[49.9,123.1] with my,, (TM,) =m;(T;)=1/10 for i=1
TM, = f(7,) =[70.5,93.4] with my, (TM,)=m;(T,)=1/5 for i=2
TM, ={TM, = £(T;) =[81.4,106.9] with my, (TM;) =m,(T;)=2/5 for i=3 (2.76)

TM, = £(T,) =[93.4,178.7] with my,, (TM,)=m,(T,)=1/5 for i=4
TM, = f(T;) =[144.5,200]U {t,} with mpy, (TM) = my(T5) =1/10 for i=5.
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As illustrated in Fig. 2.3, the focal element 7, =[7,,;,T,,. ;] of the evidence space (7,T,m;) is

mn,i > mx,i

transformed into the focal element
TM = [f(Tmn,i)’ f(me,i )] = [tmn,itmx,i] (277)

of the evidence space (ZM,TM,m;,)for i=1,2,3,4. Specifically, this transformation
corresponds to drawing horizontal lines from 7, . and 7

mn,i mx,i

on the ordinate of Fig. 2.3 to the curve

and ¢

T(¢) and then drawing vertical lines to the abscissa to obtain ¢ i+ Lhe construction of

mn,i

TM; is similar but slightly more complicated due to the need to include 7, to account for
nonfailures for 900 °C<T'.

Once the evidence space (7ZM,TM, my,, ) is constructed, belief and plausibility for subsets of

TM can be obtained as shown in Egs. (2.9) and (2.10). As an example, belief and plausibility for
the set

FTM= {t : link potentially fails at time 7}

={r:49.9 <t <200} (2.78)
=[49.9,200]
are used for illustration. Specifically,
Bel(FIM) = > My, (TM,)
TM;eTM and TM,c FIM
= mpy (TM) + mpy (TMy) + mpy (TMy) + myy, (TM,) (2.79)
=0.140.2+0.4+0.2

=0.9

results because (i) ZM,,7M,,7M,; and TM, are subsets of FZM and (ii) ZM; is not a subset
of FIM due to the inclusion of ¢, in 7M. Similarly,

PI(FTM) = > My, (TM)

TM,eTM and @=TM,NFTM

5
=y (TM) (2.80)
i=1

=0.1+02+04+0.2+0.1
=1.0

as consequence of every focal element intersecting F7 M.
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For Approach 2, the belief and plausibility of a subset S of 7M are obtained by mapping S
back to the set 7 of temperature values that resulted in failure times in S . Specifically,

To=f'(S)=T(S)={T:T=T(t) fort € S} (2.81)
in consistency with the definitions of f{7) and 7(¢) in Egs. (2.73) and (2.72) Then,
Bel(S) = Bel(Ty) and PI(S) = Pl(7). (2.82)

The set FTM =[49.9,200] of possible failure times is again used as an example and results in
the set

Tomy = f N(FIM) = T(FIM) ={T : T =T(t) for t € FTM} =[450,900 °C].  (2.83)

In turn,

Bel(FIM) = Bel(1 zry, )
= Z my(7;)

T,eT and T, Trpy
=my (1)) +my (1)) + my(T3) + my(7,) (2.84)
=0.1+02+04+0.2
=0.9

because (i) 7,,7,,7; and 7, are subsets of 7, =[450,900 °C] and (ii) 75 =[800,950 °C] is
not a subset of F7 . Similarly,

PUFIM) = Pl(Tpry,)
= Z my (7;)

T;€T and @=T,"Tppy,
5
= ZmT (7)) (2.85)
i=1

=0.1+02+04+0.2+0.1
=1.0

as consequence of every focal element intersecting 7y, -

Both approaches when implemented correctly produce the same values for belief and
plausibility as illustrated for Bel/(F7M) and PI(FIM). Which approach is easiest to use in

practice can depend on the properties of individual problems.
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Once either Approach 1 or Approach 2 has been used to obtain beliefs and plausibilities for
subsets of the set ) indicated in Eq. (2.68), the CBF, CPF, CCBF and CCPF for the function

evaluations contained in ) can be defined as described in Sect. 2.3. As an example, the CBF,
CPF, CCBF and CCPF for the link failure times contained in the set FZM defined in Eq. (2.78)
are shown in Fig. 2.4 and derive from the evidence space (7,T,m;,) summarized in Fig. 2.1 and

the function 7'(¢) defined in Eq. (2.72) and illustrated in Fig. 2.3.

2
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- . CPE P
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I & o]
= 8 *°/ ¥ cBr
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Fig. 2.4 Tllustration of the CBF, CPF, CCBF and CCPF for the link failure times contained in the
set FIM defined in Eq. (2.78), with the associated beliefs and plausibilities deriving from the
evidence space (7,T,m;) summarized in Fig. 2.1 and the function 7'(¢) defined in Eq. (2.72)

and illustrated in Fig. 2.3.

Further, the CBF, CPF, CCBF and CCPF in Fig. 2.4 are formally defined by
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CBF(f) = Bel{[49.9,¢]} for 49.9 < <200

0 for 49.9<7<93.4
My (TMy) = 0.2 for 93.4<t<106.9

2.86
=437 iy (TM) = 0.6 for 106.9 <7 <123.1 (2.86)

37 gy (TM) =0.7 for 123.1<1<178.7

>y (TAM) = 0.9 for 178.7 <1 <200,

CPF(f) = PI{[49.9,1]} for 49.9 <7 <200

mp, (TM,) =0.1 for 49.9<¢<70.5
> iy (TM)=0.3 for 70.5< <81.4
=13 iy (TM)=0.7 for 81.4<1<93.4 (2.87)

S iy (TM) = 0.9 for 93.4<1<144.5

> iy (TM) =1.0 for 144.5 <1 <200,

CCBF (1) = Bel{(1,200]} for 49.9 <1 <200
> iy (TM)=0.8 for 49.9<7<70.5
S iy (TM)=0.6 for 70.5<1<81.4 (2.88)

Sy (TM) =02 for 81.4<1<144.5
0 for 144.5<¢<200

and

CCPF (1) = PI{(t,200]} for 49.9 <t <200
> iy (TM)=1.0 for 49.9<1<93.4
> mp (TM)=0.8 for 93.4<t<106.9

i=1,i#2

2.
= mrM(TM)+Zf:4mTM(TM)=O.4 for 106.9 <r<123.1 (2.89)

>y (TM)=0.3 for 123.1<7<178.7
My (TM;) = 0. 1 for 178.7 < ¢ < 200.
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The illustrations in Egs. (2.86)-(2.89) stop at # =200 min because (i) the example calculation ends
at = 200 min and (ii) #,, = is a place holder indicating that link failure did not occur. The

included and excluded points associated with the inequalities in Egs. (2.86)-(2.89) are indicated in
Fig. 2.4 by solid and open circles.

As described in conjunction with Egs. (2.13)-(2.15), a probability space (X,,X,,mp)
consistent with an evidence space (X,X,m, ) can be obtained by defining the density function
d(x) for the probability space in a manner that incorporates the focal element BPAs associated
with the evidence space. When this is done and a real-valued function f(x) is defined for x € X
with the resultant set ) of function evaluations, then (i) the CDF associated with f(x) falls
between the CPF and CBF associated with f(x) and (ii) the CCDF associated with f(x) falls
between the CCBF and CCPF associated with f'(x). Specifically, if ye Y =[y,,.V,,], then

i | _[ritfe<y
CDF(y) = L« o,[f(0]d(x)dx with &,[f(x)]= {0 otherwise, (2.90)
S L= rif y< f(x)
CCDF(y) = IXE o,[f(0)]d(x)dx with & [f(x)]= {O otherwise, (2.91)
Bel([y,,,y]) < CDF(y) = _[ LS L (0)]d(x)dx < PI([y,,,»]) (2.92)
and
Bel((y,y,,]) < CCDF(y) = I 5 5,1/ (01d(x)dx < PIU((Y, Yy D- (2.93)

The relations in Egs. (2.90)-(2.93) also hold if Y =[y,,,,,] is a subset of f(X). For
computational implementation, CDF(y) and CCDF(y) can be approximated by

nR nR

CDF(y)=Y 5,[f(x,)]/nR and CDF(y)=Y» 5,[f(x,)]/nR (2.94)
r=1 r=l

where x,,x,,...,x,, is arandom sample from X generated in consistency with the density function
d(x).

As an example, the CDF and CCDF for the link failure times contained in the set FZM
defined in Eq. (2.78) are shown in Fig. 2.4 in addition to the corresponding CBF, CPF, CCBF and
CCPF. The indicated CDF and CCDF are (i) defined with the density function d(7) in Eq. (2.18)

to produce a probability space consistent with the evidence space (7, T, m; ) and (ii) approximated

as indicated in Eq. (2.94) with a random sample of size nR =10". As should be the case, the
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resultant CDF falls between the corresponding CBF and CPF, and the resultant CCDF falls
between the corresponding CCBF and CCPF.

2.5 Maximum Time for Link Failure

For a failure temperature focal element 7; and corresponding failure time focal element 7M,
, the maximum time 7, at which link failure actually occurs may not be the same as the maximum
time 7 contained in 7M. due to the possible inclusion of 7, = in 7ZM to indicate that link
failure did not occur for one or more of the link failure times in 7; . For example, this is the case
for focal elements 75 and 7M., in Fig. 2.3, with (i) with the maximum link failure time contained
in 7ZM; defined by 7.5 = 200 min and (ii) the maximum time contained in ZM; defined by 7. =
. The indicator # =oo is included in 7M; to signify that some of the failure temperatures

contained in 75 did not result in link failure.

If (i) the link temperature function 7'(¢) is continuous and increasing on [¢,,,t, ], (ii)

T={T:T<T<T} with T<T is a focal element for link failure temperature, and (iii)

T(,,)<T<T(t,,), then the maximum link failure temperature 7. associated with 7'(¢) and T
is defined by

-1 ,/7 'l
. :{T (T) for T <T(t,,) (2.95)

"t for T(t, ) <T.

Without the requirement T <T7(z,,.), there is no link failure and the focal element for link failure
time contains only the indicator time ¢, = o (i.e., 7M = {t_} = {oo}). Further, if T =T7(¢,,.), then

the corresponding focal element for link failure time is ZM = {¢, , o0} .

mx?

As an example, the link failure time focal elements 7,,i =1,2,...,5, defined in Fig. 2.1 and the

functions 7(¢) and f(T)=T""(T) defined in Egs. (2.72) and (2.73) result in the following values
for t4,,i=1,2,...,5:

T =T (750) = £(750) =123.1 for 750 =T, <868.0 = T(z,, ) = T(200)
Ty = T7'(650) = £(650)=93.4 for 650 =T, <868.0 = T(z,,) = T(200)
T =415 = T71(700) = £(700)=106.9 for 700 =T, <868.0 = T(t,, ) = T(200) (2.96)
Try = T7'(850) = £(850) =178.7 for 850 =T, < 868.0 = T(z,,) = T(200)
fps =y, =200 for 868.0 = T(t,,.) = T(200) < T; =950

with 7;,i =1,2,3,4, defined as indicated in the first line of Eq. (2.95) and 7. defined as indicated
in the second line of Eq. (2.95).
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In words for the link failure temperature focal element 7, = [Z,Y_]] =[450,750°C], the first
line in Eq. (2.96) indicates that (i) 7_"1 results in link failure before the end of the calculation at time
t,, =200min (i.e., in math: 750°C = 7_“1 <868.0°C =T1(t,,) = T(200min) ) and (i1) as a result, the
last time at which link failure can occur for focal element 7, is the time at which link failure
occurs at the temperature 7, = 750°C (i.e., in math: 7,, = T7'(750°C) = f(750°C) =123.1min ).
The representations for 7, , f5; and 7, in lines 2, 3 and 4 of Eq. (2.96) are defined in the manner.
In contrast, line 5 in Eq. (2.96) for link failure temperature focal element
T, =[T;,T;]1=[800,950°C] indicates that (i) 75 =950°C does not result in link failure prior to
t,e =200min (i.e., in math: 868.0°C =7(t,,) =7(200min) < 7_"5 =950°C) and (ii) as a result,
t,. =200min is the last time at which a link failure temperature in 7 can result in link failure
(i.e., in math: 7,5 =¢, =200min). As a reminder, the representations for 7,;,i =1,2,3,4,5, in Eq.
(2.96) are predicated on the assumption that 7(¢) is a continuous, increasing function.

The graphical determination of 7., and . is illustrated in Fig. 2.3. Further, the set of actual
link failure times is the closed interval [¢,7.], where t =T ! (T) is the earliest time at which link
failure can occur provided (i) the link temperature function 7'(¢) is continuous and increasing on
(£t ], (i) the focal element 7=[T ,T] for link failure time is a closed interval, and (ii)
T, )<T<T(t, ). Intervals of the form [¢,7.] are illustrated in Fig. 2.3 and Eq. (2.76).

The definition of the maximum link failure time 7. in Eq. (2.95) is predicated on the
assumptions that (i) the link temperature function 7'(¢) is continuous and increasing on [¢,,,,%, ],
(i) 7={T:T<T<T} with T<T is a focal element for link failure temperature, and (iii)
1(t,,)<T<T(,,). If the preceding assumptions are modified by eliminating the requirement

that 7'(¢) is increasing on [

mn? tmx ]

, then the definition for 7. becomes

ot Jand £ =T (T)}

if T<max{T:telt,, . t, Jand T =T(t)}
e = _ (2.97)
min{t:t €[t,,,t, Jand t = T (T,)}

if T, =max{T:te[t, t, ]and T =T(t)}<T.

mn?> “mx

min{¢:t €[t

2.6 Product Evidence Spaces

The definition of an evidence space allows for a variety of possibilities for what the elements
of the sample space could be. However, the two most widely-employed possibilities are probably
sample spaces consisting of real numbers or vectors of real numbers. Further, evidence spaces
involving vectors of real numbers are often developed from multiple evidence spaces involving
real numbers. This situation arises when n evidence spaces
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(X, X,y )i =1,2,m, with X, = (X, =1,2,..,nX,} (2.98)

l
are known and need to be combined into a single evidence space. Provided no correlations or other

relationships exist between the individual evidence spaces, this combining of evidence spaces can
be performed to produce a product evidence space (X, X ,m ) with

X=X xX, x--xX,

) (2.99)
={X:X=[x,%,...x,] with x, e X},x, eX,,....x, € X},
I=1,xI,x---xZ with Z, ={1,2,...,nX,} for i=1,2,...,n,
Co L e . . (2.100)
={j :1=[hsJ2s--Jp] With j, €1y, j, €1,,..., j, € T, },
X={&:4 =X1J.1 xijz X"'Xann for | =[Jysfasmes j, 1€ LF; (2.101)

and

My (A7) = my (X )Xy, (A )X xmy, (X, ) for j=[ji, /2> /] €Z. (2.102)

In the preceding, the set Z of integer vectors of the form j=[j, j,,...,j,] is used to define all

possible combinations of the focal elements associated with the individual evidence spaces.
Further, the product definition for my (A}) in Eq. (2.102) is predicated on the assumption that

there are no correlations or other relationships between the individual evidence spaces.
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3. Representation of LOAS with Evidence Theory fora1 WL and 1 SL
System

3.1 Belief and Plausibility for the Occurrence of LOAS

For simplicity of explanation and illustration, this section describes the use of evidence theory
to characterize the potential occurrence of LOAS for a WL/SL system with 1 WL and 1 SL. For a
1 WL and 1 SL system, LOAS corresponds to the failure of the SL before failure of the WL. More
complex systems will be considered in later sections.

An evidence space (7y,;, Ty, ,my; ) for WL failure temperature 7j, is introduced and
defined by

TWL =[450,950 °C], TWL = {TWL,laTWL,zaTWL,3}a (3.1)
Ty, =[450,650 °Cl, 7y, , =[550,850 °C], 7y, 5 =[750,950 °C], (3.2)

and
My 7 (TWL,I) = 0'5>mWL,T (TWL,Z) = 0'3:mWL,T (TWL,3) =0.2. (3.3)

Similarly, an evidence space (7g;,Ts; ,mg ) for SL failure temperature T, is introduced and
defined by

Ty, =[600,1050 °C], Ty, = {TSL,laTSL,pTSL,s}s (3.4)
T, =[600,850 °C],7g; , =[700,1000 °C], 7, ; =[950,1050 °C], (3.5)

and
Mgy v (TSL,l) =0.2, Mgy 1 (TSL,z) =0.3, Mg v (TSL,3) =0.5. (3.6)

An example with small numbers of focal elements for the evidence spaces (7y; , Ty, ,my; ;) and
(75, T, ,mg; 1) is chosen so that the resultant product space (ZM,TM,my,) for link failure

time will have a sufficiently small number of focal elements (i.e., 9) to permit a display and
discussion of all focal elements for this evidence space.

As in Eq. (2.72), time-dependent link temperatures are defined by (i)

Ty, (t) = WL temperature in °C at time ¢
B I,T, 3.7)
T + (T, - T)exp(-11)
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with 7(0) =T, =225 °C, T,, =1000 °C, and » =0.065, and (ii)

with 7'(0) =7, =225 °C, T, =1100 °C, and r =0.08 (see Fig. 3.1).

Fig. 3.1 Time dependent link temperatures for example link system with 1 WL and 1 SL.
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(3.8)

To assess the uncertainty associated with the potential occurrence of LOAS, it is necessary to

know the potential times at which the individual links fail and the uncertainty associated with these
times. As described for Approach 1 in Sect. 2.4, this can be accomplished by using the function
f(T) defined in Eq. (2.73) to map the evidence spaces (7y; , Ty, ,my; ) and (7, , T, ,mg; ;) for

link failure temperatures into evidence spaces (M, , M, ,my; ) and (TMs, , TM; ,mg ,)

for link failure times 7, and f; . Specifically, (7M,; ,TMy, ,my, ,) is defined by

and

TMWL =[15,65 min], TM[WL = {TA/IVVL,lsTMWL,zaTMWL,3}a

TMWL i

TMy,, = f(Ty, ;) =[15,28 min] for i=1
TMy; > = f(Tyy,) =[22,45 min] for i=2
TMy, 5 = f(Ty,5) =[36,65 min] for i=3,
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mWL,t (TMWL,I') = mWL’T (TWL,I) =0.5 for i=1
My, 4 (T'A/lWL,i) =My (TMWL,z) =My r (TWL,Z) =0.3 for i=2
My (TMy; 3) =my; +(Ty; 3) =02 for i=3.

Similarly, (ZMs, ,TM; ,mg; ,) is defined by
TMSL = [19, 55 1’1’111’1], TMSL = {TMSL,I 5 TMSL,Z N TMSL,3 },

TMg ;= f(Tg,) =[19,33 min] for i=1
Mg ; =1TMg 5, = f(Tg, ) =[24,46 min] for i=2
TMy; 5 = (T 5) =[40,55 min] for i=3,

and

mSL,t (TMSL,i) = mSL,T (/]TS‘L,I) =0.2 for i=1
mg (TMgp ;) = mgp  (TMg; 5) =mg (T ,) =03 for i =2
mSL,t (TMSL,?)) = mSL,T (,]TS‘LJ) =0.5 for i =3.

3.11)

(3.12)

(3.13)

(3.14)

As examples, resultant focal elements My, |, TMy, 5, TM, | and TM, ; for the evidence

spaces (TMy, , TM,; ,my; ) and (TMy; , TM; ,mg; ;) are illustrated in Fig. 3.2.

1200 - 1200 ,
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1000 | - === __ 1000 -§Tszﬂ:s )
| &) e &)
3—‘ 7—”'12.1! s L’ 4
o 800 ’ o 800 I Tsra ¢
= 1 S ’
-~ -~
e L f
o 600 Pry.. ¢ 5 600 .
Q V4 Q.
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@ 400 @ 400 ¢ lI
=~ =~ | o
200f ] - 200 { i B I
WL3 = =
< "l WL I‘H’ < i > SL
0 : 0 .
0 50 100 0 50
t: Time (min) t : Time (min)

Fig. 3.2 Illustration of focal elements TMy,; |, TMy; 5, TMy, ; and TM;, ; for the evidence

spaces (TMy, , TM,,, ,my; ,) and (TMg,, TMg, ,mg ).
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Assessing the occurrence of LOAS involves determining belief and plausibility for the set
LAty tyr)  ty € TMy tyy € TMy ty <ty }- (3.15)

In turn, this determination requires the introduction of the product evidence space
(TM,TM, my,, ) that results from combining the evidence spaces (7My,; , TMy,; ,my, ) and

(TMg, , TM; ,mg; ;) . Specifically, (ZM, TM, my, ) is defined by
TM =TM,, xTM,, = {t:t=(ty .1, ) <[19,55 min]x[15,65 min]}, (3.16)
TM = {TM, = TMy, , x TMy, ; for (i, j)} € {1,2,3} x {1,2,3}}, (3.17)
and

My (TM-J') =mg (TMSL,i)mWL,z (TMWL,j) for (i, j)} € {1,2,3} x {1,2,3}. (3.18)

The resultant focal elements and associated BPAs for the evidence space (7ZM,TM,m,,,) are
illustrated in Fig. 3.3.
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Fig. 3.3 Illustration of focal elements 7M; and associated BPAs for the evidence space

(7M,TM, my,, ) with the number inside the boundaries of each focal element equal to the BPA

for that focal element (e.g., my,

(TMy3) = Mg 4 (TMSL,Z )mWL,t (TMWL,3) =0.3x0.2=10.06).
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The diagonal line in Fig. 3.3 corresponds to #,, =t . As a consequence of Fig. 3.3 7
representing #;, on the ordinate and on the abscissa, (i) the inequality #,, >, holds for any point
(tg -ty ) above the indicated line t,;, =t , and (ii) the set £ defined in Eq. (3.15) corresponding

to the occurrence of LOAS is equal to the intersection of 7ZM with the points above the line
ty, =tg . Thus, a focal element that is located entirely above the line #,, =t¢ is a subset of L,

and a focal element that intersects the region above the line f,, = f, also intersects L. Given the
preceding,

Bel(L)="Y myyy (TM,) = mp, (TM;) = 0.04 (3.19)
TM;cL

as aresult of 7M,; being the only focal element that is a subset of £ as indicated by 7M,; being

the only focal element this located entirely above the line #,, =ty . Similarly,

PIL)= 3, mpy (TM;)

TM, LD
= mpy (TMy) + mpy (TMyy) + mgy (TMy3) + mgy (TM,)

+mpy (TMyy) + mypy (TMys) + mpy (TMay) + myy, (TM;) (3.20)
=0.140.06+0.04+0.15+0.09+0.06 +0.15+0.1
=0.75

as a result of all focal elements except 7M;, intersecting £ as indicated by 7M,, being the only

focal element that does not intersect the region above the line #,, =t .

This example is defined for ease of presentation with (i) three focal elements for the evidence
spaces (7, Ty ,my; ) and (7, Ty ,mg ) and (ii) a resultant nine focal elements for the

evidence space (ZM,TM,m;,,). The ease of visual inspection as done with Fig. 3.3 is greatly
diminished when (7y,; , Ty, ,my; 1) and (7g;, T, ,mg ) have a large number of focal elements.
For example, if (7, Ty, ,my; ) and (7 ,Tg ,mg ) each have 50 focal elements, then
(TM,TM, my,, ) will have 2500 focal elements. Fortunately, a computationally simple procedure
can be defined to determine Bel(L) and PI(L) when (7, , Ty, ,my,; ;) and (T, Ty ,mg )

have a large number of intervals as focal elements.

To illustrate this procedure, it is assumed that (i) (7, Ty, ,my; ) and (7, , T, ,mg; ) have

nWL and nSL interval-valued focal elements, (ii)

(WL

'mn, j >

WLy ;1,j =12,..,nWL, and [tSL

mn,i >

1SL,. 1,i =1,2,...,nSL, (3.21)
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are the resultant focal elements for the evidence spaces (7My,,TMy, ,my, ) and
(TMg , TM; ,mg; ,) for link failure times #,, and £ , and (iii) the sets

TM; =[sSL

'mn,i °

1L, VX [tWL,,, (WL

mx, j

] for (i, /) € {1,2,...nSLY x{1,2,...nWL} (3.22)

mn, j >

are the resultant focal elements for the evidence space (7ZM, TM, m;,, ) . With respect to notation,

the use of 7 and ; is defined so that i corresponds to values associated with the abscissa in Fig. 3.3
and j corresponds to values associated with the ordinate in Fig. 3.3.

The focal element 7M; =[zSL

located above the line 7, =t only if

SL,,., 1 [WL

'mn, j >

tWL

- j] of WL and SL failure times is

'mn,i °

1L, < tWL (3.23)

mn, j

as illustrated by 7M,; in Fig. 3.3. As a consequence of this property, Bel(L) is given by the

summation
nSL nWL
Bel(L)=" D, mp (TMy) =2 > 8 (TM;)mypy, (TM;) (3.24)
TM;cL i=1 j=1
with
. (A L if 5L, <tWL,, 2,95
g 77710 otherwise. '
Similarly, 7M; intersects the region above the line 7, = fg only if
tSL,,, ; <tWL,, ; (3.20)

as illustrated by TM,;,TM,,,TM,5,TM,,, TM,,, TM,;,TM,, and TM,; in Fig. 3.3. As a

consequence of this property, P/(L) is given by the summation

nSL nWL

PILY=" D my (TMy) =2 Sp(TM)my, (TM;) (3.27)
D#TM;NL i=l j=1
with
1 if ¢SL,,; <tWL,. ;
8p(TM;) = ! (3.28)
0 otherwise.
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As illustrated in Fig. 3.4, a link temperature function 7'(¢#) does not have to be strictly
increasing for the relationships defining Bel/(£) and PI(L) in Egs. (3.23)-(3.28) to be valid. In
this example, (i) 7; =[500,900 °C] is a focal element for an evidence space (7,T,m;) for link
failure temperature, (ii) 7'(¢) is a continuous nonlinear function of time defining link temperature,
(iii) link failure occurs when link temperature reaches link failure temperature, and (iv) 7M, is

the resultant focal element for the evidence space (7M,TM, my,,) for link failure time with
IM. =TM, TM, =[20,40 min] U (60,86 min]. (3.29)
In turn, if 7M, is a focal element in an analysis of the form in Egs. (3.23)-(3.28), the times
tyn; =min{t:t e TM} and ¢, ; =max{t:t e TM;} (3.30)

are used in the same manner in the calculation of Be/(L) and PI(L) as would be the case if they
were the endpoints of a closed interval [¢, .7, . ].

mn,i®“mn,i

1000 . : .
900 —_—

800 T(t) —> 1
700 o .

600 1

e

500 1

400 | 1

T : Temperature (°C)

300 [ T

200 1
TMi T M
<—> €<——

100

0 20 40 60 80 100
t: Time (min)

Fig. 3.4 Example of focal element definition for link failure time with link temperature a
continuous nonlinear function of time.

3.2 Cumulative and Complementary Cumulative Representations of Belief and
Plausibility for the Occurrence of LOAS

Cumulative and complementary cumulative representations of belief and plausibility for
LOAS occurrence time are considered first. The starting point for this representation is the
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evidence space (7ZM,TM,my,) for link failure time defined in Egs. (3.16)-(3.18). For
(tg -ty ) € TM , LOAS occurrence time is defined by

ty for ty <ty

TML(tSLatWL):{OO for +.. <t (3.31)
wr =t

In turn, the evidence space (ZML,TML,my,, ) for LOAS occurrence time is defined by

TML={t:t =TML(tg; .ty ) for (tg ,t,,) e TM;}, (3.32)
TML; =it :t =TML(tg; .ty ) for (tg,ty;) € TM;}, (3.33)
TML={TML; : (i, j) € {1,2,3} x {1,2,3}}, (3.34)

mpyg (TML;) = mpy, (TM), (3.35)

with

o for f; ; <ty

t; =lower bound for TML; = { (3.36)

Lo for fg; <ty ;.

o for ty, . <ftg.
t,; = upper bound for TML; = {_ . (3.37)
‘ ' to; for tg ; <ty ;-

Given the evidence space (ZML,TML,m;,, ) and the associated focal element bounds

_ti'

and 7,

LOAS occurrence time can be determined as described in Sect. 2.3 and illustrated in Fig. 3.5.

cumulative and complementary cumulative representations of belief and plausibility for
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Fig. 3.5 Cumulative and complementary cumulative representations of belief and plausibility for
LOAS occurrence time for the evidence space (ZML,TMIL,m;,, ) defined in Egs. (3.32)-(3.35)

fora 1 WL, 1 SL system.

Cumulative and complementary cumulative representations of belief and plausibility for
LOAS occurrence time margins are now considered. As before, the starting point for this
representation is the evidence space (ZM,TM,m,,) for link failure time defined in Egs. (3.16)-

(3.18). For (¢, ,t,, ) € M, LOAS occurrence time margin is defined by

—oo for tg < oo, ty,; =
MTM (ty ,ty; ) =1ty —ty; for max{ty by, } <o (3.38)

oo for ty; <ty =oo.

In turn, the evidence space (M7ZM, MTM, m,,,,) for LOAS occurrence time is defined by
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MTIM={t:t = MTM(tg .ty ) for (tg .ty ) e TM;}, (3.39)

MTIM; =1t :1=MTM (L5, tyy ) Tor (tg,ty;) € TM;}, (3.40)
MTM= {M’T/\/Iij (6, ) e{1,2,3} x {1,2,3}}, (3.41)
Mygryg (MTM) = mpy (TM;), (3.42)

with

—oo for f,; ;= and fg; <o
t; =lower bound for MTM; = {tg; — 1ty ; for max{tg ;,ty; ;} <o (3.43)

o for tg ;, =oo,

—oo for f; ; = and {5 ; <o

7

; = upper bound for MTM; = (%5, — by, ; for max{tg ; ty, ;} <o (3.44)

o for £y ; =oo.

Given the evidence space (M7M,MTM, m,,,) and the associated focal element bounds ;

and 7,

LOAS occurrence time margins can be determined as described in Sect. 2.3 and illustrated in Fig.
3.3,

cumulative and complementary cumulative representations of belief and plausibility for
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Fig. 3.6 Cumulative and complementary cumulative representations of belief and plausibility for
LOAS occurrence time margins for the evidence space (M7ZM,MTM,m,,,,) defined in Egs.

(3.39)-(3.42) fora 1 WL, 1 SL system
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4. Example Links Used for lllustration

The developments in the following sections of this report consider systems involving a variety
of combinations of WLs and SLs. The purpose of this section is to define and illustrate 2 SLs and
2 WLs that will be used for examples involving (i) 2 SLs and 1 WL, (ii) 2 SLs, (iii) 2 WLs, and
(iv) 2 SLs and 2 WLs. For convenience, the 2 SLs will be referred to as SL 1 and SL 2, and the 2
WLs will be referred to as WL 1 and WL 2.

The following entities underlie the results presented in later sections: (i) evidence spaces
(71, Ty ,mg ) and (7,5, T, ,,mg ,) with nSL1 and nSL2 focal elements for SL 1 and SL 2

failure temperatures, (ii) evidence spaces (7, Ty M) and (Zy; 5, Ty oMy ,) With nWLI1
and nWL2 focal elements for WL 1 and WL 2 failure temperatures, and (iii) functions Tg;,(?),
Tg (1), Ty (¢) and Ty, (¢) that define time-dependent link temperatures for SL 1, SL 2. WL 1

and WL 2. In turn, the indicated evidence spaces and link temperature functions result in
corresponding evidence spaces (TMgyy, TM gy, g, ) (TMgy,, TMg; 5 ,mg5 ),

(TMyyy, Ty gy ) and (TMy; o, Ty, 5, my,; 5 ) for link failure times as discussed in Sect.
3 with:

(i) properties of (ZMg;,,TMg;,,mg,,) defined by
TMyyy; = Toh (T ) = {t 1 =T (T) = min{e : T =T, (0} for T e Ty}, (41)
M1 (TMgpy ) = mgpy (Tgpy) = mgy 5 (4.2)
(Lo Tsy1,) = (min(TMy, ), max(TMs, ) ), (4.3)
for Tg,; € Ty, TMg,; € TMg;, and i € {1,2,...,nSL1} = T,
(ii) properties of (7M;,, TM; ,,mg;, ) defined by
TMy, ;= Toh (Tg ) ={t 1t =Tgh (1) = min{t: T =T, ()} for T e Ty, |, (44)
M4 (TMgps ;) =mgy (Tg ;) = Mgy s (4.5)
(Lsin joTsi2 ;) = (min(TM,, ), max(TMy, ), (4.6)
for Tg, ; €Tgp, TMy, ; € TM, and je{l,2,..,nSL2} =T,

(iii) properties of (ZM;,, TM;,,my;, ) defined by
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TMyyii = Tyt (Tyg) = {6 =Tyl (1) = min{t : T =Ty (0)} for T Ty}, (A7)
Myyy 1 (T'A/lWLl,k) = My (TWLI,k) =My (4.8)
(Lypag- byug) = (min(TMy, ), max(TMy,, ), (4.9)
for Ty 14 € Ty TMyyp o € TMy,, and k €11,2,...,nWL1} = Ty, , and
(iv) properties of (M5, TMy;,,my;, ) defined by
TMigs i = Ts (T ) = {t it =Ty, (T) =minft : T =Ty, (1)} for T € Ty, } (4.10)
My (TMy20) = g0 (Tiy,) = My (4.11)
(Lo yrag) = (MIn(TMyy5 ) max(TMy;,))), (4.12)

for Ty10; € Ty TMyyy, € TMyy, and 1€ {1,2,..,nWL2} =Ty, .

With respect to notation, the min{~} condition in Egs.(4.1), (4.4), (4.7) and (4.10) is not
needed if the associated temperature function (i.e., Tg;,(?) , T, (¢), Ty, (¢) or Ty, (2)) is strictly

increasing. Also, the representations in Egs. (4.3), (4.6), (4.9) and (4.12) define the minimum and
maximum failure time values in the corresponding focal elements and are not intended to imply
that focal elements are intervals.

In the event that the evidence spaces (7, Tg; . mg1) » (Tg0,Tg0.mMg5) s Ty Ty Mypgy)
or (Zy;5,Ty;,,my;,) have focal elements that that do not always result in link failure, then the
corresponding focal elements for link failure time will include an indicator variable 7, as indicated
in Sect. 2.4. Conceptually, this inclusion occurs in Egs. (4.1), (4.4), (4.7) and (4.10) with an
assignment of ¢ _to T\ (T), Tg(T), Ty, (T) or Ty, ,(T) if the corresponding link does not fail
at temperature 7. The same numeric value is assumed to be used for all occurrences of 7. This is

important because LOAS occurs only if the SL system fails before WL system. Specifically, LOAS
is assumed to not occur if the SL system and the WL system fail at the same time. Thus, if values
for 7, occur in an analysis for both SL system failure time and WL system failure time, it is

important that 7, have the same the same value for both systems so that the equality of the assigned

values of 7 will indicate that LOAS does not occur.

