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Abstract

The following topics are considered in this presentation: (i) Overview of evidence theory, (ii)
Representation of loss of assured safety (LOAS) with evidence theory for a 1 SL, 1 WL system,
(iii) Description of 2 SLs and 1 WL used for illustration, (iv) Plausibility and belief for LOAS and
associated sampling-based verification calculations for a 2 SL, 1 WL system, (iv) Plausibility and
belief for margins associated with LOAS for a 2 SL, 1 WL system, (v) Plausibility and belief for
LOAS for a 2 SL, 2 WL system, (vi) Incorporation of evidence spaces for link temperature curves
into LOAS calculations, (vii) Plausibility and belief for LOAS for WL/SL systems with SL
subsystems, and (viii) Sampling-based procedures for the estimation of plausibility and belief.
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1. Introduction

As summarized in Ref. [1], the need for an appropriate representation of uncertainty as part of
an analysis that supports an important decision is almost universally recognized [2-11].
Traditionally, probability theory has provided the language and mathematical structure for the
representation of uncertainty [12-19]. More recently, other languages and mathematical structures
for the representation of uncertainty have been introduced, including evidence theory [20-29],
possibility theory [30-36], and interval analysis [37-42]. A number of comparative discussions of
different approaches to the representation of uncertainty are available [1; 43-49].

The uncertainty to be characterized in the analysis of a complex system is often divided into
aleatory uncertainty and epistemic uncertainty, with aleatory uncertainty arising from an inherent
randomness in the future performance of the system and epistemic uncertainty arising from a lack
of knowledge about the appropriate value to use for an input to the analysis that has a fixed but
poorly known value [11; 18; 19; 50-58]. Traditionally, probability has been used to characterize
both aleatory uncertainty and epistemic uncertainty in analyses for complex systems (e.g., as in
the NUREG-1150 nuclear reactor probabilistic risk assessments [59-61] and the performance
assessments for the Waste Isolation Pilot Plant [62] and Yucca Mountain [63] radioactive waste
disposal facilities).

However, there is a growing recognition that the use of probability to represent epistemic
uncertainty can lead to a characterization of epistemic uncertainty that implies a greater level of
knowledge about the uncertainty being represented than is really the case. This concern arises
because a probability distribution characterizing epistemic uncertainty defined on an interval [a,
b] implies that a probability is also known for every subinterval [u, v] of [a, b] no matter how small
the interval [u, v] is. As an example, if available information only indicates that the correct value
for the quantity under consideration is equally likely to be in the intervals [a, c] and [c, b] for a
known value c, then assigning a probability to every subinterval [u, v] of [a, b] is an extreme over
representation of what is actually known.

Different from the assignment of a probability distribution to the indicated interval [a, b],
evidence theory provides a mathematical structure that retains the information that [a, c] and [c,
b] are equally likely to contain the appropriate value for the quantity under consideration without
the introduction of any additional resolution with respect to where this value is potentially located
within [a, b]. For this reason, evidence theory is becoming a popular alternative to probability
theory for the representation of epistemic uncertainty when limited information is available for the
characterization of where the correct value for an epistemically uncertain quantity is potentially
located.

The purpose of the following presentation is to introduce and illustrate the use of evidence
theory in representing the epistemic uncertainty present in the results of analyses of the failure of
weak link (WL)/strong link (SL) systems.

Weak link (WL)/strong link (SL) systems are important parts of the overall operational design
of high-consequence systems [64-69]. In such designs, the SL system is very robust and is intended
to permit operation of the entire system under, and only under, intended conditions (e.g., by
transmitting a command to activate the system). In contrast, the WL system is intended to fail in a
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predictable and irreversible manner under accident conditions (e.g., in the event of a fire) and
render the entire system inoperable before an accidental operation of the SL system. Given an
accident, failure of the WL system to deactivate the entire system before the SL system fails (i.e.,
degrades into a condition that could allow an accidental operation of the entire system) is referred
to as loss of assured safety (LOAS). The descriptor LOAS is used because failure of the WL system
places the entire system in an inoperable condition while failure of the SL system, although
undesirable, does not necessarily result in an unintended operation of the entire system. Thus,
safety is assured by failure of the WL system.

The following topics are considered in this presentation: (i) Overview of evidence theory (Sect.
2), (ii) Representation of loss of assured safety with evidence theory for a 1 SL, 1 WL system
(Sect. 3), (iii) Description of 2 SLs and 2 WLs used for illustration (Sect. 4), (iv) Plausibility and
belief for LOAS and associated sampling-based verification of LOAS calculations for a 2 SL, 1
WL system (Sects. 5 and 6 ), (iv) Plausibility and belief for margins associated with LOAS for a
2 SL, 1 WL system (Sects. 7-13), (v) Plausibility and belief for LOAS for a 2 SL, 2 WL system
(Sect. 14), (vi) Incorporation of evidence spaces for link temperature curves into LOAS
calculations, (Sect. 15), (vii) Plausibility and belief for LOAS for WL/SL systems with SL
subsystems (Sect. 16), and (viii) Sampling-based procedures for the estimation of plausibility and
belief (Sect. 17).
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2. Evidence Theory

This section provides an introduction to evidence theory. The following areas related to
evidence theory are addressed: (i) definition of an evidence space (Sect. 2.1), (ii) definition of
belief and plausibility associated with an evidence space (Sect. 2.2), (iii) cumulative and
complementary cumulative summaries for belief and plausibility (Sect. 2.3), (iv) functions defined
on evidence spaces (Sect. 2.4), and (v) product evidence spaces (Sect. 2.5). With respect to
terminology, evidence theory is sometimes referred to as Dempster-Shafer theory in recognition
of the work of A.P. Dempster and G. Shafer in the early development of what is now generally
referred to as evidence theory [20-23].

2.1 Evidence Space Definition

Evidence theory and probability theory are actually closely related. As will be described, an
evidence theory representation for uncertainty corresponds to the use of an incompletely defined
probabilistic representation for uncertainty. For this reason, a natural starting point in a discussion
of evidence theory is an explanation of the relationship between (i) evidence theory representations
for uncertainty and (ii) the better-known probability theory representations for uncertainty. As now
described, a probability theory representation for uncertainty is formally based on a probability
space (Xp,XE,mpx), and an evidence theory representation for uncertainty is formally based on

an evidence space (XE,XE,mEx). As will become apparent, the components of a probability

space (Xp , Xp mpx ) and the components of an evidence space (XE , XE mEx) have many things

in common.

As indicated by the notation (Xp, Xp, mpx ), the formal definition of a probability space

involves three components:

— A set Xp that contains everything that could potentially occur in the particular "universe"

under consideration,

— A set Xp of subsets of Xp with the properties that (i) if E e xi) , then Ec e Xp , where EC

denotes the complement of E , and (ii) if {Ei} is a countable collection of elements of Xp , then

uiEj E Xp and ni El E Xp

— A function mpx defined for elements of Xp with the properties that (i) mpx (Xp) = 1.0 , (ii)

if E E Xp , then 0 mpx(E) 1.0 , and (iii) if {Ei} is a countable collection of disjoint elements of

Xp , then mpx(uiE,)=Ii mpx(Ei).

With respect to terminology, (i) the set Xp is called the sample space or universal set, (ii) the

elements of Xp are called elementary events, (iii) the elements of Xp are called events, and (iv)

the function mpx is called a probability measure and defines the probability mpx(E) for each

element E of X. . In computational implementation, mpx(E) is usually replaced by a density

function d with the property that
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m p (E) = fs d (e)de . (2.1)

An important take away point here is that probability is defined for sets (i.e., for subsets of the
associated sample space Xp contained in Xp ). It is convenient to think of Xp as containing all

possible subsets of Xp ; however, for certain theoretical reasons, the subsets of Xp contained in

Xp must be restricted as indicated above.

As indicated by the notation (XE,XE,MEX) , the formal definition of an evidence space also

involves three components:

— A set X E that contains everything that could potentially occur in the particular "universe"

under consideration,
— A countable set XE of subsets of X E ,

— A function mEx defined for elements of XE with the properties that (i) mEX (C) > 0 for

C E XE 9 (0 mEX (C) = 0 for E c XE and E 0 XE , and (iii) EEEXE mEX (S) = 1.0 .

With respect to terminology, (i) the set XE is called the sample space or universal set, (ii) the

elements of XE are called elementary events, (iii) the elements of XE are called focal elements

rather than events as is the case for probability spaces, and (iv) the function mEx is called a belief

measure rather than a probability measure and defines the basic probability assignment (BPA)
m px (E) for each element S of XE .

As examination of the preceding definitions for a probability space (Xp, Xp, mpx ) and an

evidence space (XE ,XE , /VEX) shows, these two spaces have much in common. However, they

differ significantly in the resolution at which uncertainty is represented. Specifically, a probability
space represents uncertainty by the probabilities defined for the events contained in the set X..

For continuous distributions (e.g., uniform, triangular, normal, ...), Xp will contain an

uncountably infinite number of events (e.g., subintervals of an interval [a ,M for a uniform or

triangular distribution defined on [a ,13]). In contrast, XE will contain (i) at most a countable

number of focal elements and (ii) only a finite number of focal elements in a typical analysis.

The role of the BPA m EA, (E) for a focal element E of an evidence space (XE , XE,ME,c) is to

define the amount of probability or credence that can be assigned to the possible occurrence or
truth, as appropriate, of S with no additional specification of likelihood for the individual subsets
of S . Or, put another way, mEX (S) is the amount of probability assigned to the set E but with no

specification of how this probability is spread over subsets of E . As indicated above, the
assignment of BPAs for individual focal elements is made subject to the restriction

EgExE illEX (e) =1.0 .
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The definition of focal elements and associated BPAs is illustrated with a notional evidence
space (TE, TE , MET ) for link failure temperature, with the notational use of "T" selected to be

suggestive of "temperature'. For this evidence space,

and

= {T : 450 T 950 °C} = [450,950 °C], (2.2)

TE = {7-1,729T3,7-49T5}

= [450,750 °C],7-2 = [550,700 °C], 7 = [600,725 °C],

'7-4 = [650,850 °C],7-5 = [800,950 °C].

(2.3)

(2.4)

Further, the focal elements (i.e., 707-2,7-3,74, T5 ) are assumed to correspond to ranges of link

failure temperatures obtained in each of five separate analyses. To numerically specify the
"credibility" or "relevance" of these results for use in later analyses, a BPA needs to be assigned
to each of these focal elements. If all analyses were felt to be equally credible, then the assignment

mET (7; = / 5 for i = 1,2,3,4,5 (2.5)

would be appropriate. However, if the results of the individual analyses were not felt to be of equal
quality or relevance, then a different assignment of BPAs would be appropriate. For example, the
assignments

mET(Ti)-1/10,mET(T2)-1/5,mET(T3) —2/5,mET(T4)-1/5,mET(T5) —1/10 (2.6)

might be made based on an assessment of the quality or relevance of the individual analyses.

Another possibility is that the focal elements in Eq. (2.4) are the outcome of an expert review
process with the temperature range associated with each focal element supplied by a different
"expert". If the individual experts are felt to be equally creditable, then the assignment of BPAs as
in Eq. (2.5) would be appropriate. If the individual experts were not felt to be equally creditable,
then different BPAs could be assigned to the individual focal elements to incorporate the assessed
credibility of the individual experts. However, ranking experts is a difficult and potentially risky
undertaking.

The evidence space TE , MET ) with the properties summarized in Fig. 2.1 as defined in

Eqs. (2.2), (2.3), (2.4) and (2.6) is used in several following examples. However, an arbitrary
evidence space (XE, XE , MET ) will continue to be used in the general definitions of evidence space

properties.
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400 600 800 1000

TE = [450, 950 °C]

Ti = [450, 750 °C], mET(7i) = 0.1

T2 = [550, 650 °C], mET(7;) = 0.2

T3 = [600, 700 °C], mET(T3) = 0.4

T4 = [650, 850 °CI], mET(T4) = 0.2

T5 = [800, 950 °C], mET(T5) = 0.1

S = [500, 750 °C]

Fig. 2.1 Summary of evidence space (TE, TE,mET) used to illustrate the definitions of belief and

plausibility (Note: In the simplified notation used in later sections, the evidence space
(TE , TE,mET ) will be represented by (T, T, mT )).

Subsequent sections will deal primarily with evidence spaces. Therefore, to simplify notation
and with limited risk of confusion, the subscript "E' will be omitted from the representations for
evidence spaces in these sections. Also, focal elements for an evidence space will, when practical,
be represented by the letter used to represent the sample space with integer subscripts used to
identify the individual focal elements (e.g., the focal elements for an evidence space (X, X, mx)

will be represented by Xi , X2 ,..., Xnx with nX corresponding to the number of focal elements).

2.2 Definition of Belief and Plausibility

The assignment of BPAs in the development of an evidence space (X, X, mx) is not the final

step in an evidence theory representation of uncertainty. Rather, this assignment provides the basis
for the determination of belief and plausibility for subsets of the sample space X . Specifically,
belief and plausibility for a subset S of X are defined by

and

Bel(S) = E mx(xi) (2.7)
xi EX and X,g,S

Pl(S)= E nix(xi),
XieX and O~XinS
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respectively, with X= {X1, X2 ,...Xnx }. In words, Bel(S) is the sum of the BPAs for all focal

elements that are subsets of S , and Pl(S) is the sum of the BPAs for all focal elements that

intersect S . Given their definitions, (i) Bel(S) provides a measure of the extent to which the

available information (i.e., the focal elements and their BPAs) fully supports the proposition that
S contains the element x of X of intertest (e.g., the failure temperature for a specific link in a
system of WLs and SLs), and (ii) Pl(S) provides a measure of the extent to which the available

information supports the weaker proposition that S could (i.e., might) contain the element x of X
of interest. Belief and plausibility are the basic uncertainty measures used to express the outcomes
of evidence theory analyses.

An illustration of belief and plausibility is provided by the evidence space (T ,T,mT)

summarized in Fig. 2.1. Only focal elements T2 and 7-3 are subsets of the set S= [500, 750 °C]

indicated in Fig. 2.1, with the result that

Bel(S)= E mT(7)=m2,(7-2)-kinT(7)= 0.2 + 0.4 = 0.6. (2.9)
ET and TicS

Focal elements T , T2 , 73 and T4 intersect S and focal element 7 does not intersect S , with
the result that

4

Pl(S)= E 171T(7)=Z1117(7)= 0.1+ 0.2 +0.4 + 0.2 = 0.9.
ET and O~TinS i=1

(2.10)

Similarly, only 7 is a subset of Sc = [450,500) u (750,950] and only Ti , T4 and 7 intersect

S° , with the result that

and

Bel(Sc)= mT (T5) = 0.1 (2.11)

Pl(SC)= mT (T) + mT (T4) + mT (T5) = 0.1+ 0.2+ 0.1 = 0.4. (2.12)

The indicated subset and intersection properties involving the T's , S and S' can be easily seen

in Fig. 2.1.

As noted earlier, evidence spaces and probability spaces have certain similar characteristics.
In fact, an evidence space is actually an incompletely defined probability space. The conversion
of an evidence space (X, X, mx) with focal elements X1, X2 ,..., Xnx into an associated probability

space (Xp , nipx ) can be performed by defining density functions di(x),i =1, 2,..., nX , on X

with the properties that
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L di(x)dx =1.0 and di(x)= 0 for x Xi. (2.13)

Then, a density function for a probability space (Xp, Xp,mpx) consistent with the original

evidence space is defined by

d(x)= Enlx(X,)Axi). (2.14)

With completion, the following relation

Bel(S) prob(S)= mpx(S)= Ld(x)clx Pl(S) (2.15)

holds for S ExP which in normal situations simply means that S is a subset of Xp = X . The

preceding is a very important property of evidence spaces. Specifically, evidence spaces have no
specified uncertainty structure internal to individual focal elements. However, if a probabilistic
structure is added internal to the individual focal elements of an evidence space as indicated in
Eqs. (2.13) and (2.14), the result will be a probability space in which resultant set probabilities are
bounded below and above by corresponding beliefs and plausibilities.

A widely-used procedure is to assume a uniform distribution over a set of values for a quantity
when no distribution is known or specified. As an example, the imposition of a uniform distribution
over each focal element of the evidence space (T,T,mT) summarized in Fig. 2.1 is illustrated.

This evidence space has five focal elements (i.e., T , T2, 7 -3 , T4 , T5). Corresponding density

functions di(T),i =1,2,...,5, that are uniform over the five focal elements and equal to zero

elsewhere are defined by

1 / [750 °C — 450 °C] = 3.33 x10-3 °C-1 for i =1 and T E T 1450,750 °C]

1 / [700 °C — 550 °C] = 6.67 x10-3 °C-1 for i = 2 and T E T2 1550,700 °C1

di(T)= 11[725 °C — 600 °C] = 8.00 x10-3 °C-1 for i = 3 and T E T3 =[600,725 °C] (2.16)

1 / [850 °C — 650 °C] = 5.00 x10-3 °C-1 for i = 4 and T E T4 1 6 5 0 , 8 5 0 °C]

1 / [950 °C — 800 °C] = 6.67 x10-3 °C-1 for i = 5 and T E 7 =[800,950 °C]

and

di(T)= 0 if T T for i =1,2,3,4,5. (2.17)

As a reminder, the density function for a uniform distribution over an interval a x is

d (x) = 1 1 (b — a). Given the preceding definitions for the density functions di(T),i =1,2,...,5, the
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resultant density function defining a piecewise uniform distribution over T [450,950 °C] is

defined by

with

d (T) = im x (7:)d i(T)

= (11 10)d1(T)+ (1 1 5)d 2(T) + (2 / 5)d3(T)+ (11 5)d 4(T) + (11 10)d 5(T) (2.18)

= (2.86 x10-4 °C-1)81(T)+ (1.33 x10-3 °C-1)82(T)+ (3.20 x 10-3 °C-1)83 (T)

+ (1.00 x10-3 °C-1)84(T) + (6.67 x10-4 °C-1)85(T)

1 if T
(SAT) ={

0 if T 7;
(2.19)

for i = 1,2,...,5. In turn, the probability p(S) for the set S= [500,750 C] considered in Eqs. (2.9)

and (2.10) is given by

p(S) = fsd(T)dT = .1.570500 d(T)dT = 0.78. (2.20)

As should be the case,

0.6 = Bel(S) p(S) = 0.78 Pl(S) = 0.9 (2.21)

with Bel(S) = 0.6 and Pl(S) = 0.9 determined in Eqs. (2.9) and (2.10).

The sample space X and focal elements for an evidence space (X, X, mx) are usually related

by

X U
xiEx

as is the case with evidence space (T,T,mT ) for which

5
[450,950 °C] = T = U 7= UT = [450,950 °C].

riET i=1

(2.22)

(2.23)

However, there is no gain or loss in uncertainty information if the union of focal elements is a

proper subset of XE because

Bel(S)= Pl(S) = 0 for S c X with S n X, = 0 for X E X. (2.24)
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As an example, the sample space TE = [450,950 °C] for the evidence space (T ,T,mT)

summarized in Fig. 2.1 could be redefined as T = [400,1000 °C] with no change in the supplied

uncertainty information because

Bel(S) = Pl(S) = 0 for S c [400,450 °C) or S c (950,1000 °C] (2.25)

after this redefinition of T .

The basic relational properties of belief and plausibility for an evidence space (X , X,mx) are

and

Bel(S)+Pl(SC)=1,

Bel(S)+ Bel(SC)1,

Pl(S)+ Pl(SC)1,

(2.26)

(2.27)

(2.28)

Bel(S) Pl(S) (2.29)

for S c X and SC denoting the complement or S . The set S defined in Fig. 2.1 and the beliefs

and plausibilities

Bel(S)= 0.6, Pl(S) = 0.9, Bel(,5') = 0.1, Pl(SC) = 0.4 (2.30)

obtained in Eqs. (2.10)-(2.12) provide the following examples of the general results in Eqs. (2.26)
-(2.29):

Bel(S)+ Pl(SC)= 0.6 + 0.4 = 1, (2.31)

Bel(S) + Bel(SC)= 0.6 + 0.1 = 0.7 1, (2.32)

Pl(S)+ Pl(SC)= 0.9 + 0.4 = 1.3

and

0.6 = Bel(S) Pl(S)= 0.9.

1, (2.33)

(2.34)

In contrast to the relationships in Eqs. (2.26)-(2.29),

p(S)+ p(Sc) =1 (2.35)
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is the basic relational property for probability. As indicated by the relationships in Eqs. (2.26)-
(2.35), belief and plausibility provide a more nuanced, but less detailed, representation of
uncertainty than is provided by probability. Specifically, if the probability of a set S is specified,

then the probability of Sc is also deemed to be known as indicated in Eq. (2.35). In contrast, belief

Bel(S) for a set S places a bound 0 Bel(SC)1—Bel(S) on possible values for Bel(SC) as

indicated in Eq. (2.27) but does not completely determine Bel(SC). Similarly, plausibility Pl(S)

for a set S places a bound 1— PI(S)Pl(SC) 1 on possible values for Pl(SC) but does not

completely determine Pl(SC) as indicated in Eq. (2.28).

2.3 Cumulative and Complementary Cumulative Summaries for Belief and
Plausibility

The examples for belief and plausibility in Eqs. (2.9) and (2.10) are for a single subset of the
sample space T . For evidence spaces in which the sample space X is an interval [x.,.x.] of

real numbers, plots of cumulative belief functions (CBFs), cumulative plausibility functions
(CPFs), complementary cumulative belief functions (CCBFs) and complementary cumulative
plausibility functions (CCPFs) provide detailed summaries of the beliefs and plausibilities
associated with the evidence space. Specifically, CBFs, CPFs, CCBFs and CCPFs are defined by
plots for xnin x xmx of the points

and

(x, Bel([xm„, x])) for CBFs,

(x, Pl(rxmn , xl)) for CPFs,

(x, Bel((x,xmx])) for CCBFs,

(2.36)

(2.37)

(2.38)

(x,P/((x,x.])) for CCPFs. (2.39)

As examples, the CBF, CPF, CCBF and CCPF for the evidence space (T , T, mT) summarized in

Fig. 2.1 are (i) defined in Eqs. (2.36)-(2.39) and (ii) shown as plots in Fig. 2.2.
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Fig. 2.2 Example CBF, CPF, CCBF and CCPF plots for the evidence space (T,T,mT)

summarized in Fig. 2.1.

Further, the CBF, CPF, CCBF and CCPF in Fig. 2.2 are formally defined by
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CBF(T) = Bel{[450,T]} for 450 T 950

0 for 450 T < 650

mTM (72) = 0.2 for 650 T < 700

r 2 MT = 0.6 for 700 T < 750

E: inn/ (7;) = 0. 7 for 750 t < 850

(7;) = 0. 9 for 850 T < 950

E,. ninf (7;) = 1.0 for T = 950,

CPF(T)= Pl11450,Th for 450 T 5 950

ninu (T) = 0.1 for 450 T < 550

• 1mi,(7-), 0.3 for 550 T < 600

E:=, (7) = 0.7 for 600 T < 650
Li mr (Ti) = O. 9 for 650 t < 800

• mr, (T) =1.0 for 800 T 950,

CCBF(T) = Bel{(T,950]} for 450 T 950

2E5 mTM (E)= 0. 9 for 450 T < 550i= 

EL! 3 inn,/ (TM) = 0. 7 for 550 T < 600
= V‘_"5. 5mTivr (TM)= 0.3 for 600 t < 650

E! 5 MTM (EA4)= 0. 1 for 650 t < 800

0 for 800 T 950,

CCPF(T)= Pl{(T,950]} for 450 T < 950

• inn,/ (Ti) =1.0 for 450 T < 650

5i 1,i*2 MT (TO = 0. 8 for 650 T < 700

= (T) + 4mT(7;) = 0.4 for 700 t < 750

• 4mT (T) = 0. 3 for 750 t < 850

E55 MT (T) = 0. 1 for 850 T < 950.

24

(2.40)

(2.41)

(2.42)

(2.43)



For plotting simplicity, the included and excluded points associated with the inequalities in
Eqs.(2.40)-(2.43) are not explicitly shown in Fig. 2.2.

Just as belief and plausibility bound probability for a probability space (Xp, Xp, mpx) that is

obtained by completing an evidence space (X, X, mx ) as illustrated in Eq. (2.21), a similar

bounding occurs for cumulative distribution functions (CDFs) and complementary cumulative
distribution functions (CCDFs) that summarize a probability space obtained by completing an
evidence space. Specifically, the probability space CDF will fall between the evidence space CPF
and CBF, and the probability space CCDF will fall between the evidence space CCBF and CCPF.
This pattern is illustrated in Fig. 2.2 for the evidence space (7- ,T,mT) summarized in Fig. 2.1 and

the associated probability space defined in Eqs. (2.16)-(2.21) with

950

CDF(T) = f d(T)dT and CCDF(T) = f d(T)dT
450

for 450 °C T 950 °C and d(T) defined in Eq. (2.18).

(2.44)

From a computational perspective, generation of CBFs, CPFs, CCBFs and CCPFs is the same
as the generation of CDFs and CCDFs for discrete probability distributions. For an evidence space
(X, X, mx ) with focal elements X , i= 1,2,...,nX, (i) the CBF associated with (X, X, mx)

corresponds to the discrete CDF defined by the pairs

[max(X),mx(X)ki =1,2,...,nX, (2.45)

(ii) the CPF associated with (X, X, mx) corresponds to the discrete CDF defined by the pairs

[min(X), mx(X)],i= 1, nX, (2.46)

(iii) the CCBF associated with (X, X, mx) corresponds to the discrete CCDF defined by the pairs

[min(X ), mx (X )], i =1, nX, (2.47)

and (iv) the CCPF associated with (X, X, mx ) corresponds to the discrete CCDF defined by the

pairs

[max(X ), mx(X)],i= 1, 2, ..., nX. (2.48)

Discrete CDFs and CCDFs of the form indicated can be generated with standard plotting tools.

The indicated relationships in Eqs. (2.45)-(2.48) are now elaborated on. Supposed an evidence
space with focal elements Xi,i= 1, n, is under consideration. To facilitate the following
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development of representations for CBFs, CCBFs, CPFs and CCPFs, the focal elements Xi are

reordered into the sequences

and

=1, 2,...n, with rni =mx(Xi), xi = min(Xi), and the XI ordered so that xi < xi+1 (2.49)

=1,2,...n, with rni = mx (Xi), = max(X) and the X ordered so that < .7i+1. (2.50)

Given the preceding, CBFs, CPFs, CCBFs and CCPFs are, in effect, equivalent to step functions
corresponding to discrete probability distributions. Specifically, CBFs, CPFs, CCBFs and CCPFs
are defined by the following discrete probability distributions:

and

CBF— [.Yi,mx(X)1,i = 1, 2,...n, with [Yi,CBF(Yi)1= [ Yi,Imx (Xi) , (2.51)
j=i

i
CPF—[xi,mx(X)],i =1,2,...n, with [xi,CPF(xi)] = xi,Lmx( i) , (2.52)

j=i

[CCBF— [xi, mx (X)],i =1,2,...n, with [xi,CCBF(xi)]= En niX(Xj)],

j=i+1

(2.53)

n

CCPF—[Yi,mx(X)1,i =1, 2,...n, with [.7i,CCPF(.7i)1= — E mx (X i) . (2.54)
j=i-F1

On a technical note, if the values for several x i are the same, then these values must be combined

into a single value by adding their corresponding values for mx ( i). A similar requirement holds

for the .7i .