54



For the present section (i.e., Sect. 4), the evidence spaces (7My,TMg;,,mg,,),
(TMy,, TMg; 5 ,mg; 5, ) and (TMy;, T, | ,myy;, ) for link failure time are combined to produce
the product evidence space (7ZM,TM, my,,) with

IM=TMg xTMg o x TMyy,, (4.13)
TM = {TMy; : (i, j,k) € I=1{1,2,...,nSL1} x{1,2,...,nSL2} x {1,2,...,nWL1} } (4.15)

and

mp (IMy ) =m (TMgom, (TMgp m (M) = my . (4.16)

SL2.t

Example links that will be used for illustration are defined and illustrated in Table 4.1 and Fig.
4.1.
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Table 4.1 Definition of 2 WLs and 2 SLs used for illustration.

Link Temperature Function

TOToo
Ty +(T, —Ty) exp(—rt)’

T@)= 0<¢<200 min

SL 1 Properties

Temperature Function T (1) : T(0) = Ty =100 °C,T,, =1100 °C, r = 0.04 min ™!
Failure Temperature Focal Elements: 7, | =[600,780 °C], 7, =[625,875 °C], Tg;; 5 =[675,840 °C],
TSL1,4 = [850, 975 OC], TSL],S =i [925, 1050 OC]

BPAs: mgy 1 (Ts11) =0.1,mgp1 (Zgp12) =0.1Lmgpy (Tg13) =0.2,mgp 1 (Tsp14) =0.2,mgpy (Tgpy5)=0.4
Failure Time Focal Elements: 7Mg; | =[62.12,79.84 min], TMg; , =[64.43,91.52 min],
TMyg;, 5 =[69.13,86.88 min], Mg, 4 =[88.16,108.9 min], TMs;, 5 =[99.19,133.7 min]

SL 2 Properties

Temperature Function Tg;, (1) : T(0) = T, =100 °C,T,, =950 °C, r = 0.045 min !
Failure Temperature Focal Elements: 7g; 5 | =[590,790 °C], T, , =[640,910 °C], 7, , 3 =[800,1000 °C],
Ts12.4 =[870,940 °Cl, Tgp 5 =[975,1175°C]

BPAs: mgy 5 (Ts121) =0.1,mgr0(Tgr02) =0.1,mg 0 (Tgp53) =0.4,mgr(Tgr54) =0.2,mgr5(Tg155) =0.2
Failure Time Focal Elements: 7Mg; , | =[58.54,83.04 min], 7TMg;, 5 =[63.67,117.0 min],

TMSL2,3 =[84.76,200 min]u tyo» TMSL2,4 =[100.6,148.5 min], TMSLZ,S =[tpals min] with o = 107

WL 1 Properties

Temperature Function Ty, (£) : T(0) = Ty =100 °C,T,, =1000 °C, r = 0.035 min "
Failure Temperature Focal Elements: Ty 1 =[500,700 “C], Ty, =[550,750 °C], Ty 5 =[650,860 °C],
TWL1,4 = [825, 1025 OC], TWLI,S = [880, 980 OC]

BPAs: my (Typy,1) = 0.4, myppy Ty 2) = 0.2, mypy (Typpy 3) = 0.2, mypy g (g 4) = 0.1, myyg g Ty 5) = 0.1
Failure Time Focal Elements: TMy;, | =[62.78,86.99 min], 7My; , =[68.51,94.17 min],

TMy13 =[80.47,114.6 min], TMy; 4 =[107.1,200 min]U#,,, TMy;, s =[119.7,174.0 min] with 7, =10’

WL 2 Properties

Temperature Function Ty, (¢) : T(0) =T, =100 °C,T,, =900 °C, r = 0.034 min~!
Failure Temperature Focal Elements: 7y 51 =[490,650 °C], Ty 5 5 =[525,725 °C], Ty 5 =[575,680 °C],
Tyia.a =[700,950 °Cl, Ty 5 5 =[775,875°C]

BPAs: my 5 (Tyypo,1) = 0.4, myyp o (Tyyp2.0) = 0.2, myyp o (T2 3) = 0.2, myyp o (Typp0,4) = 0.1, myyp o (T 2.5) = 0.1
Failure Time Focal Elements: TMy; 5 | =[66.40,89.26 min], 7M., , =[71.06,103.0 min],

TMyp23 =[77.94,94.35 min], TMy; 5 4 =[98.01,200 min] Uz, TMy; 5 s =[114.8,165.7 min] with ,, =10’
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Fig. 4.1 Temperature functions T, (¢), Ty, (), Ty, (¢t) and T),,(¢) defined in Table 4.1.

As an additional illustration, the CPF, CBF and CDF for the link failure temperatures defined
in Table 4.1 are shown in Fig. 4.2. The CPFs, CBFs and CDFs in Fig. 4.2 are generated in the
same manner as used to generate the CPF, CBF and CDF in Fig. 2.2. Specifically, the CPFs and
CBFs are generated with the computational procedure described in conjunction with Egs. (2.55)-
(2.57), and the CDFs are generated by assigning a uniform distribution to each failure temperature
focal element as described in conjunction with Egs. (2.16)-(2.21).
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Fig. 4.2 Summary CPFs, CBFs and CDFs for the link failure temperatures defined in Table 4.1:
(a)SL 1, (b) SL 2, (c) WL 1, and (d) WL 2.

The CPFs, CBFs and CDFs for the link failure times that result from the link failure
temperatures summarized in Table 4.1 and the link temperature functions defined in Table 4.1 and
illustrated in Fig. 4.1 are shown in Fig. 4.3. The CPFs and CBFs in Fig. 4.3 are constructed as
indicated in conjunction with Eqgs. (2.48)-(2.50) with the focal elements for link failure time
defined in Table 4.1.
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Fig. 4.3 Summary CPFs, CBFs and CDFs for the link failure times that result from the link
temperature functions defined in Table 1 and the link failure temperatures summarized in Table 1
and Fig. 4.2: (a) SL 1, (b) SL 2, (c) WL 1, and (d) WL 2.

There are two ways in which the CDFs in Fig. 4.3 can be constructed. One way is to (i) generate
a large random sample

T,i=1,2,..,nR, (4.17)

of link failure temperatures from the link failure temperature CDF for the link under consideration,
(i1) determine the link failure time #(7;) for each sampled failure temperature, and (iii) and

approximate the CDF by
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. 1R _ 1 for «(T}) <t
CDF (t) = prob(t <t) = Zét [¢(T)]/ nR with J,[«(T;)] = . (4.18)
P 0 otherwise.

For a link temperature curve 7(¢) defined in Table 4.1 and illustrated in Fig. 4.1,

(T) = {(—l/r)ln[To(ToO -T)/T.(T, -T,)] for T(0)<T, <T(200) @.19)
t, for T(200)<T;

o0

as indicated in Eq. (2.73). Another way to generate the CDFs in Fig. 4.3 is to define an appropriate
density function over the sample space for link failure time and then integrate this density function
to obtain the desired CDF. However, care is required with this approach to appropriately
incorporate (i) focal elements for link failure time that may not be closed intervals when the link
failure temperature curve is not increasing and (ii) nonzero probabilities associated with the place
holder times 7 used to indicate nonfailure of a link. The CDFs in Fig. 4.3 were generated with

the indicated sampling-based approach in Eqs. (4.17)-(4.19) with a sample of size nR =10°.

Evidence spaces (7Fg;, TF, sMgr1 ), (1Fg,, Ty, mSLZ,TF) s (TFypy, Ty mWLI,TF) and
(TFy12, Ty 5, My 5 1) for the actual temperatures at which SL 1, SL 2, WL 1 and WL 2 fail can

also be defined. These focal elements have a role in the determination evidence spaces for WL/SL
failure temperature margins in Sect. 12. As an example, the evidence space
(TFy11> Ty s myp yyy ) for the temperatures at which at which WL 1 fails is defined by the

following transformations of the evidence space (7M;,, TM;;,,my,;, ) for WL 1 failure times:

TFy ={T:T =Ty, () for t e TMy,,}, (4.20)

TFypp =T :T =Ty, (1) for t € TMy; ;s (4.21)

TFyp = T Fyp10-k =1,2,...,nWL1}, (4.22)

Mg iy (T ) = My (TMyy ) = myy (Tyy ) for k=1,2,..,nWLI, (4.23)

(TE i1 4> TF i) = (min(TfWLl,k ), max(TFy; )) = (TWLI (i) TWLl(t_WLl,k)) (4.24)
with
Ty, (t) = for t =00 (4.25)

corresponding to no link failure. The evidence spaces (7Fg, TF,mg, 1),

(TﬂLZ,TFSLz,mSLZ’TF), and(TFWLz,'IF]FWLz,mWLz’TF) are defined similarly through
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transformations of the evidence spaces (7My;;,TMy;,,mg;,,), (TMg,,TMg;,,mg;,,), and
(TMy2s Ty myp5,) -

The focal elements associated with the evidence spaces (7, TFg,,mg, ),

(T‘FSLz’TFSLZ’mSLz,TF) , (TH WLI’TFWLl’mWLl,TF) and (77, WL29TFWL2’mWL2,TF) for the example
links defined in Table 4.1 are summarized below:

(i) TFy;,, =[600,780°C], TFy;, , =[625,875°C], TFy,, 5 =[675,840°C],
TFy154 =[850,975°C], TFy, 5 =[925,1050°C] for (TFy,, TRy, mg, ).

(ii) g5, =[590,790°C], TFy;,, =[640,910°C], TFy,,, =[800,950°C]UT,
TFyp4 =[870,940°C], TFy, 5 =[T,,T,°C] with T, =0 for (TFy;,, TRy, mg 5 ).

(iii) Ty, =[500,700°C], TFy,, , =[550,750°C], TFy,, 5 = [650,860 °C],
TFyp4 =[825,1000°CIU T, , THy,, s =[880,980°C] for (%, Ty, myy, )

(v) THy;,, =[490,650 °C], TFy;,, =[525,725°C, 1Fy,5 =[575,680°C],
TFyr2.4 =[700,900°ClUT,, TFy;,5 =[775,875°C] for (TFyr2> Ty s My 5 1) -
Further, the CPFs, CBFs and CDFs for the actual link failure temperatures that result from the link
failure temperatures summarized in Table 4.1and the link temperature functions defined in Table

4.1 and illustrated in Fig. 4.1 are shown in Fig. 4.4. The CPFs, CBFs and CDFs in Fig. 4.4 are
constructed in the same manner as the CPFs, CBFs and CDFs in Fig. 4.3.
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5. Representation of LOAS with Evidence Theory for a WL-SL System with
2 SLs and 1 WL

The developments in this section are for a WL-SL system with 2 SLs and 1 WL. Two
possibilities for the definition of LOAS are considered: (i) failure of both SLs before failure of the
WL, and (ii) failure of either SL before failure of the WL.

5.1 LOAS Defined by Failure of Both SLs before failure of the WL

The occurrence of LOAS defined by the failure of both SLs before the failure of the WL is
considered in this section. Specifically, LOAS is assumed to occur for elements of the set

In turn, the belief Bel(L,) for the occurrence of LOAS is given by

nSL1nSL2 nWL1

Bel(L,) = Z mpy (IMy, ) = Z Z z S (TMy Imy, (5.2)
TMy £, =l j=1 k=l
with
1 for TM., < 1 for max{ty ., te, <1
Op (TMy) = ‘A/.’Uk c L _ ‘ {sr1iotsia i} < Lk (5.3)
0 otherwise 0 otherwise

defined to pick out the elements of TM that are subsets of £,. Similarly, the plausibility PI(L,)
for the occurrence of LOAS is given by

nSL1 nSL2 nWL1

PI(L) = Z My (TMy) = Z Z Z Sp (TMy Yy, (5.4)
D#TMy L i=l1 j=1 k=l
with
1 for G#TM, N 1 for max{¢t ¢, ,t A<t
S (TMy) = ‘ My N L, _ s Lsia b <twiig (5.5)
0 otherwise 0 otherwise

defined to pick out the elements of TM that intersect L.

As examples, the calculation of Bel(L,) and PI(L,) for the links defined in Table 4.1 and Fig.
4.1 yields the results
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1.600x10™> for SL 1,SL2, WL 1
Bel(L)) =
1.000x107% for SL 1, SL2, WL 2

(5.6)
1.602x107% for SL1,SL2, WL 1
1.005x107% for SL 1,SL 2, WL 2
and
4.880x107" for SL1,SL2, WL 1
PI(L) = »
5.360x107" for SL1,SL2, WL 2
(5.7)

~

4.881x107" for SL1,SL2, WL 1
5.361x107" for SL 1,SL2, WL 2

with (i) the values for Bel(L,) and PI(L,) in the initial equalities determined as indicated in Egs.
(5.2) and (5.4) and (ii) the values for Bel(L,) and PI(L,) in the following approximate equalities

determined in a sampling-based verification procedure with a sample of size 10" as described in
Sect. 6.2. The agreement of the two computational procedures provides a strong verification result

that Bel(L,) and PI(L,) are being calculated correctly.

Another analysis outcome of possible interest is an assessment of which SL is the final SL to
fail when LOAS occurs. Specifically, belief and plausibility can be determined for the final SL to
fail when LOAS occurs. This determination corresponds to determining belief and plausibility for
the sets

Loy = Wspistspostwnn 1 Uspstspa oty 1 € TM with £y <tg, <t} (5.8)

and
51;231 = {[tsp1-torastwnr ] : spr o tspa s tyny 1 € IM with £, <tgy <ty ). (5.9)

Specifically, belief and plausibility for the occurrence of LOAS with SL 2 being the last SL to fail
are given by

nSL1nSL2 nWL1

Bel(Ly,,) = Z My (TMy, ) = Z Z z Opraea (TMy )myy, (5.10)

TMphiic =l j=1 k=1

nSL1 nSL2 nWL1

Pl(L0) = Z My (TMy, ) = Z Z Z Oprgea (TMy )myy, (5.11)

D% TMy Ly i=1 j=1 k=1
with
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1 for TM,, < L. 1 for bpp; L8 oy ; 80 Tgry , < £
531-1<z(77\/’zjk) _ M,k < Lo _ SLl,' Lo, se2,j < Lwrik (5.12)
o 0 otherwise 0 otherwise,
1 for G#TM, NL,. 1 for f g &gy <E
5P1-1<2(7Mjk): . My N Lo _ _SL‘l, Lsr2, i< Uwrik (5.13)
o 0 otherwise 0 otherwise.

Similarly, belief and plausibility for the occurrence of LOAS with SL 1 being the last SL to fail
are given by

nSL1 nSL2 nWL1
Bel(Ly,4) = Z My (TM‘jk) = Z Z Z Fp12c1 (T'A/lz_‘/k)mijk (5.14)
IMpLyng =l j=1 k=l
nSL1 nSL2 nWL1
Pl([’l;Zgl) = z My (T-/\/’ijk) = Z Z z 51)1;251 (TM'jk )mz'jk (5.15)
D=TMyNLog i=l j=1 k=l
with
1 for TM, CLae |1 fOr Gy, S8 gy, 000 §gry s S 8
Siae (TM‘jk) _ M]k < Log _ SLZ.,j Ly, sLii < Lprik (5.16)
T 0 otherwise 0 otherwise,
S (TM,,) = 1 for @ #TMy ML,y _ 1 for £g, <1 gy,< [ (5.17)
Pl2st ok 0 otherwise 0 otherwise. .

As examples, the calculation of Bel(L.,), PI(L,.,), Bel(L.,.,) and PI(L,.,) for the links
defined in Table 4.1 and Fig. 4.1 yields the results

0.000x10° for SL 1, SL2, WL 1
0.000x10° for SL 1, SL2, WL 2
0.000x10° for SL1,SL2, WL 1
:{o.oooomoo for SL1,SL2, WL2,

Bel(L<,) = {
(5.18)

_]2.500x107" for SL 1,SL2, WL 1
_{z.soono—l for SL 1, SL 2, WL2
_]2.501x107" for SL'1,SL2, WL 1
:{2.502><101 for SL 1, SL2, WL 2,

PI(Ly<,)
(5.19)
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2.000x10~ for SL 1,SL2, WL 1

Bel(£y5.) = |
2.000x10™ for SL 1, SL2, WL 2

(5.20)
_|1.981x107 for SL 1,SL2, WL 1
- [2.010x107 for SL1,SL2, WL2
and
2.380x107" for SL1,SL2, WL 1
Pl(Lypq) = .
2.860x10™" for SL 1, SL2, WL 2
(5.21)

2380107 for SL1,SL2, WL 1
~ 12.862x107" for SL 1, SL 2, WL 2

with (i) the values for Bel(L,.,), PI(L.,), Bel(£,) and PI(L,.) in the initial equalities
determined as indicated in Egs. (5.10), (5.11), (5.14) and (5.15), and (ii) the values for Bel(L,,)
, PI(L,,), Bel(L,,) and PI(L,.) in the following approximate equalities determined in a

sampling-based verification procedure with a sample of size 10’ as described in Sect. 6.3. The
agreement of the two computational procedures provides a strong verification result that
Bel(Ly,,), PI(L,,), Bel(£.,.) and PI(L.,.,) are being calculated correctly.

5.2 LOAS Defined by Failure of Either SL before Failure of the WL

The occurrence of LOAS defined by the failure of a single SL before the failure of the WL is
considered in this section. Specifically, LOAS is assumed to occur for elements of the set

Ly = {tspiotspzotwnn) : (s tspastyy) € TM with min{tg 255} <y} (5.22)
In turn, the belief Bel(L,) for the occurrence of LOAS is given by
nSL1nSL2 nWL1
Bel(L,) = z mpy (TM) = Z z z Sy (TMy Iy (5.23)

TMy <Ly =l j=1 k=1

with

(5.24)

0 otherwise

I for TMy = £, |1 for min{lg, ;. Ty ;3 < Ly,
0 otherwise

532 (T/\/lgjk ) = {

defined to pick out the elements of TM that are subsets of £, . Similarly, the plausibility P/(L,)
for the occurrence of LOAS is given by
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nSL1 nSL2 nWL1

PIL)= X, my (TMy) =2, 3, X Spn(TMy my (5.25)

@#TMy AL, i=1 j=1 k=l
with

1 for &+ TMy N L, {1 for min{? g ., 2 g5} <Tppix (5.26)

0 otherwise

5P2 (TMjk )= {

0 otherwise

defined to pick out the elements of TM that intersect £, .

As examples, the calculation of Bel(L,) and PI(L,) for the links defined in Table 4.1 and
Fig. 4.1 yields the results

1.340x107" for SL 1,SL2, WL 1
Bel(L,) =
1.100x107" for SL 1,SL2, WL 2
(5.27)
_|1.340x107" for SL 1,SL2, WL 1
~ 1.101x107" for SL 1, SL 2, WL 2
and
8.720x107" for SL 1,SL2, WL 1
PI(Ly) = 4
9.040x107" for SL1,SL2, WL 2
(5.28)

~

8.720x107" for SL 1,SL2, WL 1
9.039x107" for SL1,SL2, WL 2

with (i) the values for Be/(L£,) and PI/(L,) in the initial equalities determined as indicated in Egs.
(5.23) and (5.25), and (ii) the values for Bel(L,) and PI/(L,) in the following approximate

equalities determined in a sampling-based verification procedure with a sample of size 10’ as
described in Sect. 6.2. The agreement of the two computational procedures provides a strong
verification result that Bel(L,) and PI/(L,) are being calculated correctly.

Similarly to the results presented in Egs. (5.8)-(5.17), belief and plausibility can be determined
for the SL whose failure results in LOAS. This determination corresponds to determining belief
and plausibility for the sets

Lyacr = Wtspistspostwnr ) [espistsa -ty 1 € TM with 2 <t ) and 1) <t} (5.29)

and
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[2;231 = {tsp1> Loz twnn 1 sprotspa sty ] € IM with £, <tg, and tg, <ty ). (5.30)

Specifically, belief and plausibility for the occurrence of LOAS with SL 1 being the SL. whose
failure results in LOAS are given by

nSL1 nSL2 nWL1

Bel(fz;lsz) = Z My (TM‘jk) = Z Z Z 5B2;1s2 (TMyk )mijk’ (5.31)
My Ly =l j=l k=l

nSL1 nSL2 nWL1
PZ(L‘Q;ISZ) = Z My (TMjk) = Z Z Z 5P2;1sz (TMjk )mijk (5.32)

D#TMy NLyc i=1 j=1 k=l

with
5 r1n (TM, ) = I for TMy < Lyyey |1 for g S 2, and fgy; < Ly, (5.33)
e vk 0 otherwise 0 otherwise, .
1 for G=TM.,. NL, 1 for ¢t o, .<ty,,and ¢ o, <1

Srres (TM'jk) _ | M]k Ly _ _SL.I,z SL2,j Losrri< Ywrik (5.34)

- 0 otherwise 0 otherwise.

Similarly, belief and plausibility for the occurrence of LOAS with SL 2 being the SL whose failure
results in LOAS are given by

nSL1nSL2 nWL1
Bel([a;zg) = Z Mg (TM‘jk) = Z z Z Opr<l (TM'jk )mgfka (3:35)
TMycLyng =l j=1 k=l
nSL1 nSL2 nWL1
Pl(fz;zg) = Z My (TMjk) = z Z Z Oprnel (TM'jk )mijk (5.36)
DETMy N Lypgy =1 j=1 k=l
with
1 for TM,, < L,. 1 fof fyy ; S oy A0 Tgpy ; < £
532.2<1 (TMjk) _ M}k = [?,2S1 _ SL2,j =S, SL2,j S WLk (537)
- 0 otherwise 0 otherwise,
1 for @£TM. NLysy |1 for t gy Sty and t g, <
Srae (TMjk) _ ‘ My N Loy _ _SL'Z,j SL1, Lsro i< twrik (5.38)
T 0 otherwise 0 otherwise.

As examples, the calculation of Bel(L,,.,), PI(L,,,), Bel(L,,) and PI(L,,.,) for the
links defined in Table 4.1 and Fig. 4.1 yields the results
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6.000x107> for SL 1,SL2, WL 1
Bel(Lyy.,) = ,
4.400x1072 for SL 1, SL2, WL 2 5 35
_[6.002x107 for SL1,SL2, WL 1 '
 14.401x1072 for SL1,SL2, WL 2,
6.520x10™" for SL 1,SL 2, WL 1
Pl L) = |
7.240x10™" for SL 1, SL 2, WL 2 (5.40)
_[6.522x107" for SL1,SL2, WL 1 '
~ |7.241x107" for SL1,SL2, WL 2,
1.200x1072 for SL 1, SL2, WL 1
Bel(Ly5) = ,
1.200x1072 for SL 1, SL 2, WL 2 sa)
[1203x107 for SL1,SL2, WL 1 '
~ 11.199x107% for SL 1, SL 2, WL 2
and
6.080x107" for SL 1,SL2, WL 1
PI(LZ;ZSI) = N}
6.080x10" for SL 1, SL2, WL 2
(5.42)

~

6.083x107" for SL1,SL2, WL 1
6.078x107" for SL 1, SL 2, WL 2

with (i) the values for Bel(L,,.,), PI(Ly,,), Bel(L,,) and PI(L,,.) in the initial equalities
determined as indicated in Egs. (5.31), (5.32), (5.35) and (5.36), and (ii) the values for Bel(L,,.,)
, PI(Ly,<,), Bel(L,.,.,) and PI(L,,.,) in the following approximate equalities determined in a

sampling-based verification procedure with a sample of size 10’ as described in Sect. 6.3. The
agreement of the two computational procedures provides a strong verification result that

Bel(L,,<,), PI(Ly,<,), Bel(L,,.) and PI(L,,.,) are being calculated correctly.
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6. Sampling-Based Verification

6.1 Background

As discussed and illustrated in Refs. [71; 72] for WL/SL systems and in Refs. [73-82] for many
additional contexts, model/analysis verification based on the comparison of results obtained in two
independent analyses is an important part of the assessment of models and software used in the
analysis of high consequence systems. Model verification and model validation are two related,
but different and often confused, concepts. Two widely used definitions are (Ref. [82], p. 3):

Verification: The process of determining that a model implementation accurately represents the
developers’ conceptual description of the model and the solution of the model.

Validation: The process of determining the degree to which a model is an accurate representation
of the real world from the perspective of the intended uses of the model.

Thus, verification relates to assessing the correctness of the mathematical development and
implementation of a model. It is in this sense that verification is used in this presentation.

With respect to verification, it is possible to define a way to calculate Bel(L,), PI(L,), Bel(L,)
and PI(L,) that is independent of the computational procedures defined in Sects. 5.1 and 5.2. This

alternative computational procedure is based on the following previously discussed evidence space
properties:

(1) An evidence space is simply an incompletely defined probability space.

(i1) The belief and plausibility of a set as defined for an evidence space correspond to the
smallest and largest probabilities that can be assigned to this set for probability spaces that are
consistent with the evidence space.

Thus, if a probability space can be defined that is consistent with the evidence space
(TM,TM, my,, ) and has the smallest possible probabilities p(L;) and p(L,) for the sets £, and

L, defined in Egs. (5.1) and (5.22), then the probabilities p(L,) and p(L,) obtained in a
probabilistically-based calculation should be the same as Bel(L;) and Bel(L,) obtained as

indicated in Egs. (5.2) and (5.23). Similarly, if a probability space can be defined that is consistent
with the evidence space (7ZM,TM,m;,,) and has the largest possible probabilities p(L;) and

p(L,) for £, and L, , then then the probabilities p(L;) and p(L,) obtained in a probabilistically-
based calculation should be the same as PI(L) and PI(L,) obtained as indicated in Eqgs. (5.4)
and (5.25).

For most evidence space problems, defining the indicated probability spaces is too difficult to

provide an effective verification procedure. However, such definition is possible for the WL/SL
problem under consideration. Specifically, the likelihood of LOAS goes (i) down as the time of
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WL failure decreases and the time of SL failure increases and (ii) up as the time of WL failure
increases and the time of SL failure decreases.

6.2 Verification for Bel(L,) Bel(L,), PI(L,) and PI(L,)

To obtain the desired probability space for checking the calculation of Bel(L,) and Bel(L,)

with the representations defined in Eqgs. (5.1) and (5.22), (i) the most probability possible (i.e.,
My (TMypy ) = My ) is assigned to 2y, , with the result that

PEppan) =My (TMypy 1) = My (6.1

(ii) the most probability possible (i.e., Mg, (TMg, ;) =mg,; and mg, (TMg, ;) =mg, ;) is

assigned to 7y, and f, ;, with the result that
p(t_SLl,i) = Mgy, (TMSL],I‘) = Mgy (6.2)

p(t_SLZ,j) =Mgroy (TMSL2,_]') =Mgry o (6.3)

and (iii) a probability of zero is assigned to every subset of ZM that does not contain one or
more of the vectors [, % ;> yy14 - This produces the probability space that has the smallest

possible probabilities for the sets £, and £, for a probability space that is consistent with the
evidence space (ZM,TM,m;,,) and the properties that (i)

(TMSLl,i )m

Pl tspn s Lpra g D) = m

(TMSLZ,j )mwu,, (TMy1) = My (6.4)

SL1t SL2.t

for (i, j, k) belonging to the set Z defined in Eq. (4.15) and (ii) any set that does not contain one
or more of the vectors [fg, . %5, ;»Z yy1, ] has a probability of zero. Then, with a large random

sample
[tSL1, ,tSL2, ,tWL1 1, =1,2,...,nR, (6.5)

of size nR from the failure time vectors [fg,,,f, ;»Lyyi,] generated consistent with the

probabilities m;; , Bel(L;) and Bel(L,) can be approximated by

nR o
Bel(£) = 8, ([1SL1,,1SL2, ,tWL1, 1)/ nR = p(L,) (6.6)
r=1

for i =1,2 with
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S — 1 fi tSL1,,1SL2,} < tWL1
5, (S, iSL2, WLl 1)y = 4. 1or maxiiSLl 1512,y < (WL, 6.7)
0 otherwise
and
R — 1 for min{tSL1,,SL2,} < tWLI
8., (UiSL1, ,7SL2, ,oWL1 7y =4\ o min b <4Ll, (6.8)
0 otherwise.

The estimates for Bel(L;) and Bel(L,) indicated in Eq. (6.6) are illustrated in Egs. (5.6) and
(5.27) for the links defined Table 4.1 and Fig. 4.1.

Similarly, to get the desired probability space for checking the calculation of P/(L;) and
PI(L,), (i) the most probability possible (i.e., my;,, (TMy;, ;) =my,;, ;) is assigned to £y,
with the result that

p(t_WLl,k) =My, (T/\/IWLI,k) =My ko (6.9)

(i) the most probability possible (i.e., mg,; ,(TM;, ;) =mg,,; and mg;,, (TMSLz,j) =mgy ;) is

assigned to ¢ g,; and £ g, ;, with the result that
P 1) =mgpy  (TMgp, ;) = mgy; (6.10)

P(Lgn ;) =mgy (TMg, ;) =mg, ;, (6.11)

and (iii) a probability of zero is assigned to every subset of 7ZM that does not contain one or more
of the vectors [# ;5% g5 ;»tprix]- This produces the probability space that has the largest

possible probabilities for the sets £, and £, for a probability space that is consistent with the
evidence space (ZM,TM,m;,,) and the properties that (i)

P sp1iot spa ot D) = Mgy, (TMgpy Iy (TMgy mypy ,(TMypy ) = my; - (6.12)

for (i,j,k)eZ and (i1) any set that does not contain one or more of the vectors
(2§11, 512.;» wr1x ) has a probability of zero. Then, with a large random sample

[£SL1 ,tSL2 ,tWL1, 1,r =1,2,...,nR, (6.13)

of size nR from the failure time vectors [f g,;,% g ;»f 1] generated consistent with the

probabilities m,, , PI(L) and P/(L,) can be approximated by

ijk >
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nR —
PI(L) =Y 8, ([1SL1, ,1SL2, ,(WL1 1)/ nR = p(L;) (6.14)

r=l1

for i =1,2 with

— 1 ft tSL1 tSL2 tWL1,
S (SLL ,£SL2. | TV, ]) = or max{tSL1,,sSL2 } < 6.15)
0 otherwise
and
—_— 1 f in{ztSL1 .,tSL2 WL,
Spy ([4SLL, ,1SL2, (WL ) =1 - mn_l{—”—’}< (6.16)
0 otherwise.

The estimates for P/(L,) and PI(L,) indicated in Eq. (6.14) are illustrated in Egs. (5.7) and (5.28)
for the links defined Table 4.1 and Fig. 4.1.

The representations for belief and plausibility for £ and £, in Sects. 4.2 and 4.3 are

computationally easier to implement than the sampling-based approximations described in this
section. The significance of the sampling-based approximations is that they provide a second
independent way to obtain belief and plausibility for verification of results obtained in the manner
described in Sects. 4.2 and 4.3.

6.3 Verification for Bel(L,.,),Bel(L,.,), PI(L,.,) and PI(L,)

Defining probability spaces to verify the calculation of Bel(L,,) and Bel(L.,.,) for the sets
L1, and L, defined in Egs. (5.8) and (5.9) is now considered. The following assignments are
made for Bel(L.,): (i) the most probability possible (i.e., my;, , (TMy;, ) = my;, ;) is assigned

to ;1 » With the result that

P(LWLl,k) = My (T-/\/lWLl,k) =My ko (6.17)

(ii) the most probability possible (i.e., mg;, , (TMg;, ;) = mg;, ;) is assigned to Zy;, ;, with the result
that

P(t_su,i) =My, (TMSLl,i) =Mgry,s (6.18)

(iii) the most probability possible (i.e., mg, ,(TMs, ;) =mgy, ;) is assigned to £ g, ; together
with the additional assumption p(fg;, ; | £ 5, ;) =1.0 which is made to result in (£ g, ;,2g, ;)

being sampled as a pair in a following sampling-based analysis, with the result that
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P(Lgn ;) =mgs, (TMSLZ,j) =mg, ; and P(t_SLz,j | £52.) =1.0, (6.19)

and (iv) a probability of zero is assigned to every subset of ZM that does not contain one or more
of the vectors [Zg,,,% g ;»2 14 ] This produces the probability space that has the smallest

possible probabilities for the set £, for a probability space that is consistent with the evidence
space (ZM,TM, my,,) and the properties that (i)

(TMSLl,i ym

PEsp1isLspa s Lypix]) =m

(TMgy, )mWH (TMyp1 ) = my,— (6.20)

SL1,t SL2,t

for (i, j,k) belonging to the set Z defined in Eq. (4.15) and (ii) any set that does not contain one
or more of the vectors [fg, . g ;> 14 ] has a probability of zero. Then, with a large random

sample
[tSL1, ,tSL2. ,tSL2, ,tWL1 1,r =1,2,...,nR, (6.21)

of size nR from the failure time vectors [, g5 j»f52 - L wrix] generated consistent with the
probabilities m;; and the conditional probability p(fg,; [t g, ;)=1.0, Bel(L,) can be
approximated by

nR

Bel(Ly40) = Y. 85 ([¢SLL,,tSL2, ,tSL2, ,tWL1, 1)/ nR = p(L..,) (6.22)

=1
with

1 for tSL1, <tSL2, and tSL2, < WLl

(6.23)
0 otherwise.

5, ([tSL1, ,tSL2, ,1SL2, ,tWL1 1) = {

The approximation for Bel(L.,.) has the same form as the preceding approximation for
Bel(L,,) with the roles of SL 1 and SL 2 reversed. The resultant estimates for Bel(L..,)

indicated in Eq. (6.22) are illustrated in Eq. (5.18) for the links defined Table 4.1 and Fig. 4.1.
Similarly obtained estimates for Bel(L,.,) are illustrated in Eq. (5.20).

Defining probability spaces to verify the calculation of PI/(L.,) and PI(L,.,) for the sets
L1, and L, defined in Egs. (5.8) and (5.9) is now considered. The following assignments are
made for PI(L,,): (i) the most probability possible (i.e., my;;, (TMy;, ;) = my;, ;) is assigned

to £y, » With the result
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p(t_WLl,k) =My (TMWLI,k) =Mk (6.24)

(ii) the most probability possible (i.e., mg,, (TMs, ;) =mg,,; andmg, (TMg, ;) =mg, ;) is

assigned to £ g, and £ g, ;, with the result that
Pt gy ) =mg  (TMg, ;) = mg,; (6.25)

P(E s ;) =M, (TMgp, ;) =mg, (6.26)

and (iii) a probability of zero is assigned to every subset of 7ZM that does not contain one or more
of the vectors [ g,;,2 s j»tyrix]- This produces the probability space that has the largest

possible probability for the set £, for a probability space that is consistent with the evidence
space (7M,TM, my,,) and the properties that (i)

(TMSLl,i ym

PULsp Lo o tpri ) =m

(TMSLZ,]' )mWL,k (TMWLl,k) = My (6.27)

SL1t SL2.t

for (i, j, k) belonging to the set Z defined in Eq. (4.15) and (ii) any set that does not contain one
or more of the vectors [£ g, 55 ;»yp1 4] has a probability of zero. Then, with a large random

sample
[£SL1, ,tSL2 . ,tWL1, ],r =1,2,...,nR, (6.28)

of size nR from the failure time vectors [# g, ¢, ;»ipp 4] generated consistent with the

probabilities m,; , PI(L.,) can be approximated by

ijk >

nR
PI(Lyy0) 2 Y 8,([SLL, ,SL2, ,IWLL 1)/ nR = p(Lyy) (6.29)

r=1
with

1 for sSL1, <tSL2. <tWLl,

. (6.30)
0 otherwise.

8, ([tSL1 ,tSL2, ,tWL1,]) = {

The approximation for PI(L,,) has the same form as the preceding approximation for P/(L,)
with the roles of SL 1 and SL 2 reversed. The resultant estimates for P/(L,,) indicated in Eq.

(6.29) are illustrated in Eq. (5.19) for the links defined Table 4.1 and Fig. 4.1. Similarly obtained
estimates for PI(L,,) are illustrated in Eq. (5.21).
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6.4 Verification for Bel(L,,.,) Bel(L,,.,), PI(L,,,) and PI(L,,)

Defining probability spaces to verify the calculation of Bel(L,.,.,) and Bel(L,.,.,) for the sets
L)1, and L, defined in Egs. (5.29) and (5.30) is now considered. The following assignments
are made for Bel(L),.,): (i) the most probability possible (i.e., my;,, (TMy;, ) =my;, ;) is

assigned to 7 ;. , with the result that

p(t WLl,k) =My (T/\/lwu,k) =My ko (6.31)

(ii) the most probability possible (i.e., mg ,(TM;, ;) = mg;, ;) is assigned to g, ;, with the result
that

p(t_SLl,i) =My, (TMSLL;') =Mgrys (6.32)

(ii ) the most probability possible (i.e., mg,,(7Mg;, ;) =mg, ;) is assigned to ¢ g, ;, with the
result that

p(LSLz,j) =Mgyo (TMSLZ,j) =Mgr s (6.33)

and (iv) a probability of zero is assigned to every subset of 7M that does not contain one or more
of the vectors [7g,;,% g2 j»2 y14)- This produces the probability space that has the smallest

possible probability for the set £,,., for a probability space that is consistent with the evidence
space (7M,TM, my,,) and the properties that (i)

Ptspis Lo o Lopnay]) = m, (TMgom (TMg, m (TMyy ) = my (6.34)

WLk

for (i, j, k) belonging to the set Z defined in Eq. (4.15) and (i1) any set that does not contain one
or more of the vectors [#g;,% g5 j»1 1] has a probability of zero. Then, with a large random

sample
[tSL1,,tSL2. ,tWL1 1,r =1,2,...,nR, (6.35)

of size nR from the failure time vectors [fg,;,% g5 ;> yri4] generated consistent with the

probabilities m;; , Bel(L,,.,) can be approximated by

ijk >

nR _
Bel(Ly,c,) = ) 85 ([1SL1,1SL2, ,tWL1, 1)/ nR = p(Ly,.,) (6.36)

r=1
with
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1 for tSjr <tSL2, and tSir <tWL1,

0 otherwise.

5, ([1SL1,,tSL2, ,tWL1 1) = { (6.37)

The approximation for Bel(L,, ) has the same form as the preceding approximation for
Bel(L,,,) with the roles of SL 1 and SL 2 reversed. The resultant estimates for Bel(L,,.,)

indicated in Eq. (6.36) are illustrated in Eq. (5.39) for the links defined Table 4.1 and Fig. 4.1.
Similarly obtained estimates for Bel(L,,.,) are illustrated in Eq. (5.41).

Defining probability spaces to verify the calculation of PI(L,,.,) and PI(L,,. ) is now
considered. The following assignments are made for PI(L,,.,): (i) the most probability possible

(.e., mypy, (TMyyp ) = My, ;) is assigned to £ ;. , with the result that

p(t—WLl,k) = My (TMWLl,k) = My (6.38)

(ii) the most probability possible (i.e., mg ,(TMg;, ;) = mg;, ;) is assigned to g, ;, with the result
that

P(Egp1) =mgp , (TMgpy ;) = mgp, (6.39)

(iii) the most probability possible (i.e.,mg,,(TMy;, ;) =mg, ;) is assigned to 7, ;, with the
result that

p(t_SLZ,j) =Mgro (TMSL2,j) =Mgry o (6.40)

and (iv) a probability of zero is assigned to every subset of 7M that does not contain one or more
of the vectors [ g1, %5 ;»E 14 |- This produces the probability space that has the largest possible

probability for the set £, , for a probability space that is consistent with the evidence space
(TM,TM, my,, ) and the properties that

([t SLl,i’t_SLZ,j’t_WLl,k D=m

(TMSLL,‘)’”SW (TMSLZ,J‘ )mwm (TMy) = mg  (6.41)

SL1,t

for (i, j,k) belonging to the set Z defined in Eq. (4.15) and (ii) any set that does not contain one
or more of the vectors [£ g ;.55 ;»fyy14] has a probability of zero. Then, with a large random

sample

[4SL1 ,tSL2, ,tWL1, |,r =1,2,...,nR, (6.42)
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of size nR from the failure time vectors [f .%o -y 4] generated consistent with the

probabilities m;; , PI(L,,.,) can be approximated by

ijk 2

nR

PU(Ly10) = Y 8p ([£SLL, ,1SL2, ,tWLL, 1) / nR = p(Lyycr) (6.43)

r=1
with

1 for #SL1,. <tSL2, and tSL1. <tWL1,

‘ (6.44)
0 otherwise.

Op([tSL1, ,tSL2, ,tWL1,]) = {

The approximation for P/(L,.,.;) has the same form as the preceding approximation for PI/(L,,,)
with the roles of SL 1 and SL 2 reversed. The resultant estimates for P/(L,,.,) indicated in Eq.

(6.43) are illustrated in Eq. (5.40) for the links defined Table 4.1 and Fig. 4.1. Similarly obtained
estimates for PI(L,.,.,) are illustrated in Eq. (5.42).
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7. Cumulative and Complementary Cumulative Belief and Plausibility for
Time at which LOAS Occurs

For simplicity, this section considers a system with 2 SLs and 1 WL and two definitions of
system failure: (i) LOAS occurs when both SLs fail before the WL fails and (ii) LOAS occurs
when either SL fails before the WL fails. As discussed below, a useful visual summary of an
analysis for LOAS is provided by a plot of time-dependent (i.e., cumulative and complementary)
values of belief and plausibility for the occurrence time of LOAS.

7.1 Cumulative and Complementary Cumulative Belief and Plausibility for Time at
which LOAS Occurs when Both SLs Fail before the WL fails

For the first definition (i.e., LOAS occurs when both SLs fail before the WL fails), the function

max{ty,tg,t for max{ty,,tg,} <ty

TML (¢t 1585105 twr1) = 7.1
Ly (tp10 L5125 twrr) {OO for £y, < maxity, lg,) (7.1)

maps the evidence space (ZM,TM,my,,) for link failure time defined in conjunction with Egs.
(4.13)-(4.16) into an evidence space (7ML, TML,,my,,,) for the time at which LOAS occurs.
Specifically,

TML ={t:t =TML (%) fort =[tg,,, 1.ty 1€ TM}, (7.2)
TML g =A{t:t =TML (}) for t =[5, 055,y ] € M } (7.3)
TML, ={TML, ;. : (0, j. k) € I=141,2,....,nSL1} x{1,2,...,nSL2} x {1,2,..,nWL1}}  (7.4)
and
My (TMﬁl,ijk) = Mpy (TMjk) =my ik (7.5)
In addition, the bounds
(Lye-Brge) = (min(TML, e ), max(TML ) ) (7.6)

are introduced for use in the determination of the cumulative values of belief and plausibility for
the occurrence of LOAS as indicated in in conjunction with Egs. (2.48)-(2.50). Use of the min and
max functions in Eq. (7.6) is correct because of the assumptions that (i) focal elements for link
failure time are closed intervals and (ii) link temperature functions are continuous. Without these
assumptions, the min and max in Eq. (7.6) would have to be replaced by the greatest lower bound
(glb) and least upper bound (lub) functions. Specifically, ¢, ;; is defined by

79



o for t_WLLk SmaX{LSLl,i»LSLz,j}
f e (7.7)

max{t ;L g ;b for max{t gt g it <ty

with (i) the first definition resulting because LOAS cannot occur for elements of 7ML, ;; when

the indicated inequality holds and (ii) the second definition corresponding to the earliest time at
which LOAS could occur for elements of 7ML, ;; when the indicated inequality holds. Similarly,

_ o for SmaX{t_sLl,i’t_SLz,j}
» (7.8)

max{fg, ;,lso ;b for max{tg, ., tg, ;b <Ly,

with (i) the first definition resulting because LOAS cannot occur for at least some elements of
TMUL, ;. when the indicated inequality holds and (ii) the second definition corresponding to the

last time at which LOAS could occur for elements of 7ML, ;; when the indicated inequality holds.

In the event that the first inequality in Eq. (7.7) holds, then the first inequality in Eq. (7.8) also
holds, with the result that  (, ;.4 ;) = (%,0).

Once the evidence space (7ML, TML,,my,,) 1is constructed, cumulative and
complementary cumulative plausibility and belief functions for the time at which LOAS occurs
can be obtained from the pairs (2, 7t_1,ijk) as (i) indicated in conjunction with Egs. (2.48)-(2.50)

and (ii) illustrated in Fig. 7.1.

10° [LOAS ~ Both SLs before WL o !
SIS S 2%
= <t % Coor
=0 g o
ol =
B @ 4o 5 208F
g —_ o O _6
L > - o] Q L
9 £ : < 907
= B i oo
_g g -2 i E 5‘06 F
g 210 3 2 2%
o Y Q ‘5
g S Zos| :
H O & |sL1,sL2,wL1 Bel(t < 1)
o LOAS ~ Both SLs before WL
- L - : 0.4 ' :
0 50 100 150 200 0 50 100 150 200

t : LOAS Occurrence Time (min) t : LOAS Occurrence Time (min)

Fig. 7.1 Graphical summary of evidence space (ZML,,TML,,m;,,,) for time ¢ at which LOAS

occurs for (i) a system composed of SL 1, SL 2 and WL 1 defined in Sect. 4.1 and (ii) LOAS
corresponding to failure of both SLs before failure of the WL: (a) Cumulative plausibility PI(f <)

, probability Pr(f <t) and belief Bel(f <t), and (b) Complementary cumulative plausibility
PI(t <), probability Pr(t<f) and belief Bel(t <7).
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In addition, Fig. 7.1 also contains the CDF and the CCDF for the time at which LOAS occurs
obtained by assigning uniform distributions to the individual focal elements for link failure
temperature as indicated for the construction of the link failure time CDFs in Fig. 4.4. For SL 1,
SL 2 and WL 1, the indicated CDF and CCDF are constructed by: (i) generating a large random
sample

Ts1y s Tspa s Tynay 17 = 1,250, 1R, (7.9)

from the constructed distributions for link failure temperatures, (ii) determining the corresponding
link failure times

-1 -1 -l
t, = (tSLI,r =Ty Tgp1 Do tsi0.r = T (T 0 Doty = WLl(TWLL'")) (7.10)

= (Esprrsbsporstwrrs)s

for r =1,2,,,nR with the inverse functions indicating the earliest possible failure times for the
sampled link failure temperatures, (iii) determining the LOAS occurrence times

TML, (8,) = TML, (tsp1 tsp > tyin o7 = 1,200 1R, (7.11)

as indicated in Eq. (7.1), and (iv) defining the desired CDF and CCDF by

. al _ 1 for TML,(t,) <t
CDF (t) = prob(t <t)= Z:é[[TMLl (t,)]/ nR with o,[TML, (t,)] = _ (7.12)
p 0 otherwise
and
R _ - 1 fort <TML,(t,)
CCDF(t) = prob(t <t) = Z:§,[TML1 (t,)]/ nR with 6[TML,(t,)] = , (7.13)
P 0 otherwise.

The cumulative and complementary cumulative plausibility and belief results in Fig. 7.1
provide related, but not identical, information about the potential occurrence of LOAS. In most
analyses, the results of most interest pertain to whether or not LOAS occurs. Specifically, the
cumulative ¢ = 200 min results in Fig. 7.1a provide the analysis outcomes

PI(f <200) = plausibility that LOAS occurs before or at 200 min = 0.488, (7.14)
Bel(f < 200) = belief that LOAS occurs before or at 200 min = 0.016, (7.15)

and the complementary cumulative # = 200 min results in Fig. 7.1b provide the analysis outcomes
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PI(200 < t) = plausibility that LOAS did not occur prior to 200 min
=Pl(t=t,) (7.16)
=0.984,

Bel(200 < ) = belief that LOAS did not occur prior to 200 min
=Bel(t=t,) (7.17)
=0.512.

Thus, as illustrated, the cumulative outcomes in Fig. 7.1a provide results on the timing and
occurrence of LOAS, and the complementary cumulative outcomes in Fig. 7.1b provide results on
the timing and nonoccurrence of LOAS.

Initially, some results may seem counterintuitive (e.g., PI(200 <7)=0.984). The values of

plausibility and belief depend on (i) the number of focal elements that are consistent with the
plausibility or belief under consideration and (ii) the BPAs associated with these focal elements.
A large number of consistent focal elements may, but not necessarily, be associated with a large
plausibility or belief. The evidence space (ZML,,TML,,my,,,,) under consideration has

nSL1xnSL2xnWIL1=5x5x5=125 (7.18)
focal elements. In turn,

81 = number focal elements consistent with P/(f < 200)

7.19
i.e., focal elements that contain times in [0, 200 min], ( )
11 = number focal elements consistent with Bel(7 < 200) (7.20)
i.e., focal elements that are subsets of [0, 200 min], '
114 = number focal elements consistent with P/(200 < ) (721)
i.e., focal elements that contain ¢, '
44 = number focal elements consistent with Bel(200 < 7) (722)

1.e., focal elements that contain only 7.

Given the large number of focal elements consistent with P/(200 <) and Bel(200<7), the
resultant large values of P/(200 <7)=0.984 and Bel(200 <) = 0.512are not surprising.

The cumulative and complementary cumulative plausibility and belief results in Fig. 7.1 are
related through the relationship

Bel(S) + PI(S°) =1 (7.23)
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previously stated in Eq. (2.24). As examples,
PI(200<7)=PIl(t=t,)=1-Bel(f <200)=1-0.016 =0.984 (7.24)
Bel(200 <7) = Bel(t =t,)=1-PI(f <200)=1-0.488 =0.512. (7.25)

The equality of the results in Egs. (7.16)-(7.17) with the corresponding results in Egs. (7.24)-(7.25)
provides a verification result that indicates that the plausibility and belief results in Fig. 7.1 have
been correctly constructed. An additional verification is provided by the match of PI(f < 200) and

Bel(f <200) with the independently determined values for the occurrence of LOAS in Egs. (5.6)-
(5.7).

As should be the case, the CDF in Fig. 7.1a for LOAS occurrence time, denoted by Pr(f <t),
falls between the corresponding CBF and CPF, denoted by Bel(f <t) and PI(f <t). Similarly,
the CCDF in Fig. 7.1b for LOAS occurrence time, denoted by Pr(t <f), falls between the
corresponding CCBF and CCPF, denoted by Bel(t<f) and PI(t <f). For perspective, it is

recommended that CDFs and CCDFs as described for Fig. 7.1 be included in presentations of
CPFs, CBFs, CCPFs and CCBFs.

It is informative to know the smallest time at which LOAS could occur (i.e., £, ) and the
largest time at which LOAS could occur (i.e., £, ). As described below, these two times can be

determined from the focal elements associated with the evidence space (7ML, TML,,my, ).

However, this closed form determination can be rather tedious and error prone, especially the
determination of the largest time at which LOAS could occur. In practice, it is easier to employ
sampling-based results of the form used to obtain the CDF and CCDF illustrated in Fig. 7.1 to
estimate the indicated times than it is to carry out a closed form analysis. As an example, the
sampling procedure indicated in Egs. (7.9)-(7.13) to obtain the CDF and CCDF in Fig. 7.1 also
yields values of

t,;, =62.12 min and 7,; =200 min. (7.26)

In this example, #, is the same as the end time (i.e., 200 min) for the analysis, which may not be
the case in other analyses.

The closed form determination of ¢,, and 7, is now considered. A focal element TML
associated with the evidence space (7ML, TML,,my,,,) contains times corresponding to the

actual occurrence of LOAS (i.e., times < o) only if (7, j,k) € Z,, with

Ty, =40, J k) max{t g, Loy it <typi} (7.27)
In turn, the earliest time #,; at which LOAS can occur is defined by
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by, =min{t, (0, j,k) €1y, }
. o (7.28)
= min {max{LSLu:LSLz,_/} (3, j, k) € IIL}

with ¢, initially defined in Eq. (7.7). As an example, the preceding equality produces
t,;, = 62.12 min for the results illustrated in Fig. 7.1, which is consistent with the sampling-based
value of 62.12 min in Eq. (7.26).

When some of the pairs (¢, .4 ) are of the form (z,;,,%) with ¢, <o, plots for

plausibility and belief constructed as indicated in conjunction with Egs. (2.48)-(2.50) and
illustrated in Fig. 7.1 will not include a step that corresponds to the least upper bound (lub) 7, of

the times at which LOAS could occur. Closed form representation for #, are now determined for

the case in which (i) all link temperature curves are continuous functions and (ii) all focal elements
for link failure temperature are closed intervals.

The following two possibilities for 7, , require consideration:
by = and 4 <t,.. (7.29)

Given the two preceding possibilities, the lub t_lL,l-jk of the times at which LOAS could occur for
TML ; with (i, j,k) € Z,; is defined by
by = and (i, j,k) € I,
_ maX{f_SLl,i ’?SLZ,j} for max{t_SLl,iﬂt_SLZ,j} Sty (7.30)
= by =

max{t:t € TML ; andt # o} for ¢, <max{ify,,,lg, ;}

and

t_WL’k <t, and(i,j,k)eI,

_ max{f_sm,iJSLz,j} for maX{f_SLl,iJSLz,j}<l_WL,k (7.31)
= by ik

| lub{t:re TML, ;, and t # o} for 4y, , <max{ly,;,ty, ;}-

The lub is needed in Eq. (7.31) because, under the stated conditions, it is possible the that LOAS
could occur at times with an lub of %, , (e.g., if fg; <fgs; =ty s )

In turn, the resultant lub time 7, for LOAS occurrence is defined by
by = maX{ZL,ijk (i, J,k) ey} (7.32)
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Only a max rather than an lub is needed in the preceding definition of 7, because the number of
focal elements indexed by the set Z,, is finite. In contrast, it is possible that some of the times

f ; involved in the definition of 4, could be defined as lub’s.

As an example, the indicated procedure produces 7, =200 min for the results illustrated in

Fig. 7.1, which matches the sampling-based value in Eq. (7.26).

The LOAS occurrence time evidence space (7ML, TML,,my,,,) and its associated CPF,

CBF, CCPF and CCBEF for SL 1 and SL 2 both failing before WL 1 fails can also be defined with
use of the evidence spaces (ZMHF, TMLF,,my,-) and (ZM,,;,,TM,,,,,my,,). Specifically, (i)

(TMF , TML, , my, ) is defined in Sect. 8.1 for the times at which a system consisting of SL 1

and SL 2 fails with system failure time corresponding to the time at which the second SL fails and
(ii) (7My,;,,TM,,,,,my;,;,) is defined in Sect. 4 for the time at which WL 1 fails.

7.2 Cumulative and Complementary Cumulative Belief and Plausibility for Time at
which LOAS Occurs when Either SL Fails before the WL Fails

For the second definition (i.e., LOAS occurs when either SL fails before the WL fails), the
function

min{ty,tg,4 for min{tg ,ty,} <t
TMLz(ZSLlatSLzatWL1)={ sLislsio . sL1oLsio WLl (7.33)
<min{tg,,tg,)}
oo for fy;; <min{tg,,tg,

maps the evidence space (ZM,TM,m;,,) for link failure time defined in conjunction with Egs.
(4.13)~(4.16) into an evidence space (ZML,, TML,,my,,, ,) with

TML, = {TML, ., : (i, j,k) € T={1,2,....nSLLy x {1,2,...,nSL2} x {1,2,...nWL1}} (7.34)

ik

for the time at which LOAS occurs as shown in Egs. (7.2)-(7.5) to obtain the evidence space
(TML, TML,,myp,;,) -

Similarly to the definitions of ¢, ; and Eljk in Egs. (7.6)-(7.8), the bounds
(Lo o) = (Min(TML, ), max(TML, ;) ) (7.35)

are defined by

oo for fy, Smin{t .1 gy )
o { (7.36)

min{? g% go ;4 for min{z g0 2 g5 i} <lypis
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and

B oo for Ly, Smin{?SLl,i’t_SLZ,j}
e = (7.37)

min{te, ;. g, ;f for min{ég, ., fy, i} <ty

Once the evidence space (ZML,,TML,,m;,,) 1is constructed, cumulative and
complementary cumulative plausibility and belief functions for the time at which LOAS occurs
can be obtained from the pairs (£, ;.5 ;) as (i) indicated in conjunction with Egs. (2.48)-(2.50)
and (i1) illustrated in Fig. 7.2. In addition, Fig. 7.2 also contains CDFs and CCDFs for the time at
which LOAS occurs constructed as described in Eqs. (7.9)-(7.13) with TML,(t,) replacing

TML,(t,) in Eqgs. (7.11)-(7.13).

ol ' T ' ]
i |5 i D! eSS S —————— ——— u— 1
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=0 r > ©
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o & 1071t 2] Bel(t <t) A o )
£35 i T O 04r
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O [ SL1, SL2, WL1 €202
: ; o}
il LOAS ~ Either SL O E SL1, SL2, WL1 Bel(t < 7)
; before WL @ | |LOAS ~ Either SL before WL
102 ' ' ; ' ' '
0 50 100 150 200 0 50 100 150 200
t : LOAS Occurrence Time (min) t : LOAS Occurrence Time (min)

Fig. 7.2 Graphical summary of evidence space (ZML,,TML,,my,, ,) for time ¢ at which LOAS

occurs for (1) a system composed of SL 1, SL 2 and WL 1 defined in Sect. 4.1 and (ii) LOAS
corresponding to failure of either SL before failure of the WL: (a) Cumulative plausibility
PI(f <t), probability Pr(f <t) and belief Bel(f <t), and (b) Complementary cumulative

plausibility PI(t <), probability Pr(t <) and belief Bel(t<1).

The sampling-based analysis used to construct the CDF and CCDF in Fig. 7.2 also establishes
that the smallest time at which LOAS can occur (i.e., f,;) and the largest time at which LOAS

actually occurs (i.e., %, ) are approximated by

[£,,.5,]=[58.5 min,133.7 min]. (7.38)

Combination of 7,;, with the cumulative plausibility and belief results at # = 200 min in Fig. 7.2a

provides the analysis outcomes
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0.872 = PI(f <200) = PI(f <%, ) = PI(f <133.7) (7.39)
0.134 = Bel(7 < 200) = Bel( <7, ) = Bel(f <133.7) (7.40)

and combination of 7, with the complementary cumulative plausibility and belief results at # =
200 min in Fig. 7.2b provides the analysis outcomes

0.866 = PI(200 <) = PI(5,, <7)=PI(133.7<7)=Pi(t=t,) (7.41)
0.128 = Bel(200 < 7) = Bel(f,, <7) = Bel(133.7 <) = Bel(t =t,). (7.42)

In addition, the results in Fig. 7.2 provide information on the potential timing of LOAS, which
could be important in some analyses.

An important point here is that the construction and subsequent display of the evidence space
(TML,,TML,,my,, ,) or a similar evidence space for failure time may not include the time of

last failure due to the need to include the marker time 7., for nonfailure in the definition of focal

elements for failure time and their associated BPAs. As a consequence, it is important to have a
method to determine maximum failure time as well as the evidence space for failure time. The
sampling-based procedure just illustrated is one way to determine ¢,, and £, and similar results.

Another way is to use a closed form representation for ¢,, and 7, .

The closed form determination of ¢,, and %, is now considered. A focal element 7ML, ;;

associated with the evidence space (ZMJL,, TMIL,,m;,,,) contains times corresponding to the

occurrence of LOAS (i.e., times < o) only if (i, j,k) € Z,, with
Ty =G, jok)imin{t g oot b <lypiy - (7.43)
In turn, the earliest time #,, at which LOAS could occur is defined by
by =min{t, 1, j,k) e Ly, ). (7.44)

As an example,

58.536 min for the sampling-based approach
Iy :{ PUIE PP (7.45)

58.537 min for the closed form representation

for the results illustrated in Fig. 7.2.
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The lub 7,, for the times at which LOAS occurs for LOAS corresponding to failure of either

SL before failure of the WL is obtained in a manner similar to that used in Eqgs. (7.30)-(7.32) to
obtain 7, for LOAS corresponding to failure of both SLs before failure of the WL. As for £, ,

closed form representation for 7,; are now determined for the case in which (i) all link temperature

curves are continuous functions and (ii) all focal elements for link failure temperature are closed
intervals.

A focal element 7ML, ;; associated with the evidence space (ZML,, TML,,my,,,)
contains times corresponding to the occurrence of LOAS (i.e., times < oo) only if (i, j,k) e Z,, .

The following two possibilities for 7, , require consideration:
by = and <t .. (7.46)

Given the two preceding possibilities, the lub 4, ;; of the times at which LOAS could occur for
IMEL, ; with (i, j,k) € T, is defined by
typx = and (i, j,k) e Z,,;
min {t_su,iat_sm,j} for min {ZSLl,i’ZSLZ,j} S by (7.47)

= b = =
2L,k {max{t 1t e TML, j; and t # o} for ¢, <min{ty,; Ty, }

and

bypx Sty and (i, j,k) e I,
_ min{ZSLl,i’ZS‘LLj} for Hﬁn{t_su,w?uz,ﬁ <t_WL,k (7.48)
= bk =

lub{t:t € TML, ;; and ¢ # oo} for 7, <min{tg, ,tg, ;}.

The lub is needed in Eq. (7.31) because, under the stated conditions, it is possible the that LOAS
could occur at times with an lub of %, ; (e.g., if &, =g, <Iy,; ). In turn, the resultant lub

time £,, for LOAS occurrence is defined by
t_ZL = maX{t_ZL,ijk : (la ],k) € Z-ZL}' (749)

For the first case (i.e., all link temperature curves are continuous functions), the lub %, ;; for
the times at which LOAS could occur for 7ML, ;. with (i, j,k) € Z,, is defined by

by =lubit:t e TML, ;; and ¢ # oo}, (7.50)

and the resultant lub #,, for LOAS occurrence time is defined by
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by, =max{ty, ; (i, j,k) € T, }. (7.51)

As an example,

_ 133.675 for the sampling-based approach
2L={ (7.52)

133.682 for the closed form representation

for the results illustrated in Fig. 7.2.

The LOAS occurrence time evidence space (ZML,,TML,,my,,,) and its associated CPF,

CBF, CCPF and CCBEF for either SL 1 or SL 2 failing before WL 1 fails can also be defined with
use of the evidence spaces (ZMF,,TMF,,m;z,) and (ZM,,,, TM,,,,my,;,). Specifically, (i)

(TMF,,TMF,, my,,r,) is defined in Sect. 8.2 for the times at which a system consisting of SL 1

and SL 2 fails with system failure time corresponding to the time at which the first SL fails and
(it) (ZM,,;,,TM,;,,,my,;,) is defined in Sect. 4 for the time at which WL 1 fails.
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8. Cumulative and Complementary Cumulative Belief and Plausibility for
Time at which a System of Two Links Fails

For simplicity, this section considers a system of 2 SLs and two definitions of system failure:
(1) system failure occurs when both links have failed and (ii) system failure occurs when either
link has failed. The development is identical for a system of 2 WLs.

8.1 Cumulative and Complementary Cumulative Belief and Plausibility for Time at
which a System of Two Links Fails Due to Failure of Both Links

The development for both definitions of link system failure starts with the evidence space
(TM,TM, my,, ) for the times at which the links could fail. Specifically, the evidence spaces

(TMg;,, TM gy, mg;, ) and (TMg;,, TM; ,,mg;, ) for link failure time defined in Sect. 4 are
combined to produce the product evidence space (7ZM,TM, my;,,) with

TM=TM, xTMy,, (8.1)
IM; =TMg,; xTMg, ; € TM, (8.2)
T™M ={TM; :(i,j) € I=11,2,...,nSL1} x {1,2,...,nSL2} } (8.3)
and
My (TM;) = mgpy  (TMgpy Ymgps [ (TMgy ) =m, ;. (8.4)

Example SL links that will be used for illustration are defined and illustrated in Table 4.1 and Fig.
4.1.

For the first definition (i.e., system failure occurs when both links have failed), the function

TMF, (t) = max{tg;,t5,} for t=[ty,,tg,]€TM (8.5)

is used to map the evidence space (7ZM,TM,m;,) into the evidence space
(TMF , TMEF, ,my,-, ) for link system failure time with

TIMF ={t:t =TMF(t) for t=[tg,.t5,]c TM}, (8.6)
IMF ;= {t:t =TMF\(t) for t=[rg,,t5,]1€TM;} (8.7)
TMF, = {TMF; : (i, j) € T={1,2,...,nSL1} x {1,2,...,nSL2} } (8.8)
and
My (TMUE ) = mo (TM) = (8.9)
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Next, the bounds

(Ly255) = (min(TMZ, ), max(TMEF ;) ) (8.10)

are introduced for use in the determination of the cumulative values of belief and plausibility for
the time at which the link system fails as indicated in in conjunction with Egs. (2.48)-(2.50).
Specifically,

~ o for ¢, < maX{LSLwLSLz,j} 8.11)
L= .
max{t g, .t g, ;} for max{t g, ; g, ;}<t,
and
= o for t,, <max{tSLLl.,tSL2,j} 8.12)
L = = 7 e '
max{le, .l ;¢ for maxits,; tg, ;) <1,
1 b i Y
Both SL1, SL2 9
23
>« 0.8 5 5
25" R
27 E B
O m ==
8 506] 25
B = % 7=
O = +— O
S = cC =
£ 8047 2 o
28 o £
E R ¥
B 0.2 s 2
O Both SL1, SL2
o
0 ‘ , i 0 ‘ . .
0 50 100 150 200 0 50 100 150 200
t : Link System Failure Time (min) t : Link System Failure Time (min)

Fig. 8.1 Graphical summary of evidence space (ZMF,, TMIF,,my,, ) for time ¢ at which link

system failure occurs for (i) a two link system composed of SLs 1 and 2 defined in Sect. 4.1 and
(ii) system failure corresponding to failure of both links: (a) Cumulative plausibility PI(f <1),

probability Pr(f <t) and belief Bel(f <t), and (b) Complementary cumulative plausibility
PI(t <), probability Pr(t<t) and belief Bel(t<f).

Once the evidence space (ZMZF,TMF,,my ) 1is constructed, cumulative and
complementary cumulative plausibility and belief functions for link system failure time can be
obtained from the pairs (£, ; ,t_uj) as (1) indicated in conjunction with Egs. (2.48)-(2.50) and (ii)

illustrated in Fig. 8.1. In addition, Fig. 8.1 also contains CDFs and CCDFs for the time at which
link system failure occurs obtained by assigning uniform distributions to the individual focal
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elements for link failure temperature as described for the construction of the link failure time CDFs
in Fig. 4.4. Specifically, the CDF and CCDF in Fig. 8.1 are constructed as indicated in Egs. (7.9)-
(7.13) with TMF,(t;,,t5,) replacing TML, (gt ty1) -

The cumulative ¢ = 200 min results in Fig. 8.1a provide the analysis outcomes

PI(t <200) = plausibility that link system failure occurs before or at 200 min

8.13
=0.800, (8.13)

Bel(f < 200) = belief that link system failure occurs before or at 200 min

8.14
=0.400, (8.14)

and the complementary cumulative # =200 min results in Fig. 8.1b provide the analysis outcomes

PI(200 < f) = plausibility that link system failure did not occur before
or at 200 min

8.15
=Plt=t,) (8.15)
= 0.600,
Bel(200 < ) = belief that link system failure did not occur before
or at 200 min
(8.16)
=Bel(t=t,)
=0.200.

In addition, the results in Fig. 8.1 provide information on the potential timing of link system failure,
which could be important in some analyses.

As an additional example, cumulative and complementary cumulative plausibility, probability
and belief functions for link system failure time are presented in Fig. 8.2 for a link system
consisting of WLs 1 and 2 defined in Sect. 4. The construction of the results in Fig. 8.2 is the same
as the construction of the results in Fig. 8.1
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Complementary Cumulative

Plausibility, Probability, or Belief
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Bel(t < t)

0 50 100 150 200 0 50 100 150 200
t : Link System Failure Time (min) t : Link System Failure Time (min)

Fig. 8.2 Graphical summary of evidence space (ZMF,TMEF,,my,,) for time ¢ at which link

system failure occurs for (i) a two link system composed of WLs 1 and 2 defined in Sect. 4.1 and
(ii) system failure corresponding to failure of both links: (a) Cumulative plausibility P/(f <1),

probability Pr(f <t) and belief Bel(f <t), and (b) Complementary cumulative plausibility
PI(t <), probability Pr(t<t) and belief Bel(t<f).