Eqs. (2.55)-(2.57) below provide an illustration of the determination of CBFs, CPFs, CCBFs
and CCPFs as indicated in Eqs. (2.51)-(2.54):
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xl
x2

x3

X4

X5 •

• •

• • (2.55)

• •

 •

X1 = X5 -> • •

X2 = X2 _2X -> • •

X3 = X4 -> • 
•

Xq =X3 _4X -> • •

X5 - 1 ->• •

X1 - x5
• • <-

X2 = X4
• 

• <-

X3 = X2 • • <-

X4 =x1 • 
•<- -Y4

X5 = X3 • • <- .Y5

[. i, CPF(.1i)] = .1i, Emx (Xi )1
j =1

ki, CCBF(.1i)] =ki, i mx(Xj)]
j=i+1

i
k,C8F(.7i)]=ki,Emx(x.,)1

[ 

5

[ Yi , CCPF ( Yi )]= Yi, E mx(x.,)
j=i+1 _

(2.56)

_ (2.57)

Eq. (2.55) shows the five focal elements associated with an evidence space (X, X, mx ). Then, Eq.

(2.56) illustrates the reordering of focal elements as described in Eq. (2.49) and the definition of
"probabilities" to be used in the construction of CPFs and CCBFs as indicated in Eqs. (2.52) and
(2.53). Similarly, Eq. (2.57) illustrates the reordering of focal elements as described in Eq. (2.50)
and the definition of "probabilities" to be used in the construction of CBFs and CCPFs as indicated
in Eqs. (2.51) and (2.54). As noted after Eq. (2.54), if the values for several x i are the same, then

these values must be combined into a single value by adding their corresponding values for
mx (X ) . A similar requirement holds for the Yi .

The relationships defining CPFs, CCBFs, CBFs and CCPFs in Eqs. (2.56)-(2.57) are easy to
implement in a DO loop structure but do not have a form that is intuitively suggestive of what is
being determined. As indicated below, the core relationships in Eqs. (2.56)-(2.57) are cumulative
and complementary cumulative distribution functions for discrete probability distributions defined
by integrals of density functions that are linear combinations of Dirac delta functions. As described
in Sect. 5.7 of Ref. [70], a Dirac delta function 8(x — a) is defined by

f
v 1 for u < a <v
g(x — a)dx = for any u <v

0 for a <u or v < a
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and provides a way to symbolically enter a discontinuity into the value of an integral.

For generality in the following representations for CPFs, CCBFs, CBFs and CCPFs, the
evidence space (X, X, mx ) under consideration is assumed to have n focal elements that have

been ordered as notationally indicated in Eqs. (2.56)-(2.57) after the previously indicated BPA
adjustments have been made in the event that some focal elements have shared end points. In
practice, this could result in different numbers lower and upper focal end points. For notational
simplicity, the number of potentially reordered focal element end points is assumed to be n for
both lower and upper endpoints. In addition, the CPF, CCBF, CBF and CCPF representations are
determined for an interval [xmn x„li with xmn < xi < .Y„ < xmx .

For the CPF and CCBF definitions in Eq. (2.56), the underlying density function is defined by

d 1(x) = Emx(X; )6(x — (2.59)

In turn, the corresponding CPF and CCBF are formally defined by

[Z,CPF(i)]=P,LIdi (X)dX]

= fxl(Ei=imx(fx.ds(x-_,))ciy] (2.60)

0] for x„,„.i<xi

j=1mX (X.)] for < and i =1, 2,...,n —11

[i,1.0] for x xmx

and

[.Z,CCBF(i)] = Lz, f ximx d1(x)dx]

= fixmx (E mx (Xi )5(x — ))dx] (2.61)

[ ,1.0] for xmn i< xi

Enj=i+1mX )] i+lfor < x and i = 1, 2, n-1

0] for x n< z < xmx

For the definitions of CBFs and CCPFs in Eq. (2.57), the underlying density function is
defined by
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d 2 (x) = E mx vy„,)g(x —
j=1

In turn, the corresponding CBF and CCPF are formally defined by

and

[i,CBF(,)]=[,,fx d2(x)clx]
x„,„

[,, 0] for x. <

(Xj)] for Yi < x i+1

[X,1.0] for xn < x < xmn

and i 1„...,n —1

CCPF(i)] = Emx d2 (*X]

= (IinA MX (Xj )g(x ))C1X]

[i51.0] for xnin .71

ri,Enj=i+i My (X.)] for Yi < .Yi+i and i = 1, 2, ..., n —1

[z5 0] for .7n

(2.62)

(2.63)

(2.64)

Two insights with respect to evidence spaces can be obtained from the development leading to
Eqs. (2.59)-(2.64).

First, for a given evidence space (X, X, mx ), probability spaces (Xpi , Xpl,mp1) and

(Xp2,Xp2,mp2) corresponding to the density functions d1(x) and d2 (x) can be defined such

that (i) the CDF and CCDF for the probability space (Xpl, xpi , mp1) exactly match the CPF and

CCBF for the evidence space (X, X, mx ) and (ii) the CDF and CCDF for the probability space

(Xp2,Xp2,mp2) exactly match the CBF and CCPF for the evidence space (X, X, mx ).

Second, an evidence space (X, X, mx ) with

X={4X2,...,Xn}

can be viewed as adaptation of a discrete probability space (Xp, Xp mpx) with
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Xp = , X2 , , 1 . (2.66)

Given its definition, (Xp, Xp, mpx ) may appear to be an unusual probability space in that its

elementary events are sets (i.e., Xi , X2 . Xn belonging to Xp ) rather than numbers or vectors

as is more commonly the case. However, probability spaces of this form are commonly the
outcome of a review process intended to assess the epistemic uncertainty associated with a quantity
used as an input to a complex analysis with mpx (Xi) equal to the assessed probability that the set

Xi contains the correct value for the quantity under consideration. The evidence space (X, X, mx)

derives from the probability space (Xp,Xp,mpx) through the definitions

x = Hn 1 ' X = {X1, X2 5—.9 Xn )19 MX (Xi ) = TrIPX (X) for i = 1, 2, ..., n (2.67)

and the introduction of belief and plausibility to measure the implications of (i) the probabilities
mx (Xi) = mpx (X, ) assigned to the individual sets Xi, X2 , ?en and (ii) the extent to which these

sets intersect subsets of X that are important to the analysis being performed.

2.4 Functions Defined on Evidence Spaces

A common and important analysis situation involves (i) an evidence space (X, X, mx ), (ii) a

function f (x) defined for x E X that maps X into the set

= {y : y = f (x) for E X}, (2.68)

(iii) a subset S of y of particular interest, and (iv) a desire to know the belief Bel(S) and
plausibility Pl(S) for S that derives from the evidence space (X, X, mx ) and the function f (x)

. There are two approaches to obtaining Bel(S) and Pl(S), with both approaches producing the

same value for Bel(S) and Pl(S). Both approaches are based on the assumption that the belief

and plausibility for a set of function evaluations should be the same as the belief and plausibility
for the subset of the function's domain that results in these evaluations.

The first approach (i.e., Approach 1) involves using the function f (x) to map (X, X, mx) into

a new evidence space (y, Y, my ) with each focal element Yi and associated BPA my (yi) defined
by

= f (Xi) = {y : y = f (x) for x E } with my (Yi ) = mx (Xi ) (2.69)

for X = i = 1, 2,..., nX1 . Once the new evidence space (y,Y,my) is defined, Bel(S) and
Pl(S) can be determined as shown in Eqs. (2.7) and (2.8).

The second approach (i.e., Approach 2) involves using the inverse of the function f (x) to rnap

S into the subset Xs of X defined by
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Xs = {x : x E X andf(x) E S} = {x : X' E f-1(S)}.

Then, Bel(S) and Pl(S) are defined by

Bel(S) = Bel(Xs) and Pl(S) = Pl(Xs)

with Bel(Xs) and Pl(Xs) defined with respect to the original evidence space (X, X, mx).

(2.70)

(2.71)

In the following, Approaches 1 and 2 are illustrated with (i) the evidence space (:TE 1 TE , MTE )
for link failure temperatures summarized in Fig. 2.1 and (ii) a notional link with time-dependent
temperature defined by

TX° 
T(t)= (2.72)

To + (Too — To ) exp(—rt)

with 0 5 t 200 min , T(0) = To = 225 °C , T. = 900 °C , and r = 0.022 (see Fig. 2.3). The

function f(T) is defined by

f(T) = time t at which link fails for failure temperature T

f (-1/ r)ln[To (Tx, — T)I T(Too —T0)] for 450 T 900 °C

it. for 900 °C < T,

(2.73)

with the symbolic term to, introduced as a way to record that the link does not fail for 900 °C < T

(see Fig. 2.3).
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Fig. 2.3 Components of example used to illustrate the determination of belief and plausibility for
subsets of the range of a function: (i) time-dependent link temperature T(t) defined in Eq. (2.72)
and (ii) function f(T) defined in Eq. (2.73) mapping link temperature to link failure time.

For Approach 1, a new evidence space (TM, TM, mTM) for link failure time with "MC used

as a mnemonic for time is obtained from (i) the evidence space (T ,T , mT) and (ii) the function

f (T) with resultant values of

TM = f (T) = : t = f (T) for T E = {t :18 t 110} u ft0, (2.74)

M = { TM , 42 , , 7:A/14 ,TM5} , (2.75)

and

1T.A41 = f(7-1 ) = [49.9,123.1] with mTM (TM1) = mT (TO = WO for i =1

TM2 = f (T2 ) = [70.5,93.4] with mTM (TM2) = nit' (T2) = 1 1 5 for i = 2

TMi = TM3 = f (T3) = [81.4,106.9] with mTM (TM3) = mT (T3) = 2 / 5 for i = 3 (2.76)

T.A44 = f (74) = [93.4,178.7] with mTM (TM4) = Int' (7-4) =1 1 5 for i = 4

TM5 = f (T5) = [144.5,200] u {G} with mTM (T.A45) = mT (T5) = 1 /10 for i = 5.
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As illustrated in Fig. 2.3, the focal element Ti = mn ,T i] of the evidence space (T , T, mT ) is

transformed into the focal element

7:Mi = [f f (Tmx,i)] (2.77)

of the evidence space (TM, TM, mTM) for i = 1,2,3,4 . Specifically, this transformation

corresponds to drawing horizontal lines from Tinn,i and Tmx,i on the ordinate of Fig. 2.3 to the curve

T (t) and then drawing vertical lines to the abscissa to obtain t „i„,i and Co . The construction of

T.A45 is similar but slightly more complicated due to the need to include tx, to account for

nonfailures for 900 °C < T .

Once the evidence space (TM, TM, mTM) is constructed, belief and plausibility for subsets of

TM can be obtained as shown in Eqs. (2.9) and (2.10). As an example, belief and plausibility for
the set

.FTM= {t : link potentially fails at time t}

= {t: 49.9 200}

= [49.9,200]

are used for illustration. Specifically,

B el (TEM) = E Innl (TM)
TM; n'ICM and TJ14,c.FT.A4

= inn/ (TM) + Innl (TM) + Inim (TM) + (TM)

= 0.1+ 0.2 + 0.4 + 0.2

= 0.9

(2.78)

(2.79)

results because (i) 7M,TM2, TA and EA44 are subsets of .7- I M and (ii) 7:M5 is not a subset

of .7-1M due to the inclusion of to, in 7--M5 . Similarly,

/31(J-I.A4), mTM (TM)
T.A4 ETM and ~T.A4 n.PTA4

= InTm (EM)

= 0.1+ 0.2 + 0.4 + 0.2 + 0.1

= 1.0

as consequence of every focal element intersecting .FIM .
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For Approach 2, the belief and plausibility of a subset S of TM are obtained by mapping S
back to the set T of temperature values that resulted in failure times in S . Specifically,

Ts = f -1 (S) = T(S) = {T :T = T(t) for t E S}

in consistency with the definitions off(T) and T(t) in Eqs. (2.73) and (2.72) Then,

Bel(S) = Bel(Ts) and Pl(S) = Pl(Ts).

(2.81)

(2.82)

The set TIM = [49.9,200] of possible failure times is again used as an example and results in

the set

In turn,

TrTm = f 1 (11M) = T (FEN() = : T = T(t) for t e .FTM} = [450,900 °C]. (2.83)

Bel(FT.M) = Bel(Tnm)

ri ET and TicTFTM
1nT (TO

=mr(7)-Emr(72)-Emr(T3)-Pmr(74)

= 0.1+ 0.2 + 0.4 + 0.2

= 0.9

(2.84)

because (i) 71,7-2,7; and T4 are subsets of TFTM = [450,900 °C] and (ii) 7 = [800,950 °C] is

not a subset of ./-/ . Similarly,

R(.f 1.A4) = Pl(TFTM)

E mT (TO
TieT and 25~7;nTFTAI

5

= (Ti
i=1

= 0.1 + 0.2 + 0.4 + 0.2 + 0.1

=1.0

as consequence of every focal element intersecting Tnm

(2.85)

Both approaches when implemented correctly produce the same values for belief and
plausibility as illustrated for Bel(.FT.114) and Pl(.FT.A4) . Which approach is easiest to use in

practice can depend on the properties of individual problems.
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Once either Approach 1 or Approach 2 has been used to obtain beliefs and plausibilities for
subsets of the set y indicated in Eq. (2.68), the CBF, CPF, CCBF and CCPF for the function
evaluations contained in y can be defined as described in Sect. 2.3. As an example, the CBF,
CPF, CCBF and CCPF for the link failure times contained in the set ..7-7.A4 defined in Eq. (2.78)

are shown in Fig. 2.4 and derive from the evidence space (T,T,mT ) summarized in Fig. 2.1 and

the function T (t) defined in Eq. (2.72) and illustrated in Fig. 2.3.
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Fig. 2.4 Illustration of the CBF, CPF, CCBF and CCPF for the link failure times contained in the
set ..7-7.A4 defined in Eq. (2.78), with the associated beliefs and plausibilities deriving from the

evidence space (T ,T ,mT) summarized in Fig. 2.1 and the function T (t) defined in Eq. (2.72)

and illustrated in Fig. 2.3.

Further, the CBF, CPF, CCBF and CCPF in Fig. 2.4 are formally defined by
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CBF (t) = Be/{[49.9, t]} for 49.9 t 200

0 for 49.9 < 93 .4

mrm (TM) = 0.2 for 93.4 t <106.9

= E: 2112TM (TM = 0.6 for 106.9 t <123.1

E linni(EA4)= 0. 7 for 123.15 t < 178.7
l• mn,f (7-.A1) = 0. 9 for 178.7 t 200,

CPF (t) = /3/1[49.9,t]} for 49.9 t 200

ma/ (TM) = 0.1 for 49.9 t < 70.5

• mmr (7M) = 0.3 for 70.5 t < 81.4

= V linTA ATM) = O. 7 for 81.4 t < 93.4

l• mmi (M4) = 0. 9 for 93.4 t < 144.5

(7-Mi) = 1.0 for 144.5 t 200,

CCBF (t) = Belf(t,20011 for 49.9 t 200

E4, 2 mTM (TM) = 0. 8 for 49.9 t < 70.5

Et4 3 mai (TM) = O. 6 for 70.5 t < 81.4

E4. 4mim (T.M) = 0.2 for 81.4 t <144.5

0 for 144.5 t 200

CCPF(t) = P/{(t,200]} for 49.9 t 200

• inn/ (TM) = 1.0 for 49.9 t < 93.4

• 1,i~2 MTM (TM 
= 0. 8 for 93.4 t < 106.9

mTM (TM) Ei54 mTM CTM, = 0.4 for 106.9 t < 123.1

E5. 4 MTM (TM) = 0. 3 for 123.1 t < 178.7

mat (EA45) = O. 1 for 178.7 t 200.
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The illustrations in Eqs. (2.86)-(2.89) stop at t = 200 min because (i) the example calculation ends
at t = 200 min and (ii) too = Go is a place holder indicating that link failure did not occur. The

included and excluded points associated with the inequalities in Eqs. (2.86)-(2.89) are indicated in
Fig. 2.4 by solid and open circles.

As described in conjunction with Eqs. (2.13)-(2.15), a probability space (Xp , Xp nip )

consistent with an evidence space (X, X,mx) can be obtained by defining the density function

d (x) for the probability space in a manner that incorporates the focal element BPAs associated

with the evidence space. When this is done and a real-valued function f (x) is defined for x E X

with the resultant set y of function evaluations, then (i) the CDF associated with f (x) falls
between the CPF and CBF associated with f (x) and (ii) the CCDF associated with f (x) falls

between the CCBF and CCPF associated with f (x) . Specifically, if y E y = [ymn,y7nx], then

and

CDF(y) = Lgy[f(x)]c/(x)dx with cly [f (x)] = {
1 if f (x) y

0 otherwise,

CCDF(y) = f 5„[f(x)]d(x)clx with gy[f (x)] = 
1 if y < f (x)

0 otherwise,

Bel([y. , y]) CDF(y) = fx b'y[f (x)]d(x)dx Pl([y nin , y])

(2.90)

(2.91)

(2.92)

Bel((y, y„..]) CCDF(y) = dy[f (x)]d(x)ch Pl((y,y„ix]). (2.93)

The relations in Eqs. (2.90)-(2.93) also hold if 32 =[ymn,y,,x] is a subset of f(X). For
computational implementation, CDF(y) and CCDF(y) can be approximated by

nR

CDF(y) Lgy[f (xr. )] 1 nR and CDF(y) 
nR

 8y [f )] 1 nR (2.94)
r=1 r=1

where xi , x2,..., x,,,R is a random sample from X generated in consistency with the density function

d(x).

As an example, the CDF and CCDF for the link failure times contained in the set :1- I M
defined in Eq. (2.78) are shown in Fig. 2.4 in addition to the corresponding CBF, CPF, CCBF and
CCPF. The indicated CDF and CCDF are (i) defined with the density function d (T) in Eq. (2.18)

to produce a probability space consistent with the evidence space (T , T, mT) and (ii) approximated

as indicated in Eq. (2.94) with a random sample of size nR = 107. As should be the case, the
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{T-1(T) for T T(tnix)

resultant CDF falls between the corresponding CBF and CPF, and the resultant CCDF falls
between the corresponding CCBF and CCPF.

2.5 Maximum Time for Link Failure

For a failure temperature focal element 7 and corresponding failure time focal element TM

, the maximum time tFt at which link failure actually occurs may not be the same as the maximum

time tt contained in TM due to the possible inclusion of too =00 in TM to indicate that link

failure did not occur for one or more of the link failure times in T . For example, this is the case

for focal elements 7and T.A45 in Fig. 2.3, with (i) with the maximum link failure time contained

in TM5 defined by TF5 = 200 min and (ii) the maximum time contained in T.A45 defined by tt = oo
. The indicator ti = co is included in T.M5 to signify that some of the failure temperatures

contained in 7-5 did not result in link failure.

If (i) the link temperature function T (t) is continuous and increasing on [tmn,tmx], (ii)

T= {T :T with T <T is a focal element for link failure temperature, and (iii)

T(tmn)<T < T (tmx) , then the maximum link failure temperature IF associated with T (t) and T

is defined by

tF =
tmx for T(tmx)T .

(2.95)

Without the requirement T there is no link failure and the focal element for link failure

time contains only the indicator time t. =00 (i.e., TM= {t.} = {oa}). Further, if T =T(t„,x), then

the corresponding focal element for link failure time is TM= ftmx,col .

As an example, the link failure time focal elements 7, = 1,2,...,5, defined in Fig. 2.1 and the
functions T(t) and f (T) = T-1 (T) defined in Eqs. (2.72) and (2.73) result in the following values

for tFi, i =1,2,...,5 :

tT,i =

tF2 =

IFi = tF3 =

tF4 =

tF5 = tmx = 200 for 868.0 = T(tmx)= T(200) < T5 = 950

T-1(750)= f (750)=123.1 for 750 = Ti < 868.0 = T(tmx) = T(200)
T-1(650)= f (650)= 93.4 for 650 = T2 <868.0 = T(tmx)= T(200)

T-1(700)= f (700)= 106.9 for 700 = T3 <868.0 = T(tmx)= T(200) (2.96)

T-1(850)= f (850)=178.7 for 850 = T4 <868.0 = T(tmx)= T(200)

with tFi,i =1,2,3,4, defined as indicated in the first line of Eq. (2.95) and tF5 defined as indicated

in the second line of Eq. (2.95).
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In words for the link failure temperature focal element =[T , ] = [450,750°C] , the first

line in Eq. (2.96) indicates that (i) Ti results in link failure before the end of the calculation at time
t. = 200min (i.e., in math: 750°C = T< 868.0°C = T (t „ix) = T(200 min) ) and (ii) as a result, the

last time at which link failure can occur for focal element Ti is the time at which link failure

occurs at the temperature Ti = 750°C (i.e., in math: tFi = T-1(750 °C) = f (750°C) = 123.1min )

The representations for tF2 , tF3 and tF4 in lines 2, 3 and 4 of Eq. (2.96) are defined in the manner

In contrast, line 5 in Eq. (2.96) for link failure temperature focal element

T5 = [7=5, T5] = [800,950°C] indicates that (i) T5 = 950°C does not result in link failure prior to

tmx = 200min (i.e., in rnath: 868.0°C = T (tnix) = T(200 min) < 7; = 950°C ) and (ii) as a result,

= 200 min is the last time at which a link failure temperature in T5 can result in link failure

(i.e., in math: tF5 = tinx = 200min ). As a reminder, the representations for tFi , i =1,2,3,4,5, in Eq.

(2.96) are predicated on the assumption that T(t) is a continuous, increasing function.

The graphical determination of tF4 and TF5 is illustrated in Fig. 2.3. Further, the set of actual

link failure times is the closed interval [t ,TF], where t = T-1(T) is the earliest time at which link

failure can occur provided (i) the link temperature function T (t) is continuous and increasing on

[tmn,t.x], (ii) the focal element T= [T ,T ] for link failure time is a closed interval, and (ii)
T (tmn) < T T (t ) . Intervals of the forrn [ t , TF] are illustrated in Fig. 2.3 and Eq. (2.76).

The definition of the maxirnum link failure tirne IF in Eq. (2.95) is predicated on the

assumptions that (i) the link ternperature function T (t) is continuous and increasing on [tmn , tmx],

(ii) T= {T : T T T} with T < f' is a focal element for link failure temperature, and (iii)
T(t.)<T <T(t,,,x). If the preceding assumptions are modified by eliminating the requirement

that T(t) is increasing on [tmn , t„,,,], then the definition for IF becomes

min It : t [t„,tmx] and t = T 1(T)}

if T max {T : t E [tnin , tmx and T = T(01

min ft : t E [t„ , tnix ] and t = T-1(TF)}

if TF = max {T : t E [tm,,t„,„] and T = T (01 T .

(2.97)

2.6 Product Evidence Spaces

The definition of an evidence space allows for a variety of possibilities for what the elements
of the sample space could be. However, the two most widely-employed possibilities are probably
sample spaces consisting of real numbers or vectors of real nurnbers. Further, evidence spaces
involving vectors of real numbers are often developed frorn multiple evidence spaces involving
real numbers. This situation arises when n evidence spaces
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(Xi , Xi , mxi ), i = 1, 2, ..., n, with Xi = , j = 1, 2, ..., nXi1 (2.98)

are known and need to be combined into a single evidence space. Provided no correlations or other
relationships exist between the individual evidence spaces, this combining of evidence spaces can
be performed to produce a product evidence space (X, XE,mx) with

and

= X1 X X2 X • • • X Xn

= {X : X = x2 ,..., xn ] with x1 e X1, x2 E X2 ,..., xn E Xn },

1= Zi x 12 x • • • x 1„ with /i = {1, 2, ..., nXi} for i = 1,2,...,n,

= ti = l2,•••, in] with ji E /1, /2 E /2 ,•••, Eln},

X = {Xi = Xi x X2i2 x • • • x Xn.in for j = j„ E

(2.99)

(2.100)

(2.101)

mx (Xj) = mx1(X1i, )x MX2(X2j2))< • x mx„ (X,,J) for J = , jz , in E Z (2.102)

In the preceding, the set Z of integer vectors of the form j ~2 in] is used to define all

possible combinations of the focal elements associated with the individual evidence spaces.
Further, the product definition for mx (Xj) in Eq. (2.102) is predicated on the assumption that

there are no correlations or other relationships between the individual evidence spaces.
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3. Representation of LOAS with Evidence Theory for a 1 WL and 1 SL
System

3.1 Belief and Plausibility for the Occurrence of LOAS

For simplicity of explanation and illustration, this section describes the use of evidence theory
to characterize the potential occurrence of LOAS for a WL/SL system with 1 WL and 1 SL. For a
1 WL and 1 SL system, LOAS corresponds to the failure of the SL before failure of the WL. More
complex systems will be considered in later sections.

An evidence space (TwL,7wL ,mn,T) for WL failure temperature Tyn, is introduced and

defined by

and

Tin = [450,950 °C], Tin = {Two ,Tin,2 ,TIFL .3} , (3.1)

7-41, 1 = [450,650 °C], 741,2 = [550,850 °C],TWL,3 = [750,950 'V], (3.2)

111WL,T = 0.5,mwLx (Tri,L,2) = mwL,T(Two) = 0.2. (3.3)

Similarly, an evidence space (TSL,TSL, MSL,T ) for SL failure temperature To is introduced and

defined by

and

= [600,1050 Cl 7 TIe Tr, Tr,oL° = oL,1, oL,2, ,3 (3.4)

To3 = [600,850 °C], TsL2 = [700,1000 °C],TA,3 = [950,1050 °C], (3.5)

ma„T (7:5L,1) = 0.2, max (1:3L,2) = 0.3, max (7-s ) = 0.5. (3.6)

An example with small numbers of focal elements for the evidence spaces (TWL,7wL,111WL,T) and

(Tv TsE,msE,T) is chosen so that the resultant product space (TM,TM, mTM) for link failure

time will have a sufficiently small number of focal elements (i.e., 9) to permit a display and
discussion of all focal elements for this evidence space.

As in Eq. (2.72), time-dependent link temperatures are defined by (i)

TFn(t)= WL temperature in °C at time t

ToT. (3.7)

To + (T. — To) exp(—rt)
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with T(0) = To = 225 °C , Too = 1000 °C, and r = 0.065 , and (ii)

TSL (t) = SL temperature in °C at time t

ToToo (3.8)

To + — To )exp(—rt)

with T(0) = To = 225 °C , Too = 1100 °C , and r = 0.08 (see Fig. 3.1).
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Fig. 3.1 Time dependent link temperatures for example link system with 1 WL and 1 SL.