A focal element TMF ; associated with the evidence space (ZMF;, TMEF,,my,,-,) contains

times corresponding to link system failure (i.e., times < oo) only if (i, j) € Z,, with
Lip =40, )) max{t g Lgp i} Sty (8.17)
In turn, the earliest time ¢, at which link system failure can occur is defined by
typ =min{t,; 1 (0, )) € Lip . (8.18)

As an example,

[
—1F 7 166.403 min for WL 1, WL 2

62.295 min for SL 1, SL 2
66.406 min for WL 1, WL 2

B {62.123 min for SL 1, SL 2

(8.19)

~

for the results illustrated in Fig. 8.1 and Fig. 8.2, with (i) the first results obtained from Eq. (8.18)
and (ii) the following approximate results obtained from the sampling-based analysis used to
construct the CDFs and CCDFs in Fig. 8.1 and Fig. 8.2.
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Determination of the maximum value %, for the times at which link system failure could occur

is now considered for system failure corresponding to failure of both SLs. As in Sect. 7.1, two
cases for the definition of 7 are considered: (i) All link temperature curves are continuous

functions, and (ii) All link temperature curves are continuous increasing functions.

For the first case (i.e., all link temperature curves are continuous functions), the link system

maximum failure time 7 ; for TMJF ; with (i, j) € Z,, is defined by

iy =maxit:te TMF ; and t# o}, (8.20)
and the resultant maximum value £ for link system failure time is defined by

B = max{?lF’l.j (@, ) ey} (8.21)

For the second case (i.e., all link temperature curves are continuous increasing functions), the

maximum value 7 ; for link failure time for ZMF ; with (i, j) € Z, is defined by

(8.22)

t_ tmx fOI' tmx < maX{tSLl,i ° tSLZ,j}
1Fij — - = = =
max{lg, ;,lsy ;b for max{tg, . ty, } <1,

and the resultant time 7, of the last link system failure is defined as indicated in Eq. (8.21).

As an example,

- _ {200.000 min for SL 1, SL 2
¥ 71200.000 min for WL 1, WL 2
{199.964 min for SL 1, SL 2
- {199.977 min for WL 1, WL 2

(8.23)

for the results illustrated in Fig. 8.1 and Fig. 8.2, with (i) the first results obtained from Eq. (8.22)
and (ii) the following approximate results obtained from the sampling-based analysis used to
construct the CDFs and CCDFs in Fig. 8.1 and Fig. 8.2.

8.2 Cumulative and Complementary Cumulative Belief and Plausibility for Time at
which a System of Two links Fails Due to Failure of Either Link

The determination of cumulative belief and plausibility for the second definition (i.e., system
failure occurs when either link has failed) is similar to the determination for the first definition.
Specifically, the function

TMF,(t) = min{tg,.ty,,} for t=[tg,,tg,]€ TM (8.24)
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is used to map the evidence space (7ZM,TM,m;,) into an evidence space
(TMF,,TMF, , my,, ) for link system failure time as indicated in Egs. (8.6)-(8.9). Further, the

focal element bounds #, ;and 7 ; are now defined by

(t2-5;) = (min(TMZ, ;) max(TMF, ;) (8.25)
with
oo for ¢, <min{t g, ;1 g,
Loy =Y : (8.26)
T min{t gL gy ) for min{t g tg, <t
and
_ o for ¢, <min{ty,;, fg,;} (8.27)
25 " VeinsT T 7T '
P (min{ly, T, ;) for min{ly, T, ) <,

In turn, cumulative and complementary plausibility and belief functions for the second definition
of link system failure can be obtained from the pairs (£, ,t_z’,.j) as indicated in conjunction with
Egs. (2.48)-(2.50) and illustrated in Fig. 8.3. In addition, Fig. 8.3also contains the CDF and CCDF
for the time at which link system failure occurs obtained by assigning uniform distributions to the
individual focal elements for link failure temperature as described for the construction of the link
failure time CDF and CCDF in Fig. 4.4. Specifically, the CDF and CCDF in Fig. 8.3 are con-
structed as indicated in Eqs. (7.9)-(7.13) with TMF, (t,;,,ts,) replacing TML, (tg ,tg 5 tyr) -

Either SL1, SL2

o
e}

06

Probability, or Belief
o
0

Cumulative Plausibility,
o
N

Complementary Cumulative
Plausibility, Probability, or Belief

Either SL1, SL2

0 50 100 150 200 0 50 100 150 200
t : Link System Failure Time (min) t : Link System Failure Time (min)

Fig. 8.3 Graphical summary of evidence space (ZMF,, TMF,,my,,.,) for time ¢ at which link

system failure occurs for (i) a two link system composed of SLs 1 and 2 defined in Sect. 4.1 and
(ii) system failure corresponding to failure of either link: (a) Cumulative plausibility PI(f <1),
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probability Pr(f <t) and belief Bel(f <t), and (b) Complementary cumulative plausibility
PI(t <), probability Pr(t<t) and belief Bel(t <f).

As an additional example, cumulative and complementary cumulative plausibility, probability
and belief functions for link system failure time are presented in Fig. 8.4 for a link system
consisting of WLs 1 and 2 defined in Sect. 4. The construction of the results in Fig. 8.4 is the same

as the construction of the results in Fig. 8.1.

Either WL1, WL2
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t : Link System Failure Time (min) t : Link System Failure Time (min)

Fig. 8.4 Graphical summary of evidence space (ZMF,,TMF,,my,.,) for time ¢ at which link

system failure occurs for (i) a two link system composed of WLs 1 and 2 defined in Sect. 4.1 and
(ii) system failure corresponding to failure of either link: (a) Cumulative plausibility P/(f <1),

probability Pr(f <t) and belief Bel(f <t), and (b) Complementary cumulative plausibility
PI(t <), probability Pr(t<f) and belief Bel(t <7).

A focal element TMF, ; associated with the evidence space (ZMF,, TMF,, my, -, ) contains

times corresponding to link system failure (i.e., times < o) only if (i, j) € Z,, with

Lop =40, j) min{t g, Lgrn 1} Syt (8.28)
In turn, the earliest time ¢,, at which LOAS can occur is defined by
by =min{t, ;2 (, j,k) € 1y, . (8.29)

As an example,
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Irr =

58.537 min for SL 1, SL 2
{62.778 min for WL 1, WL 2
58.535 min or SL 1, SL 2
{62.778 min for WL 1, WL 2

(8.30)

~

for the results illustrated in Fig. 8.3 and Fig. 8.4, with (i) the first results obtained from Eq. (8.29)
and (ii) the following approximate results obtained from the sampling-based analysis used to
construct the CDFs and CCDFs in Fig. 8.3 and Fig. 8.4.

Determination of the maximum value % for the times at which link system failure could

occur is now considered for system failure corresponding to failure of either SL. As in Sect. 7.1,
two cases for the definition of 7, are considered: (i) All link temperature curves are continuous

functions, and (ii) All link temperature curves are continuous increasing functions.

For the first case (i.e., all link temperature curves are continuous functions), the maximum

value . ; for link system failure time for TMF, ; with (i, j) € Z,. is defined by

by =maxit:t e TMF,; and t# o}, (8.31)
and the resultant maximum value %, for link system failure time is defined by

by = maX{t_2F,ij 1)) €Ly} (8.32)

For the second case (i.e., link temperature curves are continuous increasing functions), the
maximum value %, ; for link system failure time for ZMF, ; with (i, j) € Z, is defined by

— tmx for tmx < min{ZS‘Lli’ZS‘L2 j}
b { (8.33)

min{t_su,ijﬂz,j} for min{f_SLl,iat_SLz,j}Stmx

and the resultant maximum value %, for link system failure time is defined as indicated in Eq.
(8.32).

As an example,

_ [(133.682 min for SL 1, SL 2

wr {200.000 min for WL 1, WL 2
_|133.678 min for SL 1, SL 2
- {199.749 min for WL 1, WL 2

(8.34)
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for the results illustrated in Fig. 8.3 and Fig. 8.4, with (i) the first results obtained from Eq. (8.29)
and (ii) the following approximate results obtained from the sampling-based analysis used to
construct the CDFs and CCDFs in Fig. 8.3 and Fig. 8.4.

98



9. Cumulative and Complementary Cumulative Belief and Plausibility for
Temperature at which a System of Two Links Fails

For simplicity, this section considers a system of 2 SLs and two definitions of system failure:
(1) system failure occurs when both links have failed and (ii) system failure occurs when either
link has failed. The development is identical for a system of 2 WLs

9.1 Cumulative and Complementary Cumulative Belief and Plausibility for
Temperature at which a System of Two Links Fails Due to Failure of Both Links

The development for both definitions of link system failure starts with the evidence space
(TM,TM, my,, ) for the times at which the links could fail as developed in Egs. (8.1)-(8.4). For

the first definition (i.e., system failure occurs when both links have failed), the function

oo for max{lg,,ls,} =
TF (t) = o (tsy) for tg, <tgy <o ©.1)
1 — .
Ty, (ts,) for tg, <tg, <o

max {7 (¢, ), T, ()} for ), =tg, =tg, <

with t=[ty,,¢y,]1€7M is used to map the evidence space (7M,TM,m,,,) into an evidence
space (7F, T, ,myz,) for link system failure temperature. As indicated in the definition of 7F;(t)

, link system failure is assumed to be the maximum of the individual link failure temperatures
when the individual links fail at the same time. Further, the notational assumptions

Ty, (tg,) =00 for ty, = o and T, (tg,) =0 for tg, =00 9.2)

are used to indicate that link failure temperature was not reached and hence that link failure did
not occur.

The evidence space (7, TIF,,m;;,) for link system failure temperature is defined by

TFH=AT:T =TF(t) fort=[tg,,t,] € TM}, (9.3)
TH;={T:T=TK({) fort =[tg,,t5,]1€ TM;}, (9.4)
TF ={TH; :(,j) € I=11,2,...,nSL1} x{1,2,...,nSL2} } 9.5)
and
ey (TH ) = mpy (TM) = my ;. (9.6)

Similarly to the results in Eqgs. (8.10)-(8.12), the bounds
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(TE, ;. TF 1) = (gb(TF, ), max(TF ;) 9.7)

Lij 2

are introduced for use in the determination of the cumulative values of belief and plausibility for
the temperature at which the link system fails as indicated in conjunction with Egs. (2.48)-(2.50).
has a

Definition of the focal element bound 7F .. is considered first. Specifically, 7F

1ij 1ij
definition that (i) involves greatest lower bounds (glb’s) for sets of link failure temperatures and
(ii) is conditional on various equalities and inequalities involving the times ¢, g2, £ 514

and 7 g, ;. The following possibilities exist for the definition of TF, ;:

Possibility (1): If £, ; = £, ; =1, then either (1.1) ¢, = and

Ly
TF . = (9.8)
or(l.2) t; =t,, and
TF, ; =max{Tg,(1;),Tg,(2;)} = max{Tgy, (1, ), Tg s (t, )} 9.9)
or (1.3) 1, <t,,, T, (2;)=Tg,(2;) and
TF, ; =Tg, (1) =Tg,(2;), (9.10)
or (1.4) t; <t,,, Tg,(2;) <Tg,(2;) and
Tgy(ty) if (2.8, 1N TMg,,; =0
= :{TSU(L;;):glb{T:T Ty, (1) for te(t.t, ]NTMg,,; # D}, 10
or (1.5) £ <ty, Tys(t;) <Tg,(2;) and
T (1) if (£;,1,, 10 TMg,, =&
= :{TSLz(LU.):glb{T:T Tg, (1) for te(ty,t,, 1N TMg,; # B} ©-12)
Possibility (2): If 7, < g, ; <t,,, then
IF,, = {glbﬂ (Lspa,;) if (LS‘LZ,j’tmx]mTMSL],i #& and glby (Lg, ;) < Ty, (Len ;) ©.13)
’ Tg (L) otherwise
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gb{T: T =T, (1) for te(Lgy sl ] NTMg,, # D}

by (22 ;)= 9.14
glor, (Ls.2,/) {undeﬁned if (Lo ol |0V TMyy,y; = O. o

Possibility (3): If £, ; <tg,; <t,,,then

B {glbn (Lopr) I (Lol INT Mgy, # D and glog, (£g,) < T (L) 9.15)
Ly, = ]

Tgy(2g,) otherwise
with

gIb{T : T =T, (t) for t € (L't ]NTMg, ; #D}

b (£ )= 9.16
glbr (L) {undeﬁned if (Lgpypo b INTM, ; = 10

The need for the use of glb’s in Egs. (9.11)-(9.16) is illustrated by the use of the glb in Eq.
(9.11). For this case (i.e., t; <t,, and Tg,(2;)<Tg,(Z;)), the earliest time at which the link

system will fail is 7, and the corresponding link failure temperature at time 7 is

max{To (£;), T 5 (2;)} = Ton (2)s 9.17)

which initially suggests that 7, (7;;) should be the minimum failure temperature. However, this
is not correct in general because it is possible that SL 1 will fail after ¢ at a temperature less than

Tg,(2;). In this case, the set

S={T:T=Tg,,() for te(t 1NTMyg,,; # S} (9.18)

ij ’tmx

will (1) exist if (¢ 1NTMg,; #< and (ii) contain failure times ¢>7; at which

ot
ij > “mx
T (¢) <Tgp5(2;;) - Thus, the smallest of these times and the associated temperature for SL 1 rather
than T ,(z;) will define T

temperatures do not have a smallest value. Rather, they have a glb, which is equal to T, (Z;) .

1 -However, there is a complication because the indicated

Thus, although Tg;,(£;;) is not formally equal to T, ;, it in effect defines T ; by being the glb of

1,ij »
SL 1 failure temperatures that occur after 7, and are less than T, (2 ;).

The bound ﬁly also has a definition that is conditional on various equalities and inequalities
involving the times #¢,,, fg,;, £ g1; and 7 g, ; as stated for the following possibilities:
Possibility (1): If 7 g, ; =g, ; =1, then

lj’
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ﬁl,ij = max{Tg, (ng)’TSL2 (74/)}- (9.19)

Possibility (2): If 7, <7 g, ;, then either (2.1) the inequality #g,; <7 g,; <7, ; holds

and
ﬁl,ij = max {Tg, (7 s114)> T (t_SLZ,j)} (9.20)

or (2.2) the inequality 7, <tg,; <fg, ; holdsand

le Y ) (?SLZ,]' )- (9.21)

Possibility (3): If 5, ; <7 g, then either (3.1) the inequality ¢, <7, <7, holds

and
ﬁl,ij = max {Tg, (7 s114)- T (Z_SLz,j)} (9.22)

or (3.2) the inequality 7 g, ; <tg,; <7 g, holds and
TF15 = Topy (F gz (9.23)

Once the evidence space (7F,TEF,,my:, ) is constructed, cumulative and complementary
cumulative plausibility and belief functions for system failure temperature can be obtained from
the pairs (IF, ;,TF1;) as (i) indicated in conjunction with Egs. (2.48)-(2.50) and (ii) illustrated
in Fig. 9.1 and Fig. 9.2. In addition, Fig. 9.1 and Fig. 9.2 also contain CDFs and CCDFs for link
system failure temperature obtained by assigning uniform distributions to the individual focal
elements for link failure temperature as described for the construction of the link failure time CDFs
in Fig. 4.4. Specifically, the indicated CDFs and CCDFs are constructed as indicated in Egs. (7.9)
-(7.13) with TF,(ty;,,t5,) replacing TML,(tg;,,ts 2 twr1) -
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Fig. 9.1 Graphical summary of evidence space (ZMF,, TMEF,,my,,,) for temperature 7 at which

link system failure occurs for (i) a two link system composed of SLs 1 and 2 defined in Sect. 4.1
and (i1) system failure corresponding to failure of both links: (a) Cumulative plausibility

PI(T <T), probability Pr(T <T) and belief Bel(T <T), and (b) Complementary cumulative
plausibility PI(T < T, probability Pr(T < T) and belief Bel(T <T).
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Fig. 9.2 Graphical summary of evidence space (ZMF,, TMEF,,m;,,,) for temperature T at which

link system failure occurs for (i) a two link system composed of WLs 1 and 2 defined in Sect. 4.1
and (i) system failure corresponding to failure of both links: (a) Cumulative plausibility

PI(T <T), probability Pr(T <T) and belief Bel(T <T), and (b) Complementary cumulative
plausibility PI(T < T), probability Pr(T < T) and belief Bel(T <T).

A focal element 77, associated with the evidence space (77, TI,my ) contains

temperatures corresponding to link system failure (i.e., temperatures < o) only if (7, j) € Z, with
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Lip =40, )) max{tg, ;s Loy i} St} (9.24)
In turn, the glb TF | for the temperatures at which link system failure can occur is defined by
TF | =min{TF, ; : (i, j) € Iyf }. (9.25)

As an example,

_ [600.000 °C for SL 1, SL 2
- {490.000 °C for WL 1, WL 2
_600.011 °C for SL 1, SL 2

B {490.004 °C for WL 1, WL 2

(9.26)

for the results illustrated in Fig. 9.1 and Fig. 9.2, with (i) the first results obtained from Eq. (9.25)
and (ii) the following approximate results obtained from the sampling-based analysis used to
construct the CDFs and CCDFs in Fig. 9.1 and Fig. 9.2.

Determination of the maximum temperature TF at which link system failure could occur is
now considered for system failure corresponding to failure of both SLs. As in Sect. 7.1, two cases

for the definition of 7F; are considered: (i) All link temperature curves are continuous functions,
and (i) All link temperature curves are continuous increasing functions. For the first case (i.e., all
link temperature curves are continuous functions), the maximum realized link system failure

temperature T ry for TH ; with (i, j) € I is defined by

Tip,; =max{T:T eTF; and T #x}, (9.27)

and the resultant maximum link system failure temperature TF is defined by
TF1 =max{T,p; : (i, ) € Ty }. (9.28)

For the second case (i.e., all link temperature curves are continuous increasing functions), the
determination of a closed-form representation for the maximum temperature 7F1 at which link
system failure could occur requires consideration of a number of special relationships involving

Lo Lsiajs Ly and fg, ;. The following development considers focal elements 77,

associated with the evidence space (7F, T, m,) with (i, j) € Z,p.
To start, the following two possibilities

mx —

) <max{t_SL1,i9t_SL2,j} and max{t_SLl,iﬁt_SLz,j}<tmx (9.29)
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for TSLU and t_SL2, ; are identified and then used to identify more possibilities involving ¢ SL1i»

Lgo s Ly and £ g, ;asindicated below:

tmx < mm{t SLl,i’tSLz,j} or
by QXL 1y 10 gpp 3 =V E gy <ty Slgpp; OF

Psroi <tue St

with
Ly SMUN{T gy 5,7 g5 ;3 and (0, ) € Ly
= Ty =max{Tg, (2,,): Lo (4,0}
Pspig <ty Stgp; and (i,j) €L
Uspig <lsiaj Sty Stgn; = Nipy =Tg,(t,)
or
= _ _
Lo Sty <lwe St
= Ty =max{Ty, (7 g,;), Tg, ()},
Uspo; <ty Stgp,; and (i, j) €Ly
Using <tspiy Sty <tsn; = Nipy =Tg(t,,)
or
= — —
Torii St <ty St
= Ty =max{Tg, (2,,), Topn (1 510,)}-
Similarly,
Espiy =lspaj =ty <ty OF
max{? g, 8 g0 i} <tyy =8 sr1; <lspoj <lpy OF
Esra; <tspii <lp
with

Espy =lsin; =1ty <ty and (i,)) €Iy

= TIF’/ =max{Ty, (1), Ty, (7)),
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(9.35)



to <t <t, and (i,j) e

torn; Sty <tgaj <ty
= Lipy; = maX{TSLl(t_SLl,i )> Lo (t_SLz,j)} (9.36)

or

Usprg <lsia; <tspoj <tw = TNipy; =Tgr(t gy ;)

ton,; <t <t, and (i,j)eZ

tspi St <tsp; <t
= Ty = max{Tg, ( sp1.0)> Tsia (t_SLZ,j )} (9.37)

or

Usin <Lopri <tspry <twe = Lipy = Top (E sp1,)-

Given the possible definitions for 7_’1 ;10 Egs. (9.31)-(9.33) and (9.35)-(9.37) obtained with

the assumption that the link temperature curves are increasing, the resultant value for 7j, is
obtained as indicated in Eq. (9.28). As an example,

= {1050.000 °C for SL 1, SL 2
1 —

991.860 °C for WL 1, WL 2 _—
. {1050.000 °C for SL 1, SL 2 '

991.859 °C for WL 1, WL 2

for the results illustrated in Fig. 9.1 and Fig. 9.2, with (i) the first results obtained from Eqgs. (9.29)
-(9.37) and (ii) the following approximate results obtained from the sampling-based analysis used
to construct the CDFs and CCDFs in Fig. 9.1 and Fig. 9.2.

9.2 Cumulative and Complementary Cumulative Belief and Plausibility for
Temperature at which a System of Two Links Fails Due to Failure of Either Link

The determination of cumulative belief and plausibility for the second definition (i.e., system
failure occurs when either link has failed) is similar to the determination for the first definition.
Specifically, the function

o for ¢, <min{tg,,tg,} =
TF, (t) = Tg,(tg,) for tg, <t,. and tg, <tg, (9.39)
2 - .
T, (tg,) for tg, <t,, andig, <tg,

min {7y (4y), Topp ()} fOr 4y =ty =tg, <1,
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with t =[tg,,t5,]€ 7M is used to map the evidence space (7M,TM,my,,) into the evidence
space (7F,,TF,,m,) for link system failure temperature as indicated in Egs. (9.3)-(9.6) to obtain
the evidence space (7F,TF,,mx, ). Further, bounds

(IF 5 5. TF25) = (min(T7, ;). lub(TF; ;) ) (9.40)

2,ij 2

for focal elements 77, ; associated with the evidence space (7, TF,,my,) are introduced for

use in the determination of the cumulative values of belief and plausibility for the temperature at
which the link system fails as indicated in conjunction with Egs. (2.48)-(2.50).

Definition of the focal element bounds TF', ;;and ﬁz,lj has an organizational structure that is
similar to the structure used in the definition of the bounds 7', ;and le in Egs. (9.8)-(9.23).

Specifically, TF , .. is defined conditional on the following possibilities:

27{/‘
Possibility (1): If ¢, = tg,; =L, ;, then
TF, ; =min{Ty, (1), Tg,(1;)}, (9.41)

Possibility (2): If ¢, < Zg, ;, then either: (2.1) the inequality tg,, <7 g,; < g, holds

and
TF ;= To (Lspy) (9.42)
or (2.2) the inequality ¢, <tg,; <7, holdsand
TF , ; =min{Tg, (£g,) Topn (g0 )4 (9.43)

Possibility: (3) If g, ; < fg,, then either: (3.1) the inequality #g, ; <7, ; <tg,; holds

and
TF ;i =Ty, (Lgn;) (9.44)

or (3.2) the inequality ¢, ; < tgy; <7, ; holds and
TF ;= min{Tg, (£g,) Tspn (L ;)3 (9.45)

Similarly, TF2; is defined by
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Possibility (1): If 7;; =¢ g, =1 g, ;, then either: (1.1) the equality 7, =oo holds and

TF2; = o (9.46)

or (1.2) 7;; <t,,, Tg, (1) =Ty, (f;) and
ﬁlij =T, (t_ij) =T, (t_ij ) (9.47)

or (1.3) t; <t,., Tg(;) <Tg,(t;) and
TF25 = Tg,(T,) =Wb{T : T =T, (t) for te[tg,;.T;)NTMy, ;}, (9.48)

or (1.4) 7; <t,,, Tgo(fy) <Tgy(7;) and
TF2y = To (2;) =Tub{T:T =Tg,(t) for t €[t 1;)NTMg,,}. (9.49)

With respect to Egs. (9.48) and (9.49), relationships

(L1, ’t_ij )N TMSLZ,]’ #< and [fg,; ’t—ij) NTIMg,,; #D (9.50)

hold as a consequence of the assumed inequality t_l.j 9

Possibility (2): If 7 gy, <7 g, ;, then either: (2.1) the inequality £, ; <?g,; <fg,  holds

and

TF2,; = max {Tsu (7 51, Wb{T 2T =T (1) for [ £ ;57 5p1,) VI My, }}

= maX{TSLl(?SLl,i)aTSLZ (t_SLl,i)} if t_SLl,i € TMSLz,js =

or (2.2) the inequality ¢, ; =7 g,; < g, ; holds and
TFa4 = min {7, (7 571), Tozo (Ls02.)} (9.52)

or (2.3) the inequality 7, <tg,; <, ; holdsand
ﬁlij = TSLl(t_SLl,i)' (9.53)

Possibility (3): If 75, ; <7 g, then either: (3.1) the inequality #g,, <7 g, ; <7 g, holds

and
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TF2 :maX{TSL2 (7 512,70, WbAT = T =T, (¢) for [£y5, 7 512 ;) mTMSLl,i}}

= max{Ty, (t—SLZ,j )9TSLI(t_SL2,j)} if t_SL2,j < TMSLl,io =

or (3.2) the inequality ¢, =7 g, ; <7 g, holds and
TFay = min{Tg;, (£gp1:)> Torn (51003 (9.55)

or (3.3) the inequality 7 g, ; < tg,; <7 g, holds and
ﬁlij =Ty (t_SLz,j)' (9.56)

Once the evidence space (7F,,TF,,myy.,) is constructed, cumulative and complementary
cumulative plausibility and belief functions for system failure temperature can be obtained from
the pairs (TF , ,ﬁz,y} as (1) indicated in conjunction with Egs. (2.48)-(2.50) and (i1) illustrated
in Fig. 9.3 and Fig. 9.4. In addition, Fig. 9.3 and Fig. 9.4 also contain CDFs and CCDFs for link
system failure temperature obtained by assigning uniform distributions to the individual focal
elements for link failure temperature as described for the construction of the link failure time CDFs
in Fig. 4.4. Specifically, the indicated CDFs and CCDFs are constructed as indicated in Egs. (7.9)
-(7.13) with TF, (tg;,,t5 ,) replacing TML,(¢g\,tg55t11) -
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Fig. 9.3 Graphical summary of evidence space (ZMF,, TMEF,,my,,-,) for temperature 7 at which

link system failure occurs for (i) a two link system composed of SLs 1 and 2 defined in Sect. 4.1
and (ii) system failure corresponding to failure of either link: (a) Cumulative plausibility

PI(T <T), probability Pr(T <T) and belief Bel(T <T), and (b) Complementary cumulative
plausibility PI(T < T, probability Pr(T < T) and belief Bel(T <T).
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Fig. 9.4 Graphical summary of evidence space (ZMF,, TMEF,,my,,,) for temperature T at which

link system failure occurs for (i) a two link system composed of WLs 1 and 2 defined in Sect. 4.1
and (ii) system failure corresponding to failure of either link: (a) Cumulative plausibility

PI(T <T), probability Pr(T <T) and belief Bel(T <T), and (b) Complementary cumulative
plausibility PI(T < T, probability Pr(T < T) and belief Bel(T <T).

A focal element 7F,

»; associated with the evidence space (7F,,TF,,myy,) contains

temperatures corresponding to link system failure (i.e., temperatures < o) only if (i, j) € Z, with
Top ={G, ) min{t gy ;5 Lgrn i} <1, ) # D (9.57)

In turn, the glb TF , for the temperatures at which link system failure can occur is defined by
TF , =min{TF, ; : (i, j) € I} (9.58)

As an example,

~ [590.000 °C for SL 1, SL 2
2 1490.000 °C for WL 1, WL 2

(9.59)
. {590.008 °C for SL 1, SL2

490.000 °C for WL 1, WL 2

for the results illustrated in Fig. 9.3 and Fig. 9.4, with (i) the first results obtained from Eq. (9.58)
and (i1) the following approximate results obtained from the sampling-based analysis used to
construct the CDFs and CCDFs in Fig. 9.3 and Fig. 9.4.
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Determination of the lub TF3 of the link temperatures at which link system failure could occur
is now considered for system failure corresponding to failure of either SL. As in Sect. 7.1, two

cases for the definition of 7F, are considered: (1) All link temperature curves are continuous
functions, and (ii) All link temperature curves are continuous increasing functions. For the first

case (i.e., all link temperature curves are continuous functions), the lub 7_’2 r; for system failure

temperature for 7F, ;. with (i, j) € Z, is defined by

2,ij

Typy =lWb{T:T €TF,; and T # o}, (9.60)

and the resultant lub TF, for realized link system failure temperatures is defined by
TF2 =max{Typ; : (i, j) € Tpp}. 9.61)

For the second case (i.e., all link temperature curves are continuous increasing functions), the

determination of a closed-form representation for the lub TF > of the temperatures at which link
system failure could occur requires consideration of a number of special relationships involving
Lo tsajs s, and £g, . The following development considers focal elements 77, ;

associated with the evidence space (7F,,TF,,m.,) with (i, j) € Z,, and has a structure that is

similar to structure in Egs. (9.29)-(9.37) used in the determination of TF, for continuous link
temperature curves.

An important property that contributes to the following results derives from the assumptions
that (i) the link temperature curves are continuous increasing functions and (ii) the focal elements
for link failure temperatures are closed intervals. As a consequence, both links have the property
indicated below for SL 1:

{T:T =Tg,(t) for t e TMg,; and ¢ <oo}
3 {[Tsu (Lsz1.0)s TSLl(t_SLl,i)] for t_SLI,i S Doy (9.62)

[Tp1 (L5100 Topy (1)) fOT 8,0 <Tgyy ;e
Further, for a continuous, increasing link temperature curve 7(¢) defined on [z, .z, ], a focal
element [7,T] for link failure temperature, and T (t,,) <T,the minimum time ¢ and maximum
time ¢ for link failure (e.g., ¢, and 7, ;in Eq. (9.62)) are equal if, and only if, 7'(z,.)=T.
Specifically, existence of the indicated conditions means that the following statements are
equivalent (i.e., that each statement implies the other): (i) #+ =¢ and (ii) 7(¢,,,) =T . Further, the

condition ¢ =7 =t,  results for both statements.

To start, the following two disjoint possibilities
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min{t g, ;0 g5 1} Sy, and 4, <min{t g, ;.7 g, ;} (9.63)

for g, and 7 g, ; are used to identify more possibilities involving ¢g,,, fg,;, g, and

t g, for (i, j) € T, as indicated below:

Li =tsp =tgrj Sty OF

Min{t g 08 gn 3 S by = g1y <y and Ty, <t, or (9.64)

mx

Uopo <tgy; and fg,, <t

and
Lopg; Sty <min{tg, ool g5 Lgy ;) OF

e <TN{E 7505y ;3 = Lgpn Sty <min{ gy ;7 105, L gpa ;) OF (9.65)

max{f g, L, ;} St,, <min{t g, ,fg, }.

In turn, the six possibilities indicated in Egs. (9.64) and (9.65) result in the following values for

Ty with (4, j) € Ly

Possibility (1): If 7, =7g,; =7g,, <t

mx

and (i,))eZ,p then either (1.1)

o] = 2
Lo =t =ty (Whichimplies g, =t g,; =t,.), Lg,; <lg,;=1; =t, and

mx

7_12F,ij = max{TSLl(tmx)’IU'b{T:T =T, () for tg,, <t <t—ij :tmx}}

(9.66)
= max {Tg; (b )s Top 2 G )} »

or (1.2) Ly, =t g ; =1, (whichimplies tg, ; =755 ; =t,), Ls; <Tgy; =1; =t,, and

Ty = max{ Ty, (4, ), 0T : T =T (2) for tgy,; <t <7y =t,,}}

(9.67)
= max {Tg;; (t,)s T ()} 5

or (1.3) Ly =1, =1; (Whichimplies tg,, =fg,, =t,), Lg,; =tgy,; =t; =t, and

Ly =min{Tg, (2,,),Tg 5 (4,5 (9.68)

or (1.4) tg; <t =ty Lsp; <lgs;=1;and
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]_”ZF’I.]. = max{lub{T T =Tg,(t) for tg,, <t< t_l.j},
Wb{T: T =Ty, (1) for tg,, <t<Ty}f . (9.69)

= max{Tg;, (t_y 1T, (TU )}

Possibility (2): If 7 g1, < g5 ;5 E 51 <t and (i, j) € Z, 5, then either (2.1) the inequalities

Lpy = maX{TSLl(t_SLl,i)a Wb{T":T =T, () for tg,; <1< t_SLl,i}}

_ _ (9.70)
= max{Tg (¢ g1 Topo (f sp1)3-
or (2.2) the relationships #; = £, ; = g, < g, ; and 7 g, <t, hold and
TZF,ij :max{lub{T:T: Ty, (t) for tg,,; St<fij}aTSL2(fij)} ©.71)
=max{To (£ s115), T (T 1)}
or (2.3) the inequalities 7 g, ; <tg,; <fg,; and £ g,; <t, hold and
TzF,ij =T, (t_SLl,i)' (9.72)

Possibility (3): If £ g5 ; < g5 E g10; St and (i, j) € T, , then either: (3.1) the inequalities

Loy <tgpn; <tgy and g, <t, holdand

TZF,ij = max{lub{T T =Tg (1) for g, <t<tg,;} Ty, (t_SLZ,j)}

_ _ (9.73)
=max{To, (¢ 52 ;)5 T2 (t 512 )}
or (3.2) the relationships 7; = tg,; =% g,; <% g, and ? g, <t, hold and
TZF,ij = maX{Tsu(flj)JUb{T 1T =Tg,(¢) for Lgpo; St< fij}aTSLl (fij)} (9.74)
= max {7, (t_SLz,z’ )T (t_SLZ,i 1
or (3.3) the inequalities 7 g,; <tg,, <fg,; and 7 g,; <t, hold and
TZF,:’j = {512 (t_SLZ,j)' (9.75)

Possibility (4): If g, <t,,<min{tg, .t g g, ;) and (i, j) € Z,p, then
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Ly = Topa (t)- (9.76)

Possibility (5): If g, ; <t,,<min{tg, .t g Lgo;} and (i, )) € Z,r, then

Ly = Tsa (ty) (9.77)

Possibility (6): If max{t g ;,Le i} <, <min{t g, ;. g, ;) and (i, j) € Z,x, then

]12F,ij = maX{TSLl(tmx)JTSLZ (tmx)} (978)

Given the possible definitions for 7, r; I Egs. (9.66)-(9.78) obtained with the assumption that

the link temperature curves are continuous increasing functions, the resultant value for 7,, is
obtained as indicated in Eq. (9.61). As an example,

991.860 °C for WL 1, WL 2

1049.999 °C for SL 1, SL 2
991.862 °C for WL 1, WL 2

e {1050.000 °C for SL 1, SL 2
2 et

(9.79)

~

for the results illustrated in Fig. 9.3 and Fig. 9.4, with (i) the first results obtained from Eqgs. (9.63)
-(9.78) and (ii) the following approximate results obtained from the sampling-based analysis used
to construct the CDFs and CCDFs in Fig. 9.3 and Fig. 9.4.

114



10. Cumulative and Complementary Cumulative Belief and Plausibility for
SL Temperature at Which LOAS Occurs

For simplicity, this section considers a system with 2 SLs, 1 WL and two definitions of system
failure: (i) LOAS occurs when both SLs fail before the WL fails and (ii) LOAS occurs when either
SL fails before the WL fails.