To assess the uncertainty associated with the potential occurrence of LOAS, it is necessary to
know the potential times at which the individual links fail and the uncertainty associated with these
times. As described for Approach 1 in Sect. 2.4, this can be accomplished by using the function
f (T) defined in Eq. (2.73) to map the evidence spaces (741, ZCyyL, mwLT ) and (7-SL ,TSL ,MSL,T) for

link failure temperatures into evidence spaces (T.A4wL,TMEwL,mwLt) and (T.A4sL,TMst, nISL,t)

for link failure times tyvi, and ta . Specifically, (1)1/6 , TMEn, 171wL,t) is defined by

and

= [15,65 min], TMEn = EMWL,31

{7:A4WL j = f (TWL,l) = [15, 28 min] for i =1

EA/ki = EMWL,2 = f (TWL,2) = [22,45 min] for i = 2
EA4w" = f (TWL,3) = [36,65 min] for i = 3,
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MWL,t(TAIIWL,i

Similarly, (TMsy, TMSL 9 nISL,t) is

111WL,t (rMWL,i) = 171WL,T (TWL,1) = 0.5 for i =1

iihn,r(TMWL,2)= 111WL,T (TWL,2) = 0.3 for i = 2

111WL ,t (rMWL,3) = MWL,T (TWL,3) = 0.2 for i = 3.

defined by

(3.11)

T.A4sE = [19,55 min], 7Ma, = 1EMSL,l, V4SL,2,V4SL,31 (3.12)

= f (Ta,l)= [19,33 min] for i =1
EMSL,È =I

IMSL,1

EMSL,2 = f (TSL,2) = [24,46 min] for i = 2 (3.13)

TiVISL,3 = f (T5E,3) = [40,55 min] for i = 3,

and

MSL,t (rMSL,i) = n 1 SL ,T (7:51,1) = 0.2 for i =1

rnSL,t(IMS1,1) = 111SL,t (1MSL,2) = n 1 SL,T (7:51, ,2)= 0.3 for i = 21 (3.14)

MSL,t (rM 1 nSL,3) = SL,T (7SL,3) = 0.5 for i = 3.

As examples, resultant focal elements T.A4wL,DEA4wL,3 9 IMSL,1 and TA4so for the evidence

spaces (T.A4rn , _ _ TM ,mWL,r and (T.A4a, ,TMSL 9 n SL,t )are illustrated in Fig. 3.2.
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Fig. 3.2 Illustration of focal elements TA4kn,l,TA4i,n,3,7A4sLi and EMSL,3 for the evidence

spaces (T.A4in,TMin, 111n,l) and ( .A4SL , TM SL 9 nISL,t) •
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Assessing the occurrence of LOAS involves determining belief and plausibility for the set

L= {(ta,,tn): tSL E ?Ma E TA4(u, < twz, 1. (3.15)

In turn, this determination requires the introduction of the product evidence space
(TM, TM, mTM ) that results from combining the evidence spaces (EA/in , T M WL 1 111W Lt) and

(T-A4sy, TMsz, rnSL,t) • Specifically, (TM, TM, mTM ) is defined by

TM= TMa, X T.A4wL = ft :t = (t ,tpu) E [19,55 min] x [15,65 min]}, (3.16)

TM = {TMzi = TMsE,, x TMnj for (i, j)} E {1,2,3}x {1,2,3}1, (3.17)

and

171TM (1:1\4j) = rrISL,t(TMSL,i)InWL,t(TMWL,1) for (i, j)} E 11, 2, 3} x {1,2,3}. (3.18)

The resultant focal elements and associated BPAs for the evidence space (TM, TM, mTM ) are

illustrated in Fig. 3.3.
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The diagonal line in Fig. 3.3 corresponds to tjvi, = t . As a consequence of Fig. 3.3 tsL
representing tin on the ordinate and on the abscissa, (i) the inequality tin > ta holds for any point

(ta , tin ) above the indicated line tWL = tsL , and (ii) the set L defined in Eq. (3.15) corresponding

to the occurrence of LOAS is equal to the intersection of TM with the points above the line
tyyL = tsL . Thus, a focal element that is located entirely above the line tin = t a is a subset of L ,

and a focal element that intersects the region above the line tin = ta also intersects L . Given the

preceding,

Be (r) = E niTm- (TM,J) = mim (1)1413) = 0.04 (3.19)

as a result of TA413 being the only focal element that is a subset of L as indicated by TM13 being

the only focal element this located entirely above the line tWL = t . Similarly,

Pl(r) = E mTM (7My)
T.A4u nG~0

rrITM MAO+ MTM(D412) rrITM (D413) + 112TM (M421)

+mTM(D422)+mTM\7M23)+mTM(M432)+mTM(M433)
= 0.1+0.06+0.04+0.15+0.09+0.06+0.15+0.1

= 0.75

(3.20)

as a result of all focal elements except T.A431 intersecting G as indicated by M431 being the only

focal element that does not intersect the region above the line tya = tsL •

This example is defined for ease of presentation with (i) three focal elements for the evidence
spaces (Tin,~yyL ,712wLT) and (,Tsz, TSL ,n2SL,T and (ii) a resultant nine focal elements for the

evidence space (TM, TM, mm) . The ease of visual inspection as done with Fig. 3.3 is greatly

diminished when (7-Fn , Tin myyL T) and (ISL ,TSL 111SL ,T ) have a large number of focal elements.

For example, if (Tin, Twi, myyL T) and (Tsr TSL ,InSL,T) each have 50 focal elements, then

(TM, TM, mTM) will have 2500 focal elements. Fortunately, a computationally simple procedure

can be defined to determine Bel(L) and Pl(L) when (7-in ZCyyL, min,T ) and (:Tst, TSL ,111SL,T)
have a large number of intervals as focal elements.

To illustrate this procedure, it is assumed that (i) (41, ,TilwLT) and (Tst, TSL n SL,T) have

nWL and nSL interval-valued focal elements, (ii)

[tWLinni , j = 1, 2, ..., n WL, and [tSLmni,tS4,Lo],i = 1, 2, ..., nSL, (3.21)

46



are the resultant focal elements for the evidence spaces (TMn , 
TMWL 111WL,t) and

(TAL , TM a nISL,t) for link failure times tyvi, and tSL , and (iii) the sets

= [tSLmn,,,tSLnixi]x[tWL.,0 , tWL,nx j] for (i, j) {1, 2,..., nSL} x {1, 2, ..., n WL} (3.22)

are the resultant focal elements for the evidence space (TM, TM, mTM ) . With respect to notation,

the use of i and j is defined so that i corresponds to values associated with the abscissa in Fig. 3.3
and j corresponds to values associated with the ordinate in Fig. 3.3.

The focal element 7:11/(i =[tSLmn,i,tSLm,, i] x [tWLmni ,tWL„,,,i] of WL and SL failure times is

located above the line tWL = t a only if

tSLmxi < tWLmn j (3.23)

as illustrated by TA43 in Fig. 3.3. As a consequence of this property, Bel(G) is given by the

summation

with

nSL nWL
Bel(G) = E (Em,)= E E 813 (EAVInim (7:My)

i=1 j=1

1 if < tWL,nn
8B  =

0 otherwise.

Similarly, TN( intersects the region above the line tWL = tSL only if

(3.24)

(3.25)

tSL,no < tWL,nxi (3.26)

as illustrated by TA411,EA412 , TA413 TA421 EA 422 TA 423 EA 432 
and TM33 in Fig. 3.3. As a

consequence of this property, Pl(G) is given by the summation

with

nSL nWL
Pl(L) = E 1nTM (7:1"ij) = E E P (EMOMTM (TA4ij)

0~7Munr i=1 j=1

1 if tSLmo <
P (L47) =

0 otherwise.
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As illustrated in Fig. 3.4, a link temperature function T (t) does not have to be strictly

increasing for the relationships defining Bel(L) and Pl(L) in Eqs. (3.23)-(3.28) to be valid. In

this example, (i) = [500,900 °C] is a focal element for an evidence space (T, T, mT ) for link

failure temperature, (ii) T (t) is a continuous nonlinear function of time defining link temperature,

(iii) link failure occurs when link temperature reaches link failure temperature, and (iv) TM is

the resultant focal element for the evidence space (TM, TM, mTM) for link failure time with

TM, = TM1 v T.A4,2 = [20,40 min] u (60,86 min].

In turn, if is a focal element in an analysis of the form in Eqs. (3.23)-(3.28), the times

= {t : t E TM} and = max {t : t e T./VI }

(3.29)

(3.30)

are used in the same manner in the calculation of Bel(L) and Pl(L) as would be the case if they

were the endpoints of a closed interval
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Fig. 3.4 Example of focal element definition for link failure time with link temperature a
continuous nonlinear function of time.

3.2 Cumulative and Complementary Cumulative Representations of Belief and
Plausibility for the Occurrence of LOAS

Cumulative and complementary cumulative representations of belief and plausibility for
LOAS occurrence time are considered first. The starting point for this representation is the
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evidence space (TM, TM, mm) for link failure time defined in Eqs. (3.16)-(3.18). For

(tsL ,tn) E TM, LOAS occurrence time is defined by

t a for tSL < tWL
TML(t WL =

oo for twz, tn.
(3.31)

In turn, the evidence space (TM,C,TMOL,mTmL) for LOAS occurrence time is defined by

TML= ft : t = TML(t ,tn) for (t sL,twL) E TM}, (3.32)

TM; = : t = TML(tn,twL) for (tsl,twL) E EA4u 1, (3.33)

TMIL= {T.A447 : (i, j) E {1,2,3} x {1,2,3}}, (3.34)

nITML(TM4)= nITM (EMJ), (3.35)

with

oo for Tin j <45'4
t.. = lower bound for TM.C. = (3.36)

t for t <I—SL,1 —SL,t WL,J 9

= upper bound for TM% ={oo for 1wL,j Ts,L,,i

ISL,i for IsL,i < lw-Lo ; .
(3.37)

Given the evidence space (TML,TML,mn,ff ) and the associated focal element bounds

and , cumulative and complementary cumulative representations of belief and plausibility for

LOAS occurrence time can be determined as described in Sect. 2.3 and illustrated in Fig. 3.5.
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Fig. 3.5 Cumulative and complementary cumulative representations of belief and plausibility for
LOAS occurrence time for the evidence space (TML,TML,mTML) defined in Eqs. (3.32)-(3.35)

for a 1 WL, 1 SL system.

Cumulative and complementary cumulative representations of belief and plausibility for
LOAS occurrence time margins are now considered. As before, the starting point for this
representation is the evidence space (TM,TM,m7m) for link failure time defined in Eqs. (3.16)-

(3.18). For (ta,twL) E TM, LOAS occurrence time margin is defined by

MTM(tsL , twL) =

— co for tSL < cx), tyyL = co

tSL twi, for max { tSL , tWL < oo

oo for tyr,/, < tsL = oo.

(3.38)

In turn, the evidence space (MTM, MTM, TrImim) for LOAS occurrence time is defined by
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with

MEM = : t = MTM(ta, tyyL ) for (ta,tn) E TM}, (3.39)

MEM., = {t :t = MTM(ta,twL) for (ta , twz, ) E EMO,

MTM= {MTN( : (i, j) E {1,2,3} x {1,2,3}1,

111MTA/1 (MT-My) = MTV! (77\411),

(3.40)

(3.41)

(3.42)

4 = lower bound for MEM1 ={
— Go for 4L, j = co and ts.L,i < oo

ISL,i -4L,J for max {lapin J} < oo (3.43)

oo for 1,51,i = Go,

{— co for Tin j = co and Ta,i < 00

Iii = upper bound for MD41 = T5L,i — In j for max {la,i, Tin j} < 00 (3.44)

00 for tSL,i = C°.

Given the evidence space (MEM, MTM,111mim) and the associated focal element bounds 4
and //I , cumulative and complementary cumulative representations of belief and plausibility for

LOAS occurrence time margins can be determined as described in Sect. 2.3 and illustrated in Fig.
3.5.
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4. Example Links Used for Illustration

The developments in the following sections of this report consider systems involving a variety
of combinations of WLs and SLs. The purpose of this section is to define and illustrate 2 SLs and
2 WLs that will be used for examples involving (i) 2 SLs and 1 WL, (ii) 2 SLs, (iii) 2 WLs, and
(iv) 2 SLs and 2 WLs. For convenience, the 2 SLs will be referred to as SL 1 and SL 2, and the 2
WLs will be referred to as WL 1 and WL 2.

The following entities underlie the results presented in later sections: (i) evidence spaces

(7SL1 ,TSL15 mSL1) and (TSL29TSL29mSL2) with nSL1 and nSL2 focal elements for SL 1 and SL 2

failure temperatures, (ii) evidence spaces (Twil,Twil,trlwil) and (\TWL29 TWL2 InWL2) with nWL1

and nWL2 focal elements for WL 1 and WL 2 failure temperatures, and (iii) functions Tal(t) ,

TSL2 (t) 9 Tfyll(t) and TWL2(t) that define time-dependent link temperatures for SL 1, SL 2. WL 1

and WL 2. In turn, the indicated evidence spaces and link temperature functions result in
corresponding evidence spaces (IMSL19TMSL19n1SL1,t) (TMSL2 TMSL2 ,n1SL2,t),

(7MK,1 TMWD n1WL1t) and (,TA4WL2 TMWL2 mWL2t) for link failure times as discussed in Sect.

3 with:

(i) properties of _M (\T-SLI,TMSL11m5L1,1) defined by

TMSL1,i = TS21(TSL1,i) = {t :t= TS21(T) = min{t :T = TSL1(t)} for T E Tau},- 

inal,t(TMSL1,i) = nISL1(TSL1,i) = nISL1,i 9

( t Sai 9ISL1,i) = (min(TMSL1,i)9max(TMSL1,i)) 9

for TSL1 i Sill EMSL1,i ETMSL1 and i c 11, 2,..., nSL11 -= SL19

(ii) properties of ( _A4\T-SL29 TMSL2 , mSL2,t) defined by

= {t : t = min{t  : T = TSL2(t)} for T e TsE2,f}, (4.4)TMSL2,j = TSL12(TSL2, j) = TS-L12 (T) 

mSL2,t(TMSL2,j)= mSL2(TSL2,j)= mSL2,j 9 (4.5)

(LSL2,j,TSL2,j)= (min(TMSL2,j), max( -A4SL2,j , )) 9 (4.6)T 

for TSL2,j ETSL29 TMSL2,j ETMSL2 and j e {1, 2,..., nSL2} = ISL2 9

(iii) properties of (\IMWL19TMWL19mWL1,t) defined by
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TMWL1,k = TWLl (TWL1,k) = {t :t = TFr1,11(T)= min{t : T = Tyvn (t)} for T E Tim,k} , (4.7)

(7-.A4w ) = m (7- )— minWL1,t Ll,k WL1 WL1,k WLI,k (4.8)

(WL1,k ,TWL1,k) = (min(TA4WL1,k), max(EA4kvak )) (4.9)

for Twiu E Tw-L1 5 E TM [FLA and k E {1, 2, . • nWL1} = lyvil, and

(iv) properties of (TA/62 ,TMWL2 Mnzt defined by

TMWL2,k = TWL1 2 (TWL2 ,k) = It : t = TT,L1 2 (T) = minft : T TWL2 (t)} for T E 2 k} ,

mWL2,t (TMWL2,l) = mWL2 (TWL2 ,I) = mWL2,1

(bFL2,1 ,TWL2,1) = (Inin(TA4WL 2 ,1), max(TMK,2,/ )),

for TWL2,1 E TwL2 TA/IFT,L21 E TM[wL2 and l E {1, 2, ..., nWL2} = IWL2 •

With respect to notation, the min {—} condition in Eqs.(4.1), (4.4), (4.7) and (4.10) is not

needed if the associated temperature function (i.e., TsLI (t) , T 2 (t) , TWL1(t) or Tin 2 (t)) is strictly

increasing. Also, the representations in Eqs. (4.3), (4.6), (4.9) and (4.12) define the minimum and
maximum failure time values in the corresponding focal elements and are not intended to imply
that focal elements are intervals.

In the event that the evidence spaces (7 SL1, m SL1) (TsL2 SL2 m SL2) , (Twil ,Tyai , Mini)

or (Tif,12,TwL2,mln2) have focal elements that that do not always result in link failure, then the

corresponding focal elements for link failure time will include an indicator variable too as indicated

in Sect. 2.4. Conceptually, this inclusion occurs in Eqs. (4.1), (4.4), (4.7) and (4.10) with an

assignment of too to Ts-21(T), TS-22(T), TF-v1,11(T) or TF-a12 (T) if the corresponding link does not fail

at temperature T. The same numeric value is assumed to be used for all occurrences of G. This is

important because LOAS occurs only if the SL system fails before WL system. Specifically, LOAS
is assumed to not occur if the SL system and the WL system fail at the same time. Thus, if values
for occur in an analysis for both SL system failure time and WL system failure time, it is

important that to, have the same the same value for both systems so that the equality of the assigned

values of too will indicate that LOAS does not occur.
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For the present section (i.e., Sect. 4), the evidence spaces (TMA1,TMSL1 Sat)

(TML2 'TM SE2 ,n151,2,t) 
and (TM—.- - ITL1 TMWL1 , mnl,t) 

for link failure time are combined to produce

the product evidence space (TM, TM, mTM) with

and

4.1.

TA4= TA4SL1 x TA4SL2 x TA/61, 
(4.13)

TMA = TA/61,, x TMSL2, j TMWL1,k e TM, (4.14)

TM = {T.Muk : (i, j ,k) c I= {1, 2,..., nSL1} x {1, 2,..., nSL2} x {1, 2,..., nWL1}} (4.15)

171
TM (EMlik) = Tri sL1,t (TMSL1,i)171 SL2,t (IMSL2,j)171WLI,t (TA/61,k) = mijk •

(4.16)

Example links that will be used for illustration are defined and illustrated in Table 4.1 and Fig.
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Table 4.1 Definition of 2 WLs and 2 SLs used for illustration.

Link Temperature Function

T(t) -  
ToTx 

,0 200 min
To + (Tx - To) exp(-rt)

SL 1 Properties

Temperature Function Tsu(t): T(0) = To = 100 °C, Too = 1100 ° C, r = 0.04 min-1

Failure Temperature Focal Elements: TSL1,1 = [600, 780 o C], TSL1,2 = [625, 875 oC],TSL1,3 = [675,840 °C],

TSL1,4 = [850, 975 ° C], TSL1,5 = [925,1050 °C]

BPAs: m 1 0 1 m (7-SL1,-SL1,1 = - • -, ,-SL1,2 = 0.1, In SL1(TSL1,3) = a ISL1(TSL1,4) = 02, in SL1(Tsy,1,5) = 0.4

Failure Time Focal Elements: T.A4syd,l = [62.12, 79.84 min], T.A4syd,2 = [64.43, 91.52 min],

TMSL1,3 [69.13, 86.88 min], ENISL1,4 = [88.16,108.9 min], EMSL1,5 = [99.19,133.7 min]

SL 2 Properties

Temperature Function Ta2(t): T(0) = To = 100 °C, = 950 ° C, r = 0.045 min-1

Failure Temperature Focal Elements: TSL2,1 = [590, 790 ° C], T512,2 = [640, 910 ° C], TSL2,3 = [800,1000 ° C],

TSL2,4 = [870, 940 °C], Tsy,2,5 = [975,1175° C]

BPAs: m SL2(TSL2,1) = 0 .1, nISL2(TSL2,2) = 0.1, MSL2(TSL2,3) mSL2(TSL2,4) = 0.2, mSL2(TSL2,5) = 0.2

Failure Time Focal Elements: 7:114,512,1 = [58.54, 83.04 min], 7:11/1n2,2 = [63.67,117.0 min],

EMSL2,3 = [84.76, 200 min] , TA4---SL 2,4 = [100.6,148.5 min], 7714a2,5 = [tœ , to, min] with to, =107

WL 1 Properties

Temperature Function Tw-L1 (t): T(0) = To =100 °C,Tœ = 1000 ° C, r = 0.035 min-1

Failure Temperature Focal Elements: 7k1,1 = [500, 700 C], ITWL1,2 = [550, 750 ° C], TWL1,3 = [650, 860 ° C],

TWL1,4 = [825,1025 °C], TWL1,5 = [880, 980 °C]

BPAs: myyLl (Tyval) = 0.4, mwil(Tyva2) = 0.2, mwn (iino ) = 0.2, myul(TsE1,4) = 0.1, my1,L1(Tiva5) = 0.1

Failure Time Focal Elements: T.A4Ful,l = [62.78, 86.99 min], T.A4wL12 = [68.51, 94.17 min],

7-.A4w-L1,3 = [80.47,114.6 min], 7-.A4wL14 = [107.1, 200 min] u ,T.A4n15 = [119.7,174.0 min] with tœ = 107

WL 2 Properties

Temperature Function Tw-L2 (t) : T(0) = To =100 °C,Toc, = 900 °C, r = 0.034 min-1

Failure Temperature Focal Elements: TwL2,1 = [490, 650 ° C], Tin2,2 = [525, 725 ° C], TwL2,3 = [575, 680 ° C],

TWL2,4 = [700, 950 °C], 741,2,5 = [775, 875 ° C]

BPAs: min2 (7k2,1) - 0.4, mwL2 (TwL2,2) - 0.2, mw.L2(TwL2,3) - 0.2, inwL2 (TWL2,4) 0.1, m (7" WL2 -WL2,5) 0.1

Failure Time Focal Elements: T.A4w-L2,1 = [66.40, 89.26 min], IA PriL 2 2 = [71.06,103.0 min],

EA4)41, 2,3 = [77.94, 94.35 min], T.Minzzi = [98.01, 200 min] u EA/k25 = [114.8,165.7 min] with tœ = 107
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Fig. 4.1 Temperature functions Tsyd(t) , TsE2(t) , Tfyll(t) and TWL2(t) defined in Table 4.1.

As an additional illustration, the CPF, CBF and CDF for the link failure temperatures defined
in Table 4.1 are shown in Fig. 4.2. The CPFs, CBFs and CDFs in Fig. 4.2 are generated in the
same manner as used to generate the CPF, CBF and CDF in Fig. 2.2. Specifically, the CPFs and
CBFs are generated with the computational procedure described in conjunction with Eqs. (2.55)-
(2.57), and the CDFs are generated by assigning a uniform distribution to each failure temperature
focal element as described in conjunction with Eqs. (2.16)-(2.21).
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Fig. 4.2 Summary CPFs, CBFs and CDFs for the link failure temperatures defined in Table 4.1:
(a) SL 1, (b) SL 2, (c) WL 1, and (d) WL 2.

The CPFs, CBFs and CDFs for the link failure times that result from the link failure

temperatures summarized in Table 4.1 and the link temperature functions defined in Table 4.1 and

illustrated in Fig. 4.1 are shown in Fig. 4.3. The CPFs and CBFs in Fig. 4.3 are constructed as

indicated in conjunction with Eqs. (2.48)-(2.50) with the focal elements for link failure time

defined in Table 4.1.
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Fig. 4.3 Summary CPFs, CBFs and CDFs for the link failure times that result from the link
temperature functions defined in Table 1 and the link failure temperatures summarized in Table 1
and Fig. 4.2: (a) SL 1, (b) SL 2, (c) WL 1, and (d) WL 2.

There are two ways in which the CDFs in Fig. 4.3 can be constructed. One way is to (i) generate
a large random sample

= 1, 2, ..., nR, (4.17)

of link failure temperatures from the link failure temperature CDF for the link under consideration,
(ii) determine the link failure time t(Ti) for each sampled failure temperature, and (iii) and

approximate the CDF by
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nR {1 for t(Ti) t
CDF(t) = prob(t t)L- E6t[t(Ti)] 1 nR with gt NT; )1 

= 0 otherwise.

For a link temperature curve T(t) defined in Table 4.1 and illustrated in Fig. 4.1,

{(-1 I r)ln[To (To — Ti) l T(To — T0)] for T(0) T(200)
t(TO=

to, for T(200) <

(4.18)

(4.19)

as indicated in Eq. (2.73). Another way to generate the CDFs in Fig. 4.3 is to define an appropriate
density function over the sample space for link failure time and then integrate this density function
to obtain the desired CDF. However, care is required with this approach to appropriately
incorporate (i) focal elements for link failure time that may not be closed intervals when the link
failure temperature curve is not increasing and (ii) nonzero probabilities associated with the place
holder times to, used to indicate nonfailure of a link. The CDFs in Fig. 4.3 were generated with

the indicated sampling-based approach in Eqs. (4.17)-(4.19) with a sample of size nR =105 .

Evidence spaces (T.Tal,TIFsil,MSL1,TF) (EFSL2 SL2 9 MSL2,TF) (TTWL1 5 IFFWL1 9 MWL1,TF) and

(EFWL 2 5 TFWL 2 5 MWL2,TF) for the actual temperatures at which SL 1, SL 2, WL 1 and WL 2 fail can

also be defined. These focal elements have a role in the determination evidence spaces for WL/SL
failure temperature margins in Sect. 12. As an example, the evidence space

(ETWL1,97 WL1 9 MTF ,WL1) for the temperatures at which at which WL 1 fails is defined by the

following transformations of the evidence space (\EA4WL1 TMWL1 MWL1,t) for WL 1 failure times:

with

I:FWD — {T :T — Tryil (t) for t E E/Ww-L1}, (4.20)

T.Twil,k = T = TWL1(t) for t E EA/61,kl, (4.21)

ICFn1 = , k = 1, 2, ..., nWL1} , (4.22)

MTF ,WL1(ETWL1,k) = MWL1,t(TMWL1,1c) = MWL1(7-WL1,1c) for k =1, 2, ..., n WL1, (4.23)

t )(TF in1,k9TF Wil,k) (min(ETWL1,k max(ETtvw =  (T' Wil ( —WL1,k 5T (T WL1 WL1,k)) (4.24)

TWL1(t) = 00 for t = co (4.25)

corresponding to no link failure. The evidence spaces ( ,SL1 IFFSIA 5 MSL1,TF)

(1: TSL2 ,TF SL2 ,MSL2,TF) 5 and (EFWL2, FT/TT', 2 / MWL2,TF) are defined similarly through
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transformations of the evidence spaces (TM\---SL1,TMSL1,mSL1,t) (TMSL2,TMSL2 mSL2,t), and

(TMWL 2 TMWL2 mWL2,t) •

The focal elements associated with the evidence spaces ('T ..- - SL1,TFSL1,mSL1,TF) 9

(TYSL2 9 TFSL2 9 mSL2,TF) , (TYWL1, TFW.L1 9 mWL1,TF) and (T.FN - - WL 2 , T FWL 2 9 mWL2,TF) for the example

links defined in Table 4.1 are summarized below:

(i) T.FsL2,1 = [600,780 °C],7 •0L2,2 = [625,875 °C], EFR,2,3 = [675,840 °C],

T.Fs/2A = [850, 975 °C] , 7:FsL2,5 = [925,1050° C] for (TYRA , TIFsu , nISLA,TF ) •

(ii) TYSL2,1 = [590,790 °C] , 7:FsL2,2 = [640,910 °C], 7:Fs1,2,3 = [800,950 °qv T.,

Tra2,4 = [870, 940 °C], T.FsL2,5 = [T. , Too°C] with To = oo for (T.Ta2,TIFSL2,mSL2,TF ) •

7YWL1,1 = [500, 700 °C], 7:FWL1,2 = [550, 750 °C] TYWL1,3 = [650, 860 °C] ,

7:Fiva4 = [825,1000 oC] u To , TYWL1,5 = [880, 980 °C] for (NT-WL1 9 TYWL1 mWL1,TF) •

(iv) 7:FWL2,1 = [490, 650 °C] , EFWL2,2 = [525, 725 °C] , T.FwL23 = [575, 680 °C] ,

TYWL2,4 = [700, 900 °C] u , 7:FyL2,5 = [775, 875 °C] for (7:FwL2 , TIFWL2 n/WL2,TF ) •

Further, the CPFs, CBFs and CDFs for the actual link failure temperatures that result from the link
failure temperatures summarized in Table 4.1and the link temperature functions defined in Table
4.1 and illustrated in Fig. 4.1 are shown in Fig. 4.4. The CPFs, CBFs and CDFs in Fig. 4.4 are
constructed in the same manner as the CPFs, CBFs and CDFs in Fig. 4.3.
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Fig. 4.4 Summary CPFs, CBFs and CDFs for the link failure temperatures that result from the link
temperature functions defined in Table 4.1 and the link failure temperatures summarized in Table
4.1 and Fig. 4.2: (a) SL 1, (b) SL 2, (c) WL 1, and (d) WL 2.
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5. Representation of LOAS with Evidence Theory for a WL-SL System with
2 SLs and 1 WL

The developments in this section are for a WL-SL system with 2 SLs and 1 WL. Two
possibilities for the definition of LOAS are considered: (i) failure of both SLs before failure of the
WL, and (ii) failure of either SL before failure of the WL.

5.1 LOAS Defined by Failure of Both SLs before failure of the WL

The occurrence of LOAS defined by the failure of both SLs before the failure of the WL is
considered in this section. Specifically, LOAS is assumed to occur for elements of the set

= { (t sn.,t sE2,twL) : (t t 5E2, twn) E TM with max ft al, t st,21 < twill} •

In turn, the belief Bel(ri) for the occurrence of LOAS is given by

with

nSL1 nSL2 nIVL1

Bel(4) = E nITM (TMuk) 'LEE åln(TMik)muk
7:Mijkgri i=1 j=1 k=1

1 for TM k c fi 1 for max,IT, TSL2,j} < LWL1,k
616 jk 

j 
( =

0 otherwise 0 otherwise

(5.1)

(5.2)

(5.3)

defined to pick out the elements of TM that are subsets of . Similarly, the plausibility Pl(4)

for the occurrence of LOAS is given by

nSL1 nSL2 nifL1

Pl(4) = E mTM (TMA)=ZEE8P1(TMA)miik
o~T.muknft i=1 j=1 k=1

(5.4)

with

Pl(7:1"iik)=

1 for QS ~ jk n E.1 1 for max {L t SL2,4 <T TfL1,k

0 otherwise 0 otherwise
(5.5)

defined to pick out the elements of TM that intersect fi .

As examples, the calculation of Bel(4) and Pl(4) for the links defined in Table 4.1 and Fig.

4.1 yields the results
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Bel(4)={1.600 x10-2 for SL 1, SL 2, WL 1000 0-2 f1. x1or SL 1, SL 2, WL 2

x10-2{1.6021.005 x10-2

and

4.880 x10-1
Pl(4)

5.360 x10-1

for SL 1, SL 2, WL 1

for SL 1, SL 2, WL 2

for SL 1, SL 2, WL 1

for SL 1, SL 2, WL 2

4.881 x 10-1 for SL 1, SL 2, WL 1

5.361 x10-1 for SL 1, SL 2, WL 2

(5.6)

(5.7)

with (i) the values for Bel(4) and Pl(E1) in the initial equalities determined as indicated in Eqs.

(5.2) and (5.4) and (ii) the values for Bel(ri) and Pl(4) in the following approximate equalities

determined in a sampling-based verification procedure with a sample of size 107 as described in
Sect. 6.2. The agreement of the two computational procedures provides a strong verification result
that Bel(fi) and Pl(4) are being calculated correctly.

Another analysis outcome of possible interest is an assessment of which SL is the final SL to
fail when LOAS occurs. Specifically, belief and plausibility can be determined for the final SL to
fail when LOAS occurs. This determination corresponds to determining belief and plausibility for
the sets

and

,c1;12 = I RSE1 9 t SL2,tWL1]:[t t SL2 ,tWL1] E Elvt with tal t SL2 < tWL1}

r1;2.<1. = {[tsu t sE2 trim] : [t ,t sE2,twil] E TA4 with k sy,2 tSL1 < t WL1} •

(5.8)

(5.9)

Specifically, belief and plausibility for the occurrence of LOAS with SL 2 being the last SL to fail
are given by

with

nSL1 nSL2 nWLl

Bel(Eti2)= TM (TIVIijk) = E 8B1,2 (TA4ijk)nlijk
T.A40 C.Ci;i<2 i=1 j=1 k=1

(5.10)

nSL1 nSL2 nFfiLl

Pl (4;i<2) = nITM (TMijk) = E E E SP1,2 (TjWijk)inijk (5.11)
0~7:Alik nri;l<2 i=1 j =1 k=1
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{1 forA25 ~ T.Mik n4,1<2 , - 1 for t stLi t a2, j< T wil,k=

1 for T.A40. ft,<, 1 for lau t a2J and Ta2, < t w-L1,k
6 B1:1<2(Tiqjk) = 'I =

0 otherwise 0 otherwise,

6 P1;1<2(TA4 jk) =
0 otherwise 0 otherwise.

(5.12)

(5.13)

Similarly, belief and plausibility for the occurrence of LOAS with SL 1 being the last SL to fail
are given by

with

P/(4;2<1) =

nSL1 nSL2 nWL1
B el (4;21) = E n 1 TM (TA4 jk)= E E E 6B1;2<1 (IA4 j k )mijk

TNlykgr'1;2<1 i=1 j=1 k=1
nSL1 nSL2 nWL1

mTM (7:1"ijk) = E E E 6P1;21 (T•Mijk )rnijk

nr1;2<1 i=1 j=1 k=1

1 for TA% c 1 for Ta2 t au and Tau < t wid,k
6 B1;2<1(TMA) = =

0 otherwise 0 otherwise,

1 for 0 ~ n 4.,<, 1 for t t < I ',v.-L.1,k
6 P1;2<1(TAllijk) = '` I =

0 otherwise 0 otherwise.

(5.14)

(5.15)

(5.16)

(5.17)

As examples, the calculation of Be/(4;1~2), /3/(4;i<2), Be/(4;2<i ) and /3/(4;2<i) for the links

defined in Table 4.1 and Fig. 4.1 yields the results

Bel(41<2) =

Pl(4;12.

0.000 x10° for SL 1, SL 2, WL 1

0.000 x10° for SL 1, SL 2, WL 2

0.000 x10° for SL 1, SL 2, WL 1

0.0000 x10° for SL 1, SL 2, WL 2,

2.500 x10-1 for SL 1, SL 2, WL 1

2.500 x 10-1 for SL 1, SL 2, WL 2

2.501 x 10-1 for SL 1, SL 2, WL 1

2.502 x 10-1 for SL 1, SL 2, WL 2,
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and

Bel(4;2<i

pl(fi,„i)=

2.000 x10-3 for SL 1, SL 2, WL 1

2.000 x10-3 for SL 1, SL 2, WL 2

1.981 x10-3 for SL 1, SL 2, WL 1

2.010 x10-3 for SL 1, SL 2, WL 2

2.380 x10-1 for SL 1, SL 2, WL 1

2.860 x10-1 for SL 1, SL 2, WL 2

2.380 x10-1 for SL 1, SL 2, WL 1

2.862 x10-1 for SL 1, SL 2, WL 2

(5.20)

(5.21)

with (i) the values for Bel(Cv<2), P/(4;i<2) , Be/(4;2<i) and P/(4;2<i) in the initial equalities

determined as indicated in Eqs. (5.10), (5.11), (5.14) and (5.15), and (ii) the values for Bel(fm<2)

, Pl(En<2), Bel(4;2<l) and Pl(4;2<1) in the following approximate equalities determined in a

sampling-based verification procedure with a sample of size 107 as described in Sect. 6.3. The
agreement of the two computational procedures provides a strong verification result that
Be/(4;1<2), Pl(Ai<2), Bel(4;2<l) and P/(4;2<1) are being calculated correctly.

5.2 LOAS Defined by Failure of Either SL before Failure of the WL

The occurrence of LOAS defined by the failure of a single SL before the failure of the WL is
considered in this section. Specifically, LOAS is assumed to occur for elements of the set

f-2 = f(tsil tSL2,tWL1) : (t SL1,t SL2 tWL1) E

In turn, the belief Bel(L2) for the occurrence of LOAS

T.N1 with min ftsil,ts121 < twn}}. (5.22)

is given by

nSL1 nSL2 nWL1

Bel(C2) =

with

82(7:1"iik)

E InTM (7:All4jk) =
ZM~kc,C2

1 for T.Myk c f.,2

0 otherwise

E E E 15132(7-Mjk)nlijk
i=1 j=1 k=1

1 for min {Tal 1 < t

(5.23)

(5.24)
0L2,j WL1,k

0 otherwise

defined to pick out the elements of TM that are subsets of L. . Similarly, the plausibility Pl(C2)

for the occurrence of LOAS is given by
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with

nSL1 nSL2 nWL1

Pl(r2) = E nITM (Th/luk) =E E P2(77"zik)lnyk
0~7-Nlyknr2 i=1 j=1 k=1

1 for ~ jk n f2 1 for mil-1{t t SL2,j} <T Wak
P 2 ( T =jk

0 otherwise 0 otherwise

defined to pick out the elements of TM that intersect L..

(5.25)

(5.26)

As examples, the calculation of Bel(r2) and Pl(C2) for the links defined in Table 4.1 and

Fig. 4.1 yields the results

and

Bel(r2)

Pl(r2)

1.340 x 10-1 for SL 1, SL 2, WL 1

1.100 x 10-1 for SL 1, SL 2, WL 2

1.340 x10-1 for SL 1, SL 2, WL 1

1.101 x 10-1 for SL 1, SL 2, WL 2

8.720 x10-1 for SL 1, SL 2, WL 1

9.040 x 10-1 for SL 1, SL 2, WL 2

8.720 x10-1 for SL 1, SL 2, WL 1

9.039 x 10-1 for SL 1, SL 2, WL 2

(5.27)

(5.28)

with (i) the values for Bel(f2) and Pl(r2) in the initial equalities determined as indicated in Eqs.

(5.23) and (5.25), and (ii) the values for Bel(f2) and Pl(r2) in the following approximate

equalities determined in a sampling-based verification procedure with a sample of size 107 as
described in Sect. 6.2. The agreement of the two computational procedures provides a strong
verification result that Bel(r2) and Pl(r2) are being calculated correctly.

Similarly to the results presented in Eqs. (5.8)-(5.17), belief and plausibility can be determined
for the SL whose failure results in LOAS. This determination corresponds to determining belief
and plausibility for the sets

and

E2;1<2 = 1 [tSL1 tSL2 , tWL1 • • [tSLl , tSL2 tWil E TM with tal tSL2 and tad < twL1 } (5.29)
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,c2;21 -{[tal 9 t SL2,411,1] : LtsLl ,t sE2,twil] E TM with t sE2 sil and t sE2 < twill. • (5.30)

Specifically, belief and plausibility for the occurrence of LOAS with SL 1 being the SL whose
failure results in LOAS are given by

with

0=7:Muknru<2 i=1 j=1 k=1

{1 for T.Mik g f.,20.<2 1 for TRA,i t sE2,f and TRA,i < t 14,11,k

nSL1 nSL2 nWL1
Bel (r2;12) = E mTM (ThIlijk)= EE E 8B2;1<2 (Tjqjk )mijk 5

TiWyk gf2;1<2 i=1 j=1 k=1

nSL1 nSL2 nWL1

(5.31)

mc2;1<2)= triTM (TMijk) = E E E 8P2;1<2 (T:Mijk)nlijk (5.32)

6B2;1<2 (TMijk) =
0 otherwise 0 otherwise,

1 for 0 ~ jk f-2;1<2 L1,1— for t .<TSL2, J . and t SL1,i< TWL1,k
6P2;1<2 (TA/ly k

0 otherwise 0 otherwise.

(5.33)

(5.34)

Similarly, belief and plausibility for the occurrence of LOAS with SL 2 being the SL whose failure
results in LOAS are given by

with

nSL1 nSL2 nWL1
Bel(f2.2<1)= 1117m(TMijk)= E E E 6132;2<1 (TA/11jk )mijk

TA4ijk f -'2 2<I i=1 j=1 k=1

nSL1 nSL2 nWL1

(5.35)

Pl(42<1)= inTM (TMijk) = E E E 6P2;2<1 (IMijk)Inijk (5.36)
0~T.Muk nr2;2<1 i=1 j=1 k=1

1 for T.A4uk c ,C2;2<1
6B2;2<1 (7-Mi k =

0 otherwise

1 for 0 ~T,A4uk n f2;2<1

6/32;2<1 (TA4i j k =
0 otherwise

1 for IsL2,./ t SL14 and IsL2J < t wil,k

0 otherwise,

1 for t SL2,jTSL1,i and t_ SE2,j< I Wak

0 otherwise.

(5.37)

(5.38)

As examples, the calculation of Bel(r2;1<2), Pl(C2;1<2), Bel(f2;2<1) and Pl(C2;2<1) for the

links defined in Table 4.1 and Fig. 4.1 yields the results
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and

Bel(f,2;12

pl(r2;i,,) =

Bel(f-2;21)=

Pl(f-2;21)=

6.000 x10-2 for SL 1, SL 2, WL 1

4.400 x10-2 for SL 1, SL 2, WL 2

6.002 x10-2 for SL 1, SL 2, WL 1

4.401 x 10-2 for SL 1, SL 2, WL 2,

6.520 x10-1 for SL 1, SL 2, WL 1

7.240 x10-1 for SL 1, SL 2, WL 2

6.522 x10-1 for SL 1, SL 2, WL 1

7.241 x 10-1 for SL 1, SL 2, WL 2,

1.200 x10-2 for SL 1, SL 2, WL 1

1.200 x10-2 for SL 1, SL 2, WL 2

1.203 x10-2 for SL 1, SL 2, WL 1

1.199 x10-2 for SL 1, SL 2, WL 2

6.080 x10-1 for SL 1, SL 2, WL 1

6.080 x10-1 for SL 1, SL 2, WL 2

6.083 x10-1 for SL 1, SL 2, WL 1

6.078 x10-1 for SL 1, SL 2, WL 2

(5.39)

(5.40)

(5.41)

(5.42)

with (i) the values for Bel(f2;12) , Bel(f2;21) and Pl(f2;21) in the initial equalities

determined as indicated in Eqs. (5.31), (5.32), (5.35) and (5.36), and (ii) the values for Bel(f24,2)

, Pl(C.,2;12), Bel(r2;21) and /3/(r2;21) in the following approximate equalities determined in a

sampling-based verification procedure with a sample of size 107 as described in Sect. 6.3. The
agreement of the two computational procedures provides a strong verification result that
Bel(r2;12), Pl(f2;12), Bel(f.,2;21) and Pl(f.,2;21) are being calculated correctly.
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6. Sampling-Based Verification

6.1 Background

As discussed and illustrated in Refs. [71; 72] for WL/SL systems and in Refs. [73-82] for many
additional contexts, model/analysis verification based on the comparison of results obtained in two
independent analyses is an important part of the assessment of models and software used in the
analysis of high consequence systems. Model verification and model validation are two related,
but different and often confused, concepts. Two widely used definitions are (Ref. [82], p. 3):

Verification: The process of determining that a model implementation accurately represents the
developers' conceptual description of the model and the solution of the model.

Validation: The process of determining the degree to which a model is an accurate representation
of the real world from the perspective of the intended uses of the model.

Thus, verification relates to assessing the correctness of the mathematical development and
implementation of a model. It is in this sense that verification is used in this presentation.

With respect to verification, it is possible to define a way to calculate Bel(4),Pl(4),Bel(4)

and Pl(4) that is independent of the computational procedures defined in Sects. 5.1 and 5.2. This

alternative computational procedure is based on the following previously discussed evidence space
properties:

(i) An evidence space is simply an incompletely defined probability space.

(ii) The belief and plausibility of a set as defined for an evidence space correspond to the
smallest and largest probabilities that can be assigned to this set for probability spaces that are
consistent with the evidence space.

Thus, if a probability space can be defined that is consistent with the evidence space
(TM, TM, mTM ) and has the smallest possible probabilities p(4 ) and p(r2) for the sets 4 and

.C.2 defined in Eqs. (5.1) and (5.22), then the probabilities p(.4) and p(G2) obtained in a

probabilistically-based calculation should be the same as Bel(4) and Bel(4) obtained as

indicated in Eqs. (5.2) and (5.23). Similarly, if a probability space can be defined that is consistent
with the evidence space (TM, TM, mTM ) and has the largest possible probabilities p(4 ) and

p(4) for and , then then the probabilities p(4 ) and p(4) obtained in a probabilistically-

based calculation should be the same as Pl(4) and Pl(f2) obtained as indicated in Eqs. (5.4)

and (5.25).

For most evidence space problems, defining the indicated probability spaces is too difficult to
provide an effective verification procedure. However, such definition is possible for the WL/SL
problem under consideration. Specifically, the likelihood of LOAS goes (i) down as the time of
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WL failure decreases and the time of SL failure increases and (ii) up as the time of WL failure
increases and the time of SL failure decreases.

6.2 Verification for Bel(4) Bel(A), Pl(4) and Pl(A)

To obtain the desired probability space for checking the calculation of Bel(4) and Bel(A)

with the representations defined in Eqs. (5.1) and (5.22), (i) the most probability possible (i.e.,

nIWL1,t (TMWL1,k) = n1WL1,k) is assigned to t flu,k 5 with the result that

ALIFL1,k) = n1WL1,1- (T•MWL1,k) = mWL1,k (6.1)

(ii) the most probability possible (i.e., m TA4 = ( MSL1,t and mSL2,t (TA4SL2,j) = n SL1, is

assigned to Tsai and TsL2,j , with the result that

.13(THA,i)= rrISL1,t(IMSE1,i) = TrISL1,i

ATSE2,j) = n SL2,t (TMSL2, = r n SL2 , 9

(6.2)

(6.3)

and (iii) a probability of zero is assigned to every subset of T.A4 that does not contain one or
more of the vectors [ie , tsL2, j L WL1,k ] • This produces the probability space that has the smallest

possible probabilities for the sets ri and f2 for a probability space that is consistent with the

evidence space (TM, TM, mTM) and the properties that (i)

P([ISLI4 5 ISL2,j WL1,k]) = mSci,r (TMSL1,i)ln SL2,t (TMSL2 ,j)111WL1,t (77WWL1,k) = rnijk
(6.4)

for (i, j,k) belonging to the set / defined in Eq. (4.15) and (ii) any set that does not contain one

or more of the vectors [Tal,/ TSL2, j yvid,k] has a probability of zero. Then, with a large random

sample

[tSL1r ,tSL2r ,tWL1r],r =1, 2,...,nR, (6.5)

of size nR from the failure time vectors [ 1,/ ISL2, j, t yr7L1,k generated consistent with the

probabilities in,ik , Bel(4) and Bel(A) can be approximated by

for i = 1,2 with

nR

Bel(Li)L-' Bi([tair 5 tSL2r ,tWL1,]) 1 nR = p(4) (6.6)
r=1

71



and

6B1([61,1,- ,tSL2, ,tWll-r]) ={1 for max{tSL1, ,tSL2r} < tWL1,

0 otherwise

( B 2 ([tSL1r ,tSL2r ,tWL1,]) = 
{1 for min {tSL1, ,tSL2r} < tWL1,

0 otherwise.

(6.7)

(6.8)

The estimates for Bel(4) and Bel(r2) indicated in Eq. (6.6) are illustrated in Eqs. (5.6) and

(5.27) for the links defined Table 4.1 and Fig. 4.1.

Similarly, to get the desired probability space for checking the calculation of Pl(4) and

Pl(r2) , (i) the most probability possible (i.e., Mprill,t (EA4kul,k) = inWL1,k) is assigned to T Wil,k ,

with the result that

p(tWL1,k) = 111WL1,t (TMWL1,k) = n1WL1,k (6.9)

(ii) the most probability possible (i.e., M M MSL1,t 5E14 = SL1,i and MSL2,t (EMSE2,j) = MSL1,j) is

assigned to t sn,, and t SL2, , with the result that

SL1,i) = n I Sat (TMSL1,i) = r n SL1,i

P( t SL2, j) = n SL2,t (M4SL2,j) = r r SL2,

(6.10)

(6.11)

and (iii) a probability of zero is assigned to every subset of TM that does not contain one or more
of the vectors [t sL1,i , t SL2,pinl,k] • This produces the probability space that has the largest

possible probabilities for the sets 4 and f2 for a probability space that is consistent with the

evidence space (TM, TM, mTM) and the properties that (i)

1°([L SL1,i L SL2,j 'TWL1,k]) = 171SL1,t (EMSL1,i)111SL2,t (EMSL2,j)111WL1,1- (Th4ifil,k) = rnijk (6.12)

for (i, j,k) E Z and (ii) any set that does not contain one or more of the vectors

[ t L SL2,j ,T YTTL1,k] has a probability of zero. Then, with a large random sample

[tSL1,,t5L2r,tWL1,-],r =1, nR, (6.13)

of size nR from the failure time vectors [t sL1,i, t sL2J,T yul,k] generated consistent with the

probabilities myk , Pl(4) and Pl(E2) can be approximated by
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nR
1:1(4),-Egpi([tSL1,,tSL2,,tWL1,])1

r=1
(6.14)nR p(ri)

for i = 1, 2 with

1 for max{tSL1r,tSL2,} <tWL1,-
(6.15)8p1([ta1r,tSL2,,tWL1,])=

0 otherwise

and

for min ftSL1,,tSL2,1 <tWIAr
6 P2 ([61,1,,L51,2,,tWL1r]) — (6.16){1

0 otherwise.

The estimates for Pl(4) and Pl(C2) indicated in Eq. (6.14) are illustrated in Eqs. (5.7) and (5.28)

for the links defined Table 4.1 and Fig. 4.1.

The representations for belief and plausibility for L1 and r2 in Sects. 4.2 and 4.3 are

computationally easier to implement than the sampling-based approximations described in this
section. The significance of the sampling-based approximations is that they provide a second
independent way to obtain belief and plausibility for verification of results obtained in the manner
described in Sects. 4.2 and 4.3.

6.3 Verification for Bel(Cm<2),Bel(4;2<i), Pl(Cm<2) and P/(4;2<1)

Defining probability spaces to verify the calculation of Bel(4;1<2) and Bel(4;2<1) for the sets

4;i<2 and 4;2<1 defined in Eqs. (5.8) and (5.9) is now considered. The following assignments are

made for Bel(Cm<2): (i) the most probability possible (i.e., 111WL1,t (TMTFL1,k) = 111WL1,k) is assigned

to t flu,k , with the result that

ALWL1,k) = 171WL1,t (M161,k) = rnWL1,k (6.17)

(ii) the most probability possible (i.e., r n SL1,t (IMSL1,1) = n SL1,i ) is assigned to Tal,, , with the result

that

Aisil,i)= 111SL1,t = mSL1,i (6.18)

(iii) the most probability possible (i.e., n SL2,t (7MSL2,j) r SL1, j ) is assigned to t sL2J together

with the additional assumption p(Ta2,j, t = 1.0 which is made to result in (t SL2,j,TSL2,j)
being sampled as a pair in a following sampling-based analysis, with the result that
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SL2,j) = MSL2,t(EMSL2,j) = MSL2,j and 19(isi,24 L SL2,j) = 1.0, (6.19)

and (iv) a probability of zero is assigned to every subset of TA4 that does not contain one or more
of the vectors [Isil,i, t sE2 t yvn,k] . This produces the probability space that has the smallest

possible probabilities for the set 4;1,2 for a probability space that is consistent with the evidence

space (TM, TM, mTM) and the properties that (i)

WL1,k]) = msz,l,r (1A4SL1 i)111 (EMS1,2j)in WL,k (M4WW) = nitikSL2,t
(6.20)

for (i, j,k) belonging to the set / defined in Eq. (4.15) and (ii) any set that does not contain one

or more of the vectors [imp t SL2J t WL1,k] has a probability of zero. Then, with a large random

sample

[tSL1r ,tSL2r,tSL2r ,tWL1r],r = 1, 2, ..., nR, (6.21)

of size nR from the failure time vectors [Taw t SL2,j, TSL2,j , —t wL1,k] generated consistent with the

probabilities mok and the conditional probability v(IA,, A . ,,L2,j I , t SL2,j) = 1.0 , Be/(4;1~2) can be

approximated by

nR

Bel(4;1<2) = igB([tSLir 5tSL2r,tSL2r 5tWL1r]) / nR = p(fm<2 ) (6.22)
r=1

with

1 for tSLlr tSL2,, and tSL2r < tWL17,
(6.23)B([61,1r ,tSL2,,tSL2r ,tWL1,]) =

0 otherwise.

The approximation for Be/(4;2~1) has the same form as the preceding approximation for

Be/(4;1~2) with the roles of SL 1 and SL 2 reversed. The resultant estimates for Bel(.41<2)

indicated in Eq. (6.22) are illustrated in Eq. (5.18) for the links defined Table 4.1 and Fig. 4.1.
Similarly obtained estimates for Be/(4;2~1 ) are illustrated in Eq. (5.20).

Defining probability spaces to verify the calculation of Pl(4;1<2) and Pl(4;2~1) for the sets

4;1<2 and .42<1 defined in Eqs. (5.8) and (5.9) is now considered. The following assignments are

made for P/(4;i<2) : (i) the most probability possible (i.e., MWL1,t(TMWL1,k) = MWL1,k) is assigned

to TWL1,k with the result
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13(411,1,k) = rilwat (TMWL1,k) = rnWL1,k (6.24)

(ii) the most probability possible (i.e., mal,t (M/61,i) = rn SL1,1 and nISL2,t(TMSL2,j) = 111SE1,j) is

assigned to t sai and t sL2J , with the result that

SL1,i) = n Sat (TNISL I ,i) = 1 1SL1,i

SL2,j) = 111SL2,t (TMSL2, j) = n SL2, j

(6.25)

(6.26)

and (iii) a probability of zero is assigned to every subset of TM that does not contain one or more
of the vectors [t ALL, t SE2J4L1,k] • This produces the probability space that has the largest

possible probability for the set f1;1<2 for a probability space that is consistent with the evidence

space (TM, TM, mTM) and the properties that (i)

ALsn,i,Ln2J,471,1,k1)= m (TMal -)m (EA/1,512 (7-Mimk) = muk (6.27)
511, SL2,t WL,k

for (i, j ,k) belonging to the set I defined in Eq. (4.15) and (ii) any set that does not contain one

or more of the vectors [ t sz i,i, t SL2, j ,TWL1,1c-] has a probability of zero. Then, with a large random

sample

[tSL1r ,tSL2r ,tWL1r],r = 1, 2, ..., nR, (6.28)

of size nR from the failure time vectors [t sLl,i, t sL2J,TwL1,k] generated consistent with the

probabilities my* , Pl(4;1<2) can be approximated by

nR

Pl(4;12) p([tSL1r ,tSL2r nR = p(4;12.) (6.29),tWL1,]) 1
r =1

with

for tali. tSL2 r < tWLlr
Sp ([61,1r, tSL2r , tWL1r ]) = (6.30)

{1

0 otherwise.