10.1 Cumulative and Complementary Cumulative Belief and Plausibility for SL
Temperature at which LOAs occurs when Both SLs Fail before the WL Fails

The development for both definitions of LOAS starts with the evidence space (7M,TM, m,,, )

for link failure time defined in conjunction with Eqs. (4.13)-(4.16). For the first definition (i.e.,
LOAS occurs when both SLs fail before the WL fails), the function

o for t,,;, <max{ty,,tg,}

TL (t) = T (tgpy) for tg, <tgy <ty (10.1)
1 Too(tgn) for tg <tg, <ty

max{Tg(fg), Tg 5 (Esp0)} fOr fg) =t <ty

with t=[tg,,tg,,ty1 1€ TM is used to map the evidence space (7M,TM,m;,) into the
evidence space (7L, TL,,m;;,) for the SL temperature at which LOAS occurs. As indicated in
the definition of 7L, (t), SL link system failure is assumed to be the maximum of the individual

link failure temperatures when the individual links fail at the same time. Further, the notational
assumption

is used to indicate that link failure temperature was not reached and hence that link failure did not
occur.

The evidence space (7L, TL,,m;;,) for the SL temperature at which LOAS occurs (i.e., the
temperature of the second SL to fail at the time that its failure results in LOAS) is defined by

TL={T:T=TL %) fort =[ty,,t5,.ty 1€ TM}, (10.3)
TL e =T :T =TL V) for t =[rg,, 155, tyr1 1 € TMy 3, (10.4)
TL, ={TL j : (i, j, k) € I={1,2,...,nSL1} x{1,2,...,nSL2} x {1, 2,...,nWL1} } (10.5)
and
My (T‘C‘l,ijk ) =mpy (TMjk) =My g - (10.6)
Further, the bounds
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(T 4o Ty ) = (Min( 7L, ), max(7L, ) (10.7)

are introduced for use in the determination of the cumulative values of belief and plausibility for
the SL temperature at which LOAS occurs as indicated in conjunction with Egs. (2.48)-(2.50).

Definition of the focal element bounds T, ;; and lek is now considered. Specifically, T
has a definition that is conditional on various equalities and inequalities involving the times 7,

s tgo s Esprist oy and £y, as defined for the following disjoint conditions:

Eypip SMax{lo;»Lon ;) (10.8)

and

L =Tg;=Lgo; <lwpyx OF
max{s g s Lo b <wpix = YLspii <Lsiaj <lwix OF (10.9)

Lo i <ZLspii <Twrik-

In turn, the preceding four inequalities result in the following possibilities for the definition of

Ty
Possibility (1): If 7, <max{tg,;,tg, ;},then
T\ = . (10.10)

Possibility (2): If 1, =tg,; =Lg,; < t_WLLk , then either (2.1) T, (2;) =Tg,(2;) and

Ty =T (1) =Tg,(2L;), (10.11)
or (2.2) T, (L) <Tg,(2;) and

elbiS, ) =Ty, (1,) if Sy %@
_I,Uk={ W e T (10.12)

T, (1) if & =0
with

Sy = {T T =T, (t) for Ty (1) < Ty (1) <Tg,(2;) and t € (Lij’tmx]mTMSLl.i}’ (10.13)

or (2.3) Ty (2;) <Tg,(2;) and
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glb{S,y} =Ty, (2,) if S, 2D
_1,,~,-k={ T 2 (10.14)

T (2;) if $5, =90
with
Sy = {T 1T =T, (1) for Tgy 5 (1) ST (1) < Ty (2;) and £ € (Lijbtmx]mTMSLZ,j}' (10.15)

Possibility (3): If g, <tg,; <ty then either: (3.1) the inequalities

Loy <tsp; S Lgo; <ty holdand

Tg5 (L ;) for tn, < Lo

Ty (L, ;) for Fo = Lo and Ty ( s01) < Ty (Ls12,;)

T = glb(S;y) =Ty, (LSLz,j) for t_SLl,i =tao;Ton (LSLz,j) <Ty, (f_sm,i) (10.16)
and S, #

T, (?SLl,i) for t_SLl,i =t o Lo (Lo ;) < Ty (t_SLl,i) and S, =9

with
Sy ={T:T =Ty, ;) for Ty, ;(t) < Ty (Tgpy) and t € (L sty INTMgp, ;f (10.17)

or (3.2) the inequalities Z; < £g,; <fg,; and fg,; <y, holdand

glb{S,,} if Sy, %D
Ty =4T501,(Lsrn ;) = elb{Syy b if &) # D and £, ; € TM,y, (10.18)
Top j(Lspn ;) if S5 =&

with
Sy ={T:T =Ty, (t) for Ty, ;(£) < Ty ; (L5 ;) and t € (L ;1 Fgyy, 10 TMygy,}. (10.19)

Possibility (4): If tg,; <tgy <tyns, then either: (4.1) the inequalities

Lsa; <lgn;<tsy; <ty holdand
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Ty (L) fort gy <ty

T (2 gy, ) for t_SLZ,j =tg,,; and Ty, (t_SLZ,j) STo (L)

Ty =18I6(8y) =Ty (L) for 7SLz,j = Lo Lo (Lspri) < Torn (t_SLZ,j) (10.20)
and §,, #

To(tspn ) for gy =t Tg (Lepn) < T (t g ;) and Sy =D

with
Sy = {T 1T =Ty, (t) for Tgyy ;(8) < Tgpp (£ g0 ;) and £ € (Lgyy 58 1O TMSLl,i} (10.21)

or (4.2) the inequalities ¢, ; < Zg,; <% g, ; and tg,; <y, hold and

glb{S,,} if S, # @
Ty =4T500 ; (Ls) =glb{Sp,} if Sp#Dand tg,,;, € TMg, ; (10.22)
Ty (Lgp) if S =9

with
Sp = {T T =Ty (1) for Tgp () < Ty (L) and t € (Lgpy 5t g0, 10 TMSLZ,j}‘ (10.23)

The bound 7; ;; also has a definition that is conditional on various equalities and inequalities

lslj
involving the times ¢, ,, fgs ;s L1 L spo; and £y, as defined for the following disjoint
conditions:
Lyre < max{t_sLl,iat_SLz,j} (10.24)
and

Lspii =Uspaj <Lypip OF

Max{? o558 5105 < Lypig = VL seri <Esia < Lwnix OF (10.25)
Espo <Uspi <ZLypi-

Specifically, the preceding four inequalities result in the following possibilities for the definition

of T

Possibility (1): If 2, <max{? g, ,,f g, ;},then

T

L

=, (10.26)
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Possibility (2): If 7 g,; = g5 < Ly > then

T, ;5 = max {Tsp1 (?SLl,i )> Tspo (t_SLZ,j )}

Possibility (3): If 7 g;,; <755 ; < Ly then either: (3.1) the inequalities

Lsia; St <tgpn; <Ly, holdand

T} j = max T (t_SLl,i ) Tsro (t_SLZ,j)}

or (3.2) the inequalities 7 g; < g5 ; < g, ; <1y, hold and

Yi,ijk =Ty, (t_SLZ,j )-

Possibility (4): If 7 g5 ; <7 g1, < Ly then either: (4.1) the inequalities

Loy St <t <ZLypy holdand

Ty = max{Tg, (t_SLl,i)a Ty, (t_SL2,j)}

or (4.2) the inequalities 7 g, ; < Lo, <% g; < Ly, hold and

Ty = T (2 gp1,)-

(10.27)

(10.28)

(10.29)

(10.30)

(10.31)

Once the evidence space (7L,TL,,m;,) is constructed, cumulative and complementary

cumulative plausibility and belief functions for SL temperature at which LOAS occurs can be
obtained from the pairs (7 ;, T’Lijk) as (i) indicated in conjunction with Egs. (2.48)-(2.50) and (i1)
illustrated in Fig. 10.1. In addition, Fig. 10.1 also contains the CDF and CCDF for the SL
temperature at which LOAS occurs obtained by assigning uniform distributions to the individual

focal elements for link failure temperature as described for the construction of the link failure time
CDFs in Fig. 4.4. Specifically, the indicated CDF and CCDF are constructed as described in Egs.

(7.9)-(7.13) with TL, (t5;, L5 tysy) Teplacing TML (g 1+Ls12 -ty -
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Fig. 10.1 Graphical summary of evidence space (7L,TL,,m;,) for temperature 7 at which

LOAS occurs for (i) a three link system composed of SL 1, SL. 2 and WL 1 defined in Sect. 4.1
and (i1)) LOAS corresponding to failure of both SL links before failure of the WL: (a) Cumulative

plausibility Pl(f <T), probability Pr(T <T) and belief Bel(f’ <T), and (b) Complementary
cumulative plausibility PI(T < T), probability Pr(T < T) and belief Bel(T <T).

A focal element 7L ; associated with the evidence space (7L,TL,,my,) contains

temperatures corresponding to SL temperatures at which LOAS could actually occur only if
(i, ],k) €1, with

Iy, = {(i’j’k) tmax{t g, Ly ;t < t_WLl,k} # & (10.32)

as previously indicated in Eq. (6.14). In turn, the glb 7',, for SL temperatures at which LOAS

could occur is defined by

Iy, =min{T, ;, :(i,j,k) €L, }. (10.33)

As an example,

T,, =600.000 °C = 600.383 °C (10.34)

for the results illustrated in Fig. 10.1, with (i) the first result obtained from Eq. (10.33) and (ii) the
following approximate result obtained from the sampling-based analysis used to construct the CDF

and CCDF in Fig. 10.1.
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Determination of the lub 7;, for the SL temperatures at which LOAS could occur is now

considered for system failure corresponding to failure of both SLs before failure of the WL. Two
cases for the definition of 7, are considered: (i) All link temperature curves are continuous

functions, and (ii) All link temperature curves are continuous increasing functions.

For the first case (i.e., all link temperature curves are continuous functions), the lub 7; L Of
the temperatures corresponding to the occurrence of LOAS for 7L, ;; with (i, j, k) € Z,; is defined
by

By =Wb{T:T €Tl and T # oo}, (10.35)

and the resultant maximum temperature 7,, corresponding to the occurrence of LOAS is defined
by

T, =max{T,, ;; : (i, j,k) e I, }. (10.36)

For the second case (i.e., all link temperature curves are continuous increasing functions), the
determination of a closed-form representation for the lub 7, of the SL temperatures at which

LOAS could occur requires consideration of a number of special relationships involving ¢,

IRENE t_SLl,ia t_SLZ,j and t_WLl,k'
To start, the following two disjoint possibilities

Eypiy =0 and £y <4, (10.37)

for 7y, are identified and then used to define more possibilities involving ¢, fg, > g1,
s Ly and £y, asindicated below:
by STOUNE g7y 08 g0 i} S Epppy g OF

Eory <lme Stgpo; Stypy OF
_ toraj <tme St Stwpix OF
Ewire =%® =9 — — (10.38)
Espri <Uspoj <lye <lppix OF

Cspa <Uspii <lpw <lypix OF

i =t =lsa; <l <lwpik

with
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by ST 115,010 1} < Typyye and (i, j,k) € I

mx

= TlL,ijk =max{Tg, (Z,,) Tsr2 ()}

Lo, <t ton,; <tyny and (i, 7,k) el

<
mx

Uspng <lspo St Stan; <y = Noge = Tspa (Gy)
—><0r

oo Sty <twe St Sty = Ny = max{Tg, (7 g;), Too (E,0))

Usio <ty St Stypy and @, 7,k) el

Psio <Lorii Sty Ssn; S e = N = Top (G)

—

Lopry St <ty St Sty = TlL,ijk = max {7, (,, ), T5, (¢ SL2,j)}’

tn, < t_SLZ,j <ty <typy and (i, j,k) eI,

Espny <lspa; St <lue <Uypig = Npge =Tt 5o ;)
—><0r

Lsra; Stspi <Uspa <tye <tppix = Lo = max{To (7 g1, Topn (2 52,0}

Usio; <topi; <tw <typy and (,j,k)el,

Usio <Ly SCspiy <twe <Cwpix = Tpge = Lo (€ sp1,)

=01

Loy Stspa; <Uspy <ty <Cypip = Ly =max{Te, (¢ g, Torn (g5 )3

by =t =gy <ty <tppy and (G, j,k)el;,

= TlLaijk = max {7, (t_y )T 5 (f_,] )}.
Similarly,

Eyppg SMIn{Z g0 f o ;) oor
Espy <Twpig < t_SLZ,j or
Foe S1. = iSLZ,j <_t_WL1,k S_t_SLl,i or
o Uspii <Uspo; <Uwpip OF

Uspoj <Uspii <Uwpip OF

i =t =tsn; <lwpig
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with

Uypie SWIN{E g1y 500 0 i}y Eppip Sty and (G, j,k) €1y,

_ a " (10.46)
—* TlL,ijk = max {7, (¢ wiig ) Tspa (2 WLl,k)}’
Uspry <Cwrix St Lwng Sty and (G, 7,k) €1,
Pori <L <twnx St = Noge = Too (Cpnin) (10.47)
—><0r
Lsra; Stspy <Uypix Sty = N = max{To (¢ g Topn (i)}
Usio <twiip SEspis wig Sty and (4 j,k) €1y,
Psio <Lorii < wux <tsp; = Do = T (Eprag) (10.48)
=Jor
Lo Ston <twpip Sty = Tpye =max{Tg, (£ yp ) T (g0 )}
tspg <tspa; <lwpigs Ewogx Sty and (G, j,k) €1y,
Uspy <o Stspo; <typx = Lo = Ton (g0 ;) (10.49)
—><0r
Lsrn; Stspy <tspa; <typip = Ty = max{Tg, (¢ g0, Torn (2 500 5)}
Usio <tsuii <twiiks Ewiix Sty and (G, j,k) €1y,
Usio <Ly <Cspy <twoix = Do = Tsnn (F sr1y) (10.50)

— 501

Lo = t_SL2,j <tg <tpup = Ty = max{Ty, (7 5110 Tpa (t_SLZ,j)}J

G =tsp =t ;< twpix <1

and (i,j,k)eZ,, = TIL,ijk = maX{TSLl(t_ij)bTSLZ(Zj)}' (10.51)

mx

Technically, the quantity Ty, (¢, ,) in Eqs. (10.46) and (10.48) corresponds to the lub of the

set

{T:T=Tgy @) for tg,, <t<ty,, and te TMgy,,}, (10.52)

which is Ty, (¢ ;). The use of the indicated lub is appropriate in Eqs. (10.46) and (10.48)
because (i) LOAS can occur for SL 1 temperatures approaching Tg; (% ;) at time 7, but

(ii) LOAS cannot occur due to the failure of SL 1 at time 7 ;;;, , as LOAS is assumed to not occur
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for the simultaneous occurrence of the second SL failure and the WL failure. For a similar reason,
the quantity T, (% ;) in Egs. (10.46) and (10.47) corresponds to the lub of the set

{T:T=Tgy,(t)fortg,; <t<ty,, and teTMgy, }, (10.53)

Given the possible definitions for 7, L 10 Eqgs. (10.39)-(10.44) and (10.46)-(10.51) obtained

with the assumption that the link temperature curves are continuous increasing functions, the
resultant value for 7}, is obtained as indicated in Eq. (10.36). As an example,

7;;, =1050.000 °C =1049.999 °C (10.54)

for the results illustrated in Fig. 10.1, with (i) the first result obtained from Egs. (10.39)-(10.44)
and (10.46)-(10.51), and (i1) the following approximate result obtained from the sampling-based
analysis used to construct the CDF and CCDF in Fig. 10.1.

10.2 Cumulative and Complementary Cumulative Belief and Plausibility for SL
Temperature at which LOAS Occurs when Either SL Fails before the WL Fails

For the second definition (i.e., LOAS occurs when either SL fails before the WL fails), the
function

o for f,, <minitg,,ty,}
TL, (t) = Ty, (ts,) for tg, <tg, and tg, <ty (10.55)
2 - .
To(tgyy) for tg, <tg, and fg, <ty

min{Tg; (¢ ), Tpo (Esp0)} fOT tgpy =tgo <ty

with t=[tg ,tg,.ty,1€ TM is used to map the evidence space (7ZM,TM,my,,) into the
evidence space (7L,,TL,,m;;,) for the SL temperature at which LOAS occurs as shown in Egs.
(10.3)-(10.6) to obtain the evidence space (7L, TL,,my ). Specifically, (7L,,TL,,m,) is
defined by

TL,={T:T = TL,(t) for t =[tg,,, 15,1y, ] € M, (10.56)
1Ly 45 =T :T =TL, (%) for t =[rg,, 155, tyr1 ] € TMy (10.57)

TL, = {TL, ;1 : iy j,k) € T= {1,200, nSL1y x {1,2,...,nSL2} x {1,2,...,nWL1}}  (10.58)

and

My (TLy i) = mppy, (TM ) = my . (10.59)
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Further, the bounds
(T o5 To ) = (min(7L, ), max (7L, ;) (10.60)

are introduced for use in the determination of the cumulative values of belief and plausibility for
the SL temperature at which LOAS occurs as indicated in conjunction with Egs. (2.48)-(2.50).

As indicated in the definition of 7F, (t), link system failure temperature is assumed to be the

minimum of the individual SL failure temperatures when the individual SLs fail at the same time.
Further, the notational assumption

Tg (tg,) =00 for tg, = oo and T, (tg,) = for tgy, = (10.61)

is used to indicate that link failure temperature was not reached and hence that link failure did not
occur.

The bound T, has a definition that is conditional on various equalities and inequalities

involving the times ¢, g, and £y, as defined for the following disjoint conditions:

Epppge STOIN{Z gy 5,865 ;) (10.62)

and

L= Lo = Loy <Twpix OF
Min{l g5 Lspn 3 < Eppig = ) Lopry <MDy g, L ;) O (10.63)

Lo <min{s . Loy}

In turn, the preceding four inequalities result in the following possibilities for the definition of
r 2,ijk -

Possibility (1): If 7, <min{tg,;,2g, ), then
Ty = 0. (10.64)

Possibility (2): If £, =tg,, = tg,; <y then
Ty g =min{Tg, (2;), T 5 (1) (10.65)

Possibility (3): If g, <min{fy;,, Lg,,}, then either (3.1) the inequality

Lo <twpy S Lgp ; holdsand
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Lo =T (Lgp) (10.66)

or (3.2) the inequalities £, ; <7y and fg; < g, ; <7gy,; holdand

T =min{Tg, (£g,) Tgn (L0 5)3s (10.67)

or (3.3) the inequalities ¢, ; <%y, and tg,, < fg,; < tg,; holdand

Ty =Ty (L) (10.68)

Possibility (4) If tg,; <min{fy;,,,tg,,;}, then either (4.1) the inequality

Lsiay <twpx < L, holds and

Toin =Tga(ts ;) (10.69)

or (4.2) the inequalities ¢, <Zpy and fg, ; < tg,; <t g, holdand

T e =min{Tg (£ Tn (Lo )5 (10.70)

or (4.3) the inequalities #g;y; <7y and £y, ; < T, ; < tgy,; holdand

Toi =Tga (L)) (10.71)

The definition of Tz,[ik is now considered. Specifically, szk has a definition that is conditional
on various equalities and inequalities involving the times #;, g2, g1t 500 and s

as defined for the following disjoint conditions:

L1 < min {t—SLl,i at—SLz,_/} (10.72)

and

Li =tspi =tspa; <Ippx OF
MiNgE g5 g0 53 < Lyppig =\ spry <IN g 55 Ly g} OF (10.73)

tspp; <TUN{E g1y By g}

In turn, the preceding four inequalities result in the following possibilities for the definition of

Do -
Possibility (1): If 2, <min{tg,;,f g, },then
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I = ©. (10.74)
Possibility (2): If 7;; =¢ g, =1 g ; < Ly » then

T (t;)=1ub(S)) if tg,, <tg,;=t;
T (1) =1ub(S,) if tg, ; <tgy; =i,

Ty = _ _ , _(10.75)
’ max {7y, (tlj) = lub(S, ),TSLz(tl-j) =lub(S,)} if maX{LSLl,i»LSLz,j} <t
min{Tg;, (2;), Tgpo (£)} if Loy =tga; =1,
with
S ={T:T=Ty,(t) for te[tgy, t;) "TMy,,}
| SL1 se1ioLij L1, (10.76)

S, ={T:T=Tg,(t) for te[LSLz’j,t_ij) mTMSLz,j}.

Possibility (3): If 7g,, <min{fg, .y}, then either (3.1) the inequality

Lo <tg,; < min{z SLz,j,LWLLk} holds and

Tz,gk = maX{TSLl (t_SLI,i)’ Wb{T : T =T, (¢) for te [LSLz,jat_SLl,i) M TMSLZ,]‘ }}

. . o (10.77)
=max{Tg; (¢ g1;), Topo (F 510} if L0, € TMgp, 4,
or (3.2) the inequality ¢, ; =7 g, <min{f g, ;, Ly, ,} holds and
= Tg  (fgy,) =lubi{S} if SO (10.78)
ik min{TSLl(t—SLl,i)’TSLZ (LSLz,j)} if § =60, .
with
S; ={T:T =Ty, (¢) for te TM,; andt <t} (10.79)
or (3.3) the inequalities 7 g, < g, ; and g, ; <min{Z g, ;, 2y, } hold and
Dy = Tt (T sp1,)- (10.80)

Possibility (4): If 7g,, <min{fg,;, Ly}, then either (4.1) the inequality

Ly <o <min{t g, ;, ¢y} holds and
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Tz,ijk :maX{lub{T3T=TSL1(1) for teltg, i tga;) NTMgy;t,To, (t_SL2,j)}

. _ s (10.81)
=max{Tg, (¢ g, ) Tgo (g0 )b I £ g € TMg
or (4.2) the inequality Zg; =7 ; <min{Z g, ;, ¢y, } holds and
_ T (t5p,;) =lub{S,} if S, 2D (10.82)
P | mindTg, (2 g, T (Tgpa,)} if Sy =0 .
with
Sy ={T:T=Tg,(t) for te TMg, ; andt <ig, ;}, (10.83)
or (4.3) the inequalities 7 g, ; < £, and g, ; <min{f g, ,y;,,} hold and
TZ,ijk =T (t_SLz,j )- (10.84)

Once the evidence space (7L,,TL,,m;;,) is constructed, cumulative plausibility and belief
functions for SL temperature at which LOAS occurs can be obtained from the pairs (7', ;; ,Tl,,.jk)

as (1) indicated in conjunction with Egs. (2.48)-(2.50) and (ii) illustrated in Fig. 10.2. In addition,
Fig. 10.2 also contains the CDF and CCDF for the SL temperature at which LOAS occurs obtained
by assigning uniform distributions to the individual focal elements for link failure temperature as
described for the construction of the link failure time CDFs in Fig. 4.4. Specifically, the indicated
CDF and CCDF are constructed as described in Eqs. (7.9)-(7.13) with TL,(¢s,t55-ty11)

replacing TML, (g, >t 5twr1) -
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Fig. 10.2 Graphical summary of evidence space (7L,,TL,,m;,) for temperature 7 at which

LOAS occurs for (i) a three link system composed of SL 1, SL 2 and WL 1 defined in Sect. 4.1
and (i1)) LOAS corresponding to failure of both SL links before failure of the WL: (a) Cumulative

plausibility PI(T <T), probability Pr(T <T) and belief Bel(T <T), and (b) Complementary
cumulative plausibility PI(T < T), probability Pr(T <T) and belief Bel(T <T).

A focal element 7L, associated with the evidence space (7L,,TL,,my;,) contains

temperatures corresponding to SL temperatures at which LOAS could occur only if (i, j,k) € Z,,
with

Ly = {(i’j’k) rmin{t g, Loy it < t_WLl,k} 1% (10.85)

as previously indicated in Eq. (7.43). In turn, the glb 7',, for the SL temperatures at which LOAS

could occur is defined by
Ty, =min{T, . (0, /., k)€ Ly, }. (10.86)
As an example,
T,, =590 °C =590.008 °C (10.87)

for the results illustrated in Fig. 10.2, with (i) the first result obtained from Eq. (10.86) and (ii) the
following approximate result obtained from the sampling-based analysis used to construct the CDF
and CCDF in Fig. 10.2.

Determination of the lub 7,; of the SL temperatures at which LOAS could occur is now
considered for LOAS corresponding to failure of either SL before failure of the WL. Two cases
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for the definition of 7,, are considered: (i) All link temperature curves are continuous functions,
and (i1) All link temperature curves are continuous increasing functions.

For the first case (i.e., all link temperature curves are continuous functions), the lub 7, Lk of

SL temperatures corresponding to the occurrence of LOAS for 7L, ;;, with (i, j,k)eZ,; is
defined by

Ty =Wb{T:T eTL,; and T o}, (10.88)

and the resultant lub ]_"2 ; of SL temperatures corresponding to the occurrence of LOAS is defined
by

Ty, = maX{TZL,ijk (i, ),k)e T, }. (10.89)

For the second case (i.e., all link temperature curves are continuous increasing functions), the

determination of a closed-form representation for the lub 7,, of the SL temperatures at which
LOAS could occur requires consideration of a number of special relationships involving 7,
toro» Lspris Lopa; and 7y, . The following development considers focal elements 7L,
associated with the evidence space (7L,,TL,,m;;,) with (i, j,k) e I,, .

To start, the following two disjoint possibilities

Fypiy =0 and £y <1, (10.90)

for #,,, are identified and then used to identify more possibilities involving tg,;, Zgs ;.

siris ooy and £y, asindicated below:

by STUN{E g7y, 8 g0 3} S E g =00 OF

_ tspy; <mindl, fg, } and g, <1y, =0 or

Lwrie =% =9— . = _ _ (10.91)
tspp,; <min{t, .t} and g, ; <ty =0 or

bi = Ui =Usio <lpe <Tppip=®

and
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Cypap SN, 8 g 508 g0 ;) OT

_ tgp, < min{t_Wle’t_SLZj} and 7y, <t,, or

tsppy; <min{l ;.0 b and 1y, , <t, or

- Tmx

<t

i =Csi =Csia; <lwiik

mx*

In turn, the four possibilities in Eq. (10.91) for #,,, = result in the following definitions for

Top i

Possibility (1): If ¢, <min{? g, 7 g5 ;} STy = and (i, j,k) € Z,, , then either (1.1) the

inequality ¢, <t,, <1g, ;holdsand

Dpik = Tsp () (10.93)

or (1.2) the inequality ¢, ; <, <fg,, holds and

Tk = Toro () (10.94)

or (1.3) the inequality max{tg,;,?g, ;} <t,, holdsand

B {maX{TsLl(tmx)aTSLZ (ty)} I max{tg,;,Lgs i} <l (10.95)

min{Zg; (4, ) Topp ()} 1 Lgpy; = Lgn ) =ty
with

Topy(t,) =1ub{T : T =Tg,(¢) for te[tg;t,)} If Lgy <t
Topp(8,,) =1bi{T :T =T, (2) for t €[tg, ;b)) I Ly, <ty

Possibility (2): If 7 g, <min{t,,,? g, i}, L g <y and (0, j,k) € Z,, , then either (2.1)

the inequality ¢, ; <7 g, holds and

7_“2L,Z.J.k = max{lub{T T =Tg,(t) for tg,; <t<tg;},
Wb{T:T =T, () for tg,; <t <7SLU}} (10.96)

= max {7, (t_SLl,i ) Tsro (t_SLl,i )}

or(2.2) Ly, ; =1gy,; and
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7_“2L’l.jk =lub{T :T =T, (¢) for tg,, <t<tg,,}

_ (10.97)
=T, (¢ g1,
or (2.3) the inequality 7, < fg, ; holds and
TZL,ijk = TSLl(t_SLI,i)' (10.98)

Possibility (3): If 7 5, ; <min{t,, .t g} > L1, <y and (0, j,k) € Z,; , then either (3.1)

the inequality ¢,,; <f ¢, ; holds and
q Y Lspi,i SL2,j

Loy = max{lub{T T =Ty, (1) for tg,;, St<fg,;},
Wb{T : T =Ty, (¢) for tg,, <t<Tg,;} (10.99)

=max{T, (¢ 512,50 Tsz2 (E s, )}
or (3.2) tg; =1g,,; and

7_12L,ijk =lub{T:T =Ty, (¢) for tg,, <t<tg,;}

_ (10.100)
=T, (t 510,;)s
or (3.3) the inequality 7, ; < g, holds and
TZL,[/k =Ty, (t_SLZ,‘/)' (10.101)
Possibility (4): If 1, =1 g1, =1 g5 ; <t,, <y, and (i, /,k) € Z,, holds, then
Ty i = max{lub{T : T =Ty, (t) for £, <t <7},
Wb{T : T =Ty, (¢) for tg,; <t<f} (10.102)

= max {Tg, (4;), Tg5 (7))}

Similarly, the four possibilities in Eq. (10.92) for 7 ;, , <t,,, resultin the following definitions

for T i -

Possibility (1) If 7y, <min{t, .7 g .t g, ;} and (i,j,k)€Z,,, then either (1.1) the

inequalities £y; <714 < Lg, ; hold and
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T2L,ijk =lub{T:T =Tg, (1) for Lo St <t_WL1,k}

_ (10.103)
=T (L ypras)»
or (1.2) the inequalities ¢, ; <7 pyi4 < fg,; hold and
Ty =Wb{T:T =Ty, (t) for tg, <t<Ty
2F ijk { B SL2 SL2,j WLLk (10.104)
= Toro (Uyprig)s
or (1.3) the inequality max{Zg,;,¢g, ;} <7y, holds and
Dypji = max{lub{T T =Ty, (1) for tg,; St <Typuls
Wb{T : T =Ty, (t) for Lo, <t<Tyyl} (10.105)

= max {7y, (t_WLl,k N (t_WLl,k )}

Possibility (2) If 7 gy, <min{? ;4,8 0 ;%5 Eypix <y and (G, j,k) € Z,, , then either: (2.1)

the inequality ¢, ; <7 g, holds and

7_“2L’l.jk = max{lub{T T =Tg,(t) for tg,; <t<tg},
Wb{T :T =Ty, (1) for Ly, ; <t<Tg,}) (10.106)

= max {7y, (t_SLl,i ) Tsrn (t_SLl,i )}

or (2.2) tg, ;= t g, and

Dypjge =Wb{T : T =Tg, (1) for tg; <t<7tg,;}

_ (10.107)
=Ty (£ g1
or (2.3) the inequality 7 5,; < £, ; holds and
T?.L,ijk = TSLl(t_SLl,i)- (10.108)

Possibility (3) If 7 g5 ; <min{Z 4,7 o154 s Eppag < e and (G, j, k) € Z,, , then either: (3.1)

the inequality ¢, <7 g, ; holds and

Loy = max{lub{T T =Ty, (1) for tg,; St<fg,;},
Wb{T : T =Ty, (¢) for tg,, <t<Tg,;}} (10.109)

= max {7, (t_SLz,j )T (t_SLZ,j )}
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or(3.2) tg,; = t g, and

Loy =Wb{T T =Tg,(t) for tg,  <t<tg,,;}

_ (10.110)
=T, (t 5105
or (3.3) the inequality 7 5, ; < £, holds and
TzL,ijk =T, (t_SL2,j )- (10.111)
Possibility (4) If 4; =7 g1, = 510 < ypix <t and (i, j,k) € Z,; holds, then
Torgw = max{lub{T T =Ty, (t) for tg,, <t<t},
Wb{T : T =Ty, (¢) for tg,, <t<}} (10.112)

= max{Tg, (&), Tg, (%)}

Given the possible definitions for 7_“2L7ijk in Egs. (10.93)-(10.102) and (10.103)-(10.112)

obtained with the assumption that the link temperature curves are increasing, the resultant value
for 7,, is obtained as indicated in Eq. (10.89). As an example,

T,, =1050.000 °C =1049.995 °C (10.113)

for the results illustrated in Fig. 10.2, with (i) the first result obtained from Egs. (10.93)-(10.102)
and (10.103)-(10.112), and (ii) the following approximate result obtained from the sampling-based
analysis used to construct the CDF and CCDF in Fig. 10.2.
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11. Cumulative and Complementary Cumulative Belief and Plausibility for
Failure Time Margins

For simplicity, this section considers a system with 2 SLs and 1 WL and two definitions of
system failure: (i) LOAS occurs when both SLs fail before the WL fails and (ii) LOAS occurs
when either SL fails before the WL fails.

11.1 Cumulative and Complementary Cumulative Belief and Plausibility for Failure
Time Margins with LOAS Defined by Failure of Both SLs before Failure of the WL

Failure time margins defined by

M, = (time at which SL failure potentially causes LOAS)

11.1
— (time at which WL failure potentially prevents LOAS) (1.1)

are an important summary result in the analysis of WL/SL systems. The descriptor “potentially”
is used in the definition of M, because the occurrence of LOAS depends on the relative timing of

SL failure and WL failure. Specifically, M, is positive if SL failure occurs after WL failure (i.e.,

the desired occurrence) and negative if SL failure occurs before WL failure (i.e., the undesired
occurrence).

This section presents failure time margin results for a 2 SL, 1 WL system for which LOAS
occurs if both SLs fail before the WL fails. Nonfailure of either of the SLs or the WL is a possibility
for this system that must be addressed as part of the analysis of margins. To handle this situation,
a generalized margin defined by

My, () = My, ([Zs15 505 tyir D)
—oo for t,,, =, max{tq,,! < oo
WLl si1stsin ) (11.2)
= max{ty,,lo, )ty for ty;, <oo, max{rg,,tg,} <o

oo for max{tg ,tg,}=o

for t =[tg.t5,.ty;,] belonging to the set TM=TM,, x TM,, , x TMy,;, defined in Eq. (4.13)
is considered for analysis.

Application of the function M, (t) defined in Eq. (11.2) to the elements t =[¢,,¢¢,,ty;,] of
the sample space ZM for the evidence space (ZM,TM,my,,) for link failure time defined in
conjunction with Egs. (4.13) -(4.16) results in the evidence space (M7ZM,,MTM,,m,,,) for
failure time margins with

MTM ={m, :m, =M, () fort =[tg,,t5,,tp,]1€ TM}, (11.3)

MTM,ijk ={m, :m, =M, (t) fort =[tg, . 05,5, 8y, ] € TM‘jk} (11.4)
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(11, >y ) = (MIN(MTM, ), max(MTM, ) ) (11.5)

MTM, = {MTM, .., : (G, j, k) € I={1,2,...,nSL1} x {1,2,...,nSL2} x {1,2,...,nWL1} } (11.6)

Jijk
and
My (MTMUk) = Mpy (TM'jk )= My . (11.7)

Further, the focal element bounds m, ;, and m,, ;; are defined by

My, e = YMAX{E gy by if =y fOr mMax{t gy o i lypy b <0 (11.8)

oo for max{z g, ;! gy ;4=

and

—oo for ¢y, = and maX{ZS’Lli’ZS'LZj} <®

My, i = maX{t_SLl,i’};LZ,j} — Lypy for max{-{?Ll,i’ZSLZ,j’LWLl,k} <o (11.9)

oo for max{fe,,,ty, ;} = .

Once the evidence space (M7ZM,,MTM,,m,,,,) is constructed, cumulative and

complementary cumulative plausibility and belief functions for SL/WL failure time margins can
be obtained from the pairs (m, ;4 ,m,, ;; ) as indicated in conjunction with Eqgs. (2.48)-(2.50). As
examples, cumulative and complementary cumulative plausibility and belief functions for failure
time margins are presented in Fig. 11.1 for a system with 2 SLs and 1 WL. In addition, Fig. 11.1
also contains the CDF and CCDF for SL/WL failure time margins obtained by assigning uniform
distributions to the individual focal elements for link failure temperature as described for the
construction of the link failure time CDFs in Fig. 4.4. Specifically, the CDF and CCDF in Fig.
11.1 are constructed as indicated in Eqs. (7.9)-(7.13) with M, (¢g,,tq,.ty;,) replacing

TML, (tgpy 5570ty -
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Fig. 11.1 Graphical summary of evidence space (M7TM,,MTM,,m,,,,,) for SL/WL failure time

margins for (i) a system composed of SL 1, SL 2 and WL 1 defined in Sect. 4 and (ii)) LOAS
corresponding to failure of both SLs before failure of the WL: (a) Cumulative plausibility
Pl(m < m), probability Pr(m < m) and belief Bel(m < m), and (b) Complementary cumulative
plausibility P/(m < m), probability Pr(m < m) and belief Bel(m < m).

Margin results of the form shown in Fig. 11.1 are valuable because they show and quantify the
uncertainty in the time between when (i) failure of the SL system potentially results in LOAS and
(i1) failure of the WL potentially averts LOAS.

Belief Bel(S) and plausibility PI(S) for specific subsets S of M7M, can be calculated from
the relationships

nSL1 nSL2 nWL1

Bel(S) = Z Myt (MTIMy ) = Z z Z S5 (MTM, i )my (11.10)

MTM,{/kQS i=l j=l k=1

nSL1 nSL2 nWL1

PI(S)= Y mypyMTM )= D0 > Sp(MTM, ;. my,  (11.11)

D% MTIM, NS i=1 j=1 k=l
with
1 for MTM,;;, =S
O (MTM, ;) = o (11.12)
0 otherwise
1 for & # MT/\/{LU.,( NS
Sp(MTM, ;) = | (11.13)
0 otherwise.
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Many possibilities exist for the definition of the set S. For example, suitable definitions of S
can be used to define CBFs, CPFs, CCBFs and CCPFs for failure time margins. Specifically, with

S(m,)={m, :m, € MTM, and m, < m,}

(11.14)
and
S(m,) = {m, :m, € MTM, and m, <m,}, (11.15)
the indicator functions
1 for MTM, ,, < S(m,) |1 for my, ;, < m,
Sg(MTM, ) = o = Y 11.16
5 M’Jk) {0 otherwise 0 otherwise, ( )
and
1 f TM .. S¢ 1 for m, < my,
Sy MTM ) =1 MM 5 m) CoTE (11.17)
’ 0 otherwise 0 otherwise

can be used in Eq. (11.10) to define Bel[S(m,)] and Bel[S(m,)] for use in the construction of
CBFs and CCBFs. Similarly, the indicator functions

1 for @+ MTM, ;; "S(m,) |1 for my, ; < m,
Op(MIM, ;) = ; ’ - . (11.18)
’ 0 otherwise 0 otherwise,
and
1 for &= MTM .. NS° 1 for m, < my, .4
SeMTM ;) =1 ik S0 _ S N RD)
' 0 otherwise 0 otherwise

can be used in Eq. (11.11) to define P/[S(m,)] and PI[S°(m,)] for use in the construction of

CPFs and CCPFs. However, this approach to the construction of CPFs and CCPFs is not as
efficient as the procedure described in conjunction with Egs. (2.48)-(2.50).

The approach described in Eqgs. (11.14)-(11.19) as a possible way to construct CBFs, CCBFs,
CBFs and CCBFs is not as computationally efficient as the procedure described in conjunction
with Egs. (2.48)-(2.50). However, it is useful for determining belief and plausibility for specific
sets of margins on the form defined in Egs. (11.14) and (11.15).

As examples, the calculation of Bel[S(0)] and P/[S(0)] for the WL/SL system in Fig. 11.1
produces the results
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Bel[S(0)] =1.600x1072 =1.595x1072 (11.20)
and

PI[S(0)] = 4.880x10™" = 4.879x10™" (11.21)

with (i) the values for Bel/[S(0)] and P/[S(0)] in the initial equalities determined as indicated in
Egs. (11.10) and (11.11), and (ii) the values for Bel[S(0)] and P/[S(0)] in the following
approximate equalities determined in a sampling-based verification procedure with a sample of

size 10" as described in Sect. 5.2. The agreement of the plotted results in Fig. 11.1a (i.e.,
Bel[S(0)]=0.016 and P/[S(0)] = 0.488) and the two numerical results in Egs. (11.20) and (11.21)

provides a strong verification result that Be/[S(0)] and PI/[S(0)] are being calculated correctly.
Additional verification is provided by the agreement of (i) the preceding values for Bel/[S(0)] and
PI[S(0)], and (ii) the corresponding values for LOAS in Egs. (5.6) and (5.7).

As additional examples, two special cases of potential interest are now considered: (i) belief
Bel({—»}) and plausibility P/({-x}) for —oo (i.e., for nonfailure of the WL and failure of both

SLs) and (ii) belief Bel({}) and plausibility P/({oc}) for « (i.e., for nonfailure of one of the SLs).
Specifically, Bel({—«})and Bel({x}) are defined as in Eq. (11.10) with

1 for MTM, ,;, < {-o 1 for -0 =m,, ; = my,
o (MTM, ) = ,M”" 0 i N Ny
’ ’ 0 otherwise 0 otherwise
and
1 for MTM, , < {oo} |1 for o=my, ;. = My,
Opo(MTM, ;) = o - - Y 11.23
B ( M’Jk) {O otherwise 0 otherwise. ( )
Similarly, PI/({-o})and PI({x}) are defined as in Eq. (11.11) with
1 for @ # MTM,,;, N{—o} (1 for -co=m,, ;;
Sp oy (MTM, ) = v . - 11.24
# ( M’]k) {0 otherwise 0 otherwise ( )
and
1 for &+ MTM .. N{oo 1 for o=m,, ..
Spow (MTM, ) = . e O _ o (11.25)
0 otherwise 0 otherwise.

As examples, the calculation of Bel({—x}), Bel({x}), PI({—w©}) and PI/({}) for the WL/SL
system in Fig. 11.1 produces the results

Bel({~x}) =0.000x10° = 0.000x10°, (11.26)
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Bel({o0}) = 0.2000 = 0.2002, (11.27)

PI({—0}) =8.000x107> = 7.987x107 (11.28)

and

PI({oo}) = 0.6000 = 0.5998 (11.29)

with (i) the values for Bel({—w}), Bel({©}),Pl({—w})and PI({o}) in the initial equalities
determined as indicated in Eqgs. (11.10) and (11.11) and (ii) the values for Bel({—x}), Bel({x}),
Pl({—o})and PI({x}) in the following approximate equalities determined in a sampling-based

verification procedure with a sample of size 107 as described in Sect. 6.2. The agreement of the
two computational procedures provides a strong verification result that Be/({-x}), Bel({x}),

Pl({—x})and PI({x}) are being calculated correctly.

The sampling-based procedure used to obtain the CDF and CCDF in Fig. 11.1 yields values of

myy, =—137.212 min and 5, =137.131 min (11.30)

for the smallest failure time margin m,,, >—oo and the largest failure time margin m,,, <. As
a verification test, a closed form determination of m,,, and m,,, can be performed as described
below.

Focal elements 7M;; for link failure times result in one or more failure time margins , in

MTIM, ; satisfying —oo <m, <oo only if (7, j,k) € Z,,, with

Liy = {(i’j= k):max{t gt s s Lyppipt < OO}- (11.31)

The maximum of the link failure times for 7M;, with (i, j,k) € Z,,, that result in time margins

satisfying —oo < m, < oo can be represented by

hp g =max{t:te TMg,; and t <o}, (11.32)
hipsio; =maxit:t € TMg, ; and ¢ <o}, (11.33)
G =max{t:t e TMy,;,, and t <o}, (11.34)

The minimum ny, ; and maximum /g, ; of the time margins contained in M7M, ;; with

(@i, j,k) €1, thatsatisfy —oo <m, <oo are defined by
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My gy i = MAX{L o100 L sro b= bp i (11.35)

and
My gy e = MaX{Gp o105 br sio, 3 — Lk (11.36)

In turn, the minimum m,;, and maximum 1, of the time margins contained in M7M, that

satisfy —oo < m, < oo are defined by

My, = min{my g, g 2 (0, j, k) € Ly} (11.37)
and

My, = max{m g, 5 2 (0, j,k) € i}, (11.38)

respectively.
As an example,

myp, =—137.877 min = —-137.212 min and m,,, =137.222 min =137.131 min (11.39)

for the results illustrated in Fig. 11.1, with (i) the first values for m,, and m, . obtained as

indicated in Egs. (11.37) and (11.38) and (ii) the following approximate values obtained as
indicated in Eq. (11.30).

The failure time margin evidence space (M7TM,,MTM,,m,,,,,) and its associated CPF,

CBF, CCPF and CCBEF for SL 1 and SL 2 both failing before WL 1 fails can also be defined with
use of the evidence spaces (ZMHF, TMLI,,my,-,) and (ZM,,;,,TM,,,,my,,). Specifically, (i)

(TMF , TMI, , ) is defined in Sect. 8.1 for the times at which a system consisting of SL 1

and SL 2 fails with system failure time corresponding to the time at which the second SL fails and
(it) (ZM,,;,,TM,;, ,,my,;,) is defined in Sect. 4 for the time at which WL 1 fails.

11.2 Cumulative and Complementary Cumulative Belief and Plausibility for Failure
Time Margins with LOAS Defined by Failure of Either SL before Failure of the WL

This section presents failure time margin results for a2 SL, 1 WL system with LOAS occurring
if either SL fails before the WL fails. Similarly to Eq. (11.2), the failure time margin under
consideration is defined by

M,,(t) =M, ([ts ), b5ty D
—oo for t,,;, = o0, min{tq,,t <
. WLl {tsp1>tsra . (11.40)

= amin{lg,lg o}~y forty;, <o, min{tg,,ig,} <o

o for min{tg,,tg,} =
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for t =[tg.t,.ty;,] belonging to the set TM=TM,, x TM,, , x TMy,;, defined in Eq. (4.13)
is considered for analysis.

Application as indicated in Egs. (11.3)-(11.7) of the function M,,(t) defined in Eq. (11.40) to
the elements t =[t,,,%,,t;;,] of the sample space ZM for the evidence space (ZM, TM, my,, )

for link failure time defined in conjunction with Egs. (4.13) -(4.16) results in the evidence space
(MTM,,MTM, ,m,,,,) for failure time margins. The difference in the functions M,,(t) and

M,,(t) defined in Egs. (11.2) and (11.40) results in the focal element bounds m,, ;;, and m,, ;;
defined in Eqgs. (11.8) and (11.9) now being defined by

—o0 for f;,, =0 and min{zt g, ;, 1 5} <0
My e = \MUN{E g o0 £ gn b=ty fOT <00 and min{z gy, 2 g5 ;3 <o (11.41)

oo for min{t g2 g, ;} =
and

—o for 2, ;=00 and min{tg, ;. fg, ;} <o
Moy e =MLy 5, bgp i} — Ly fOT 2y, <ooand min{lg, g, ;} <o (11.42)

co for min{tg,;,f, ;}= 0.

Once the evidence space (M7TM,,MTM,,m,,,,) is constructed, cumulative plausibility
and belief functions for failure time margins can be obtained from the pairs (m,, .M, ;) as

indicated in conjunction with Eqgs. (2.48)-(2.50). As examples, cumulative and complementary
cumulative plausibility and belief functions for failure time margins are presented in Fig. 11.2 for
systems with 2 SLs and 1 WL. In addition, Fig. 11.2 also contains the CDF and CCDF for SL/WL
failure time margins obtained by assigning uniform distributions to the individual focal elements
for link failure temperature as described for the construction of the link failure time CDFs in Fig.
4.4. Specifically, the CDF and CCDF in Fig. 11.2 are constructed as indicated in Egs. (7.9)-

(7.13)with M, (¢g g0ty ) replacing TML (tg; ,tg 55 tyry) -
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Fig. 11.2 Graphical summary of evidence space (M7M,,MTM,,m,,,,,) for SL/WL failure

time margins for (i) a system composed of SL 1, SL 2 and WL 1 defined in Sect. 4 and (ii) LOAS
corresponding to failure of either SL before failure of the WL: (a) Cumulative plausibility
Pl(m < m), probability Pr(m < m) and belief Bel(m < m), and (b) Complementary cumulative
plausibility P/(m < m), probability Pr(m < m) and belief Bel(m < m).

Belief Bel(S) and plausibility PI(S) for subsets S of M7M, can be calculated from the
relationships defined in Egs. (11.10)-(11.19). As a reminder, this requires that the evidence space
(MTM,,MTM, ,my,,) for failure time margins be defined to be consistent with the function
M,,(t) defined in Eq. (11.40) and the corresponding focal element bounds m,, ;; and my,
defined in Egs. (11.41) and (11.42).

As examples, calculation of Bel[S(0)] and P/[S(0)] for the WL/SL system in Fig. 11.2 yields
the results

Bel[S5(0)] =1.340 x 107" =1.341x10™" (11.43)
and

PI[S(0)] =8.720x 10" =8.719x10"" (11.44)

with (i) the values for Be/[S(0)] and PI/[S(0)] in the initial equalities determined as indicated in
Egs. (11.10) and (11.11) and (ii) the values for Bel/[S(0)] and P/[S(0)] in the following
approximate equalities determined in a sampling-based verification procedure with a sample of
size 107 as described in Sect. 6.2. The agreement of the plotted results in Fig. 11.2 (i.e.,
Bel[S(0)]=1.340x10"" and PI[S(0)]=8.720x107") and the numerical results in Eqs. (11.43)
and (11.44) provides a strong verification result that Bel[S(0)] and PI/[S(0)] are being calculated
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correctly. Additional verification is provided by the agreement of (i) the preceding values for
Bel[S(0)] and P/[S(0)] and (ii) the corresponding values for LOAS in Egs. (5.27) and (5.28).

If desired, Bel({—x}), Bel({»}), Pl({—w})and PI({w}) can be calculated as indicated in Egs.
(11.22)-(11.29).

The sampling-based procedure used to obtain the CDF and CCDF in Fig. 11.2 yields values of

myp, =—135.228 min and m,,, = 70.681 min (11.45)

for the smallest failure time margin m,;, >—o and the largest failure time margin m,;, <. As
a verification test, a closed form determination of m,, and m,, can be performed as described
below.

Focal elements 7M;; for link failure times result in one or more failure time margins m, in

MTM, ;. satisfying —o0 <m, < oo only if (i, j,k) € Z,,, with
Ty ={(i k) Ly 4<0 and min{t g, .2, } <o} (11.46)

The maximum of the link failure times for 7M,; with (i, j,k) € Z,,, that result in time margins

satisfying —oo <myz ; < o0 are

_ max{t:t € TMg,; and t <oo} for g, <oo
hrsii = ’ ’ (11.47)
o undefined for fg;,; = o,
_ max{t:teTM,, . and t <o} for t,, . <o
bhrsia,; = . i (11.48)
>#=/ |undefined for Isppj =,
and
by =max{t:t e TMy,;,, and ¢ <oo}. (11.49)

The minimum n,p, ;; and maximum 7, ;; of the time margins contained in M7M, ;; with

(i, j,k) e 1,,, thatsatisfy —oo <m, <o are defined by

My e =ML gyt gro b =T ap ik (11.50)

and
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Min{tp g1 brszo, 3~ Limis 10T Lp si1i0br sio,; both defined
Myp e = brsii ~ L foronly bp g, defined (11.51)

brsia,; ~Lwiik for only brsia,j defined.

In turn, the minimum m,,, and maximum #,, of the time margins contained in M7M, that

satisfy —oo < m, <o are defined in the same manner as shown in Egs. (11.37) and (11.38).

As an example,

myy, =—141.463 = —141.182 and i,y =70.904 = 70.681 (11.52)

for the results illustrated in Fig. 11.2, with (i) the first value for m,, and m,, obtained as

indicated in conjunction with Eqs. (11.37) and (11.38) and (ii) the following approximate value
obtained as indicated in Eq. (11.45).

The failure time margin evidence space (M7TM,,MTM,,m,,;,,) and its associated CPF,

CBF, CCPF and CCBEF for either SL 1 or SL 2 failing before WL 1 fails can also be defined with
use of the evidence spaces (ZMUF,, TMF,,mp;,) and (ZM,,;,, TM,,,,,my,;,). Specifically, (i)

(TMF,, TMLF, , my, ) is defined in Sect. 8.2 for the times at which a system consisting of SL 1

and SL 2 fails with system failure time corresponding to the time at which the first SL fails and
(it) (ZMy;,,TM,,, ,,my,;,) is defined in Sect. 4 for the time at which WL 1 fails.
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12. Cumulative and Complementary Cumulative Belief and Plausibility for
WL/SL Temperature Margins for a System with 2 SLs and 1 WL

For simplicity, this section considers a system with 2 SLs and 1 WL and two definitions of
system failure: (i) LOAS occurs when both SLs fail before the WL fails and (i) LOAS occurs
when either SL fails before the WL fails.

12.1 Cumulative and Complementary Cumulative Belief and Plausibility for WL/SL
Temperature Margins with LOAS defined by Failure of Both SLs before Failure
of the WL

Failure temperature margins defined by

M, = (temperature at which SL failure potentially causes LOAS) (12.1)
— (temperature at which WL failure potentially prevents LOAS) '

are another possible summary result in the analysis of WL/SL systems. Again, the descriptor
“potentially” is used in the definition of M, because the occurrence of LOAS depends on the

relative timing of SL failure and WL failure. The margin M is positive if SL failure occurs at a

higher temperature than WL failure (i.e., the desired occurrence) and negative if SL failure occurs
at a lower temperature than WL failure (i.e., the undesired occurrence). However, a negative failure
temperature margin is not necessarily associated with the occurrence of LOAS.

This section presents failure temperature margin results for a 2 SL, 1 WL system for which
LOAS occurs if both SLs fail before the WL fails. Nonfailure of either of the SLs or the WL is a
possibility for this system that must be addressed as part of the analysis of margins. To handle this
situation, a generalized margin defined by

M () = M7 ([tsp15 05125 tyr D

—oo for £, = oo, max{tg,lg,} <0

Ty (tsp1) = Ty (tyy) for ty < ooty <tg <oo

=T (sp2) = Ty (tyyy ) for by < 00,85y <ty <0

max {7 (t;), Topo (1)} = Ty () for by < ooty =ty =tg, <o

o for max{tg,,tg,} =00

(12.2)

for t =[ty,,t5,.ty;,] belonging to the set TM=TM,, x TMy, , x TMy,;, defined in Eq. (4.13)

is considered for analysis.

Application of the function M, (t) defined in Eq. (12.2) to the elements t =[zg,,¢¢,,%;;]
of the sample space ZM for the evidence space (ZM,TM, my,,) for link failure time defined in
conjunction with Eqgs. (4.13) -(4.16) results in the evidence space (M7,,MT,,m,,;,) for failure
temperature margins with
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MT = {myp myp =M, () fort =[tg,. 15,1y, 1€ TM, (12.3)
MT e = Amyp sy = My () for t =1, 85,y ] € TM } (12.4)
MT, = {MT, 5 : Gy jok) € T = {1,200, nSLU % {1,2,..,nSL2} x {1,2,..,nWLL ) (12.5)
and
Myry (MTujk) = Mgy (TM'jk) = My . (12.6)
In addition, the bounds
(- iy ) = (8ID(MT, ) max(MT; ) (12.7)

are introduced for use in the determination of the cumulative values of belief and plausibility for
the WL/WL failure temperature margins defined in Eq. (12.2).

Definition of the focal element bound m,; ;; is considered first. Specifically, n,7 ;, has a

definition that (i) involves greatest lower bounds (glb’s) for sets of link failure temperatures and
(ii) is conditional on various equalities and inequalities involving the times ¢, ,, L1 ;5 g 5
t g, ; and 7y, . The following possibilities exist for the definition of 7,7 :
Possibility (1): If ,,,, = and max{f g, ;. L, i} <o, then
My gk = —0. (12.8)
Possibility (2): If max{zg,;,2g, ;} =0, then

My g = - (12.9)

Possibility (3): If max{tg,; ey »byisy <© and tg,, <tg,,, then either (3.1)

briig Stwes Lorny <oy <Lgp; St and

myr e =T (Lsin ;) = Ty (€ yrag) (12.10)

or (3.2) fypy g Slyes Lopiy < Loraj Stues Lsing Slops (L jstme N TM,; # D and
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My i = max{glb{T T =Ty, (¢) for Lo St and t e ’T/\/lSLLi},TSL2 (LSLz,j )}

= Ty (T z0) (12.11)
=max{To(Ls2 ;) Tsro (Lo )} = Ty (t g if Lo € TMy,

or 3.3) Typi Sty Lsprg < Lspag Stus Lspay Stopris (L stuINTMy; =& and
myr i = Topo (Esn ) — Ty ( wrrs)- (12.12)

Possibility (4): If max{tg,;, Lo, Iyt <® and fg,; <lg;, then either (4.1)

<t

Wi Stws Loy <ltspa; <Lgi; Sty and

myp i = T (Lsp1) = Ty (€ s (12.13)

or (4.2) fypi Sty Lsiog < Lspry Slwes Lspig STsn s [Lspiolm JN TMy; # D and

My ik = maX{TSLl(LSLl,i ),8lb{T T =Tg,(¢) for £, <tand te TMSLZ,j}}

T (T )} (12.14)
= max{Tg, (Lg,;), Tspo (L )} Lgy; € TM,,

or (4.3) fypi g Slyes Lopaj < Lspni Stues Lsini < lsin s [Lgpistm /N TM,; =@ and

myr e = Tsiy (Lsp) = Tyna (yap)- (12.15)

Possibility (5): If max{t g, ;» e slypix) <© and tg,; =tg,,; =1t; <t,.,theneither (5.1)

Tyiik Stows Ly =1, and

=ij mx

My = max{ SLl(tzj) TSL2(_U)} _TWLl(t_WLl,k) (12.16)

t. =

or (5.2) fypip Sty Ly =ty (Lot INTM 2D, (2 INTM,; #< and

ij > mx

NIM,;},

ij mx]

myp i =min{glb{T: T =Ty, (¢) for te[t
gIb{T : T =T, (t) for t €[£;,t,, INTM H =Ty Gya) - (1217)

=min{Tg;, (2;), T, ()} — Ty (Gyz1e)s

or (5.3) fypy s <ty» t

Ly = mx,(Llj,m]mT./\/l1 =0, (t mTsz:Qand

lj’ mx]
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myr g = 8IOAT T =Tg, (¢) for t et,, b OV TM S =T (B 1) (12.18)
=Ty, (L'j) — Ty (tWLl,k ),
of (5.4) fypip Sty Ly =ty (Lol JINTM; =D, (2,1, 1N TM,; # D and
=T, (1) — Ty, )
or (55) t_WLl,k Stmx’ Ll] =tmx’ ( ij 2 mx]mTM = (tl]’tmx]mTMZJ = and
M7 gk = max{ Ty (2) T 5 (2 )}_TWLl(t_WLl,k ). (12.20)

The bound 1,7 ;; also has a definition that is conditional on various equalities and inequalities
involving the times fg,;, fg,;» Lynss Lsn; and fg,; as stated for the following

possibilities:

Possibility (1): If 2;;,, = and max{Zy,;, %y, ;} <o, then

Mg g = —0. (12.21)
Possibility (2): If max{fg;,,, %, ;} =, then

Py g = . (12.22)

Possibility (3): If max{Zs,;, s ;s typ1p} < and Ig,; <Ig, ;. then either 3.1) fyyy <1,

Lo Sty <tgn,; <t, and
Mz e =max T (s ), Topn (Egpa 1)} = Tyt (L) (12.23)
Or(32)_WL1k—tmx’tSL11<tSLZJ<tSL2j<l and
Myr e = Tspo (Fspa ) = Topy (L p)- (12.24)

Possibility (4): If max{Zs,;, s sty } < and Ig, ; <y, then either (4.1) fyy <1,

o Loy Stgn; <tgy; <t, and

mx

My i = max{Ty, (t_SLl,i )T (t_SLZ,j)} —= Ty (L i) (12.25)
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X

or (4.2) Lyyy Styys Loy < Loy <y Sty and

Mz g = Top (t 1) = Tspy (L p)- (12.26)

Possibility (5): If max{tg;,,,f5, ;» Ly} <o and fg,, =15, ; = ¢;, then

My g = max{Tg, (Z'j )> T, (?ij )= Ty (L )- (12.27)

Once the evidence space (M7,,MT,,m,, ) is constructed, cumulative and complementary

cumulative plausibility and belief functions for SL/WL failure temperature margins can be
obtained from the pairs (mr ;.M ;) as indicated in conjunction with Egs. (2.48)-(2.50). As

examples, cumulative and complementary cumulative plausibility and belief functions for failure
time margins are presented in Fig. 12.1 for a system with 2 SLs and 1 WL. In addition, also contains
the CDF and CCDF for SL/WL failure temperature margins obtained by assigning uniform
distributions to the individual focal elements for link failure temperature as described for the
construction of the link failure time CDFs in Fig. 4.4. Specifically, the CDF and CCDF in Fig.
12.1 are constructed as indicated in Eqs. (7.9)-(7.13) with M, ([¢g,¢5 .ty ]) replacing

TMLI (tSLI ’ tSL2 ’ tWLl ) .

0 ] ‘ ; [
10 Pl < m) T
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> o w® aa] ]
Z T o038
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g % o O 04r
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E 2 2=
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LOAS ~ Both SLs O ® LOAS ~ Both SLs
4 before WL O o} before WL
10° ' ‘ : ' ‘ ‘ ' ' ' ' ‘
-oo  -400 -200 0 200 400 600 -oo  -400 -200 0 200 400 600
m: SL/WL Temperature Margin (°C) m: SL/WL Temperature Margin (°C)

Fig. 12.1 Graphical summary of evidence space (M7,,MT,,m,) for SL/WL failure

temperature margins for (i) a system composed of SL 1, SL 2 and WL 1 defined in Sect. 4 and (i1)
LOAS corresponding to failure of both SLs before failure of the WL: (a) Cumulative plausibility
Pl(m < m), probability Pr(m < m) and belief Bel(m < m), and (b) Complementary cumulative
plausibility P/(m < m), probability Pr(m < m) and belief Bel(m < m).

Margin results of the form shown in Fig. 12.1 are valuable because they show and quantify the
uncertainty in the temperature difference between when (i) failure of the SL system potentially
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results in LOAS and (ii) failure of the WL potentially averts LOAS. In addition, the sampling-
based procedure used to obtain the CDF and CCDF in Fig. 12.1 produced values of

mypy =—358.059 °C and i, = 549.204 °C (12.28)

for the smallest failure temperature margin m, ., > —oo and the largest failure temperature. margin

mypr <.

Belief Bel(S) and plausibility PI(S) for subsets S of M7, can be calculated from the

relationships defined in Egs. (11.10)-(11.19). As a reminder, this requires that the evidence space
(MT,,MT,,m,, ) for failure temperature margins be defined to be consistent with the function

M, (t) defined in Eq. (12.2) and the corresponding focal element bounds m; ;; and my ; defined
in Egs. (12.8)-(12.27).

As examples, the calculation of Bel[S(0)] and PI[S(0)] for temperature margin values of 0
for the WL/SL system in Fig. 12.1 produces the results

Bel[S(0)] =5.000x107° =5.002x107° (12.29)
and

PI[S(0)] = 2.800x10™" = 2.800x10"" (12.30)

with (i) the values for Bel/[S(0)] and P/[S(0)] in the initial equalities determined as indicated in
Egs. (11.10) and (11.11), and (ii) the values for Be/[S(0)] and P/[S(0)] in the following
approximate equalities determined in a sampling-based verification procedure with a sample of

size 10" as described in Sect. 6.2. The agreement of the plotted results in Fig. 12.1 (i.e.,
Bel[S(0)]=0.005, PI[S(0)] = 0.280) and the numerical results in Eqs. (12.29) and (12.30)

provides a strong verification result that Be/[S(0)] and PI/[S(0)] are being calculated correctly.

If desired, Bel({—oo}), Bel({x}), PI({—o})and PI/({x}) can be calculated as indicated in Egs.
(11.22)~(11.29).

The failure temperature margin evidence space (M7,,MT,,m,,;,) and its associated CPF,
CBF, CCPF and CCBEF for SL 1 and SL 2 both failing before WL 1 fails can also be defined with
use of the evidence spaces (7, TF ,m;z ) and (7Fy;,, THy; ,my ;). Specifically, (i)
(TH,TIF,,my, ) is defined in Sect. 9.1 for the temperatures at which a system consisting of SL 1

and SL 2 fails with system failure temperature corresponding to the temperature at which the
second SL fails and (ii) (77, Ty, mpp ;) is defined in Sect. 4 for the temperature at which

WL 1 fails.
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In turn, the focal element bounds m,; ;; and m,; ;; canbe defined on the basis of (i) the bounds
(El,ij ’

defined in Egs. (9.8)-(9.23) for the failure temperatures for a system consisting of SL 1 and SL 2
with system failure corresponding to failure of the second SL and (ii) the bounds

TF1;) for focal elements TF; associated with the evidence space (7, T ,my)

(Tr WLl’k,ﬁWLl’k) for focal elements 7F;,, associated with the evidence space
(TFyp1> Ty s My 1) defined in Egs. (4.20)- (4.25) for the actual temperatures at which WL 1

fails. Given known values for the bounds (ZF,,,TF1;) and (TF Wu’k,ﬁml’,{), the bounds

Lij>
(M7 s My ) Tor M7, are defined by

myr g =1TF, ~TFwix and M7 e = gy, —TF 1k (12.31)

with the assumption that

o if a=o0

a—b={ (12.32)

—0 ifa<o and b =,

The evidence space (7F;, Ty, , My ;1) is for the actual temperatures at which WL 1 fails

with 7, =0 included to indicate that that link system failure did not occur. A slightly different

failure temperature margin evidence space is obtained if the WL 1 failure temperature evidence
space (Zy;, Ty i, myy;,) defined in Sect. 4 is used instead of (77, T, My ;) . The sample

space 7,,, contains all originally specified possible failure times for WL 1. In contrast, 7F;,,
contains only (i) the failure temperatures that actually occurred and (ii) the indicator 7, assigned
to failure temperatures in 7, that were never reached by the WL 1 temperature curve 7, ()
for ¢,, <t<t,..

12.2 Cumulative and Complementary Cumulative Belief and Plausibility for WL/SL
Temperature Margin with LOAS Defined by Failure of Either SL before failure of
the WL

This section presents failure temperature margin results for a 2 SL, 1 WL system for which
LOAS occurs if either SL fails before the WL fails. Nonfailure of either of the SLs or the WL is a
possibility for this system that must be addressed as part of the analysis of margins. To handle this
situation, a generalized margin defined by
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My (6) = Mor (g5 52>ty D

—oo for ty;; =co,min{tg,tg,} <O

Ty 5 (tsn) = Ty (tyyy) for tyy <oo,tg5 <ty

= Lop1 (1) = Ty (B fOT By <00,y <lgys
min{Tg;, (&), Tsr ()} — Ty (Byy) 10T tyy < 00,85 =ty =t <0

oo for min{tg,,fe,} =

(12.33)

for t =[tg,,t5,,ty,] belonging to the set TM=TM,, x TMy, , x TMy,, defined in Eq. (4.13)

is considered for analysis.

Application of the function M, (t) defined in Eq. (12.33) to the elements t =[t¢,,¢¢5,;,]
of the sample space 7ZM for the evidence space (ZM,TM, my,,) for link failure time defined in
conjunction with Egs. (4.13) -(4.16) results in the evidence space (M7,,MT,,m,,,,) for failure
temperature margins defined in the same manner as used in Egs. (12.3)-(12.7) to define the
evidence space (M7, MT,,m,,,).

Definition of the focal element bound m,, ; is considered first. Specifically, m,y ;; has a
definition that is conditional on various equalities and inequalities involving the times 7,

toroj-twns topris siay and 7y, . The following possibilities exist for the definition of

Myr ik -
Possibility (1): If %, = and min{tg,,,tg, ;} <%, then
Moy ik =~ (12.34)
Possibility (2): If min{zg,;,2, ;} =%, then
My ik = (12.35)

Possibility (3): If 7,4 <t,., tg,; <t,, and tg,; <tg, ., theneither: (3.1) 7y, <t,,,

Loy Styes Ly <lgp,; = and

Moz e = Tsin (Lspr) = Ty (C i) (12.36)

or (3.2) g Styes Lspiy <tspy <lLsppj <t and
o7 e = Lo (Lspri) = Ty (g )s (12.37)
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or 3.3) fypip Styws Lsiy < Lor2j Stues Lorn; Sty and

Mot ik = min{Tg, (£1;)- T (Lsz2, ) — Ty (t_WLl,k )- (12.38)

Possibility (4): If 714 <t,s Lopn,; Sty and Loy <tgy;, then either: (4.1) 7y, <t,.,

Lo Sty Ly <lgy; = and

Morik = Tsia (Lspa 1) = Ty (Eya ) (12.39)

Or (4.2) g Styes Lsiaj <lsia; <Lsp; <ty and

m.

Mor ik = Tsio (Lspa ;) = Tyna (E ) (12.40)

or (4.3) typip Sty Lo <Lspiy Stuws Lspy St and

- "mx?