The approximation for Pl(4;2<1) has the same form as the preceding approximation for Pl(f1;1<2)

with the roles of SL 1 and SL 2 reversed. The resultant estimates for Pl(f1,1<2) indicated in Eq.

(6.29) are illustrated in Eq. (5.19) for the links defined Table 4.1 and Fig. 4.1. Similarly obtained
estimates for P/(4;2<1) are illustrated in Eq. (5.21).

75



6.4 Verification for Bel(E24,2) Bel(f2;2<1) , Pl(E,2;1<2) and Pl(r2;2<1)

Defining probability spaces to verify the calculation of Bel(r2;1,2) and Bel(r2;2,1) for the sets

r2;i<2 and .C.2;2<, defined in Eqs. (5.29) and (5.30) is now considered. The following assignments

are made for Bel(r2;1<2): (i) the most probability possible (i.e., InWat (TIVIWL1,k) = 111WL1,k) is

assigned to t Trak , with the result that

WL1,k) = n1WL1,1- (7:A4WL1,k) = mWL1,k (6.31)

(ii) the most probability possible (i.e., is assigned to Tal,i , with the resultSL1,t \T-SL1,i

that 
m )=111 SL1,i)

P(isEl,i)= n SL1,t (TMSL1,i) = mSL1,i (6.32)

(ii ) the most probability possible (i.e., 111SL2,t (TMSL2,j) = n SL1, j is assigned to t SLz , with the

result that

SL2, j) = n SL2,t(TMSL2,j) = nSL1,j (6.33)

and (iv) a probability of zero is assigned to every subset of TM that does not contain one or more
of the vectors [Isil,i, t t wn,k] . This produces the probability space that has the smallest

possible probability for the set r2;1<2 for a probability space that is consistent with the evidence

space (TM, TM, mTM) and the properties that (i)

P([tSILi 9 La2j9 L Wil,d) = m SL1,t (M/61 )rnSL2,r (TMSL2,f)In wL,k (1:1\4WL1,k) = (6.34)

for (i, j, k) belonging to the set / defined in Eq. (4.15) and (ii) any set that does not contain one

or more of the vectors [Tsai t sL2 t wad has a probability of zero. Then, with a large random

sample

[tSL1,,tSL2,,tWL1r],r = 1, 2, ..., nR, (6.35)

of size nR from the failure time vectors [Tsa, , t SL2,f, t yr,L1,k] generated consistent with the

probabilities my* , Bel(f,"<2) can be approximated by

with

nR
Bel (r2;i<2) "L" 8B ([tSL1, ,tSL2,,,a47L1r]) / nR = p(f2;1<2)

r=1
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6B([tSL1, ,tSL2,,tW1,1,])
1 for tSL1, tSL2r and tS1,1,. < tWLlr

0 otherwise.
(6.37)

The approximation for Bel(f2;2<i) has the same form as the preceding approximation for

Bel(r2;1<2) with the roles of SL 1 and SL 2 reversed. The resultant estimates for Bel(r2;1<2)

indicated in Eq. (6.36) are illustrated in Eq. (5.39) for the links defined Table 4.1 and Fig. 4.1.
Similarly obtained estimates for Bel(r2;2<1) are illustrated in Eq. (5.41).

Defining probability spaces to verify the calculation of Pl(r2;1<2) and Pl(f.,2;2<1 ) is now

considered. The following assignments are made for /3/(r2;1<2) : (i) the most probability possible

(i.e., mwll,t (TMWL1,k) = illyvak) is assigned to T wak , with the result that

IFL1,k) rnWL1,t (TMWL1,k) 112WL1,k (6.38)

(ii) the most probability possible (i.e., m (TM MSL1,t .-- -SL1,i = -SL1,i) is assigned to t , with the result

that

ALSL1,i) = MSL1,t(TMSL1,i) = (6.39)

(iii) the most probability possible (i.e., MSL2,t(TMSL2,j) = nISL2,j) is assigned to Ta2 , with the

result that

ATSL2,j) = 111SL2,t(TMSL2,j) = 171SL2,j (6.40)

and (iv) a probability of zero is assigned to every subset of TM that does not contain one or more
of the vectors [ t SL1,i,TSL2,j 9 inl,k] • This produces the probability space that has the largest possible

probability for the set r2;1<2 for a probability space that is consistent with the evidence space

(TM, TM, mTM ) and the properties that

li([k SL1,i5TSL2, j 9iFfiLl,k]) = rn SL1,t(TMal .)111 (TM )nl (T-Mir ) = my.. (6.41)
SL2,t SL2,j WL1,t Ll,k k

for (i, j,k) belonging to the set I defined in Eq. (4.15) and (ii) any set that does not contain one

or more of the vectors [t SL1,i,TSL2,j ,T111,1,k] has a probability of zero. Then, with a large random

sample

[tSL1,,t5L2r ,tWL1,],r = 1, nR, (6.42)
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of size nR from the failure time vectors [t SL1,i9TSL2,j ,TwL1,k] generated consistent with the

probabilities NI, , Pl (r2;1<2) can be approximated by

nR

Pl (C,2;12) I p ([t SL1
r=1

r ,tSL2, , t WL1 r ]) nR = p(f2;i<2) (6.43)

with

1 for talr tSL2, and tSL1r < tWLlr
g p (WA ,tSL2, ,tWL1r1) (6.44)r

0 otherwise.

The approximation for Pl(C242<l) has the same form as the preceding approximation for Pl(f2;1<2)

with the roles of SL 1 and SL 2 reversed. The resultant estimates for /3/(f2;1<2) indicated in Eq.

(6.43) are illustrated in Eq. (5.40) for the links defined Table 4.1 and Fig. 4.1. Similarly obtained
estimates for /3/(f2;2<i) are illustrated in Eq. (5.42).
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{max {tal , tst2} for max ft,- SL1,t SI 2} < tWL1

7. Cumulative and Complementary Cumulative Belief and Plausibility for
Time at which LOAS Occurs

For simplicity, this section considers a system with 2 SLs and 1 WL and two definitions of
system failure: (i) LOAS occurs when both SLs fail before the WL fails and (ii) LOAS occurs
when either SL fails before the WL fails. As discussed below, a useful visual summary of an
analysis for LOAS is provided by a plot of time-dependent (i.e., cumulative and complementary)
values of belief and plausibility for the occurrence time of LOAS.

7.1 Cumulative and Complementary Cumulative Belief and Plausibility for Time at
which LOAS Occurs when Both SLs Fail before the WL fails

For the first definition (i.e., LOAS occurs when both SLs fail before the WL fails), the function

(tsL1 , t sL2, twn) —
00 for tau max {tsu t SL2}

(7.1)

maps the evidence space (TM, TM, mTM ) for link failure time defined in conjunction with Eqs.

(4.13)-(4.16) into an evidence space (TNICI ,TMLi , mimil ) for the time at which LOAS occurs.

Specifically,

and

TA 4 = {t : t = TML1(t) for t = rAL1 It SL2 ItWL1] E TM} (7.2)

= {t : t = TML1(t) for t = [t t SL2 9 tWL1] E T.Mijk} (7.3)

TML1 = {7:A44,,ik : (i, j , k) E Z= {1, 2, ..., nSL1} x {1, 2, ..., nSL2} x {1, 2, ..., n WL1}1 (7.4)

111TML1(TA4 k) = MTA1 (IMijk) = nit,Uk •

In addition, the bounds

(t = (min(TM jik), max(TMEtiik ))

(7.5)

(7.6)

are introduced for use in the determination of the cumulative values of belief and plausibility for
the occurrence of LOAS as indicated in in conjunction with Eqs. (2.48)-(2.50). Use of the min and
max functions in Eq. (7.6) is correct because of the assumptions that (i) focal elements for link
failure time are closed intervals and (ii) link temperature functions are continuous. Without these
assumptions, the min and max in Eq. (7.6) would have to be replaced by the greatest lower bound
(glb) and least upper bound (lub) functions. Specifically, t Liik is defined by
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co for 4L1,k < max{ t alp L SL2,j}
t

max{ t sup t j} for max 1 t kst,2, j} < 4L1,k
(7.7)

with (i) the first definition resulting because LOAS cannot occur for elements of EA4.4iik when

the indicated inequality holds and (ii) the second definition corresponding to the earliest time at
which LOAS could occur for elements of TMEtok when the indicated inequality holds. Similarly,

co for t yru,k max lisal T
T,ijk = T 

A2j
for max {Tsai T 1 t0L2, j < —WL1,k 5

(7.8)

with (i) the first definition resulting because LOAS cannot occur for at least some elements of
EA44,iik when the indicated inequality holds and (ii) the second definition corresponding to the

last time at which LOAS could occur for elements of T.M.Ctijk when the indicated inequality holds.

In the event that the first inequality in Eq. (7.7) holds, then the first inequality in Eq. (7.8) also
holds, with the result that ( l,ijk ) = (co, co) .

Once the evidence space (7:1144, TMELi 
9 mTML1) is constructed, cumulative and

complementary cumulative plausibility and belief functions for the time at which LOAS occurs
can be obtained from the pairs ( t l,ijk, tl,ijk) as (i) indicated in conjunction with Eqs. (2.48)-(2.50)

and (ii) illustrated in Fig. 7.1.

10° LOAS — Both SLs before WL

SL1, SL2, WL1
< t)

P r(i < t)

_r_r1 < t)

;

10-
0 50 100 150 200

(T)

C 0.9

d 0.8

(13_a
LT3 0 0.7
t

0.6
7=1 -47,
E (.7)
0 
C.) 

0.5

0.4  
0

Pl(t <

Pr ( t < t)

SL1, SL2, WL1 Bel(t <

LOAS — Both SLs before WL

50 100 150 200

t : LOAS Occurrence Time (min) t: LOAS Occurrence Time (min)

Fig. 7.1 Graphical summary of evidence space (TML 
9 
TML

1 mTML1) 
for time t at which LOAS

occurs for (i) a system composed of SL 1, SL 2 and WL 1 defined in Sect. 4.1 and (ii) LOAS
corresponding to failure of both SLs before failure of the WL: (a) Cumulative plausibility Pl(i t)

, probability Pr(i t) and belief Bel(i t) , and (b) Complementary cumulative plausibility

Pl(t <i), probability Pr(t < i) and belief Bel(t < i) .
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In addition, Fig. 7.1 also contains the CDF and the CCDF for the time at which LOAS occurs
obtained by assigning uniform distributions to the individual focal elements for link failure
temperature as indicated for the construction of the link failure time CDFs in Fig. 4.4. For SL 1,
SL 2 and WL 1, the indicated CDF and CCDF are constructed by: (i) generating a large random
sample

(Tsar 9 TSL2,r 9 TWL1,r )9 r = 1, 2, ..., nR, (7.9)

from the constructed distributions for link failure temperatures, (ii) determining the corresponding
link failure times

tr = (t Sar = TS21(TSL1,r)9tSL2,r = TSL2(TSL2,r)9tWL1,r = TWL1(TWL1,r))

= (tSL1,r 9 t SL2,r 9 tWL1,r)9

(7.10)

for r =1,2, „ nR with the inverse functions indicating the earliest possible failure times for the

sampled link failure temperatures, (iii) determining the LOAS occurrence times

TAIL1(tr)=TIVIL1(ta1,r 9t SL2,r 9 tWL1,r)9 r = 1, 2, ..., nR,

as indicated in Eq. (7.1), and (iv) defining the desired CDF and CCDF by

CDF(t) = prob(T t) = t[TMLI(tr)]1 nR with 8t [TMLI(tr)]= 
{1 for TML1(tr)t

r 1 0 otherwise= 

and

CCDF(t) = prob(t <T)=igt[TMLI(tr)]l nR with 8[TML1(tr)]= 
{1 for t < TMA (tr )

r=1 0 otherwise.

(7.11)

(7.12)

(7.13)

The cumulative and complementary cumulative plausibility and belief results in Fig. 7.1
provide related, but not identical, information about the potential occurrence of LOAS. In most
analyses, the results of most interest pertain to whether or not LOAS occurs. Specifically, the
cumulative t = 200 min results in Fig. 7.1a provide the analysis outcomes

Pl(T 200) = plausibility that LOAS occurs before or at 200 min = 0.488, (7.14)

Bel(t 200) = belief that LOAS occurs before or at 200 min = 0.016, (7.15)

and the complementary cumulative t= 200 min results in Fig. 7.1b provide the analysis outcomes
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Pl(200 < i) = plausibility that LOAS did not occur prior to 200 min

= Pl(t = t„)

= 0.984,

Bel(200 < = belief that LOAS did not occur prior to 200 min

= Bel(t = t

= 0.512.

(7.16)

(7 .17)

Thus, as illustrated, the cumulative outcomes in Fig. 7.1a provide results on the timing and
occurrence of LOAS, and the complementary cumulative outcomes in Fig. 7.1b provide results on
the timing and nonoccurrence of LOAS.

Initially, some results may seem counterintuitive (e.g., P/(200 < = 0.984 ). The values of

plausibility and belief depend on (i) the number of focal elements that are consistent with the
plausibility or belief under consideration and (ii) the BPAs associated with these focal elements.
A large number of consistent focal elements may, but not necessarily, be associated with a large
plausibility or belief. The evidence space (TM C1, TME-1, mTAKA ) under consideration has

nSL1x nSL2 x nWL1 = 5 x 5 x 5 = 125 (7.18)

focal elements. In turn,

81 = number focal elements consistent with Pl(i 200)

i.e., focal elements that contain times in [0, 200 min],

11 = number focal elements consistent with Bel(t 200)

i.e., focal elements that are subsets of [0, 200 min],

114 = number focal elements consistent with Pl(200 <

i.e., focal elements that contain t„,

44 = number focal elements consistent with Be/(200 <

i.e., focal elements that contain only t„.

(7.19)

(7.20)

(7.21)

(7.22)

Given the large number of focal elements consistent with P/(200 < i) and Be/(200 < , the

resultant large values of P/(200 < = 0.984 and Be/(200 < = 0.512 are not surprising.

The cumulative and complementary cumulative plausibility and belief results in Fig. 7.1 are
related through the relationship

Bel(S) + Pl(S` ) =1 (7.23)
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previously stated in Eq. (2.24). As examples,

Pl(200 < Pl(t = t.) =1— Bel(1 200)=1—0.016=0.984 (7.24)

Be/(200 < i)= Bel(t = t.) =1— Pl(i 200)=1—0.488=0.512. (7.25)

The equality of the results in Eqs. (7.16)-(7.17) with the corresponding results in Eqs. (7.24)-(7.25)
provides a verification result that indicates that the plausibility and belief results in Fig. 7.1 have
been correctly constructed. An additional verification is provided by the match of Pl(7 200) and

Bel(7 200) with the independently determined values for the occurrence of LOAS in Eqs. (5.6)-

(5.7).

As should be the case, the CDF in Fig. 7.1a for LOAS occurrence time, denoted by Pr (7 t),

falls between the corresponding CBF and CPF, denoted by Bel(7 t) and Pl(i Similarly,

the CCDF in Fig. 7.1b for LOAS occurrence time, denoted by Pr(t <I), falls between the

corresponding CCBF and CCPF, denoted by Bel(t <7) and Pl(t < 7). For perspective, it is

recommended that CDFs and CCDFs as described for Fig. 7.1 be included in presentations of
CPFs, CBFs, CCPFs and CCBFs.

It is informative to know the smallest time at which LOAS could occur (i.e., t 1L) and the

largest time at which LOAS could occur (i.e., /IL ). As described below, these two times can be

determined from the focal elements associated with the evidence space ( 1,114141,171TML1) •
However, this closed form determination can be rather tedious and error prone, especially the
determination of the largest time at which LOAS could occur. In practice, it is easier to employ
sampling-based results of the form used to obtain the CDF and CCDF illustrated in Fig. 7.1 to
estimate the indicated times than it is to carry out a closed form analysis. As an example, the
sampling procedure indicated in Eqs. (7.9)-(7.13) to obtain the CDF and CCDF in Fig. 7.1 also
yields values of

t 1L = • 1L - 62 12 min and t 200 min.- - (7.26)

In this example, t1L is the same as the end time (i.e., 200 min) for the analysis, which may not be

the case in other analyses.

The closed form determination of t IL and t1L is now considered. A focal element T.A44,,fr

associated with the evidence space (TA44,TMILI,MTML1) contains times corresponding to the

actual occurrence of LOAS (i.e., times < co ) only if (i, j,k) E I1L with

I1L = ,k): max{( LSL2,j} <TWL,k} •

In turn, the earliest time t IL at which LOAS can occur is defined by
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t= min fku, _Luk ,k) E I1L

= min {max t t sE2 : (i, j ,k)
(7.28)

with L1,,ik initially defined in Eq. (7.7). As an example, the preceding equality produces

t1L 62.12 min for the results illustrated in Fig. 7.1, which is consistent with the sampling-based

value of 62.12 min in Eq. (7.26).

When some of the pairs (t , ,ijk) are of the form (t , 00) with t 1,0k < 00 , plots for

plausibility and belief constructed as indicated in conjunction with Eqs. (2.48)-(2.50) and
illustrated in Fig. 7.1 will not include a step that corresponds to the least upper bound (lub) /IL of

the times at which LOAS could occur. Closed form representation for t1L are now determined for

the case in which (i) all link temperature curves are continuous functions and (ii) all focal elements
for link failure temperature are closed intervals.

The following two possibilities for TWL,k require consideration:

tWL,k
 = GO and tWL,k < tm . (7.29)

Given the two preceding possibilities, the lub tiL,ijk of the times at which LOAS could occur for

T.A44,iik with (i, j ,k) E /IL is defined by

and

, j,TVL,k = and (i, k) E - T1L

4L,k

max {inl,i,ISL2J} for max TL2,j tmx0 (7.30)
T1L,ijk =

tmx and

max{t : t E T.A44iik and t co} for tmx < max {Tsai ,TSL2,j}

(i,. k) E 1-1L

I1L,ijk
max{Tal,i, Ta2,j 0} for max{lau Te1,2,j < ryL E, ,k

lub {t : t E T.M.C.1iik and t co} for tWL,k max{Tal,i Te01,2,j •

(7.31)

The lub is needed in Eq. (7.31) because, under the stated conditions, it is possible the that LOAS
could occur at times with an lub of TwL,k (e.g., if TSL1,i <TSL2,j = tWL,k ).

In turn, the resultant lub time t1L for LOAS occurrence is defined by

= max ijk : (i, j, k) E I1L} • (7.32)
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Only a max rather than an lub is needed in the preceding definition of /IL because the number of

focal elements indexed by the set /IL is finite. In contrast, it is possible that some of the times

T involved in the definition of I could be defined as lub's.1L,ijk 1L

As an example, the indicated procedure produces IlL = 200 min for the results illustrated in

Fig. 7.1, which matches the sampling-based value in Eq. (7.26).

The LOAS occurrence time evidence space (TM C1,TMLl,mTML1) and its associated CPF,

CBF, CCPF and CCBF for SL 1 and SL 2 both failing before WL 1 fails can also be defined with
use of the evidence spaces (T.M.T1, TIVE4,mTMF1) and (T.A/61, I'Mkai,mWL1) • Specifically, (i)

(T.M.F0TMllTi ,mimF1) is defined in Sect. 8.1 for the times at which a system consisting of SL 1

and SL 2 fails with system failure time corresponding to the time at which the second SL fails and
(ii) (T.A4wL1, TMWL1 mWL1 ) is defined in Sect. 4 for the time at which WL 1 fails.

7.2 Cumulative and Complementary Cumulative Belief and Plausibility for Time at
which LOAS Occurs when Either SL Fails before the WL Fails

For the second definition (i.e., LOAS occurs when either SL fails before the WL fails), the
function

TML2(tsil,ta2 , twil) =
min ftal 5 tSL21{ for min ft al , t sI21 < tint

00 for tkal minIst al , t SL21
(7.33)

maps the evidence space (T,A4, TM, mTM) for link failure time defined in conjunction with Eqs.

(4.13)-(4.16) into an evidence space (T,A4 .C2 571%101,2, mTML2) with

TML2 = {TA 4 rzy,k : (i, j ,k) E I= {1, 2, ..., nSL1} x {1, 2, ..., nSL2} x {1, 2, ..., nWL1} 1 (7.34)

for the time at which LOAS occurs as shown in Eqs. (7.2)-(7.5) to obtain the evidence space

(TMei ,T1W11-1,mTML1) •

Similarly to the definitions of t 1 qk and tl,ijk in Eqs. (7.6)-(7.8), the bounds_  

(2,iik 5 t2 tjk = (min(TML2iik),max(TME2 jjk )) (7.35)

are defined by

-2,yk

00 for twa min{t t
(7.36)

k < SL2,j}

min{ t t for min lk < TWL1,kSao SL2,j} s7,2, J1
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and

t2,ijk =

co for lf,r7L1,k min {Tsai T 101,2,j

TSL2,j} for min {Tau TA2,j} < 1WL1,k •
(7.37)

Once the evidence space (TM-C2, TML2,111TML2) is constructed, cumulative and

complementary cumulative plausibility and belief functions for the time at which LOAS occurs
can be obtained from the pairs ( t zijk,Tzijk) as (i) indicated in conjunction with Eqs. (2.48)-(2.50)

and (ii) illustrated in Fig. 7.2. In addition, Fig. 7.2 also contains CDFs and CCDFs for the time at
which LOAS occurs constructed as described in Eqs. (7.9)-(7.13) with TML2(tr) replacing

TML1(tr) in Eqs. (7.11)-(7.13).
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Fig. 7.2 Graphical summary of evidence space (T.A44,TML2,111m1,2) for time t at which LOAS

occurs for (i) a system composed of SL 1, SL 2 and WL 1 defined in Sect. 4.1 and (ii) LOAS
corresponding to failure of either SL before failure of the WL: (a) Cumulative plausibility
Pl(i t), probability Pr(i t) and belief Bel(/' t) , and (b) Complementary cumulative

plausibility Pl(t <i), probability Pr(t <i) and belief Bel(t <i) .

The sampling-based analysis used to construct the CDF and CCDF in Fig. 7.2 also establishes
that the smallest time at which LOAS can occur (i.e., t 2L) and the largest time at which LOAS

actually occurs (i.e., /21, ) are approximated by

[t 2L, [58.5 min,133.7 min] (7.38)

Combination of T2L with the cumulative plausibility and belief results at t = 200 min in Fig. 7.2a

provides the analysis outcomes
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0.872 = 200) = Pl(i t2L)= Pl(i 133.7) (7.39)

0.134 = Bel(i 200) = Bel(i t2L) = Bel(i 133.7) (7.40)

and combination of 12L with the complementary cumulative plausibility and belief results at t =

200 min in Fig. 7.2b provides the analysis outcomes

0.866 = P/(200 < i) = Pl(t2L <i)= P/(133.7 < = Pl(t = too) (7.41)

0.128 = Be/(200 < i) = Bel(t2L < i) = Bel(133.7 < = Bel(t = toc). (7.42)

In addition, the results in Fig. 7.2 provide information on the potential timing of LOAS, which
could be important in some analyses.

An important point here is that the construction and subsequent display of the evidence space
(TME2, TMIL2 , mTiviL2) or a similar evidence space for failure time may not include the time of

last failure due to the need to include the marker time too for nonfailure in the definition of focal

elements for failure time and their associated BPAs. As a consequence, it is important to have a
method to determine maximum failure time as well as the evidence space for failure time. The
sampling-based procedure just illustrated is one way to determine t 21 and t2L and similar results.

Another way is to use a closed form representation for t 2L and Tn.

The closed form determination of t 21, and t2L is now considered. A focal element 7-.A4f.2,,jk

associated with the evidence space (TM .C2,TMEL2,171TML2) contains times corresponding to the

occurrence of LOAS (i.e., times < 00) only if (i, j ,k) E In with

= {0, min{ t LSL2j} <4L1,k} •

In turn, the earliest time t 21, at which LOAS could occur is defined by

As an example,

L2

t 2L = min /2L 1.

58.536 min for the sampling-based approach

58.537 min for the closed form representation

for the results illustrated in Fig. 7.2.
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The lub /21, for the times at which LOAS occurs for LOAS corresponding to failure of either

SL before failure of the WL is obtained in a manner similar to that used in Eqs. (7.30)-(7.32) to
obtain for LOAS corresponding to failure of both SLs before failure of the WL. As for TIL,
closed form representation for In are now determined for the case in which (i) all link temperature

curves are continuous functions and (ii) all focal elements for link failure temperature are closed
intervals.

A focal element T.A4r2,ik associated with the evidence space (TMC2,1"M11-42,mmE2)

contains times corresponding to the occurrence of LOAS (i.e., times < co ) only if (i, j, k) E Z2L •
The following two possibilities for TwL,k require consideration:

and TryL,k tmx.TWL,k = CC (7.46)

Given the two preceding possibilities, the lub Tn,iik of the times at which LOAS could occur for

TA/1E,24ft with (i, j,k) E Z2L is defined by

TWL ,k = °C) and (i, k) E, j,

t2L,ijk =

{ist,i,i,isL2,j} for minfisw To 1 t (7.47){min ' aL2,j , mx

max{t : t E TME2iik and t ~ co} for tmx < minfisw , L AZT , 1

and

t mx and (i, j,k) E 1-2L

I2L,ijk
min {isti,i '} for min {Tsai Ic < TwL,k (7.48),TSL2 0L2,j

lub {t : t E T.A4r2iik and t co} for 4L,k min {Tau T,0L2,j} •

The lub is needed in Eq. (7.31) because, under the stated conditions, it is possible the that LOAS
could occur at times with an lub of in,k (e.g., if TWL ,k = tsLl,i < TSL2, j )• In turn, the resultant lub

time t2L for LOAS occurrence is defined by

t2L = max{T2Liik : (i, j,k) EI2L} • (7.49)

For the first case (i.e., all link temperature curves are continuous functions), the lub Tn,ijk for

the times at which LOAS could occur for TA/1E24ft with (i, j,k) E Z2L is defined by

t2 = lub : t E T and tMr-2 07‘ 

and the resultant lub t2L for LOAS occurrence time is defined by
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As an example,

t2L = max IT2L,i jk : (i, j ,k) Z2L •

{133.675 for the sampling-based approach
t2L =

133.682 for the closed form representation

for the results illustrated in Fig. 7.2.

(7.51)

(7.52)

The LOAS occurrence time evidence space (TM TML29 mTML2) and its associated CPF,

CBF, CCPF and CCBF for either SL 1 or SL 2 failing before WL 1 fails can also be defined with
use of the evidence spaces (T,M.F2, TMF2, MTMF2) and (T,MwL1,TMEwil ,mwLi). Specifically, (i)

(TM -T.2 11472 mTMF2) is defined in Sect. 8.2 for the times at which a system consisting of SL 1

and SL 2 fails with system failure time corresponding to the time at which the first SL fails and
(ii) (T.A4WL1, TMWL1, 711WL1) is defined in Sect. 4 for the time at which WL 1 fails.
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8. Cumulative and Complementary Cumulative Belief and Plausibility for
Time at which a System of Two Links Fails

For simplicity, this section considers a system of 2 SLs and two definitions of system failure:
(i) system failure occurs when both links have failed and (ii) system failure occurs when either
link has failed. The development is identical for a system of 2 WLs.