Mor ik = min{Zg, (£g,,;), L5, (LSLz,j )} =Ty (t_WLl,k )- (12.41)

Possibility (5): If 7y, <t,, and tg, =tg,;, =1t; <t,, then

j = Fmx
myp e = mIN{T g (25, g0 (25)} = Ty ( wrig)- (12.42)
Similarly, m,r ;. is defined by
Possibility (1): If 2;,,, = and min{¢ g, ,f g, ;} <, then
Mg gk = —0. (12.43)

Possibility (2): If min{7 g, ;.7 g, ;} =, then
Myr ik = . (12.44)

Possibility (3): If 2y, <t sy <t and 7, <t g, ;, then either: (3.1) ty;, 4 <1,

mx

oo <Uspi; Styws Lspy <tgn; and

gy i = max {Tg, (Fggy W Mub{T : T =Ty, (¢) for ¢ €[ty ;,Fg,) O TMg, 3}
= Ty (L) (12.45)

= maX{TSLl (7 s01.0)- T2 (2 SLl,i)} Ty (L) A 15 € TMgy,
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or 3.2) typyj Styys Li =lsio; = Uiy Slyes tspy <tgsia and

Myp e =WbAT : T =T (8) for ¢ €t gy st sp1:) O TMp b= Typy (Lpas)

_ (12.46)
= Top1 (¢ s213) = Ty (i )s
or (3.3) Ly Stwes topiy <Lspaj <tsiajs tspy Stm and
My ik = Tspy (¢ sp1) = Ty (L )- (12.47)

Possibility (4): If Zy;, 4 <t,., Es0; <t and 7 g, <fg,,, then either: (4.1) t,,,, <t,.

Lop; <tgpy; Sty tgn; <tgy and

Mg i = max {Tg» (Fggp ) Mub{T : T =Ty (t) for t € [£gyy 12T g ) N TMg ;3
— Ty (L) (12.48)

= maX{TSLZ(t st2, ) Lsii ( sa )} —= Dy (L g) 1f Lo, € TMg5

or (4.2) Lypig Sty by = Lopi; = Loy Sl Lspa; <1, and

My e =WbAT : T =Tg o (8) for t €[tgs 15 g0 )NV TMgs i} =Ty (L p)

_ (12.49)
=T5( s10.1) = Ty (L)
or (4.3) Lypip Stues Ty <Lspny <Tgiis Esiay Sty and
My ik = Toro (€ sp2.;) = Typy (L )- (12.50)

Possibility (5): If #;,, <t,, and t_lj = t_SLZ,j =1g; <t,,,then max{t g, ;,tgo ;< TU and

g g = max {lub{T : T =Ty, (¢) for ¢ €[ty 5) N TMg, ),

lub{T": T" =T, () for fe[lsn,jﬁzf)mTMS“’f}} (12.51)

=Tyt (Eprag)

= max {Tsu (#;): T (1 } = Tyt (Lppip)-

Once the evidence space (M7,,MT,,m,,,;) is constructed, cumulative and complementary
cumulative plausibility and belief functions for SL/SL failure temperature margins can be obtained
from the pairs (m,r 4, Myr ;) @s (i) indicated in conjunction with Egs. (2.48)~(2.50) and (ii)
illustrated in Fig. 12.2. In addition, Fig. 12.2 also contains the CDF and CCDF for WL/SL failure
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temperature margins obtained by assigning uniform distributions to the individual focal elements
for link failure temperature as indicated for the construction of the link failure time CDFs in Fig.
4.4. Specifically, the indicated CDF and CCDF are constructed as indicated in Egs. (7.9)-(7.13)
with My (45,15 8s 5ty ) Teplacing TML, (tg;,5 8y tyy) -

1 SL1, SL2, WLA w 1 ' T
LOAS ~ Either SL ° 3 Bllm <@
> before WL E m
=2 %081 S < 087
= g 5 O
78 E2 | Bam<
= == el(m < m

T 506 Pl(m < m) O Zost ( )
o =8
0 = Lo Pr(m < m)
2 C
S S04y S Ooar
QL © £ -
g 3 s =

| =4 -(—3- —_
3 aozf £ 2 021 g1, 8L2, WL

O3 LOAS ~ Either SL
0! . | | Be'l(ﬁL = m) | o g} beforewL | ! !
-oo  -400 -200 0 200 400 600 -oo  -400 -200 0 200 400 600
m: SL/WL Temperature Margin (°C) m: SL/WL Temperature Margin (°C)

Fig. 12.2 Graphical summary of evidence space (M7,,MT,,m,,;) for SL/WL failure

temperature margins for (i) a system composed of SL 1, SL 2 and WL 1 defined in Sect. 4 and (ii)
LOAS corresponding to failure of either SL before failure of the WL: (a) Cumulative plausibility
Pl(m < m), probability Pr(m < m) and belief Bel(m < m), and (b) Complementary cumulative
plausibility P/(m < m), probability Pr(m < m) and belief Bel(m < m).

As for Fig. 12.1, margin results of the form shown in Fig. 12.2 are valuable because they show
and quantify the uncertainty in the temperature difference between when (i) failure of the SL
system potentially results in LOAS and (ii) failure of the WL potentially averts LOAS. In addition,
the sampling-based procedure used to obtain the CDF and CCDF in Fig. 12.2 produced values of

My =—408.174 °C and iy = 549.552 °C (12.52)

for the smallest failure temperature margin m, ., > —oo and the largest failure temperature. margin

Mypr < 0.

Failure temperature margin evidence spaces for either SL failing before the WL fails can also
be defined with use of (i) the evidence space (7F,,TF,,m;,) defined in Sect. 9.2 for the
temperatures at which a system of 2 SLs fails with system failure temperature corresponding to
the temperature at which the first SL fails and (ii) and the evidence space for WL failure
temperature (e.g., (7Fy;,, Ty, My ) for WL 1 failure time defined in Sect. 4).
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The failure temperature margin evidence space (M7,,MT,,m,,;,) and its associated CPF,

CBF, CCPF and CCBF for either SL 1 or SL 2 failing before WL 1 fails can also be defined with
use of the evidence spaces (7F,TF,,my,) and (7Fy;, Ty, my ) . Specifically, (i)

(TF,,TF,, my, ) is defined in Sect. 9.2 for the temperatures at which a system consisting of SL 1

and SL 2 fails with system failure temperature corresponding to the temperature at which the first
SL fails and (ii) (7F;,, Ty, mpp 1) is defined in Sect. 4 for the temperature at which WL 1

fails.

The bounds m,; ;; and m,; ;. for focal elements M7, ;; associated with the evidence space
(MT,,MT,,m,,;,) canbe defined on the basis of (i) the bounds (TF 2 ,ﬁZ,ij) for focal elements
TF, ; associated with the evidence space (77,,TF,,myz,) defined in Sect. 9.2 for the failure

temperatures for a system consisting of SL 1 and SL 2 with system failure corresponding to failure
of either SL and (ii) the bounds (TF j;, ,,TF ;) for focal elements 77, , associated with the

evidence space (7Fy;,, TFy,;,,my;, ;) defined in Eqgs. (4.20)- (4.25) for the actual temperatures
at which WL 1 fails.

Given known values for the bounds (Ez’ij,ﬁz,zj) and (EWU’,{,FWLL,C), the bounds

(o1 ik s Mg ) Tor MT, ;- are defined by

with the assumption that
o if a=w
a—b= ] (12.54)
—0 ifa<ow and b=

as previously indicated in Eq. (12.32). Once the focal element BPAs m, (M7, ;) and the focal

element bounds (myr .My ) for M7, are obtained, cumulative and complementary

Ak

cumulative plausibility and belief functions for temperature margin can be obtained as (i) indicated
in conjunction with Egs. (2.48)-(2.50) and (ii) illustrated in Fig. 12.2.

The evidence space (7Fy;, Ty, mpp ;1) is for the actual temperatures at which WL 1 fails

with 7, = included to indicate that that link system failure did not occur. A slightly different

failure temperature margin evidence space is obtained if the WL 1 failure temperature evidence
space (Zy;, Ty i, myy;,) defined in Sect. 4 is used instead of (77, T, My ;) . The sample

space 7,,, contains all originally specified possible failure times for WL 1. In contrast, 77, ,

contains only (i) the failure temperatures that actually occurred and (ii) the indicator 7., assigned
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to failure temperatures in 7, that were never reached by the WL 1 temperature curve 7, ()
for ¢,, <t<t,..
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13. Cumulative and Complementary Cumulative Belief and Plausibility for
SL/SL Temperature Margin for a System with 2 SLs and 1 WL

For simplicity, this section considers a system with 2 SLs and 1 WL and two definitions of
system failure: (i) LOAS occurs when both SLs fail before the WL fails and (ii) LOAS occurs
when either SL fails before the WL fails.

13.1 Cumulative and Complementary Cumulative Belief and Plausibility for SL/SL
Temperature Margin with LOAS defined by Failure of Both SLs before failure of
the WL

Another possibility 1s a SL/SL failure temperature margin M, defined by

M, = (SL temperature at which second SL failure potentially causes LOAS) (13.1)
— (temperature of second SL to fail when WL failure potentially prevents LOAS). '

for (i) systems with two SLs and one WL and (ii) LOAS corresponding to failure of both SLs
before failure of the WL. If the SL temperature curves are increasing as illustrated in Fig. 4.1, then
the margin M, is (i) positive if the second SL failure occurs after failure of the WL (i.e., the

desired occurrence) and (ii) negative if the second SL failure occurs before failure of the WL (i.e.,
the undesired occurrence).

To incorporate the possibility of nonfailure of individual links, a generalized margin M (t)
is considered for analysis with t=[tg,t,.t;;,,] Dbelonging to the set
TM=TMg, xTMg, , xTM,,;, defined in Eq. (4.13). Specifically, M (t) is defined by (i)

My (t) = My (s tsp0 5ty D

—o for 4, = co,max{tg,tg,} <o

Ty (1) = Ty (tyy) fortyy <oo,tg, <tg <o

=3 Ts10(sp2) = T () fortyy <oo,tgy <tgp <o

min{Tg, (&) = Ty (Gyp1), Ty o () = Tgpp (tygy )y fOT By < 00,8 =ty =1, <0

oo for max{ty,,tg,} = .

(13.2)

Application of the function M, (t) to the elements t =[tg,,%g,,;;,] of the sample space M
for the evidence space (7M,TM,my,, ) for link failure time as indicated in Eqs. (12.3)-(12.6)
results in the evidence space (M7T;,MT;,my,,) for SL/SL failure temperature margins.
Definition of the focal element bounds m; ; and My ; for focal elements M7, associated

with the evidence space (M7, MT;,m;,,;) is now considered.

Definition of the focal element bound m;; ; is considered first. Specifically, my; ;; has a

definition that (i) involves greatest lower bounds (glb’s) for sets of link failure temperatures and
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(i1) is conditional on various equalities and inequalities involving the times g, Lgo ;> Lypix

to1is Esra, and 7y, . The following possibilities exist for the definition of ma; ; :
Possibility (1): If 4;,,, = and max{tg, , g, } <o, then
Mar jjk = —- (13.3)
Possibility (2): If max{¢g,;,2g, ;} =00, then
My k. = - (13.4)

Possibility (3): If max{tg,; Loy »byxt<© and tg,; <tg,,;, then either (3.1)

<t <

by Stwes Lopny <oy <Lgo; St and
My i = Lo (Lspa ;) — Tsro (8w i) (13.5)

or (3.2) fypy g Slyes Lopiy < Loray Stues Lsing Slops (Lo jstme N TM,; # D and

Mar ik = min{glb{T T =Tg, () for tg,; <tand t € TMg,} —Tg, (T yrip)s

T(Esin;)— Ty a WLl,k)} (13.6)

=min{Tg, (L5, ;) —Tg, (t_WLl,k)’ Ty (Lsra ;) — Ty a w1 Lgs i € M,
or (3.3) fypip Styes Lspri <Lgpa Slyes Lspaj Stopyis [Lgga sty JNTM,; =& and
My i = Tspo (Espa ) — Topo (F wrie)- (13.7)

Possibility (4): If max{tg,; Loy »lyisy <© and tg,; <tg,;, then either (4.1)

by Staws Lsro <tspo; <Ly St and

My ik = T, (Lsu,i) — T, WLl,k)’ (13.8)

or (4.2) typig <lyes Lspaj < Lspii Stwes Lspry <topajs [Lsp st ]V TM,; #0 and

Mar ik = min{glb{T 1T =Tg(0) for £, <tand 1€TMg, ;} =T, (£ i)

TSLI(LSLl,i)_TSLl(t_WLl,k)} (13.9)

=min{Tg, (Lgr1,) = Toro (i p)s Topn (Lsza) — Tspy (¢ )3 i gy, € Tsz

160



or (4.3) By g Styes Lgraj <Ly Slues Loy Slopa s (Lo oty ]V TM,; =@ and

My e = T (Lgpn) — Ty (t wiin)- (13.10)

Possibility (5): If max{¢ g, ;2 i»bypisy <© and tg,; =tg,; =1t; <t, ,then

My i = Min {Tsu () = Topy (F i )s Tspn (£ = Topn (F i )}- (13.11)

The bound 7157 ;. also has a definition that is conditional on various equalities and inequalities

involving the times ¢, ;, £, ;> Lypiss £ 511, and £ g, ; as stated for the following possibilities:
Possibility (1): If 2;;,, = and max{ty,;, Ly, ;} <, then
My i = =00, (13.12)
Possibility (2): If max{Zy,;, %y, ;} =, then
Mp e = . (13.13)

Possibility (3): If max{Zs,;, s ;s typ1p} < and Ig,; <l ;. then either 3.1) fyyy <1,

s Lsn; St <fg,; and
M3 g = max{Tg (¢ 511;) — Topy (L) Tsio (Z_SL2,j)_ T o (L1 0)} (13.14)
or (2.2) typyy Sty Ly <lopp,; <Ig; and

Myr e =Ty (t—SLZ,j)_TSLZ (Lwrrp)- (13.15)

Possibility (4): If max{Zs,;, s ;s typi} < and Iy, ; <y, then either (4.1) fyy; <1,

s Lo S t—SLZ,j <fg,, and
M ik = max{T, (I_SLl,i) — T (Lyprap)s Tro (t_SL2,j )= Topa (L)} (13.16)
or (4.2) tyy <t Lo, <lo; <ty and
M i = Ty (t_SLl,i) =Ty (L i p)- (13.17)
Possibility (5): If max{fg;,,, %5, j» Ly} <o and fg,; =15, ; =1, then
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My i = Max {hlb {T:T=Tg,(t) for te[tg, ;)N TMgy = Toy (Lypig)s
Wb{T : T = T (¢) for t €Ly ;,5) O TMypy 3 =T (Lynyp)}  (13.18)

= X {Tsu (%) = Top g ) T (B) = Tpo (L )}-

Once the evidence space (M7;,MT;,m;,,) is constructed, cumulative and complementary

cumulative plausibility and belief functions for SL/SL failure temperature margins can be obtained
from the pairs (57,57 ) as indicated in conjunction with Eqgs. (2.48)-(2.50). As examples,

cumulative and complementary cumulative plausibility and belief functions for SL/SL failure
temperature margins are presented in Fig. 13.1 for a system with 2 SLs and 1 WL. In addition, Fig.
13.1 also contains the CDF and CCDF for SL/SL failure temperature margins obtained by
assigning uniform distributions to the individual focal elements for link failure temperature as
described for the construction of the link failure time CDFs in Fig. 4.4. Specifically, the CDF and
CCDF in Fig. 13.1 are constructed as indicated in Eqs. (7.9-(7.13) with M5, ([tg 1552ty ])

replacing TML, (g, ,,ts125twr1) -

e ; .
10 Pl(m < m)

0.8} .
Bel(m < m)

=
o
it

06

Pr(m <m)
Bel(m < m)
047

Cumulative Plausibility,
Probability, or Belief
=)

Complementary Cumulative
Plausibility, Probability, or Belief

SL1, SL2, WL1 SL1, SL2, WL1
LOAS ~ Both SLs 0.2 [ LOAS ~ Both SLs
10°3 . ; ._before WL . . before WL | | ‘
-oo 400 -200 0 200 400 600 -oo  -400 -200 0 200 400 600
m: SL/SL Temperature Margin (°C) m: SL/SL Temperature Margin (°C)

Fig. 13.1 Graphical summary of evidence space (M7, MT;,m,,,,) for SL/SL failure temperature

margins for (i) a system composed of SL 1, SL 2 and WL 1 defined in Sect. 4 and (ii) LOAS
corresponding to failure of both SLs before failure of the WL: (a) Cumulative plausibility
Pl(m < m), probability Pr(m < m) and belief Bel(m < m), and (b) Complementary cumulative
plausibility P/(m < m), probability Pr(m < m) and belief Bel(m < m).

Margin results of the form shown in Fig. 13.1 are valuable because they show and quantify the
uncertainty in the temperature difference between (i) temperature of the second SL to fail when
this failure corresponds to failure of the SL link system and thus potentially results in LOAS and
(i1) the temperature of the second SL to fail at the time that the WL fails and potentially averts
LOAS. This provides perspective on how far apart failure of the SL system and failure of the WL
are in temperature space relative to the potential occurrence of LOAS.
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In addition, the sampling-based procedure used to obtain the CDF and CCDF in Fig. 13.1
produced values of

My = —459.674 °C and i,y = 441.949 °C (13.19)

for the smallest failure temperature margin m;,,, > —oo and the largest failure temperature. margin

Mypp < 0.

Belief Bel(S) and plausibility P/(S) for subsets Sof M7, can be calculated from the
relationships defined in Egs. (11.10)-(11.19). As a reminder, this requires that the evidence space
(MT;,MT;,my,,;) for failure temperature margins be defined to be consistent with the function
M;;(t) defined in Eq. (13.2) and the corresponding focal element bounds msy and myr
defined in Egs. (13.3)-(13.18).

As examples, the calculation of Be/[S(0)] and P/[S(0)] for a SL/SL temperature margin value
of 0 for the WL/SL system in Fig. 13.1 produces the results

Bel[S(0)] = 1.600x1072 =1.602x1072 (13.20)
and

PI[S(0)] = 4.880x10™" = 4.880x10"" (13.21)

with (i) the values for Bel[S(0)] and PI[S(0)] in the initial equalities determined as indicated in
Egs. (11.10)-(11.19) and (ii) the values for Bel[S(0)] and PI/[S(0)] in the following approximate
equalities determined in a sampling-based verification procedure with a sample of size 107 as
described in Sect. 5.2. The agreement of the plotted results in Fig. 13.1 (i.e., Bel[S(0)]=0.016,
PI[S(0)] = 0.488) and the numerical results in Egs. (13.20) and (13.21) provides a strong
verification result that Bel[S(0)] and PI/[S(0)] are being calculated correctly. Additional
verification is provided by the agreement of (i) the preceding values for Bel/[S(0)] and P/[S(0)]
and (i1) the corresponding values for LOAS in Egs. (4.31) and (4.32).

13.2 Cumulative and Complementary Cumulative Belief and Plausibility for SL/SL
Temperature Margin with LOAS defined by Failure of Either SL before Failure of
the WL

This section presents SL/SL failure temperature margin results defined by

M, = (SL temperature at which first SL failure potentially causes LOAS) (13.22)
— (temperature of first SL to fail when WL failure potentially prevents LOAS). '

for a 2 SL, 1 WL system for which LOAS occurs if either SL fails before the WL fails. To
incorporate the possibility of nonfailure of individual links, a generalized margin M, (t) is
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considered  for  analysis  with t=[tg,.t5,.ty;,]  belonging to  the  set
TM=TMg, xTMg, , x TM,,, defined in Eq. (4.13). Specifically, M (t) is defined by (i)

My (8) =My (g5 L0 tyin D

—oo for ty,;; =0, min{tg,tg,} < ©

Ty (tg5) = Topp (tyyy) for tyy <oo,tg, <t

= Top1 (tgp)) = Ty (tyyy) for tyy <oo,tgy <tg5

min{Tg; , (2;) = Topy (G )s Tspn () = Topn (tyy )} fOT tyyy <008 =ty =tg, <0

oo for min{tg,,tg,} = oo.

(13.23)

Application of the function M, (t) to the elements t =[tg,,%g,,;;,] of the sample space M
for the evidence space (7M,TM,my,, ) for link failure time defined in conjunction with Egs.
(4.13)-(4.16) results in the evidence space (M7,,MT,,m,,,,) for SL/SL failure temperature
margins defined as indicated in Eqgs. (12.3)-(12.6). Definition of the focal element bounds m,;
and myy ;. for focal elements M7, ;; associated with the evidence space (M7,,MT,,my,;) is

now considered.

Definition of the focal element bound n47 ; is considered first. Specifically, m,z ; has a
definition that is conditional on various equalities and inequalities involving the times 7,

Yoo jotwmg tspri» Espa, and Zyy ;. The following possibilities exist for the definition of

Myr ik -
Possibility (1): If %, = and min{tg,,,tg, ;} <%, then
Mar g1 = . (13.24)
Possibility (2): If min{zg,;, 2, ;} =%, then
My jjk = - (13.25)

Possibility (3): If 7y 4 <t,05 Loy St and gy, < gy, theneither: 3.1) 7y, <¢t,.,

Lspi; Styes Loy <lgpp,; = and

My e = T (Lspr) = Tsia (T )s (13.26)

or 3.2) Ty Slyes Lopri <Tsii <Lsinj <ty and

mx
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My e = Lo (Lspri) = Tora (¢ g )s

or 3.3) typip Styuws Lsiy < Lspo; Sty Lo Sty and

Myr ik = min{Tg, (L) — T, (t_WLl,k ) Ts1o (LSLz,j) —Tg, (t_WLl,k )}

(13.27)

(13.28)

Possibility (4): If 7,4 <t,, L Sty and fg, <ty then either: (4.1) 7y, <t,.,

Lsin; Sty Ly <lgy; = and

Mz e = Tsro (Espa ;) = Tspo (E i),

Or (4.2) g Stys Lo <lsia; < Lsp; <ty and

m.

Myt ik = Ty, (LSLz,j )—Tspo (f_WLl,k )

or (4.3) typip Stys Lgnj <Lspi; Styws Lspy St and

Myr ik = min{Tg, (£g;) — Toy (l—WLl,k ) Ts2(Lsrn ;) —Tn (t_WLl,k )}

Possibility (5): If 7, <t,, and Lo, =Lgy; =1; <, then
Myr e =min{Tg, (2,)— T, ( wrax) Tsra () =Ty (a0}
Similarly, 7,y ;. is defined by
Possibility (1): If 2;,,, = and min{¢ g, ,,f g, ;} <, then
”—74T,ijk =—%0.

Possibility (2): If min{7g;,,,7 5, ;} =, then

Myr ik = -

(13.29)

(13.30)

(13.31)

(13.32)

(13.33)

(13.34)

Possibility (3): If Zy;y4 <t,.» L gp1y Sty and £, <ty theneither: 3.1) fyy 4 <1,

Lo <t Styes oy <tg,,; and
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Myr e = Max {TSLI (7 s1.) = Tspr (L)

Wbi{T : T =Tg,(t) for t €[ty st 51,) NVTMn 1} =T (Lyis )}

(13.35)
= max {TSLI (¢ s21) = Torr (L )> Tora (¢ spni) = Tspa (Lpag )}
if t_SLl,i € TMSLZ,J"

or 3.2) typyj Styys Li =tgn; =l Sty Ly <lsio; and

Myr e =Wb{T : T =Ty, (¢) for t €[t ,;,t g1,) NV TMgy ;b= Top (Lypis) (13.36)
= Top1 (t s21.0) = Topy (L )»
or (3.3) Ly Styes Ly <Lsin; STy pi Sty and

Myr g = T (F 1) = T (Lg)- (13.37)

Possibility (4): If Zy;, 4 <t,., 50 <t and 7 g, ; <fg,, then either: (4.1) 2, <t,.

sp; <tspa; Sty Lgn; <tgy; and

Myg i = Max {TSLz ( s12.) = Tspo (L)

Wb{T : T =Ty, (1) for t €[t g8 510 ;) O TMspyi} = Topi (L )}

(13.38)
= max {TSL2 ( s12,7) = Toro (L )s Tora (s, ) = Topa (L )}
if Z_SLZZ,j € TMy,;,

or (4.2) Lypix Sty by = Loy =t sin; Slyws Lspa; <@gy and

My p =WDAT 2T =T o (8) for t €tgs 58 g0 )N TMgs 1§ = Topn (Eypig) (13.39)
=g (t_SLZ,j )= Tora (L)
or (4.3) Lypig Styes oray <Lspi <lspiis tspaj <t and

My ik = Tspo (Esp0.;) = Topn (L g)- (13.40)

Possibility (5): If 2y, <t,, and i =t =Uspry <o then max{LSLU,LSLZ’j} <t and
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Mg g = max {lub{T : T =Ty, (0) for t €[ty 5) N TMg ;3= Topy (s s
Wb{T : T = T (¢) for t €L ;,5) O TMypy 1} =T (Lynrp)} (13.41)

= HIAR {Tsu (%) = Top (Lyppage)> Tno (6) = Tgpn (L )} g

As examples, cumulative and complementary cumulative plausibility and belief functions for
SL/SL failure temperature margins are presented in Fig. 13.2 for a system with 2 SLs and 1 WL.
In addition, Fig. 13.2 also contains the CDF and CCDF for SL/SL failure temperature margins
obtained by assigning uniform distributions to the individual focal elements for link failure
temperature as described for the construction of the link failure time CDFs in Fig. 4.4. Specifically,
the CDF and CCDF in Fig. 13.2 are constructed as indicated in Egs. (7.9)-(7.13) with

My (1585005 tyr1 D replacing TML (fgpy,8 55 tyy) -

1} sL1, sL2, wi1
LOAS ~ Either SL
I before WL

08

06 Pl(m <m) 0.6 f r(m < 1)

0.4t Bel(m < m

~
~

Pr(m < m)

Cumulative Plausibility,
Probability, or Belief
o
o

021 g1, sL2, wL1
LOAS ~ Both SLs

Complementary Cumulative
Plausibility, Probability, or Belief

0! : : B‘el(ﬁz S m) . o} beforewlL | , :
-oo  -400 -200 0 200 400 600 -oo  -400 -200 0 200 400 600
m: SL/SL Temperature Margin (°C) m: SL/SL Temperature Margin (°C)

Fig. 13.2 Graphical summary of evidence space (M7, MT;,m,,;,) for SL/SL failure temperature

margins for (i) a system composed of SL 1, SL 2 and WL 1 defined in Sect. 4 and (ii) LOAS
corresponding to failure of either SL before failure of the WL: (a) Cumulative plausibility
Pl(m < m), probability Pr(m < m) and belief Bel(m < m), and (b) Complementary cumulative
plausibility P/(m < m), probability Pr(m < m) and belief Bel(m < m).

The sampling-based procedure used to obtain the CDF and CCDF in Fig. 13.2 produced values
of

mypr =—498.310 °C and 7, = 442.404 °C (13.42)

for the smallest failure temperature margin m, ., > —oo and the largest failure temperature. margin

Mypr < 0.
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14. Plausibility and Belief for LOAS with Two WLs and Two SLs

To this point, plausibility and belief for LOAS have been considered for 2 SLs and 1 WL with
LOAS corresponding to (i) both SLs failing before the WL fails or (ii) either SL failing before the
WL fails. Past analyses have considered the following four definitions of LOAS for systems with
nSL SLs and nWL WLs (e.g., see Table 1, Ref. [83]): (i) Failure of all SLs before failure of any
WL, (ii) Failure of any SL before failure of any WL, (iii) Failure of all SLs before failure of all
WLs, and (iv) Failure of any SL before failure of all WLs. For notational simplicity, plausibility
and belief representations for LOAS will be developed for the preceding four definitions of LOAS
for a system with 2 SLs and 2 WLs.

14.1 Plausibility and Belief for Occurrence of LOAS

The two SLs (i.e., SL 1 and SL 2) and two WLs (i.e., WL 1 and WL 2) are assumed to have
the evidence theory representations and properties defined in Sect. 4.1. In turn, combining the
evidence spaces (TM;, TM g, ,mg ), (TMg,, T ,,mg, ), (TMyy, T, my,;, ) and

(TMyy o, Ty 5 ,myy ) for link  failure time produces the product evidence space
(TM,TM, my,, ) with

IM=TMgy x TMpy x TMy X TMy, (14.1)

IMyy = TMgp; x TMg ; X TMyp o X TMy 5, € TM, (14.2)
Zg1={,2,..,0nSLY}, T, =41,2,..,nSL2}, 2, = {1,2,...8WLY} , Ly, , = {1,2,...,aWL2}, (14.3)
TM = {TMyyy : G, j. kD) € I= Ty x L5 X Ly X Ly} (14.4)

and

mpyy (TMyg) =m —_p (TMgy ;)m - (TMy, )mWL T (M4 )mWLZ,, (TMy2,)

=My -

(14.5)

Indicator functions analogous those defined in Eqs. (4.28) and (4.30) for use in Egs. (4.27) and
(4.29) in the determination of plausibility and belief are now defined for 2 SLs and 2 WLs.
Specifically, Op,(TM;;,) and Oy, (TM;,) as defined below for s =1,2,3,4 are the indicator

functions used in the determination plausibility and belief for the subsets £, of 7Mthat satisfy
the definitions of the four failure patterns:

(1) Pattern 1, Failure of all SLs before failure of any WL:

L ={ e stors sbaris brn) € TM. with maxf; 2o} < min{y . foms ) (14.6)
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Lif max{z g, ;.25 ;)< min {Gyy 55 by b

0 otherwise,

Opy (TMjkl) = {

Lif maxizg, ;,fg ;b <min{lyg g, Ly}

0 otherwise.

Op (TM'jkl) = {
(ii) Pattern 2, Failure of any SL before failure of any WL:
L, = {(tsu Jspastyrrstyrn) € TM with mind{tg 1, § <min{ty,; ’tWLz}}

Lif min{z g, 0 g, ;) < min{t_WLl,kat—WLz,l}

0 otherwise,

Op2 (TM‘jk/) = {

lif min{%u,i,f_sm,j} <min{Zy;, Lot

I (TMy ) =
w2 (TMyq) {0 otherwise.
(iii) Pattern 3, Failure of all SLs before failure of all WLs:

Ly ={(tsu1>tsiastynistnn) € TM with max{tg,tg;,} <max ity ty;o}}

Lif max{Z g, Lg, ;)< max {Gypy g5 by b

0 otherwise,

5P3 (TMjkl) = {

Lif max {tg;, ;. fg5 ;} <mMax{L g o Lyt

Onr(TM..,) =
5 (M) {O otherwise.
(iv) Pattern 4, Failure of any SL before failure of all WLs:

Ly = {(tSL1’[SL2’tWL19tWL2) € TM with min{tg,,t5,} < max{tWLl’tWLZ}}

Vif min{t g, 2o 5} < max{ly i fyso, )

0 otherwise,

5134 (TM'jkl) = {

Lif min{g,;, 2o} <max{Lyy 4, Loy}

0 otherwise.

Op4 (TM'jkl) = {

In turn,
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(14.11)

(14.12)

(14.13)
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(14.16)

(14.17)



PI(L,) = plausibility that LOAS occurs for failure pattern s,s =1,2,3,4
= D mp (TMy) (14.18)

DETMy ML,
nSL1nSL2 nWL1 nWL2

=2 2 2 2 Sn(TMy)my,
i=1 j=1 k=1 I=l

and

Bel(L,)

belief that LOAS occurs for failure pattern s,s =1,2,3,4
D mp (TMy,) (14.19)

TM’]’/{/CCX
nSL1 nSL2 nWL1 nWL2

= Z Z Z Z Oy (TMjkl)mijkz-

=l j=1 k=1 =l

As examples, the calculation of Bel(L ) and PI(L,) for the links defined in Table 4.1 and
Fig. 4.1 yields the results

1.800x107 for s =1 (i.e., failure of all SLs before failure of any WL)
Bel(L.) 2.420x107 for s =2 (i.e., failure of any SL before failure of any WL)
el(L,) =
‘ 2.420x107* for s =3 (i.e., failure of all SLs before failure of all WLs)
2.198x107" for s =4 (i.e., failure of any SL before failure of all WLs) (14.20)
1.791x107 for s=1 '
_]2.428x107 for s=2
|2.427x107 for s=3
2.196x107" for s =4
and
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3.824x107" for s =1 (i.e., failure of all SLs before failure of any WL)
8.336x107" for s =2 (i.e., failure of any SL before failure of any WL)
6.416x107" for s =3 (i.e., failure of all SLs before failure of all WLs)
9.424x107" for s =4 (i.e., failure of any SL before failure of all WLs)
3.826x107" for s
8.334x10™" for s
6.415x107" for s
9.423x107" for s =

PI(L) =

(14.21)

12

I

1
2
3
4
with (i) the values for Bel(L,) and PI(L,) in the initial equalities determined as indicated above

in Egs. (14.6)-(14.19) and (ii) the values for Bel/(L ) and PI(L,) in the following approximate

equalities determined in a sampling-based verification procedure with a sample of size 107 as
indicated below in Egs. (14.22)-(14.35). The agreement of the two computational procedures
provides a strong verification result that Be/(L,) and PI/(L,) are being calculated correctly.

The results in Egs. (14.6)-(14.19) also generalize in a straight forward manner to
representations for plausibility and belief for the 4 link failure patterns for nSL SLs and nWL WLs.
In this generalized form, each min and max in Eqs. (14.7)-(14.17) will contain the analogous times
for nSL SLs rather than for 2 SLs or n/WL WLs rather than for 2 WLs.

To obtain the desired probability space for checking the calculation of Bel(L;) with the
representations defined in Egs. (14.6)--(14.19), (i) the most probability possible (i.e.,
My (TMyyp ) = myg o and myy s (Mo ) = myy o ) is assigned to £y, and £y, ,, (ii) the
most probability possible (i.e., mg ,(TM;, ;) = mg;,; and mg, (TM;, ;) = mg, ;) is assigned
to fg,, and f, ;, and (iii) a probability of zero is assigned to every subset of ZM that does not
contain one or more of the vectors [Zg;;, 255 j» £ wrixs L wiay]- This produces the probability space
that has the smallest possible probabilities for the sets £, for a probability space that is consistent
with the evidence space (7M,TM, my,,) and the properties that (i)

PUEsp1i> 500 > Lwnig> Lwrag))
= mSLLt (TMSLU )mSLZ,t (TMSLZJ )mWLl,k (TMWLU‘ )mWLz,l (T'/\/lWLzJ) (1422)

= My

for (i, j,k,l) belonging to the set Z defined in Eq. (14.4) and (ii) any set that does not contain one
or more of the vectors [Zg ;2 ;»2 14> Loy has a probability of zero. Then, with a large
random sample
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[(SL1, ,tSL2, ,tWL1 ,tWL2 1,r =1,2,...,nR, (14.23)
of size nR from the failure time vectors [Zg;,fg2 ;> L wris>Lwia,] generated consistent with the

probabilities m;;, , Bel(L;) can be approximated by

nR -
Bel(L,) = 8, ([1SL1,,1SL2, ,tWL1, ,tWL2, 1)/ nR = p(L,) (14.24)

r=1

for s =1,2,3,4 with

S — 1 f tSL1,,tSL2, in{tWL1 ,tWL2
5, (7L, 1L2, WL owL2 Ty =4\ 1OF maxiSLl i502,; <minyWLL,WL2.} 1, »s)
0 otherwise,
S — 1 for min{zSL1,,tSL2, in{tWL1 ,tWL2
5, ((8SE1, 112, VLI, .OWL2. ]) = or mlrnl{tS JSL2,} <min{tWLL, ,tWL2, } (14.26)
0 otherwise,
S — 1 f tSL1, ,1SL2, 11 tWL2
5, (ST1, 5SE2, OWLL VL2 ) = or ma.X{tS JSL2,y <max{tWL1, ,tWL2 } (14.27)
0 otherwise,
and
e 1 for min{sSL1,,tSL2, (WL, tWL2
84 (SLL, , 112, WL w2 J) = {1 (07 MiSLL 1512,y <max{tWEL VL2, 5 (14 ey
0 otherwise,

The estimates for Bel(L,) indicated in Eq. (14.24) are illustrated in Eq. (14.20) for the links
defined in Table 4.1 and Fig. 4.1.

Similarly, to obtain the desired probability space for checking the calculation of P/(L;) with
the representations defined in Eqgs. (14.6)--(14.19), (i) the most probability possible (i.e.,
My (TMWLl,k) = Mypp 1k and my;,, (T'A/IWLZ,I) =Myrog ) is assigned to t_WLl,k and t—WL2,l , (i1) the
most probability possible (i.e., mg,, (TMgy, ;) = mg,; and mg, , (TM;, ;) = mg;, ;) is assigned
to tg,; and g, ;, and (iii) a probability of zero is assigned to every subset of 7M that does not
contain one or more of the vectors [£ g;,% g5 i»tprissIwray]- This produces the probability
space that has the largest possible probabilities for the sets £, for a probability space that is
consistent with the evidence space (7ZM, TM, m;,,) and the properties that (i)
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2R SL2,j> t_WLl,k ’?WLZ,Z D

=m (TMSLl,i)mSLzJ (TMgy,, )mwm, (TMyp1 i )””WLZ_, (TMy24) (14.29)

SL1,t

= My

for (i, j,k,l) belonging to the set Z defined in Eq. (14.4) and (ii) any set that does not contain one
or more of the vectors [# g1, g5 ;»Ewrix»twras] has a probability of zero. Then, with a large

random sample
[£SL1, ,tSL2 ¢WL1, tWL2,],r =1,2,...,nR, (14.30)

of size nR from the failure time vectors [ ;.2 g5 ;s Eyri 45 Eyra, ] generated consistent with the

probabilities m,;, , PI(L;) can be approximated by

nR I
PI(L) = 8, ([£SLL, ,6SL2, (WL, ,tWL2, 1)/ nR = p(L,) (14.31)

r=1

for s =1,2,3,4 with

—_— — 1 fi ‘L1 ,tSL2 i L1, ,tWL2,
0 otherwise,
_— — 1 f in{tSL1 ,¢tSL2 in{tWL1, ,tWL2,
Gps ([£SLL, 1SL2, VL1, W2, ) = | 1O MMBLL, L2, < mind P4
0 otherwise,
—_— 1 fi ‘L1 ,tSL2 L1, ,tWL2,
0 otherwise,
and
—_— — 1 fi i ‘L1 ,tSL2 WL1, tWL2,
5})4 ([@r’tS’Lz"’[WLlr’tWLzr ]) — OI‘ mln{ir 7Lr} < max{t at } (14.35)
0 otherwise.

The estimates for PI(L ) indicated in Eq. (14.31) are illustrated in Eq. (14.21) for the links
defined in Table 4.1 and Fig. 4.
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14.2 Cumulative and Complementary Cumulative Belief and Plausibility for LOAS
Occurrence Time

Evidence spaces (TML ,TML,,myp, ), s=1,2,3,4, associated with the four failure

patterns for the time at which LOAS occurs can also be defined and used to obtain CPFs, CBFs,
CCPFs and CCBFs for LOAS occurrence time. Construction of the indicated evidence spaces is
based on the following definitions for the function 7ML for s =1,2,3,4 that maps the sample

space M for the evidence space (ZM,TM, my,,) defined in Egs. (14.1)-(14.5) into the sample
space TM L for the evidence space (TML, TMIL ,my,; ):

max{fg ,lg,} for max{tg,tg,} <min{ty, by, }

TML, (tg 15505ty st = . 14.36
1 (Espistspa st twea) {oo for min{ty, ., tyy,} < Maxit ,ts,} ( )

for failure pattern 1 (i.e., failure of all SLs before failure of any WL),

min{tg g, } for min{tg,,tg,} <min{ty,,ty;,}

TML, (tg 5tsrostwrrst = ) ) 14.37
o (Espistseostwr>twsa) {oo for Min {tyy 1, by, } < MiN{Egyy 75} ( )

for failure pattern 2 (i.e., failure of any SL before failure of any WL),

min{te ,tq,} formax{te ,te,} <max{t, ,ty,}
TMLy(tsy1 >ty st 1o fyns) = { NARL ¥ st1otsio wrisbwro (14.38)
< teri by b
RO for max{t;,ty,,} < max{tg . t5,

for failure pattern 3 (i.e., failure of all SLs before failure of all WLs), and

min{te,te,} formin{te,te 5} < max{ty; ,ty-}
TML, (51,5125t biygn) = { NARL NARL ! Wtwr> b (14.39)
m <min{tg ,tg,}
% for max {t;, 1y, } in{tg 1,055

for failure pattern 4 (i.e., failure of any SL before failure of all WLs).

In turn, the evidence space (TML , TMIL ,my,; ) is defined by
TML, ={t:t =TML_(t) for t=(tg,t5,.tyr1-tyrn) € TM}, (14.40)
TMEL, g =188 =TML(Y) for t= (g, b5, tyr1stwrn) € TMyyt, (14.41)
TML, ={TML, ;y; : (i, j.k,]) € I=T gy x Lgyp X Lyyy X Ly 5 see Eq. (13.3)} - (14.42)

and

My s (TMEL i) = mpy (TMyy) = my, - (see Eq. (13.5)).
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Further, the minimum £, and maximum 7, for TML_ , are defined by

mMax{z g, L, ;} for max{t g, Lo, b <min{ly, by,

for min{zy; 4, by} Smax{t g, ;. tg, ;s

L =

= max ity ;b5 ;+ for max{Zg, ;. g5 ;3 <min{ty ;. tys,}
Lijkl = : rae
’ for min{zy,;, ., o} < max{te,,; 1y, ;)

for failure pattern 1 (i.e., failure of all SLs before failure of any WL),

, min{z g, ;, g, i} for min{t g, tgs ;3 <min{ty, b0}
Lokl = G e = .
! for min{z,;, . ty;,,} Smin{tg, . Ly, ;1
- {min{t_su,iat_ﬂz,j} for min{zg;, ;. fg, ;} <min{ty; ., ty;,,}
2,ijkl =

o0 for min{ty;, ;. ty;,,} Smin{tg, ;. 45, ;)
for failure pattern 2 (i.e., failure of any SL before failure of any WL),

max{fg,;, s} for max{tg,;, 2o, } <max{ly by}

fao =
Z.3,ijkl - =5
for max{y;, s, byo,} Smax{t g, tg,
- max{fg,;, g, ;} for max{ig,;, iy, ;} <max{ty; . Ly}
3.kl

for max{z,,;, ,ty;,,} < max {t_su,zat_SLz,j}
for failure pattern 3 (i.e., failure of all SLs before failure of all WLs), and

min{t g, g, ;3 for min{t g, ;. 2g, b <max{ly, by,

B o o
4.5kl — — .
for max{ty;, ., ty;,,t Smin{t g, ten i}

T {min{t_su,iazsm,j} for min{rg ;. 755 ;} < max{ty, 4, Ly}
4,ijkl =

for max{ty;, ;, Ly;,,} < min {t_SLl,i’ZS‘LZ,j}

for failure pattern 4 (i.e., failure of any SL before failure of all WLs).

(14.43)

(14.44)

(14.45)

(14.46)

(14.47)

(14.48)

(14.49)

(14.50)

Once the focal element bounds (£, ;4,7 4,) are available, CPFs, CBFs, CCPFs and CCBFs

for LOAS occurrence time can be obtained as (i) described in Egs. (2.48) - (2.50) and (ii) illustrated
in Fig. 14.1. The indicated figures also contain CDFs and CCDFs for LOAS occurrence time
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obtained by assigning uniform distributions to the focal elements for link failure temperature as
described in conjunction with Eqgs. (7.9)-(7.13).

Example results for failure pattern 1 (i.e., failure of all SLs before failure of any WL) are
presented in Fig. 14.1.

.............................

ol : :
10” [LOAS ~ Both SLs before either WL

SL1, SL2, WL1, WL2

09l Prit £1)

1071
08}

0.7t
102}

5 061 Bel(t < t)
Bel(t<?) LOAS ~ Both SLs before either WL
- , 0.5 SL1. SL2, WL, WL2 .
0 50 100 150 200 . 0 50 100 150 200
t : LOAS Occurrence Time {(min) t : LOAS Occurrence Time (min)

Cumulative Plausibility
Probability, or Belief
\\
\
T
A
Complementary Cumulative

Plausibility, Probability, or Belief

1073

Fig. 14.1 Graphical summary of evidence space (ZML,,TML,,m,,,) for time ¢ at which LOAS

occurs for (i) a system composed of SL 1, SL 2, WL 1 and WL 2 defined in Sect. 4.1 and (ii)
LOAS corresponding to failure of both SLs before failure of either WL: (a) Cumulative plausibility
PI(t <t), probability Pr(f <t) and belief Bel(f <t), and (b) Complementary cumulative

plausibility PI(¢t <), probability Pr(t <f) and belief Bel(t <f).

The sampling-based procedure used to obtain the CDF and CCDF in Fig. 14.1 also yields
values of

t,;, =62.295 min and 7,, =172.279 min (14.51)
for the first time ¢,, and last time %, that LOAS occurs. In turn, combination of 7, with the

cumulative plausibility and belief results at + = 200 min in Fig. 14.1a provides the analysis
outcomes

0.382 = PI(f <200) = PI(f <7, ) = PI(i <172.279) (14.52)
0.002 = Bel(f <200) = Bel(f <%, ) = Bel(f <172.279), (14.53)

and combination of 7,, with the complementary cumulative plausibility and belief results at # =

200 min in Fig. 14.1b provides the analysis outcomes
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0.998 = PI(200 < 7) = PI(5,, <7)=PI(172.279 <7) = PI(t =t,)) (14.54)
0.618 = Bel(200 < 7) = Bel(f,, <7) = Bel(172.279 <7) = Bel(t =1,). (14.55)

Example results for failure patterns 2, 3 and 4 are presented in Fig. 14.2, Fig. 14.3 and Fig.
14.4. If desired, summaries of the form shown in Egs. (14.51) -(14.55) for Fig. 14.1 can be defined

for Fig. 14.2, Fig. 14.3 and Fig. 14.4.

100} s sisassinss i o 1 T e
,,,,, ; PI(f < t) i 2 Pi(t < t)

) 2 @
2 I e e, B~ el P ]
=3 Pt DR -l E N I e — c
2 : ; - k(2
g o 10_1_ - 7 g :2, Pr{t < 1)
8 5 : J O F 06|
o / o ®
0 £ ; __ 88
= o) I Bel(t <t) o O 04ft
S ® H = o
2 8 102} e 3 =

— E ! r= —_ -
a8 & . LOAS ~ Either SL €202} Bel(t < 1)

P before either WL 8 2 ! )
H SL1, SL2, WL1, WL2 o LOAS ~ Either SL before either WL
3 H 0 tSL1, SL2, WL1, WL2
107 — — ' ' ' '
0 50 100 150 200 0 50 100 150 200

t : LOAS Occurrence Time (min) t : LOAS Occurrence Time (min)

Fig. 14.2 Graphical summary of evidence space (ZML,, TML,,m;,,, ,) for time ¢ at which LOAS

occurs for (i) a system composed of SL 1, SL 2, WL 1 and WL 2 defined in Sect. 4.1 and (ii)
LOAS corresponding to failure of either SL before failure of either WL: (a) Cumulative
plausibility PI(f <t), probability Pr(f <t) and belief Bel(f <t), and (b) Complementary

cumulative plausibility PI(z <), probability Pr(¢t <) and belief Bel(t <t).
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Fig. 14.3 Graphical summary of evidence space (ZML,, TML,,m;,, ;) for time ¢ at which LOAS

occurs for (i) a system composed of SL 1, SL 2, WL 1 and WL 2 defined in Sect. 4.1 and (ii)
LOAS corresponding to failure of both SLs before failure of both WLs: (a) Cumulative plausibility
PI(f <t), probability Pr(f <t) and belief Bel(f <t), and (b) Complementary cumulative

plausibility PI(t <), probability Pr(t <t) and belief Bel(t <f).
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Fig. 14.4 Graphical summary of evidence space (ZML,,TML,,my,, ,) for time z at which LOAS

occurs for (i) a system composed of SL 1, SL 2, WL 1 and WL 2 defined in Sect. 4.1 and (i1)
LOAS corresponding to failure of either SL before failure of both WLs: (a) Cumulative plausibility
PI(f <t), probability Pr(f <t) and belief Bel(f <t), and (b) Complementary cumulative

plausibility PI(t <), probability Pr(t <) and belief Bel(t<1).
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If desired, the evidence spaces developed in Sect. 8 for the time at which a system of two links
fails can be used define evidence spaces for failure time margins for the four failure patterns for a
2 SL, 2 WL system. Similarly, the evidence spaces developed in Sect. 9 for the temperature at
which a system of two links fails can be used define evidence spaces for failure temperature
margins for the four failure patterns for a 2 SL, 2 WL system.

The results in this section generalize to systems with nSL SLs and nWL WLs in a reasonably
straight forward manner.
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15. Incorporation of Evidence Spaces for Link Temperature Curves

Up to this point, there has been no consideration of the uncertainty in the link temperature
curves that underlie the determination of LOAS. However, this is likely to be a major source of
uncertainty in the determination of LOAS in most analyses. Fortunately, if evidence spaces for the
link temperature curves for individual links can be obtained, then these evidence spaces can be
combined with the failure temperature evidence spaces for the individual links and used to
determine the evidence space for the time at which LOAS occurs.

This combination process described below for a link system with
nL =nSL+nWL (15.1)
links, where nSL is the number of SLs and nWL is the number of WLs.
The following evidence spaces are involved in the incorporation of an evidence space for the

link i, =1, 2, ..., nL, temperature curve into the determination of plausibility and belief for the
occurrence of LOAS:

(i) An evidence space (7;,T.,m;) for possible failure temperatures for link i with
T ={T1, 7257, yry b and my (7)) = myy; for je Iy ={1,2,..,nT(0)}.

(ii) An evidence space (C,,C,,m;) for possible link temperature curves for link i with
= $C75 0 e ,nC(,)}and me; (Cy ) =mygy, for ke Z,, ={1,2,..nC(i)}.

(iii) A resultant product evidence space (F,P.,mp,;)obtained by combining the evidence

spaces (7;,T.,m;) and (C,C,,m.)with

1

:{731 Py =1; xCy for (j,k) € Ip; xI; and

1 il

(15.3)
=(j=DnC@@) +k € {1,2,...,nT()xnC@)} = T},

and

mp;(Py) = my; (7:-,- yme; (Cy) = My Mo —Mpjp

(15.4)
for (j,k)eZ,xZy and ! =(j—-1D)nC()+k.

(iv) A resultant evidence space (7M;,TM,,my,)for possible failure time for link i

constructed from the evidence space (F,IP,,mp;) with

f;(T,C) = link failure time for (7',C) € P, (15.5)
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TM, ={t:t= f(T,C) for (T,C) € P} (15.6)

TM, ={t:t = f(T,C) for (T,C) e B} for [ eI, (15.7)
TM, = {TM, for [ € I} (15.8)
My (TMy) = mp, (Py) for 1 eI, (15.9)
and
(LyTy) = (min(TM, ), max(TM,)). (15.10)

(v) A resultant evidence space (7ZM, TM, my,, ) for possible link failure times constructed from
the failure time evidence spaces (7M;,TM,,my,,) for the nL links that constitute the system

under consideration with

IM=TM, xTM, x---xTM,, , (15.11)
M, = IM gy % TMz,z(z) X"'XT/\/lnL,l(nL) (15.12)
for 1=[1(1),l(2),...[(nL)] € Lpyy =Tpy xLpy x+-Tp '
T™M ={TM, for |=[I(1),/(2),....,[(nL)) e I, } (15.13)
and
nlL
My, (TM) :HmTMl.(T/\/L.J(i)) for 1=[/(1),/(2),...,I(nL)]) € Z,,. (15.14)

i=1

The evidence space (7ZM,TM, my,, ) and the associated time intervals (¢ ;,%,) can be used in the

determination of plausibility and belief for the occurrence of LOAS in the same manner as the
evidence spaces for link failure time are used in Sects. 4, 6 and 13 in the determination of
plausibility and belief for the occurrence of LOAS.

Caveat: Development of evidence spaces for link temperature curves may be easy or very
difficult depending on the specifics of a particular analysis.

For the links defined in Sect. 4.1, example evidence spaces for link temperature curves can be
obtained by defining evidences spaces for the quantities 7., and r defined in Table 4.1 and then

constructing the evidence spaces for the resultant temperature curves.

181



16. lllustration of Plausibility and Belief for LOAS for WL/SL Systems with
SL Subsystems

16.1 WL/SL System with 2 SL Subsystems

The example WL/SL system illustrated in this section has two SL subsystems, with (i) one SL
subsystem comprised of SL 1 and SL 2 with subsystem failure corresponding to failure of SL 1 or
SL 2, (ii) the other SL subsystem comprised of SL 3 and SL 4 with subsystem failure corresponding
to failure of SL 3 or SL 4, (iii) SL system failure corresponding to failure of both SL subsystem:s,
and (iv) LOAS corresponding to SL system failure before failure of WL1. Each link is assumed
to be characterized by (i) a continuous time-dependent temperature curve and (ii) an evidence
space characterizing the uncertainty in link failure temperature. Each SL subsystem could
correspond to different failure locations on the same SL.

The following notation is needed in the development of plausibility and belief for LOAS. The
same properties are defined for each of the 5 links (i.e., for SL 1, SL 2, SL 3, SL 4, WL 1). To
eliminate unnecessary repetition, these properties will be defined for an arbitrary link L with the
understanding that the properties for the 5 links are defined by replacing L in the following
definitions by SL1, SL2, SL3, SL4 and WLI.

The following entities are assumed to be known for the notional link L: (i) an evidence space
(7,,T,,m,) forlink failure temperature with nL focal elements 7, |,7; ,,...,7; ,; , (ii) a function

T, (t) that defines link temperature as a function of time, and (iii) a corresponding evidence space
(TM,,TM, ,m, ,) for link failure time constructed from (7,,T;,m;) and T, (¢) as discussed in
Sect. 3 with

TM,, =T, (T,) ={t:t=T;" (1) = min{t : T =T, (1)} for T T, } (16.1)
my (IMy ;) =my (T, ;) =my, (16.2)
(£p:5,) = (min(TM, ), max(TM, ,)) (16.3)

for 7,, €T, TM;; e TM; and i€ Z; ={1,2,...,nL} .

The link failure time evidence spaces for the 5 links can be combined to produce a product
evidence space (ZM, TM,my,,) for link failure time as indicated below:

TM=TMg x TMgpy x TMg 3 x TMg g x TMy (16.4)
TMyyy, = TMgpy; x TMgp - X TMy 5 4 x TMgy 4 ) X TMyy, . for (i, jk,Lr) e Z, (16.5)

TM = {TMyy, : G, j.k,L,r) € T}, (16.6)

182



and

My (T'/\/‘ijklr ) =mgy, (TMSLl,i Mg s, (TMSLZ, j i3, (TMSL3,k )
X Mg 4, (TMSL4,1 )mWLl,t (T/\/lWLl,r) for (i,j,k,l,r)el

(16.7)
= Mgy (TSLU )M (TSLz,j g s (Isu,k Mg, 4 (TSL4,1 Yy (TWLl,r )

= Mgy i Mg, ;Msps cMspa My,
with T =T xZg,xLgs3xLgs* Ly -

Given the link system failure definitions for the WL/SL system under consideration, LOAS
occurs for elements of the set

L= {(tSLl,itSL2,jtSL3,ktSL4,ltWLl,r) € IM with min{tg it <ty (16.8)

and min{fg 3 1 tor a7} <typi, } .

The following additional time definitions are now needed to define plausibility and belief for the

set £;:

1 g1,;= earliest SL subsytem 1 failure time for TMg,,; x TMg, ;

| (16.9)
=min{t g, % g5 i}
t gy = earliest SL subsytem 2 failure time for TMg; 5, x TMg;,, (16.10)
=min{t g3, 0 ga)s
7 51,5= last SL subsytem 1 failure time for TM;,; x TMy;, ; (16.11)
= max {t_SLLi at_SLZ,j}’ |
t gy 4= last SL subsytem 2 failure time for TMg; 5, x TM;,, (16.12)

= max {t_SL3,k at_SL4,1}-

With use of the preceding time definitions, the definition of plausibility and belief for the
occurrence of LOAS for the system under consideration is based on the following two indicator
functions:
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Lif TMy, NG # D
0if TM,,, "L =D

Y

Spy (TMjkls) = {

' B (16.13)
~ Lif max{zs, ;. fs 0} < lypa,
0if Zyy, Smax{tg ;,te )
and
Lif TMyy, < £
531 (TMjklr) = . 1
0if TMy, ¢ 4
(16.14)

~ Lif max{Zg .t} < Lyp1,
0if 2y, <max{ts ;,fsp}-
In turn, plausibility and belief for LOAS are defined by

nSL1nSL2 nSL3 nSL4 nWL1

PIL)= D mp(TMy) =20 20 20 D D (M myy, (16.15)

BETMyy, N, i=l j=l k=l I=l r=l
and
nSL1nSL2 nSL3 nSL4 nWL1
Bel(L;) = Z Mo (TMy,) = Z S (T Wi (16.16)
TMyy <Ly i=l j=1 k=1 =] r=1

The preceding representations for P/(L,) and Bel(L,) can be (i) evaluated with nested DO loops

with an embedded IF statement and (i1) extended to systems with more than 2 SL subsystems and
more than 2 SLs in each SL subsystem.

16.2 WL/SL System with 2 SL Systems, Each SL System with 2 SL subsystems
and a WL

As a generalization of the example in Sect. 16.1, a more complex WL/SL system is considered
with (i) 2 SL systems, (ii) each SL system having 2 SL subsystems with each SL subsystem
consisting of 2 SLs, (iii) failure of a SL subsystem corresponding to failure of either of its
associated SLs, (iv) failure of a SL system corresponding to failure of either of its subsystems and
(v) each SL system having its own WL. Two possibilities for the definition of LOAS are
considered: (i) failure of either SL system before failure of its associated WL and (ii) failure of
both SL systems before failure of their associated WLs.

With respect to notation, SL system 1 (i.e., S1) involves the following 4 SLs and 1 WL:

SL1,SL2,SL3,SL4, WL 1, (16.17)
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with (i) SL 1 and SL 2 comprising subsystem 1 (i.e., S11) of S1 and (i1) SL 3 and SL 4 comprising
subsystem 2 (i.e., S12) of S1. Similarly, SL system 2 (i.e., S2) involves the following 4 SLs and 1
WL:

SL 5,SL 6, SL 7, SL 8, WL 2, (16.18)

with (i) SL 5 and SL 6 comprising subsystem 1 (i.e., S21) of S2 and (i1) SL 7 and SL 8 comprising
subsystem 2 (i.e., S22) of S2. The individual links are assumed to have (i) properties as defined
earlier for link L and (i1) associated evidence spaces for link failure time as defined in in Egs. (4.1)-
(4.12), with the individual link names (i.e., SL1, SL2, ..., WL2) replacing L in the definitions of
link properties.

As shown in Egs. (16.4)-(16.7) for 5 links, the link failure time evidence spaces for the 10 links
SL 1, SL 2,..., WL2 can be combined to produce a product evidence space (ZM,TM,my,,) for

link failure time as indicated below:
TM = TMgy x TMg, X x TMy, 5, (16.19)
TM; = TMgy, ; xTMgp, ; x--x TMy,;, o fori=(, j,k,l,m,n, p,q,r,s) €L, (16.20)
T™ ={TM; : i =(,j,k,l,m,n,p,q,r,s) €L}, (16.21)

and

mpy (TM;) = Mgy (TMSLl,i)mSLZ,t (TMSLZ,j Js Myyy 5 4 (TMWLZ,S)
= mgp (L1, )My (TSLz,j ) My (TWL2,s ) (16.22)

= Mgy Mgy ;- My o for 1=(, j,k,l,m,n,p,q,r,s) el
with T =2y, xLg, x-=xTy;.

Given the link system failure definitions for the WL/SL system under consideration, LOAS
occurs for elements of the sets

L, = {(ISLI’tSthSL3’tSL4JtSL5’tSL6tSL7 slsig>tyrstyra) € TM with

. . (16.23)
Min {fg;, o otsr3stspa} <ty OF MiN{lgs,ts6ts75Lsrsy <ty |
with LOAS corresponding to failure of either SL system before failure of its associated WL and

Ly ={(tsp1stsiatsastorastsestssetserstsiss e tyra) € TM with

) ] (16.24)
min{Zg g 0,ts3,tsp4 b <ty and mm{tSLS:tSLéatsmatSL8}<fWL2}
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with LOAS corresponding to failure of both SL systems before failure of their associated WLs.

For SL system S1, the times

Lo Lsizpst sl sizu (16.25)

are defined the same as the times

L Lsopt sl som (16.26)
in Egs. (16.9)-(16.12) for SL 1, SL 2, SL 3 and SL 4. For SL system S2, the times
Lsa1mmo L 522, pgr b 5210 L $22.pg (16.27)
are also defined the same as the times in Egs. (16.9)-(16.12) but for SL 5, SL 6, SL 7 and SL 8.

The following indicator functions are used in the definition of plausibility and belief for £ and

L

1if TM AL, # @

éﬂﬂw”kzkﬁﬁﬁzwrugzg

) ) — ) _ (16.28)
3 Lif mm{LSM,ijaL?lz,kl} <lyp, O mm{iszl,mnaiszz,pq} <lyras
0if t_WLl,r 5 min{isn,ijalmz,kl} and t_WLZ,s < min{LSN,mn’LSZZ,pq}’
. lif TM N L, #
o _ . _ (16.29)
B Lif min{Zgy, ;5 L5100} < fypy, and min{Zgyy s Lsan po b <y
0if t_WLl,r < min{zg, 1,y’a1512,k/} or t_WLZ,s = min{lszl,mnalszz,pq}:
. 1if TM, c L,
Oy (TM, |I€I):{Oif ™ 7 L,
(16.30)

{1 if min{Zgy o foinpt < Ly, OF MIN{Egy) s Lsa pgt < Lppas

0if 1y, Smin{tgy, ;. b5, and £y, Smin{gy ., Lo s
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. Lif TM c £,
053 (TM, ||eI)={O it TM @ L,
) .- — . _ (16.31)
B Lif min{zgy, ;. tg10 40} < Lypr, and min{? gy o2 pg b < Lo
0if 7 < min {7, I,ij’t_Slz,kl} Of  yyy S min{t_SZl,mn ’t_SZZ,pq}'
In turn,
PI(Ly) = z My (TM) = Zé‘Ps (TM)m; (16.32)
BTMNL, icT
and
Bel(L) = z mpy (TM) = Zng (TM)m;. (16.33)
TMcL, icT
for s =2, 3.

If desired, similar results can be obtained for more than 2 SL systems, more than 2 SL
subsystems in a SL system, and more than 2 SLs in a SL subsystem. However, increasing system
complexity also increases the complexity of the associated notation.
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17. Sampling-Based Calculation of Belief and Plausibility

As shown in prior sections, determination of belief and plausibility for results associated with
WL/SL systems is reasonably straight forward when the only uncertainties are the failure
temperatures for the individual links. However, the calculation of belief and plausibility becomes
much more difficult when a potentially complex function maps a large number of epistemically
uncertain quantities into an analysis result of interest. As briefly described, the preceding situation
often requires the use of sampling-based procedures to estimate belief and plausibility for the
analysis results of interest.

The following discussion considers an analysis involving

(i) input quantities x;,X,,...,X,y With corresponding evidence spaces (X;,X,, m,) for

i =1,2,...,nX characterizing the epistemic uncertainty associated with each x;,

(i1) the product evidence space (X,X,m, ) constructed from the evidence spaces (X;,X;,m,)
,i=1,2,....,nX , with focal elements &,k =1,2,...,nE, and each element of X corresponding to a

vector X =[x;,X,,...,X,y ] , and
(111) a function f(x) that maps each X € X' into an analysis result y, and
(iv)theset Y ={y:y=f(X) forx e X'}.

In concept, an evidence space (),Y,m, ) exists for the possible values for y, but this evidence
space is difficult to determine when f(X) corresponds to a complex, computationally demanding
calculational procedure.

Two computationally similar results are possible for ) : (i) belief and plausibility for a specific
subset S of Y and (ii) the CBF, CCBF, CPF and CCPF for ). The estimation of both
possibilities starts with a large random or Latin hypercube sample [84; 85]

X, =[X,,%, X,y 1,7 =12,...,nR, (17.1)
of size nR from X generated in a manner so that the focal elements for each x; are well-covered

(i.e., sampled). Probably the best way to define the sampling distribution is to (i) define a uniform
density function d;(x;) on each of the j =1,2,...,nF; focal elements X); for the evidence space

(X.,X,,m.), (ii) define the density function for sampling from X’ by

F,
d (x;) =D m(X;)d; (x;) (17.2)
=
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and (ii1) then generate the sample in Eq. (17.1) by sampling each x; from the distribution defined
by the density function defined in Eq. (17.2).

Next, the function f(x) is evaluated for each element of the sample in Eq. (17.1) to create a
mapping

Y. =f(X,.),r=12,...,nR, (17.3)

from X to ) that will be used in determining belief and plausibility. However, a very real
possibility is that evaluation of f(x) may be too computationally demanding to permit the
evaluation of all elements of a sample that is large enough to adequately cover all the focal
elements for the x;'s. In this situation, it is necessary to use nonparametric regression or some

other appropriate procedure (e.g., [86]) to construct a surrogate model that approximates f(x)
and then use this surrogate model in the generation of the mapping in Eq. (17.3).

Use of the mapping in Eq. (17.3) to estimate belief and plausibility for a specific subset S of
Y is now described. To facilitate this description, Bel, () and PI,(U) are used to represent

belief and plausibility for the evidence space (), Y,m, ) and subsets ¢/ of ). Similarly, Bel, (i)
and Pl, (U) are used to represent belief and plausibility for the evidence space (X,X,m, ) and
subsets U of X . The following additional notation is also needed:

S={y:y=f(x,)eS}, $={y:y=[f(x,)eS) (17.4)
and
X="S = :y=f(x)eS}, X =f"(SE)={x,:y=f(x,)eS}.  (17.5)

The approximation of Pl (S) with use of the sample in Eq. (17.3) is given by

Ply(8)= Ply(8) =Pl (f(8)) = PLy(D) = > my(&) (17.6)

D2XNE,
with the indicated sum over the nE focal elements for the evidence space (X,X,m, ).

The approximation of P, (S) in Eq. (17.6) is straight forward as a result of plausibility being
defined on the basis of set intersection (i.e., & # XN &, ). The approximation of Bel, (S) is not
as straight forward because belief is defined on the basis of subsets (i.e., £ < X ). Specifically,

the relationship & < X cannot hold with &, containing an infinite number of values and X
containing a finite number of values. Fortunately, the relationship

Bel, (S)=1-Pl,(S5°) (17.7)
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previously stated in Eq. (2.24) provides a solution to this problem by providing a way to convert
the approximation of Bel,(S) to a problem in the approximation of P/, (S“). Specifically,
Bel, (S) can be approximated by

Bel, (S)=1-Pl,(S°)
=]—PL(5%)
=1-PI, ( ! (S‘")) (17.8)
=1- Pl (X°) with X° = /(&)
=]= z my (&)
DX NE,

with the indicated sum over the nE focal elements for the evidence space (X,X,m ).

Formal representations for the CBF, CPF, CCBF and CCPF for the evidence space (), Y,m, )
are defined by the sets of points

CBF ={[y,Bel(},)]: y €Y}, CPF ={[y,PI(Y,)]:y eV} (17.9)

and
CCBF ={[y,Bel(Y,)]: y €V}, CCPF ={[y,PI)))]:y €V} (17.10)

with
Y, ={y:yeYwithy<y}=Y and ), ={y:yeYwithy<y} =Y.  (17.11)

Construction of approximations to CBF, CPF, CCBF and CCPF requires (i) defining an
increasing sequence

N<Yy <<V (17.12)

of points from ) and (ii) approximating Bel()_)y‘_), Pl(J_)yl_),Bel(yyl_) and Pl()7yi) for

i=1,2,...,n asindicated in Egs. (17.6) and (17.8). In turn, the following approximations to CBF
, CPF, CCBF and CCPF result:

CBF ={[y;,Bel(Y,)]:i=1,2,..,n}, CPF ={[y,,PAY)]:i=12,.n}  (17.13)

and
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CCBF ={[y;,Bel(Y, )):i=1,2,..,n}, CCPF ={[y,,PIY,)]:i=12,.,n}. (17.14)

Examples of sampling-based approximations to belief and plausibility are presented in Refs.
[1; 87-89]. Sampling-based analyses of the type summarized in this section can become
computationally impractical when the product evidence space (X,X,m, ) has a very large number

of focal elements. For example, if (X,X,m, ) is constructed from 10 evidence spaces and each of

these evidence spaces has 10 focal elements, then (X,X,m, ) has nE = 10" focal elements. This

number of focal elements makes the evaluation of the summations in Egs. (17.6) and (17.8)
impractical. Refs. [88] and [89] discuss computational strategies to deal with this problem.
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