8.1 Cumulative and Complementary Cumulative Belief and Plausibility for Time at
which a System of Two Links Fails Due to Failure of Both Links

The development for both definitions of link system failure starts with the evidence space
(TM, TM, mTM) for the times at which the links could fail. Specifically, the evidence spaces

(7Msn,TMsLi 5 m 5E14) and (TM-SL2 'TM SL2 ,mSL2,t) for link failure time defined in Sect. 4 are

combined to produce the product evidence space (TM, TM, mTM) with

and

TM — EMSL1 X IMSL2

= TMS1,1,i X TM5E2J E TM,

(8.1)

(8.2)

TM = : (i, j) E I= {1,2,..., nSL1} x {1,2,...,nSL2} } (8.3)

mTM (7:1\41j) = mSai ("Mai)m SL2, j (TMSL2,j) = m t • (8.4)

Example SL links that will be used for illustration are defined and illustrated in Table 4.1 and Fig.
4.1.

For the first definition (i.e., system failure occurs when both links have failed), the function

TMF1(t) = max ft szl,t 5121 for t = A r Ll't SL2] E TM (8.5)

is used to map the evidence space (TM, TM, mTM) into the evidence space

(TA/Vi ,TM71, mTMF1) for link system failure time with

and

TM.Fi= ft : t = 7711F1(t) for t = [tal,tsE2] E TM1, (8.6)

T.M.Fi = : t = TMF1(t) for t = [tai , tsE2 TM/ 1 (8.7)

TMFI = IT.A4,F u : (i, j) E I= {1,2,...,nSL1}x {1,2,...,nSL2} 1 (8.8)

mTMF1(T-A4Y1,1j = mTM (TM) = Mt
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Next, the bounds

( t i , ti ) = (min(T,M,F u ), max(T.M.Ti4 )) (8.10)

are introduced for use in the determination of the cumulative values of belief and plausibility for
the time at which the link system fails as indicated in in conjunction with Eqs. (2.48)-(2.50).
Specifically,

and

t =—1,y 
SL2,

Ttij

{
co for t < max { t sil,i, SL2,j}

max { t t j} for max { t t SL2, j} t mx

co for tmx < max{Isal TSL2,j

max {Tau T,L2, j A2,./ 
} for max{Isai Tr. } 0 tmx •

Both SL1, SL2

Pr(i 5 9

BelCi <
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" •
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Fig. 8.1 Graphical summary of evidence space (TM.FI,TMEI mTMF1) for time t at which link

system failure occurs for (i) a two link system composed of SLs 1 and 2 defined in Sect. 4.1 and
(ii) system failure corresponding to failure of both links• (a) Cumulative plausibility PI(t' t),

probability Pr(i t) and belief Bel(t' and (b) Complementary cumulative plausibility

Pl(t <I), probability Pr(t <i) and belief Bel(t <i).

Once the evidence space ( 1, TME4 mTMF1) is constructed, cumulative and

complementary cumulative plausibility and belief functions for link system failure time can be
obtained from the pairs (ti4,11,u) as (i) indicated in conjunction with Eqs. (2.48)-(2.50) and (ii)

illustrated in Fig. 8.1. In addition, Fig. 8.1 also contains CDFs and CCDFs for the time at which
link system failure occurs obtained by assigning uniform distributions to the individual focal
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elements for link failure temperature as described for the construction of the link failure time CDFs
in Fig. 4.4. Specifically, the CDF and CCDF in Fig. 8.1 are constructed as indicated in Eqs. (7.9)-
(7•13) with TMF1(tal,ta2) replacing TML1(tal ta2 twll) .

The cumulative t= 200 min results in Fig. 8.1a provide the analysis outcomes

200) = plausibility that link system failure occurs before or at 200 rnin
= 0.800,

Bel(I 200) = belief that link system failure occurs before or at 200 min

= 0.400,

(8.13)

(8.14)

and the complementary cumulative t= 200 min results in Fig. 8.1b provide the analysis outcomes

Pl(200 < i) = plausibility that link system failure did not occur before

or at 200 min

= Pl(t = too)

= 0.600,

Bel(200 < = belief that link system failure did not occur before

or at 200 min

= Bel(t = too)

= 0.200.

(8.15)

(8.16)

In addition, the results in Fig. 8.1 provide information on the potential timing of link system failure,
which could be important in some analyses.

As an additional example, cumulative and complementary cumulative plausibility, probability
and belief functions for link system failure time are presented in Fig. 8.2 for a link system
consisting of WLs 1 and 2 defined in Sect. 4. The construction of the results in Fig. 8.2 is the same
as the construction of the results in Fig. 8.1
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Fig. 8.2 Graphical summary of evidence space (T.M.FI,TIMIC4,mTmF1) for time t at which link

system failure occurs for (i) a two link system composed of WLs 1 and 2 defined in Sect. 4.1 and
(ii) system failure corresponding to failure of both links: (a) Cumulative plausibility Pl(i

probability Pr(i t) and belief Belci and (b) Complementary cumulative plausibility

Pl(t <i), probability Pr(t <i) and belief Bel(t

A focal element T.A4.T4 associated with the evidence space (7M.F, 
TW1 , nITMF1) contains

times corresponding to link system failure (i.e., times < co ) only if (i, j) E I1F with

I1F {(i, j) : max { t t—SL2j}

In turn, the earliest time t IF at which link system failure can occur is defined by

As an example,

t 1F =min{ttz~ : (i, j)E —7-1F}•

{62.123 min for SL 1, SL 2
—tIF =

66.403 min for WL 1, WL 2

62.295 min for SL 1, SL 2

66.406 min for WL 1, WL 2

(8.17)

(8.18)

(8.19)

for the results illustrated in Fig. 8.1 and Fig. 8.2, with (i) the first results obtained from Eq. (8.18)
and (ii) the following approximate results obtained from the sampling-based analysis used to
construct the CDFs and CCDFs in Fig. 8.1 and Fig. 8.2.

93



Determination of the maximum value TiF for the times at which link system failure could occur

is now considered for system failure corresponding to failure of both SLs. As in Sect. 7.1, two
cases for the definition of are considered: (i) All link temperature curves are continuous

functions, and (ii) All link temperature curves are continuous increasing functions.

For the first case (i.e., all link temperature curves are continuous functions), the link system
maximum failure time t1F tj for T.M.Fui with (i, j) E /1F is defined by

• = max{t : t E T.M.F111 and t co}, (8.20)

and the resultant maximum value t1F for link system failure time is defined by

= (i,j) E Z1F 1. (8.21)

For the second case (i.e., all link temperature curves are continuous increasing functions), the
maximum value for link failure time for T,A4.T;ii with (i, j) E I1F is defined by

t„ for tmx < max ISL2,j}
max {T9ToL2,jau 0 } for max {Inti ,J1,Tr, 2,j} tmx

(8.22)

and the resultant time t1F of the last link system failure is defined as indicated in Eq. (8.21).

As an example,

_ {200.000 min for SL 1, SL 2
tiF =

200.000 min for WL 1, WL 2

199.964 min for SL 1, SL 2

199.977 min for WL 1, WL 2

(8.23)

for the results illustrated in Fig. 8.1 and Fig. 8.2, with (i) the first results obtained from Eq. (8.22)
and (ii) the following approximate results obtained from the sampling-based analysis used to
construct the CDFs and CCDFs in Fig. 8.1 and Fig. 8.2.

8.2 Cumulative and Complementary Cumulative Belief and Plausibility for Time at
which a System of Two links Fails Due to Failure of Either Link

The determination of cumulative belief and plausibility for the second definition (i.e., system
failure occurs when either link has failed) is similar to the determination for the first definition.
Specifically, the function

TMF2 (t) = min tSL2 } for t= [tsLlItSL2] E TM (8.24)
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is used to map the evidence space (TM, TM, mTM ) into an evidence space

(TA4•72 5 TMF2 titTMF 2) for link system failure time as indicated in Eqs. (8.6)-(8.9). Further, the

focal element bounds t 2,0 and T2y are now defined by

with

and

{ oo for tmx < min{ t sil,,,Ln2,i}

min { t 

(t2 = (min(T.M.F24 ),max(T.M.F24)), (8.25)

=

SL1,i, t SL2,j} for min IL nip sr,2,4 tmx 

oo for t. < min {Tsai T0/.2,j

min {Tau In2j} for min {Tsai TaL2, j t mx •

(8.26)

(8.27)

In turn, cumulative and complementary plausibility and belief functions for the second definition
of link system failure can be obtained from the pairs ( 2 ) as indicated in conjunction with

Eqs. (2.48)-(2.50) and illustrated in Fig. 8.3. In addition, Fig. 8.3also contains the CDF and CCDF
for the time at which link system failure occurs obtained by assigning uniform distributions to the
individual focal elements for link failure temperature as described for the construction of the link
failure time CDF and CCDF in Fig. 4.4. Specifically, the CDF and CCDF in Fig. 8.3 are con-
structed as indicated in Eqs. (7.9)-(7.13) with TMF2(tal,ta2) replacing TML1(tal,ta2,tuu).
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Fig. 8.3 Graphical summary of evidence space (TM.F2,TMF2,111TMF2) for time t at which link

system failure occurs for (i) a two link system composed of SLs 1 and 2 defined in Sect. 4.1 and
(ii) system failure corresponding to failure of either link: (a) Cumulative plausibility /3/(i t),
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probability Pr(i t) and belief Bel(i and (b) Complementary cumulative plausibility

Pl(t <T), probability Pr(t <i) and belief Bel(t <T).

As an additional example, cumulative and complementary cumulative plausibility, probability
and belief functions for link system failure time are presented in Fig. 8.4 for a link system
consisting of WLs 1 and 2 defined in Sect. 4. The construction of the results in Fig. 8.4 is the same
as the construction of the results in Fig. 8.1.
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t : Link System Failure Time (min) t : Link System Failure Time (min)

Fig. 8.4 Graphical summary of evidence space (TM.F2,TMF2,MTMF2) for time t at which link

system failure occurs for (i) a two link system composed of WLs 1 and 2 defined in Sect. 4.1 and
(ii) system failure corresponding to failure of either link: (a) Cumulative plausibility Pl(T

probability Pr(T t) and belief Bel(i and (b) Complementary cumulative plausibility

Pl(t <T), probability Pr(t <i) and belief Bel(t <i).

A focal element TM.F2,), associated with the evidence space (7M.F2,TMF2,111TMF2) contains

times corresponding to link system failure (i.e., times < oo ) only if (i, j) E I2F with

I2F = 105 .1) : min{t Sai SL2,j} tmx} •

In turn, the earliest time t 21, at which LOAS can occur is defined by

As an example,

L2L = min ft 1 yk • • (i, k) T —2L / •—, 
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t 2F =
58.537 min for SL 1, SL 2

62.778 min for WL 1, WL 2

58.535 min or SL 1, SL 2

62.778 min for WL 1, WL 2

(8.30)

for the results illustrated in Fig. 8.3 and Fig. 8.4, with (i) the first results obtained from Eq. (8.29)
and (ii) the following approximate results obtained from the sampling-based analysis used to
construct the CDFs and CCDFs in Fig. 8.3 and Fig. 8.4.

Determination of the maximum value t2F for the times at which link system failure could

occur is now considered for system failure corresponding to failure of either SL. As in Sect. 7.1,
two cases for the definition of are considered: (i) All link temperature curves are continuous

functions, and (ii) All link temperature curves are continuous increasing functions.

For the first case (i.e., all link temperature curves are continuous functions), the maximum

value t2F  for link system failure time for T.M.F2 . with (i, j) E 12F is defined by

= max{t : t E EA4.F2ii and t 00}, (8.31)

and the resultant maximum value t2F for link system failure time is defined by

t2F = max {T2Fu (i, j) E 12F}. (8.32)

For the second case (i.e., link temperature curves are continuous increasing functions), the
maximum value 12F,ii for link system failure time for T,A4.Fzu with (i, j) E 12F is defined by

tnix for tnix < min {Tsai ic

min ISL2,j for I,. 1 t rnx

(8.33)

and the resultant maximum value t2F for link system failure time is defined as indicated in Eq.

(8.32).

As an example,

t2F

133.682 min for SL 1, SL 2

200.000 min for WL 1, WL 2

133.678 min for SL 1, SL 2

199.749 min for WL 1, WL 2
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for the results illustrated in Fig. 8.3 and Fig. 8.4, with (i) the first results obtained from Eq. (8.29)
and (ii) the following approximate results obtained from the sampling-based analysis used to
construct the CDFs and CCDFs in Fig. 8.3 and Fig. 8.4.
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9. Cumulative and Complementary Cumulative Belief and Plausibility for
Temperature at which a System of Two Links Fails

For simplicity, this section considers a system of 2 SLs and two definitions of system failure:
(i) system failure occurs when both links have failed and (ii) system failure occurs when either
link has failed. The development is identical for a system of 2 WLs

9.1 Cumulative and Complementary Cumulative Belief and Plausibility for
Temperature at which a System of Two Links Fails Due to Failure of Both Links

The development for both definitions of link system failure starts with the evidence space
(TM, TM, mTM) for the times at which the links could fail as developed in Eqs. (8.1)-(8.4). For

the first definition (i.e., system failure occurs when both links have failed), the function

TF1(t) =

Go for max 4511, ta2 1 =

TSL1 (t SL1) for t sE2 < tSL1 < 00

TSL2(t SL2) for tSLl < t SL2 < oo

max {TsE1(6.2),T5E2(t12)1 for t12 = t SL1 = t SL2 < X

(9.1)

with t rt tSIA SL2 E TM is used to map the evidence space (TM, TM, mTM) into an evidence

space (.7- 1, TIF1 mTF1) for link system failure temperature. As indicated in the definition of TF1(t)

, link system failure is assumed to be the maximum of the individual link failure temperatures
when the individual links fail at the same time. Further, the notational assumptions

TSL1(t SL1) = 00 for t sll = co and Ta2(t sE2) = 00 for t SL2 = co (9.2)

are used to indicate that link failure temperature was not reached and hence that link failure did
not occur.

and

The evidence space (7, TIFI , mTF1) for link system failure temperature is defined by

= : T = TF1(t) for t = [t ,t SL2] TM},

= {T : T = TF1(t) for t = [t sil,t SL2] TN( 1,

TIF1 = {T,FLu : (i, j) E Z= {1, 2,..., nSL1} x {1, 2, ..., nSL2}

inTF1(TTLij) = 171TM (r%) = •

Similarly to the results in Eqs. (8.10)-(8.12), the bounds

99

(9.3)

(9.4)

(9.5)

(9.6)



(TFLij, TFLii)= (glb(T.F u),max(T,F u )) (9.7)

are introduced for use in the determination of the cumulative values of belief and plausibility for
the temperature at which the link system fails as indicated in conjunction with Eqs. (2.48)-(2.50).

Definition of the focal element bound TF 14 is considered first. Specifically, TF has a

definition that (i) involves greatest lower bounds (glb's) for sets of link failure temperatures and
(ii) is conditional on various equalities and inequalities involving the times tSLi,i t SL2J , t SL1,i

and T SL2 . The following possibilities exist for the definition of TF 14:

Possibility (1): If

or (1.2) t = tmx and

t t SL2,j = t , then either (1.1) t = co and

1 =co,TF.. (9.8)y

TF = max {Tal(t ii),Ta2(t )} = max {Tal(tmx),Ta2(tmx)1, (9.9)

or (1.3) tij < tmx, Tsn(tu)=TSL2(t ij) and

TF =TSL1(Lij)=TSL2(Lij), (9.10)

or (1.4) t < tmx, Tal(t

TF1 =

ii)<TA2(t ij) and

if (tTa2(t if ) T—MSL1,i = °

= glb {T : TTal(t ii) =Tal (t) for t E (tiptnix] TAA
(9.11)—,tj

or (1.5) t < tmx, TsL2(t

TF 1y = 

u)<Tsil(t ) and

Ts1,1(t u) if (t ip tminTA4 = °

= glb {T : TTa,2(t ii) = TSL2(t) for t E(tiptnix T.A4a2,i ~ 01.
(9.12)

Possibility (2): If t sLi,t < t t mx , then

TF 1 =
glbTi(ta2,J) if (t 5E2 tmx n # 0 and -glb/1 (LSL2,j) <TSL2(LSL2,j)

T (t ) otherwiseSL 2 —SL2,j
(9.13)

with
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glb {T : T TSL1(t) for t E (t SL2J,tmx]nrMSL1,i (23}
glbn ( t\—SL2,j)= undefined if ( t a2J,tmx] n (25.

(9.14)

Possibility (3): If t sy,2j < tsLi,i tmx , then

TF 1, =ij
glbT2(tati) if (t 511,i,tmx 1 ~ 0 and glbT2

TSE1(t SL1,i) otherwise

< TSL1(LSL1,i)
(9.15)

with

glb {T : T = TSL2(0 for t E(tatotnix] n TA4SL2,j # 25}
glbT2( t 1) =

' lundefined if ( t tmx1 n .A4SL2,j =25'
(9.16)

The need for the use of glb's in Eqs. (9.11)-(9.16) is illustrated by the use of the glb in Eq.
(9.11). For this case (i.e., t u <tmx and Tal(t ij ) < TsL2(t u)), the earliest time at which the link

system will fail is t ij and the corresponding link failure temperature at time t u is

max {Tal ( t
ii,,TSL2(0)} = TSL2(0), (9.17)

which initially suggests that TsL2(t should be the minimum failure temperature. However, this

is not correct in general because it is possible that SL 1 will fail after t y at a temperature less than

Ta2(t if). In this case, the set

S = {T : T = Tsll (t) for t E (t , 1n rMati 25} (9.18)

will (i) exist if (t y tmx n 7-Mati #0 and (ii) contain failure times t>tu at which

. Thus, the smallest of these times and the associated temperature for SL 1 ratherTSL1(t) <TSL2(t 0)

than Ta2(t will define T1y .However, there is a complication because the indicated

temperatures do not have a smallest value. Rather, they have a glb, which is equal to Tal(t ij) .

Thus, although Tal(t ij) is not formally equal to Tl ij , it in effect defines Ti ij by being the glb of

SL 1 failure temperatures that occur after to and are less than Ta2(t 1 ).

The bound TF1,,i also has a definition that is conditional on various equalities and inequalities

involving the times tsLi,i t sE2J , t SL1,i and t azI as stated for the following possibilities:

Possibility (1): If SL1,i = t SL2,j = tij , then
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and

TF14; = max {Ts/1 (TO, TSL2(Tij)1' (9.19)

Possibility (2): If T sELi <T SL2,j then either (2.1) the inequality t 5E2 j SL1,i <i SL2,j holds

TFl,y = max {Tsil (TSL1,i),TSL2(T SL2,j)1

or (2.2) the inequality t < t SL2,j holds and

and

T1,ij = TSL2(T SL2,j).

(9.20)

(9.21)

Possibility (3): If T < TR,1,i then either (3.1) the inequality tsLl,i SL2,j < t SL1,i holds

TF = max {Tsil (T511,i ),TSL2(T SL2,J )}

or (3.2) the inequality t SL2,j < t SL1,i holds and

TFLii = TSL1(T

(9.22)

(9.23)

Once the evidence space (TT1, TF1, mTF1) is constructed, cumulative and complementary

cumulative plausibility and belief functions for system failure temperature can be obtained from

the pairs (TF i ,TF1,0 as (i) indicated in conjunction with Eqs. (2.48)-(2.50) and (ii) illustrated

in Fig. 9.1 and Fig. 9.2. In addition, Fig. 9.1 and Fig. 9.2 also contain CDFs and CCDFs for link
system failure temperature obtained by assigning uniform distributions to the individual focal
elements for link failure temperature as described for the construction of the link failure time CDFs
in Fig. 4.4. Specifically, the indicated CDFs and CCDFs are constructed as indicated in Eqs. (7.9)
-(7.13) with TF1(tal , ta2) replacing TML1(tal , ta2, twil ) .
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Fig. 9.1 Graphical summary of evidence space TIMI14 , mTMFI ) for temperature T at which

link system failure occurs for (i) a two link system composed of SLs 1 and 2 defined in Sect. 4.1
and (ii) system failure corresponding to failure of both links. (a) Cumulative plausibility

Pl(1 T) , probability Pr(1' T) and belief Bel(i; T) , and (b) Complementary cumulative

plausibility Pl(T < I') , probability Pr(T < -1') and belief Bel(T < .
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Fig. 9.2 Graphical summary of evidence space TIMI14 , mTMF1) for temperature T at which

link system failure occurs for (i) a two link system composed of WLs 1 and 2 defined in Sect. 4.1
and (ii) system failure corresponding to failure of both links• (a) Cumulative plausibility

Pl(i' T) , probability Pr(i' T) and belief Bel(i T) , and (b) Complementary cumulative

plausibility Pl(T < , probability Pr(T < and belief Bel(T <1') .

A focal element T.T y associated with the evidence space ( 1,TIFI,MTF1) contains1, 

temperatures corresponding to link system failure (i.e., temperatures < co) only if (i, j) E I1F with
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F = j) : max { t LSL2,j} -< tmx} • (9.24)

In turn, the glb TEi for the temperatures at which link system failure can occur is defined by

As an example,

TF1 = min {TF 1 .. • (i j) el1F }y • •

TF 1=
{600.000 °C for SL 1, SL 2

490.000 °C for WL 1, WL 2

600.011 °C for SL 1, SL 2

490.004 °C for WL 1, WL 2

(9.25)

(9.26)

for the results illustrated in Fig. 9.1 and Fig. 9.2, with (i) the first results obtained from Eq. (9.25)
and (ii) the following approximate results obtained from the sampling-based analysis used to
construct the CDFs and CCDFs in Fig. 9.1 and Fig. 9.2.

Determination of the maximum temperature TF1 at which link system failure could occur is
now considered for system failure corresponding to failure of both SLs. As in Sect. 7.1, two cases

for the definition of TF1 are considered: (i) All link temperature curves are continuous functions,
and (ii) All link temperature curves are continuous increasing functions. For the first case (i.e., all
link temperature curves are continuous functions), the maximum realized link system failure

temperature TIF u for T.FLij with (i, j) E /1F is defined by

F 4.1 = rnax{T :T e TY and T oo} ,

and the resultant maximum link system failure temperature TF1 is defined by

TF1 = (i5 j) E ZiF}.

(9.27)

(9.28)

For the second case (i.e., all link temperature curves are continuous increasing functions), the

determination of a closed-form representation for the maximum temperature TF1 at which link
system failure could occur requires consideration of a number of special relationships involving

t LSL2,j > t SL1,i and T SL2 . The following development considers focal elements T.FLij

associated with the evidence space ( 1, rIFFI mTF1) with (i, j) E I1F •

To start, the following two possibilities

tin), max {TSL1i ,T SL2j} and max{tSL1i,tSL2j}<t mx (9.29)
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for t RAJ and T SL2J are identified and then used to identify more possibilities involving t sL1,1 ,

LSL2,j SL1,i and t SL2 as indicated below:, j 

with

t min {Tau SL2,j} or

max t
kTASELi Ï SL2,j} T SL1,i < t mx T SL2,j or

T SLZi < t mx T SL1,j

t min {TSai 5 SL2,j} and (t, j) E I1F

TiF = max {Tad (t„,x )577512 (t mx)1

T SL1,i < tmx C i SL2, j and (i, f) E IlF

I
T SL1,i < t SL2,j C tmx ' T SL2,j TIP' ,y = TR,2(t mx)

T SL2,i < tmx ' T SL1,j and (t5j) E I1F

I
T SL2,i < t SL1,i t mx T SL1,j T1F,ii = TSL1(t my)

or

t SL2, t SL1,i < t mx SL2,j

= max {Tad (TSL1,i ISL2(t mx)}

or

t SL1,i SL2,i < t mx SL1,

Tip ij = max {Tad (tmx),Ta2(T SL2,i)} •

Similarly,

max {T SL1,i ,T SL2,j } < t mx

T SL1,i = T SL2, j = Tij < t mx

T SL1,i <T SL2, j < t mx or{

or

T SL2,j <T SL1,i < t mx

with

= < tmx and (t, E I1FT SL1,i = T SL2,

,ij = max {Tad TA2 (Ty )},
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7 SL1,i <7 SL2,j < tmx and (t5 f) E IlF

t SL2,j I SL1,i <I SL2,j < t mx

rip, - = max{Tal,u (I SL1,i),TSL2(i SL2,j)}

ISL2,j

or

SL1,i < t SL2,j <I SL2,j < tmx TlF ,ij = TSL2 (T SL2,j),

< Tau < tmx

It SL1,i I SL2,j <I SL1,i < t mx

T1F ii = max {Tal (T SL1,i / 15 TSL2(t SL2,j)}

and (i, j) E

or

SL2,j < t SL1,i <I SL1,i < tmx -11F ,ij = TSL1(i SW)*

(9.36)

(9.37)

Given the possible definitions for T F ij in Eqs. (9.31)-(9.33) and (9.35)-(9.37) obtained with

the assumption that the link temperature curves are increasing, the resultant value for fjF is
obtained as indicated in Eq. (9.28). As an example,

TFi = 
{1050.000 °C for SL 1, SL 2

991.860 °C for WL 1, WL 2

1050.000 °C for SL 1, SL 2

991.859 °C for WL 1, WL 2

(9.38)

for the results illustrated in Fig. 9.1 and Fig. 9.2, with (i) the first results obtained from Eqs. (9.29)

-(9.37) and (ii) the following approximate results obtained from the sampling-based analysis used

to construct the CDFs and CCDFs in Fig. 9.1 and Fig. 9.2.

9.2 Cumulative and Complementary Cumulative Belief and Plausibility for
Temperature at which a System of Two Links Fails Due to Failure of Either Link

The determination of cumulative belief and plausibility for the second definition (i.e., system
failure occurs when either link has failed) is similar to the determination for the first definition.

Specifically, the function

TF2 (t) =

Go for tmx < minftal , ta21 = co

TSL2(t 5E2) for ta2 < t mx and t SL2 < tSLl

TSL1(t SL1) for tSLl < tmx and tsll < ta2

mm ITsil (t12 ), TSE2 (t12 )1 for t12 = tSL1 = t SL2 t mx
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with t = [tsEl,tst,2] E T.A4 is used to map the evidence space (TM, TM, mTM) into the evidence

space (T.T-2, TF2 , mTF2) for link system failure temperature as indicated in Eqs. (9.3)-(9.6) to obtain

the evidence space (,77-1, TFi, mTF1) • Further, bounds

(TF TF2 )= (min(T.7 ) lub(TY ..))_2,ii 2y 2 y (9.40)

for focal elements TY20 associated with the evidence space ( 2 TF2 mTF2) are introduced for

use in the determination of the cumulative values of belief and plausibility for the temperature at
which the link system fails as indicated in conjunction with Eqs. (2.48)-(2.50).

Definition of the focal element bounds TF 2,ii and TF2,ij has an organizational structure that is

similar to the structure used in the definition of the bounds Tu./ and fi ij in Eqs. (9.8)-(9.23).
Specifically, TF 24 is defined conditional on the following possibilities:

and

Possibility (1): If t = t = t 512 , then

TF = ming" (t .) T (t ..)}2ij SL1 5 ,S1,2 —y (9.41)

Possibility (2): If t < t SL2J, then either: (2.1) the inequality t SL1,i < LSL2,j holds

TF 2,ii = (SL1,i)

or (2.2) the inequality t sLl,i < t SL2,j 5 t SL1,i holds and

TF_2y = min Val (Lsil,i ),TSL2(LSL2,j)1,

and

(9.42)

(9.43)

Possibility: (3) If t SL2,j < t sLl,i 'then either: (3.1) the inequality t SL2,j, SL2,j < t SL1,i holds

TF 2,u TSL2(LSL2,j)

or (3.2) the inequality t suj < t SL1,i SL2,j holds and

TF2y = min Val (Lsil,i ), TSL2(LSL2,j)1.

Similarly, TF24 is defined by
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Possibility (1): If T. = t Sal = t SL2,j then either: (1.1) the equality T,), = co holds and

TF2,ii = co

or (1.2) Tal(tu) = TA2(tu) and

(9.46)

= TSL1(Tij) = TsE2(71J), (9.47)

or (1.3) t„. , TsLi (t d < Ta2(t u) and

TF TSL2(lij) = lub {T : T = TSL2(t) for t E [t sL2, j j) nEA42, j} (9.48)

or (1.4) , Ta2(Tii) < Tal(Tisi) and

TF = TSL1(lij) = lub {T : T= THAW for t E [t sm,i,Ty) n'T.A4a14 . (9.49)

With respect to Eqs. (9.48) and (9.49), relationships

[tst,2,jjor)nTA4SL2,j ~ 0 and [t nE.A4au ~ (9.50)

hold as a consequence of the assumed inequality t „i„ .

Possibility (2): If F Sai < t SL2,j then either: (2.1) the inequality t 512,J < Tsai < t SL2,j holds

and

TF2,y = max{Tal(TSL1i), lub {T : T = TSL2(t) for [LSL2,j SL1,i) nTMSL2,j}}

= max {Tszl SL1,i,,TSL2(i SL1,i)} if tsL1,i E TMSL2,j

or (2.2) the inequality t sy,2,J = t sai <I SL2,j holds and

TF2,ii = min {Tal(tSai),TSL2(ksy,2, j)} 9

or (2.3) the inequality T SL1,i < t SL2,j SL2,j holds and

and

TF 241 = TSL1(i Sal).

(9.51)

(9.52)

(9.53)

Possibility (3): If T sud <I SL1,i 9 then either: (3.1) the inequality t <I SL2,j <I SL1,i holds
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TF 2,ij = max {TsE2(T SL2,j), lub {T : T= TSL1(t) for [LSL1,i,T SL2,j) n 7:A/ISL1,i }}
(9.54)

= max {Ts,L2(T SL2,j),TSL1(T SL2,j)1 if SL2,j ETAIISL1,1,

or (3.2) the inequality t sE1,i = t SL2,j ‹i SL1,i holds and

TF2,u = min Val(t SL1,1 ),TSL2(T SL2,j)1,

or (3.3) the inequality T SL2,j < t SL1,i holds and

= TSL2 (T SL2,j).

(9.55)

(9.56)

Once the evidence space (3:72 , TF2 , MTF2) is constructed, cumulative and complementary

cumulative plausibility and belief functions for system failure temperature can be obtained from

the pairs (TF 2,0,TF2,u) as (i) indicated in conjunction with Eqs. (2.48)-(2.50) and (ii) illustrated

in Fig. 9.3 and Fig. 9.4. In addition, Fig. 9.3 and Fig. 9.4 also contain CDFs and CCDFs for link
system failure temperature obtained by assigning uniform distributions to the individual focal
elements for link failure temperature as described for the construction of the link failure time CDFs
in Fig. 4.4. Specifically, the indicated CDFs and CCDFs are constructed as indicated in Eqs. (7.9)
-(7.13) with TF2(tal,ta2) replacing TMLI(tal,ta2,twil).
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Fig. 9.3 Graphical summary of evidence space , , mTMF1) for temperature T at which

link system failure occurs for (i) a two link system composed of SLs 1 and 2 defined in Sect. 4.1
and (ii) system failure corresponding to failure of either link: (a) Cumulative plausibility

Pl(1; probability Pr(i; T) and belief Bel(i; and (b) Complementary cumulative

plausibility Pl(T <I), probability Pr(T <1') and belief Bel(T <1').
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Fig. 9.4 Graphical summary of evidence space , mTMF1) for temperature T at which

link system failure occurs for (i) a two link system composed of WLs 1 and 2 defined in Sect. 4.1
and (ii) system failure corresponding to failure of either link: (a) Cumulative plausibility

Pl(i' probability Pr(1' T) and belief Bel(i' and (b) Complementary cumulative

plausibility Pl(T <1), probability Pr(T <1') and belief Bel(T <1').

A focal element T.F2y associated with the evidence space (‘1. 2 , TIF2, nITF2) contains

temperatures corresponding to link system failure (i.e., temperatures < oo ) only if (i, j) E I2F with

I2F = {(i, j) : min{ t t SL2,j} tmx} °. (9.57)

In turn, the glb TF2 for the temperatures at which link system failure can occur is defined by

As an example,

TF 2 = minfTF j) E 12F •

TF =
590.000 °C for SL 1, SL 2

490.000 °C for WL 1, WL 2

590.008 °C for SL 1, SL 2

490.000 °C for WL 1, WL 2

(9.58)

(9.59)

for the results illustrated in Fig. 9.3 and Fig. 9.4, with (i) the first results obtained from Eq. (9.58)
and (ii) the following approximate results obtained from the sampling-based analysis used to
construct the CDFs and CCDFs in Fig. 9.3 and Fig. 9.4.
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Determination of the lub TF2 of the link temperatures at which link system failure could occur
is now considered for system failure corresponding to failure of either SL. As in Sect. 7.1, two

cases for the definition of TF2 are considered: (i) All link temperature curves are continuous
functions, and (ii) All link temperature curves are continuous increasing functions. For the first

case (i.e., all link temperature curves are continuous functions), the lub f2Fii for system failure

temperature for T.F24 with (i, j) E 12F is defined by

= lub {T : T E EF24 and T oo} (9.60)

and the resultant lub TF2 for realized link system failure temperatures is defined by

TF2 = rnax{Fii E 12F} • (9.61)

For the second case (i.e., all link temperature curves are continuous increasing functions), the

determination of a closed-form representation for the lub TF2 of the temperatures at which link
system failure could occur requires consideration of a number of special relationships involving

t SL1,i LSL2,j t SL1,i and T SL2 . The following development considers focal elements T.F20

associated with the evidence space (.7- 2 '172 mTF2) with (i, j) E 12F and has a structure that is

similar to structure in Eqs. (9.29)-(9.37) used in the determination of TF1 for continuous link
temperature curves.

An important property that contributes to the following results derives from the assumptions
that (i) the link temperature curves are continuous increasing functions and (ii) the focal elements
for link failure temperatures are closed intervals. As a consequence, both links have the property
indicated below for SL 1:

{T : T= TSL1 (t) for t E T.A4al,i and t <oo}

[Tat (t SE1,i )9TSL1(TSL1,i)] for ISL1,i tmx

[1:511(SL1,i),Tal(tmx)] for tmx < t SL1,i •

(9.62)

Further, for a continuous, increasing link temperature curve T(t) defined on [tm,,,,tmx], a focal

element [T,T] for link failure temperature, and T(t.)<T , the minimum time t and maximum

time T for link failure (e.g., t au and T sai in Eq. (9.62)) are equal if, and only if, T(tmx)=T T.

Specifically, existence of the indicated conditions rneans that the following statements are
equivalent (i.e., that each statement irnplies the other): (i) t =T and (ii) T(tnix)=T T. Further, the

condition t =T = t,,„„ results for both statements.

To start, the following two disjoint possibilities
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min {ISLA,i 9 ISE2,./ tmx and tmx < min{ki SL1,i SL2,j} (9.63)

for Tau and Ta2,f are used to identify more possibilities involving t , t SL2,j 9 ral,i and

Ts7.2,./ for (i, j) E /2F as indicated below:

and

ily = Tau = IsL2,,, tmx or

min ITSLIA 9 ISL2j / tmx ISL1,i < TSL2,j and Tsai < tmx or

IN,2,, < Tni,i and Fazi tmx

t SL1,i tmx <min SE2,j 91 SL1,i TSL2j or

t < min { tmx <min {Lni,i TsL2,./TSElj 9 ISL2,./ SL2t ,j or

max { t t sE2 J} tmx < min ITSD,i ISL2j

(9.64)

(9.65)

In turn, the six possibilities indicated in Eqs. (9.64) and (9.65) result in the following values for
T2F Ji with E 12F

Possibility (1): If = t SL1,i = t SL2,j 5 t mx and E 12F then either (1.1)

t SE1,i = t SL1,i = t u (which implies t 7= SL1,i = t ), t SL2,j < t SL2,j = tmx and

T2F = max ITRA(tmx), 1 ub {T : T = Ta2(t) for t azf < t = tmx}}

= max {Tsyd(tmx),Ta2(tmx)1
(9.66)

or (1.2) t azf = t a2 = To, (which implies t azf = t SL2,j = Cu), t SL1,i <75n,i—tii =tmx and

T = max TRA (tmx ), 1 ub IT : T2F for t =t= TSL1(t)

= max { Tal(tnix),T5E2(tmx)1
(9.67)

or (1.3) t • = t =iu (which implies t au = t = tmx), _t sLz, j= t sLz, j= t u = tmx and

2F ,ij = {Tai (tmx ), TSL2 (tmx)}

or (1.4) t • <I SL1,i = t 51,2,j <7 SL2,j = and
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f2Fu = max flub {T : T TSE1(t) for tsLl,i t <Ty} ,

lub {T : T = TSL2(t) for t a2j t <Td} .

= max {Tad(t), Ta2 (1u)1.

(9.69)

Possibility (2): If t au ‹T SL2,j SL1,i tmx and (i, j) E I2F then either (2.1) the inequalities

t SL2,j < iSL1,i <T SL2,j and TsLl,i tmx hold and

T2Fy = max {Tal(T lub IT : TSL1 = TSL2(t) for LSL2,j < SL1,i}}
(9.70)

= max ITal(T SL1,i , ),TSL2(TsLl,i )}.

or (2.2) the relationships = t a2,f =T SL1,i <T SL2,j and t au < tmx hold and

T = max flub {T : T =2Fij TSL1(t) for t t <id , T SL2(iif )1
= max {Tsil (.Tsai TSL2 (T 

or (2.3) the inequalities t < t a2,./ <T SL2,j and t sLI i < t ma hold and

T2F = TSL1(T

(9.71)

(9.72)

Possibility (3): If T <T SL1,i SL2,i tmx and (i, j) E I2F , then either: (3.1) the inequalities

t SL1,i < t SL2,i <T SL1,j and T < tmx hold and

T2F = max Pub {T : T= TSL1(t) for tsLl,i t ALZ j}, TSL2(T SL2,j)}

= max {TsLI ALL ), TSL2(T SL2,j)},

or (3.2) the relationships ly = t szl,i = t sL2,i < t alj and t tmx hold and

for LSL2,j <T = max IT ) lub IT : T } (T.)}2Fij SL1 y= TSL2(t)

= max {Tal(Tsz • )5TSL2(T SL2,i )}

or (3.3) the inequalities T < t sLl,i < T al j and T tmx hold and

= T (T2F ,ij SL2 SL2, j ) •

Possibility (4): If tsLl,i t <min{ t SL2,j ,T SL2,j and (i, j) E I2F , then
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T2F ij = TSL1(t 712.X)•

Possibility (5): If t SL2j.  t MX <min{ t SLI,i 'T SL1,i t SL2 and (i, j) E /2F , then

T2F ij = TSL2(t mx)

Possibility (6): If max {t sLl,i , t sL2,jr} t mx < min kTsLl,i 'T SL2j} and (i, j) E /2F , then

77 2F ij = max ITSL1 (tmx ), 2 (t mx)} .

(9.76)

(9.77)

(9.78)

Given the possible definitions for T2F ij in Eqs. (9.66)-(9.78) obtained with the assumption that

the link temperature curves are continuous increasing functions, the resultant value for t F is

obtained as indicated in Eq. (9.61). As an example,

{1050.000 °C for SL 1, SL 2
TF2 =

991.860 °C for WL 1, WL 2

1049.999 °C for SL 1, SL 2

991.862 °C for WL 1, WL 2

(9.79)

for the results illustrated in Fig. 9.3 and Fig. 9.4, with (i) the first results obtained from Eqs. (9.63)
-(9.78) and (ii) the following approximate results obtained from the sampling-based analysis used
to construct the CDFs and CCDFs in Fig. 9.3 and Fig. 9.4.
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10. Cumulative and Complementary Cumulative Belief and Plausibility for
SL Temperature at Which LOAS Occurs

For simplicity, this section considers a system with 2 SLs, 1 WL and two definitions of system
failure: (i) LOAS occurs when both SLs fail before the WL fails and (ii) LOAS occurs when either
SL fails before the WL fails.

10.1 Cumulative and Complementary Cumulative Belief and Plausibility for SL
Temperature at which LOAs occurs when Both SLs Fail before the WL Fails

The development for both definitions of LOAS starts with the evidence space (TM, TM, mTM)

for link failure time defined in conjunction with Eqs. (4.13)-(4.16). For the first definition (i.e.,
LOAS occurs when both SLs fail before the WL fails), the function

TL1(t) =

co for tyriLl < max {t Sid , t 51,2}

TSL1(t SL1) for tSL2 < tSL1 < tyyL1

TSL2(t SL2) for t sil < t 512 < tlyil

max{TSL1(tSLl)T 51,2 (t SL2)} for tSLl = t SL2 < tWL1

(10.1)

with t r= SL1,t SL2,tWL1] E TM is used to map the evidence space (TM, TM, mTM) into the

evidence space (74 , TIL 1 mTL1) for the SL temperature at which LOAS occurs. As indicated in

the definition of TLI(t) , SL link system failure is assumed to be the maximum of the individual

link failure temperatures when the individual links fail at the same time. Further, the notational
assumption

TSL1(t SL1) = °C) for t sll = (X) and TsE2 (t 5L2) = 00 for t sE2 00 (10.2)

is used to indicate that link failure temperature was not reached and hence that link failure did not
occur.

The evidence space (Tri , TL1, mTLI ) for the SL temperature at which LOAS occurs (i.e., the

temperature of the second SL to fail at the time that its failure results in LOAS) is defined by

= {T : T = TL1(t) for t = [tal,t 512,tryn] T.A41 , (10.3)

Tftijk = : T = TL1(t) for t = [t al,t512,twn] c TMuk} , (10.4)

= : (i, j ,k) E I= {1,2,...,nSL1}x {1,2,..., nSL2} x {1,2,...,nWL1}} (10.5)

and

Further, the bounds

inTL1(74,ijk) = nITML (TM fic) = Mtijk •
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(T 1,uk,fLuk)= (min(Trtiik ),max(74iik )) (10.7)

are introduced for use in the determination of the cumulative values of belief and plausibility for
the SL temperature at which LOAS occurs as indicated in conjunction with Eqs. (2.48)-(2.50).

Definition of the focal element bounds TLiik and T ijk is now considered. Specifically, TLiik

has a definition that is conditional on various equalities and inequalities involving the times t

LSL2,j 5 t SL1,i SL2,j and TwL1k as defined for the following disjoint conditions:

WL1k —< max { t 9LSL2,j}, (10.8)

and

ij = LSL1,i = LSL2,j <TWak or

max {LS/A,/ , LSL2,j} ‹I WL1,k t Sai < t SL2,j <T WL1,k or

{—t

(10.9)

LSL2,j < —tSai <TWL1,k •

In turn, the preceding four inequalities result in the following possibilities for the definition of
T1 .k • •—,y 

Possibility (1): If yyLl,k max ft au, t sE2 J1 5 then

T = oo. (10.10)

Possibility (2): If t ij  = t t SL2,j <T wak , then either (2.1) Tal(t ij )=7:5L2(t y) and

T—1,yk

or (2.2) 7:5L1(t y) < TSL2(Lij) and

= T (t . )= T (t . )SL1 —y SL2 —y

glb {S21}= TSL1(td if S21 #°

(10.11)

T 1 "k

with

TSL2(t y) if S21 # °
(10.12)

S21 = :T = TSL1(t) for TRI(ty) <Tsil(t) < Ta2(t y) and t E (tii,tmx] n T.A4sw , (10.13)

or (2.3) 7:5E2(t y) < Tsy,1(t ) and
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glb {S22} = TSL2(tij) if S22 ~ QS
T .

k 
 =

TSL1(Lij) if S22 =

with

(10.14)

S22 = {T : T = Ts,L2(t) for TSL 2 (t ij)Ts1,2(t) <Ta,l(t ij) and t e (ty,t,,x]n T.A4sE2, j} (10.15)

Possibility (3): If t < t SL2,j <T Wak

LSL1,i <T LL2,j <T WL1,k hold and

with

T =

then either: (3.1) the inequalities

TSL2(tSL2,j) for t.SLl,i < kSL2,j

TSL2(SL2,j) for t.SLl,i = SL2,j and Tal( SL1,i) TSL2(LSL2,j)

glb(S31) = TSL2(LSL2,j) for T t-SL2,j ,TSL2(LSL2,j) < TSL1 (Tau)

and Sm # 0

TSL1(T SL1,i) for T = t SL2,j ,TSL2(LL2,j) < TSL1(T SL1,i) and Sm = 0

S31 = {T :T = TSL2,j (t) for TsL2,,i < T sL1(T sai) and t E(t , trnx n EMSL

or (3.2) the inequalities t sai < t sL2,J; <T sai and t sL2J <T Wak hold and

T

with

glb {S32 } if S32 # 0

TSL1,i(LSL2,j) = glb {S32 } if S32 # 0 and t sL2,j E TMSL1,i

TSL2,j (LL2,j) if S32 = °

(10.16)

(10.17)

(10.18)

532 = IT : T = Tau (t) for Tal • (t) < 7',SL2,j (SL2,J) and t E (ts-SL 2,j TSL1,i SL1,1 TA4 •}• (10.19)

Possibility (4): If t SL2,j < t SL1,i <T Wak

LL2,j <T SL2,j < <I Wak hold and
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TSL1( t SL1,i) for T SL2,j < LSL1,i
TSL1( t SL1,1) for T SL2,j = t SL1,1 and TSL2 (TSL2,j) C TSL1(LSL1,i)

= glb(S41) = TsL1( t SL1,i) for T SL2,j = LSL1,i,TSL1(LSL1,i) < TSL2(T SL2,j)
and S41 # 0

(10.20)

with

SL2(T SL2,j) for T = - t51,1,i,TSL1(LSL1,i) < TSL2(T SL2,j) and S41 =0

S41 = IT : T= TSL1,i(t) for Tsai(t) < TsL2(T SL2,j and t E (LSL1,i,t„] (10.21)

or (4.2) the inequalities t suj < t sz l,i < TsE2 J and t sLl,i <T Tyll,k hold and

glb {542 if S42 # QS

T - TSL2,j ( t SL1,i) = glb 1842 if S42 # QS and t E TA42,./ (10.22)

with

TSL1,i ( t SL1,i) if S42 = °

S42 = IT : T = TSL2,j(t) for TsL2j(t) < Tau (t Au) and t (t sw,T sL2J]n7:114a2J} . (10.23)

The bound T ii also has a definition that is conditional on various equalities and inequalities1, 

involving the times tSL1,i t sE2J TsLl,i T sL2,J and T wak as defined for the following disjoint

conditions:

and
-WL1,k max {Tsai , T azj}

{T 511,i =T SL2,j < LWL1,k

max {Tal,/ , T SL2,j} < t WL1,k T 511,i <T SL2,j < WL1,k

T SL2,j <T SL1,i < LWL1,k •

(10.24)

or

or (10.25)

Specifically, the preceding four inequalities result in the following possibilities for the definition

of T u-k • •L 

Possibility (1): If t yyLl,k max{iszu,ISL2 4}, then

= 09.
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Possibility (2): If T SL1,i =T SL2,j < t Wak , then

1 ijk = max Val (TSL1,i )9TSL2(T SL2J)} •, 

Possibility (3): If Tsll,i <T SL2,j < t Wak then either: (3.1) the inequalities

t SL2,j t SL1,i <T SL2,j < t Wak hold and

1 ijk = max {Tal (TSL1,i),TSL2(T SL2,j)}, 

or (3.2) the inequalities T < t SL2,j C T SL2,j < t WL1,k hold and

= TSL2(T SL2,j).

Possibility (4): If T 5E2 j < Tau < t WL1,k then either: (4.1) the inequalities

t SE1,i SL2,j <T SL1,i < t WL1,k hold and

yf . .k = max {Tsn (,T SL1,i),TSL2(T SL2,j)}1 

or (4.2) the inequalities T sL2 j < t sai T Sai < t WL1,k hold and

4* = TSL1(T SL1,i)•

(10.27)

(10.28)

(10.29)

(10.30)

(10.31)

Once the evidence space (74 ,TLi,MTL1) is constructed, cumulative and complementary

cumulative plausibility and belief functions for SL temperature at which LOAS occurs can be

obtained from the pairs (T 1,iik k ) as (i) indicated in conjunction with Eqs. (2.48)-(2.50) and (ii)

illustrated in Fig. 10.1. In addition, Fig. 10.1 also contains the CDF and CCDF for the SL
temperature at which LOAS occurs obtained by assigning uniform distributions to the individual
focal elements for link failure temperature as described for the construction of the link failure time
CDFs in Fig. 4.4. Specifically, the indicated CDF and CCDF are constructed as described in Eqs.
(7.9)-(7.13) with TL2(tal , ta2, twL1) replacing TML1(tal , tSL2 , twil ) .
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Fig. 10.1 Graphical summary of evidence space (74 , TLi , mTL1) for temperature T at which

LOAS occurs for (i) a three link system composed of SL 1, SL 2 and WL 1 defined in Sect. 4.1

and (ii) LOAS corresponding to failure of both SL links before failure of the WL: (a) Cumulative

plausibility Pl(1 T) 5 probability Pr(1 T) and belief Bel(1' T) , and (b) Complementary

cumulative plausibility Pl(T < , probability Pr(T < 1) and belief Bel(T < .

A focal element Trtijk associated with the evidence space (T4 , TIL1 , mTL1) contains

temperatures corresponding to SL temperatures at which LOAS could actually occur only if

(i, j ,k) E /IL with

I1L - {(i , j ,k): max tk-Sai 5 LSL2,j} ‹T TVL1,k} (2) (10.32)

as previously indicated in Eq. (6.14). In turn, the glb T1L for SL temperatures at which LOAS

could occur is defined by

As an example,

T = min .._lL g' _Lyk •• (i k) E (10.33)

T = 600.000 °C —= 600.383 °C (10.34)

for the results illustrated in Fig. 10.1, with (i) the first result obtained from Eq. (10.33) and (ii) the

following approximate result obtained from the sampling-based analysis used to construct the CDF

and CCDF in Fig. 10.1.
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Determination of the lub fiL for the SL temperatures at which LOAS could occur is now

considered for system failure corresponding to failure of both SLs before failure of the WL. Two

cases for the definition of TiL are considered: (i) All link temperature curves are continuous

functions, and (ii) All link temperature curves are continuous increasing functions.

For the first case (i.e., all link temperature curves are continuous functions), the lub kiik of

the temperatures corresponding to the occurrence of LOAS for Trtok with (i, j, k) E Z1L is defined

by

L lub{T : T E Tri u-k and T Go} , (10.35)

and the resultant maximum temperature T1L corresponding to the occurrence of LOAS is defined
by

T1L = max{TLiik :(i, j ,k) El-IL} • (10.36)

For the second case (i.e., all link temperature curves are continuous increasing functions), the

determination of a closed-form representation for the lub TiF of the SL temperatures at which

LOAS could occur requires consideration of a number of special relationships involving t

t SL2, j I SL1,1 . I SL2, j and ifiLl,k •- 

To start, the following two disjoint possibilities

T WL1,k CO and Tyru,k t„ (10.37)

for T flu,k are identified and then used to define more possibilities involving t SLt,i  t 5E2 j t SL1,i

T SL2,j and T wak as indicated below:

TWL1,k

with

= 00

t min {Tau 5 i SL2,j} T WL1,k

T SL1,i < t mx T SL2,j i WL1,k Or

T SL2,j < t mx Tsai T WL1,k Or

T SL1,i <T SL2,j < tmx <T WL1,k or

T SL2,j <T SL1,i < tmx <T WL1,k or

Ti = Tsai = T SL2,j < tmx <T WL1,k
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tmx < min{Tsil,i , t SL2,j} t WL1,k and (i, j,k) E Z1L

T1L,ijk = max Val (tmx ), TSL2 (trax)}

SL1,i < tmx t SL2,j t WL1,k and (i, j , k) E ZiL

< t SL2,j tmx C t SL2,j C t WL1,k TL,ijk TSL2 mx=  (t )

or

t SL2,j C t SL1,i < tmx C t SL2,j C t WL1,k

7 SL2,j < t MX T SLLi

1
ISL2, j < -t SL1,ior

LSL1,i 7 SL2, j

WL1,k and (i 91‘) E I1L

= max {7' (T ) T (t )11 L SL1 5114 SL2 mx

tmx SL1,i I WL1,k T1L,ijk = TSL1(tmx)

< tmx t SL1,i WL1,k T1L,ijk = max {Tal (tmx ), 372(i SL2,j)}

SL14 <I SL2,j < t mx <I WL1,k and (i, j,k) E

{or

LSL2,j C SW <I SL2,j < tmx <7 WL1,k T1L,ijk = max {Tal (TSL1,i ),TSL2(i SL2,j)}

< t SL2,j ~tSL2,j <t mx < WL1k T1L,ijk = TSL2(7 SL2j)

SL2,j <T SL1,i < t mx <T WL1,k and (i, j,k) E - T1L

TSL2,j

or{

< LSL1,i SL1,i < tmx <T T1L,ijk = TSL1(7 SL1,i)

t SL1,i SL2,j < Tau <t mx < WL1,k T1L,ijk = max Val ( ), TSL2 (t SL2,j)}

tij = Tau = t SL2,j < t mx <I Wak and (i, j, k) E I1L

= max17' (T ) 7' (T)1.SL1 y SL2 y

Similarly,

WL1,k < tnix

WL1,k Cmin{T SL1,i 9 SL2,j}

7 SL1,i <7 WL1,k 7 SL2j
_

t SL2,j <I FfiLl,k Tau

ISL1,i <7 SL2,j <I WL1,k

7 SL2,j < Tsai < F WL1,k

tij = Tau = i SL2j < 7 WL1,k
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(10.39)

(10.40)

(10.41)

(10.42)

(10.43)

(10.44)

(10.45)



with

yyLl k< min {Tau 1T SL2,j}, I tmx and (i, j, k) E

fujik = max {TaA( Fal,k),TSL2(7 Fal,k)19

SL1,i <I WL1,k SL2,j, I wLl,k tmx and (i, j,k) E

SL1,i < t SL2,j <I WL1,k C t SL2,j TSL2(i Wil,k)

or

t SL2,j C t SL1,i <I WL1,k C t SL2,j T1L,ijk = max-Val (TSL1,i ),TSL2

T <T ~ T . T t and (i, j,k) T1L-SL2,j WL1,k SL1,1 , WL1,k mx

lor

T < t . ~T . . =SL2,j -SL1,1 WL1,k 1L,uk SL1 WL1,k

(t WL1,k)19

t SL1,i SL2,j <7 WL1,k sE1,i = max ITa,1(T-IT ,LA,,k),TSL2(7 SL2,j)1

SL1,i <I SL2,j < t T pal,k tmx and (i, J, k) E /IL

SL1,i < t SL2,j SL2, j< t Fal,k = TSL2(t SL2,j)

t SL2,j au ‹T SL2,j <7 WL1,k 1L,ijk = max {Tal(T sil,i),TSL2(7 SL2,j)19

TSL2,j <T <TWL1,k WL1,k < tmx and (i, j,k) E ZiL

l
SL2,j < 5L1,i < pal,k = TSL1(T SL1,i)

or

t SL1,i SL2,j <7 SL1,i <7 WL1,k T1L,ijk = max {Ta,l (Tsai ), T 5-1,2 SL2,j)19

(10.46)

(10.47)

(10.48)

(10.49)

(10.50)

Tj =7 SL1,i SL2,j<I WL1,k Ctmx and (i, j,k) E ILL = max{Tal(Ti),Tsu (01. (10.51)

Technically, the quantity TsL1(t wn,k) in Eqs. (10.46) and (10.48) corresponds to the lub of the

set

:T = TSL1(t) for t <T wil,k and t E T.A4nlj 1, (10.52)

which is Ta,1(Tyvn,k). The use of the indicated lub is appropriate in Eqs. (10.46) and (10.48)

because (i) LOAS can occur for SL 1 temperatures approaching Tsn(T yvn,k) at time T yaLk but

(ii) LOAS cannot occur due to the failure of SL 1 at time T wak as LOAS is assumed to not occur
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for the simultaneous occurrence of the second SL failure and the WL failure. For a similar reason,
the quantity TsE2(Tnl,k) in Eqs. (10.46) and (10.47) corresponds to the lub of the set

{T : T= TSL2 (t) for t sE2,./ < t <T.

which is Ta2(T WL1,k) •

and t E EA4sE2 , (10.53)

Given the possible definitions for TiL,iik in Eqs. (10.39)-(10.44) and (10.46)-(10.51) obtained

with the assumption that the link temperature curves are continuous increasing functions, the

resultant value for f1L is obtained as indicated in Eq. (10.36). As an example,

fik =1050.000 °C 1049.999 °C (10.54)

for the results illustrated in Fig. 10.1, with (i) the first result obtained from Eqs. (10.39)-(10.44)
and (10.46)-(10.51), and (ii) the following approximate result obtained from the sampling-based
analysis used to construct the CDF and CCDF in Fig. 10.1.

10.2 Cumulative and Complementary Cumulative Belief and Plausibility for SL
Temperature at which LOAS Occurs when Either SL Fails before the WL Fails

For the second definition (i.e., LOAS occurs when either SL fails before the WL fails), the
function

TL2 (t) =

GO for tivn < min {tal , tsk2}

TSL2(t SL2) for t < t sil and t SL2 < twll

TSL1(t SL1) for tsLl < t 5E2 and tsLl < tWLl

min Val (t SL1),TSL2(t SL2)} for tskl = tSL2 < tWL1

(10.55)

with t = [tszl tsz2 , twn E TM is used to map the evidence space (TM, TM, mTM ) into the

evidence space (Tr2,1[1,2,m712) for the SL temperature at which LOAS occurs as shown in Eqs.

(10.3)-(10.6) to obtain the evidence space (T4, 'MI mTL1) • Specifically, (Tr2,TL2,mTL2) is
defined by

and

Tf.2 = {T : T = TL2(t) for t = [tad ta2, tifin ] E TM}, (10.56)

Tfzijk = {T : T = TL2(t) for t = [tsLl , t 51,2, tyvn]E T,A4A} , (10.57)

TL2 = {Tfzijk : j , k) E I= {1,2,..., nSL1} x{l, x {1,2,...,nWL1}} (10.58)

mTL2(TC2,ijk) = mTML (rA/lijk) = mtijk • (10.59)
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Further, the bounds

(T 2,ijk ,T2,ijk) = (min(T.C2,iik ),max(77C.24k )) (10.60)

are introduced for use in the determination of the cumulative values of belief and plausibility for
the SL temperature at which LOAS occurs as indicated in conjunction with Eqs. (2.48)-(2.50).

As indicated in the definition of TF2(t), link system failure temperature is assumed to be the

minimum of the individual SL failure temperatures when the individual SLs fail at the same time.
Further, the notational assumption

TSL1(tSL1) = GO for tal = co and Ta2(t su) = GO for ts12 = Do (10.61)

is used to indicate that link failure temperature was not reached and hence that link failure did not
occur.

The bound T 2,iik has a definition that is conditional on various equalities and inequalities

involving the times t sLl,i , t sL2J and t yrindc as defined for the following disjoint conditions:

and
T WL1,k Cmin{ t SL1,i , t SL2,j} (10.62)

t = t = t <T—tj —SL1,1 —SL2,j WL1,k or

min {Lad,i ,LSL2,j} <T WL1,k t SL1,1 < min {Tini,k , t SL2,j} or (10.63){

LSL2,j < min {TWL1,k , t SL1,i} •

In turn, the preceding four inequalities result in the following possibilities for the definition of
T2 .k •—,y •

Possibility (1): If t yvn,k min{ t sElj , t sE2,f} , then

T2,ijk = (10.64)

Possibility (2): If t ij = t SL1,i = t SL2,j <T fiqu , then

T = min {Tal(Lij),TA2(1±u)1. (10.65)

Possibility (3): If t—SL1,1 < min {T WL1,k, LSL2,j} then either (3.1) the inequality

LSL1,1 <T WL1,k t SL2,I holds and
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T 2,ijk = TSL1(SL1,i) (10.66)

or (3.2) the inequalities t sL2, j< t wak and t < t sz2J sai hold and

T 2,ijk = ming'sil (t SELi ),TSL2( LSL2,j)}, (10.67)

or (3.3) the inequalities t sE2 <T wil,k and t SL1,i C T SL1,i < t SL2,j hold and

T 2,ijk = TSL1(LSL1,i)• (10.68)

Possibility (4) If t 5E2 < min{kTpal,k ,LSL1,i} then either (4.1) the inequality

LSL2,j <T TYL1,k ~ < Lsz,Li holds and

T 2,ijk = TSL2(LSL2,j)

or (4.2) the inequalities t <T. yaLk and t sE2 < t SL1,i C t SL2,j hold and

T 2,ijk = min {Tsil (L5L1,i ), TSL2 ( LSL2,j)},

or (4.3) the inequalities t sLl,i wak and t
LZ 

• T SL2,j < t sLi,i hold and

T 2,ijk = TSL2(LSL2,j)•

(10.69)

(10.70)

(10.71)

The definition of fzijk is now considered. Specifically, tzijk has a definition that is conditional

on various equalities and inequalities involving the times t syd,i t 5E2 T SL1,i ,T SL2,j and Ini,k

as defined for the following disjoint conditions:

and
t WL1,k min {Tsai T SL2,j}

IT..y =T SL1,1 . =T SL2,j < t WL1 k or

min {Tau , T SL2,j} < t WL1,k T SL1,i < min {TSL2,f , LWL1,k} or

T SL2,j < min {Tau , LWL1,k} •

(10.72)

(10.73)

In turn, the preceding four inequalities result in the following possibilities for the definition of

f'2 . .k •y •

Possibility (1): If t yrin,k min T SL2,j I, then
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Possibility

T2 = 00.,ijk 

(2): If Tij sLl,i =T SL2,j < t wak , then

TSL1(Tij) = lub(S1) if LSL1,i < LSL2,j =Ty

(10.74)

TSL2(Fij) = lub(S2)if t _SL2,j < LSL1,i = ly
T2 =
'i
a

max {T5L1(If.i)= lub(Si ), TH, 2 (iisi ) = lub(S2 )1 if max t,—SL1,i 9 LSL2,j} <rij
(10.75)

with

min Val (Fij )9 TSL2(Tj)} if LSL1,i = LSL2,j =II:j

= {T : T =TSL1(t) for t E[t n EA/tau}
(10.76)

= TSL2 (t) n 7:A4sL2, j 1 •S2 = : T for t [ ta2 J,Ty)

Possibility (3): If t sLl,i < min{ L }, then either (3.1) the inequalitySE2, j, WL1,k 

tSL2,j < T sai < min SL2,j t wi,i,k) holds and

2ijk Ha .) lub : T= max{Ta1( ,1 = TSL2(t) for tert ,ISL1,i) n V4SL 2,j }}
(10.77)

= max {Tal( SL1 i),TSL2(t  SL1,i)} if t SL1,i E IMSL2,j 9

or (3.2) the inequality t az.), =7sLl,i < {I SL2,j t WL1,k} holds and

f" =2 tjk

with

TSL1(t SL1,i )= lub{S3} if S3 = 0

min ITSLi(7 sil,i),TSL2(t SL2,j)} if 53 °
(10.78)

S3 = {T :T =THAW for t ET.A4sai and t <T (10.79)

or (3.3) the inequalities TsLl < t az./ and TsLl,i < min{ SL2,j, t WL1,k} hold and

= TSL1(7 SL1,i). (10.80)

Possibility (4): If T SL2,j < min fT LWL1,k} then either (4.1) the inequalitySL1,i

t SE1,i <I SL2,j < min {isil,i t WL1,k} holds and
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= max flub {T : T2,ijk = TsL1(t) for t E [t SL1,i 5T SL2,j) nTMSL1,i}5TSL2(T SL2,j)}
(10.81)

= max{Ts,L1(T SL2,j),TSL2(T SL2,j)} if SL2,j TMSL1,i

or (4.2) the inequality t sE1,i = t SL2,j < min {Tal,i t Wil,k} holds and

T2,ijk =

with

TSL2(T SL2,j) = lub{S4} if S4 ~ 0

min Val (t SL1,i),TSL2(T SL2,j)} if 54 =

S4 = {T : T = TSL2(t) for t E T.A4a2j and t < TsL2 J},

or (4.3) the inequalities T sE2,f < t sai and T sL2 J < minfkTSL1i , t WL1,k} hold and

T2,ijk = TSL2(T SL2,j).

(10.82)

(10.83)

(10.84)

Once the evidence space (7r2, TL2 inTL2) is constructed, cumulative plausibility and belief

functions for SL temperature at which LOAS occurs can be obtained from the pairs (T , fujk)

as (i) indicated in conjunction with Eqs. (2.48)-(2.50) and (ii) illustrated in Fig. 10.2. In addition,
Fig. 10.2 also contains the CDF and CCDF for the SL temperature at which LOAS occurs obtained
by assigning uniform distributions to the individual focal elements for link failure temperature as
described for the construction of the link failure time CDFs in Fig. 4.4. Specifically, the indicated
CDF and CCDF are constructed as described in Eqs. (7.9)-(7.13) with TL2(tal,ta2,twL1)

replacing TMLl (tal , ta2, twll ) .
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Fig. 10.2 Graphical summary of evidence space (77C,2,711.2 mTL2 for temperature T at which

LOAS occurs for (i) a three link system composed of SL 1, SL 2 and WL 1 defined in Sect. 4.1
and (ii) LOAS corresponding to failure of both SL links before failure of the WL: (a) Cumulative

plausibility Pl(1' probability Pr(i T) and belief Bel(t and (b) Complementary

cumulative plausibility Pl(T <1'), probability Pr(T <I') and belief Bel(T <1').

A focal element Trzlik associated with the evidence space (TE2,TL2,171TL2) contains

temperatures corresponding to SL temperatures at which LOAS could occur only if (i,j,k) E- - 2L
with

12L = {(i, j,k): min {t LSL2,j} ‹T Wil,k} C2) (10.85)

as previously indicated in Eq. (7.43). In turn, the glb T2L for the SL temperatures at which LOAS

could occur is defined by

As an example,

T = min .._2L g' —2uk •• (i, k) El2L} (10.86)

T 21, = 590 °C 590.008 °C (10.87)

for the results illustrated in Fig. 10.2, with (i) the first result obtained from Eq. (10.86) and (ii) the
following approximate result obtained from the sampling-based analysis used to construct the CDF
and CCDF in Fig. 10.2.

Determination of the lub T2L of the SL temperatures at which LOAS could occur is now

considered for LOAS corresponding to failure of either SL before failure of the WL. Two cases
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for the definition of T2L are considered: (i) All link temperature curves are continuous functions,

and (ii) All link temperature curves are continuous increasing functions.

For the first case (i.e., all link temperature curves are continuous functions), the lub T2L,ijk of

SL temperatures corresponding to the occurrence of LOAS for T.C.,2* with (i, j ,k) E Z2L is

defined by

T2L4k = lub {T : T E Trzijk and T co} , (10.88)

and the resultant lub T2L of SL temperatures corresponding to the occurrence of LOAS is defined

by

T2L = max{T2L ..k : • (i,i
, 
k) E 12L 1y, • (10.89)

For the second case (i.e., all link temperature curves are continuous increasing functions), the

determination of a closed-form representation for the lub T2L of the SL temperatures at which

LOAS could occur requires consideration of a number of special relationships involving LSE1,i

t SL2, j T SL1,z I SL2, j and WL1,k • The following development considers focal elements— 

associated with the evidence space (7r2,71L2 
9 nITL2) with (i, j ,k) E1-21 •

To start, the following two disjoint possibilities

T Wak = °° and t ',yak tmx

for t wak are identified and then used to identify more possibilities involving t

T SL1,i T SL2,j and t w1k as indicated below:

and

t min T SL2,j} WL1,k=c4) or

T SL1,i < min {t., T SL2j} and t j• 2 WL1,k=°° or
T WL1,k = cl) or< min {t t } and t • tSL2,j mx , - nu - yru,k GO 

tij = T SL1,i =T SL2,j < tmx <T WL1,k cc)
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I
T WL1,k min {t. , 7 SL1,i,7 SL2,j}

7 SLA

' 

i < min{TWL1,k, T SL2,j} an

' SL2,j < minff WL1,k , Inl,i } 

or

= i SL1,i =I SL2,j <IWL1,k m

tdx 

and T 

T. yalk tmx or

yr/1,1,k t ormx

Tj

7 WL1,k tmx 7 (10.92)

In turn, the four possibilities in Eq. (10.91) for TyyLl,k = co result in the following definitions for

•T2L,ijk •

Possibility (1): If tmx { t alp t SL2,j} t 00 and (i,j,k) E 12L , then either (1.1) the

inequality t RAJ t < t SL2,J holds and

f2L,ijk = TSL1(tmx),

or (1.2) the inequality t SL2J tmx < t sLi,i holds and

tL,ijk = TSL2(tmx),

or (1.3) the inequality max{ t sLi,i , t j}tmx holds and

with

2L,ijk

max{Ts,L1(tmx),T5E2(tmx)} if max{ t < tmx

{Ta1(tmx),TSL2(tmx)} if = tSL2,j = tmx

TSL1(t ) =lub{T :T = TSL1(t) for t E [t sw,tmx)} if tsw < tmx

TSL2(tmx)= lub{T : = TSL2(t)T for t E [ t SL2J, tmx )1 if t SL2J < tmx.

(10.93)

(10.94)

(10.95)

Possibility (2): If t sll ,r < min{tmx,t 5E2 J} , t sE2 t PVL1,k and (i, j,k) E 22L , then either (2.1)

the inequality t 5E2, T< SL1,i holds and

T2L ijk = max Ilub IT : T= TSL1(t) for t SLl,i C t <T ,

lub {T : T = TSL2(t) for t t <1 al,i}}

= max Val (Tap ), TSL2(i SL1,i)},

or (2.2) t az.), =7 SL1,i and
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T = lub {T : T2L,ijk for t t <I sai}= TSL1(t)

= TSL1(T SL1,i),

or (2.3) the inequality < t SL2,j holds and

= TSL1(T SL1,i).

(10.97)

(10.98)

Possibility (3): /21 , then either (3.1)T SL2j < min ftmx TSL11) T SL1,i Wak and (i, j,k)

the inequality t <T SL2,j holds and

f2L,ijk = max Ilub {T : T = TSL1(t) for t sil,i t <T- a2 J} ,

lub {T : T a2j t <T. a2j}}= TSL2(t) for t

= max {Ts/A (sT SL2,j),TSL2(T SL2,j)}9

or (3.2) t a1,1 =T SL2 j and

T2Lyk = lub {T : T = TSL2 (t) for t t < T a2 J}

= TSL1(T SL2,j),

or (3.3) the inequality T SL2,j < t SL1,i holds and

f2L,ijk = TSL2(T SL2,j).

Possibility (4): If T./ = TsLl,i =T SL2,j < t <T WL1k and k)E12t holds, then

{= max lub IT : T2L,ijk = TSL1(t) for LSI,1,i t <4;1,

lub {T : T = Ta2(t) for tsL2 t < }} (10.102)

= max {Tal (ty),Ta2(ti j)} .

(10.99)

(10.100)

(10.101)

Similarly, the four possibilities in Eq. (10.92) for T wiu tnix result in the following definitions

for T2F,ijk •

Possibility (1) If T WL1 k min Itm, , I SL1,i, T SL2,j } and (i, j,k) E 12L , then either (1.1) the

inequalities t sLl,i <T WL1,k t SL2,j hold and
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f2 L,ijk = lub {T : T = TSL1(t) for t al ,t • C t< t wij,k}

(I= TSL1, WL1,k ) 

or (1.2) the inequalities t azj <T TYL1,k t sLl,i hold and

T2F,ijk = lub {T : T= TSL2 (t) for t—SL2,j t <T WL1k}

= TSL2(T WL1,k),

or (1.3) the inequality max{ t au, t SL2J} <I wak holds and

T2L = max flub {T : T= TSL1(t) for t—SL1,i t <T WL1,k},

lub {T : T = TSL2(t) for t azj t <I wu,k}}

= max {Tad (TWL1,k ),TSL2(T WL1,k)} •

(10.103)

(10.104)

(10.105)

Possibility (2) If TsLl,i < Min TIWL1,k 9T SL2,j} T WL1,k tmx and (i, j,k) e 22L , then either: (2.1)

the inequality t a2 <TsLl,i holds and

T2L,ijk = max lub IT : T = TSL1(t) for

lub {T : T = TSL2(t) for

= max {Tad (TSL1,i ),TSL2(T SL1,i)}

or (2.2) t a2j =T SL1,i and

LSL1,1 C t<TSL1,i

—SL2,j t <T SL1,i}}

5

T2Lijk = lub {T : T — Tal(t) for t al • t < Tsai}

= TsLi (T SL1,1),

or (2.3) the inequality T SL1,i < t SL2,j holds and

T2L,ijk = TSL1(T SL1,i)•

(10.106)

(10.107)

(10.108)

Possibility (3) If t a2 < min{ t yyLl,k,  au} , t wak < tmx and (i, j,k) E I2L , then either: (3.1)

the inequality t sLl,i <T SL2,j holds and

f' = max Ilub {T : T2L,ijk = TSL1(t) for t_SL1,1 t <T SL2,j} ,

lub {T : T = Ta2(t) for t a2j t <T SL2,j}}

= max {T5L1(,T SL2,j),TSL2(T SL2,j)},
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or (3.2) t SL2, j= t SL1,i and

T2L = lub {T : Tijk = TSL2(t) for t - - -
31-z,.1 
 t <T. a2 J}

= TSL2(TSL2,J • ),

or (3.3) the inequality T SL2,j < t SLI,i holds and

12L,ijk = TSL2 (T SL2,j)•

Possibility (4) If = t sLi,t = t SL2,j < t 1111,k tmx and (i, j,k) E In holds, then

f2L,ijk = max Pub {T : T = TSL1(t) for t t

lub{T : T = Ta2(t) for t a2j < t <Tj}}

= max{Tal ),TsE2 (01.

(10.110)

(10.111)

(10.112)

Given the possible definitions for T2L,ijk in Eqs. (10.93)-(10.102) and (10.103)-(10.112)

obtained with the assumption that the link temperature curves are increasing, the resultant value

for T2L is obtained as indicated in Eq. (10.89). As an example,

T2L =1050.000 °C 1049.995 °C (10.113)

for the results illustrated in Fig. 10.2, with (i) the first result obtained from Eqs. (10.93)-(10.102)
and (10.103)-(10.112), and (ii) the following approximate result obtained from the sampling-based
analysis used to construct the CDF and CCDF in Fig. 10.2.
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11. Cumulative and Complementary Cumulative Belief and Plausibility for
Failure Time Margins

For simplicity, this section considers a system with 2 SLs and 1 WL and two definitions of
system failure: (i) LOAS occurs when both SLs fail before the WL fails and (ii) LOAS occurs
when either SL fails before the WL fails.

11.1 Cumulative and Complementary Cumulative Belief and Plausibility for Failure
Time Margins with LOAS Defined by Failure of Both SLs before Failure of the WL

Failure time margins defined by

Mt = (time at which SL failure potentially causes LOAS)

— (time at which WL failure potentially prevents LOAS)

are an important summary result in the analysis of WL/SL systems. The descriptor "potentially"
is used in the definition of Mt because the occurrence of LOAS depends on the relative timing of

SL failure and WL failure. Specifically, Mt is positive if SL failure occurs after WL failure (i.e.,

the desired occurrence) and negative if SL failure occurs before WL failure (i.e., the undesired
occurrence).

This section presents failure time margin results for a 2 SL, 1 WL system for which LOAS
occurs if both SLs fail before the WL fails. Nonfailure of either of the SLs or the WL is a possibility
for this system that must be addressed as part of the analysis of margins. To handle this situation,
a generalized margin defined by

Mlt (t) = Mit ([tSL1,t SL2,tWL1])

—00 for tind = oo, max Ital , tsu < co

max {t al, t 5E2} — tyvil for tiyll < co, max ft al, t s1,21 < 00

00 for max {tad , t 2} = 00

for t=[tsLl, tsL2, twid belonging to the set TM= TMSL1 x TMSL2 x TA41,1 defined in Eq. (4.13)

is considered for analysis.

(11.2)

Application of the function M11(t) defined in Eq. (11.2) to the elements t= A r L1,t SL2,tWL1] of

the sample space TM for the evidence space (TM, TM, mTM) for link failure time defined in

conjunction with Eqs. (4.13) -(4.16) results in the evidence space (MEM , MTM1, mmTm1) for

failure time margins with

MTMI= 1mi : m, = Mlt (t) for t r= AL1,t SL2,tWL1] E TM},

= fm, : mt = M (t) for t r= SL1,t 5E2 tWL1] E
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WICK_ = {,MTJVItiik :

and

(m1t,ijk (min(MEA4tiik), max(MTM1,0.)) (11.5)

(11.6)(i, j,k) E Z= {1, 2, ..., nSL1} x {1, 2, ..., nSL2} x {1, 2, ..., nWL1}1

mMTM1(MTAIII,ijk) = mTM (T•Allijk) = inijk • (11.7)

Further, the focal element bounds mlt,ijk and ffilt,ok are defined by

--co for i,F = GO and max{ t t azj} < 00fLI,k 

Mlt,ijk  = max { t sup t sL2 J} — TWL1,k , for max I t 00—sll,i,t SL2,j,TWL1,k} < (11.8)

and

Go for max { t 2,j} = 00

—Go for t WL1,k= 00 and max{Isai 
, TSL2,j } < c°

171lt,ijk max{Tali , T.1,c 12,j , — t WL1,k for max{Tali , T.1,c2,j , LWL1,1c} < a" (11.9)

00 for max{Tnl,i, ISL2J } = c°-

Once the evidence space (MEM, MTM1,mmTml) is constructed, cumulative and

complementary cumulative plausibility and belief functions for SL/WL failure time margins can

be obtained from the pairs (‘mlt,ijk ,t711t,ijk) as indicated in conjunction with Eqs. (2.48)-(2.50). As

examples, cumulative and complementary cumulative plausibility and belief functions for failure

time margins are presented in Fig. 11.1 for a system with 2 SLs and 1 WL. In addition, Fig. 11.1

also contains the CDF and CCDF for SL/WL failure time margins obtained by assigning uniform

distributions to the individual focal elements for link failure temperature as described for the

construction of the link failure time CDFs in Fig. 4.4. Specifically, the CDF and CCDF in Fig.

11.1 are constructed as indicated in Eqs. (7.9)-(7.13) with M1t (tal,ta2,twL1) replacing

TM-Li (ta t SL2 'tWL1) •
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Fig. 11.1 Graphical summary of evidence space (MEM , MTM1 , mm73/1) for SL/WL failure time

margins for (i) a system composed of SL 1, SL 2 and WL 1 defined in Sect. 4 and (ii) LOAS
corresponding to failure of both SLs before failure of the WL: (a) Cumulative plausibility

m) , probability Pr(iii m) and belief Bel(iii and (b) Complementary cumulative

plausibility Pl(m < rii), probability Pr(m < "th) and belief Bel(m <

Margin results of the form shown in Fig. 11.1 are valuable because they show and quantify the
uncertainty in the time between when (i) failure of the SL system potentially results in LOAS and
(ii) failure of the WL potentially averts LOAS.

Belief Bel(S) and plausibility Pl(S) for specific subsets S of MEM, can be calculated from

the relationships

with

nSL1 nSL2 nWL1

Bel(S) = E (11.10)nIMTM1(MT-1\41,ijk) = E E E 6 13(MTMLijk)mijk
MEMLukcS i=1 j=1 k=1

nSL1 nSL2 nWL1

Pl(S)= mmiml ('47-ml*) = gp (11.11)
0=.11/17"Mu firnS i=1 j=1 k=1

1 for MEM,ijk c S
6B (MEM,

0 otherwise

1 for 0 ~ MT,A41iik n S
SP (MEA41,ijk =

0 otherwise.
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Many possibilities exist for the definition of the set S . For example, suitable definitions of S
can be used to define CBFs, CPFs, CCBFs and CCPFs for failure time margins. Specifically, with

and

the indicator functions

and

S(mt)= {tht : mt ,A4T.A41 and int int}

Sc (mt) =

B (MTA/11,ijk) =
0 otherwise

8I(1\47--A41uk)= 
{ MTh/1 for Lk c Sc (m

0 otherwise

{1 for MTNIIuk c S(m 1 for thlt,ijk mt

: mt E MEM1 and mf < iht }, (11.15)

0 otherwise,

{1 for int < M1t ,ijk

0 otherwise

can be used in Eq. (11.10) to define Bel[S(mt)] and Bel[Sc (mt)] for use in the construction of

CBFs and CCBFs. Similarly, the indicator functions

and

1 for 0 ~ MEA4Lijk n S(m
P(.A47:114,4k) =

0 otherwise

1 for 0 ~ MEA41iik n Sc (mgicj cma--A =
ityk

0 otherwise

{1 for 171 • < m—lt ,yk —

0 otherwise,

{1 for mt < nt ,ijk

0 otherwise

can be used in Eq. (11.11) to define Pl[S(mt)] and PI[Sc (mt)] for use in the construction of

CPFs and CCPFs. However, this approach to the construction of CPFs and CCPFs is not as
efficient as the procedure described in conjunction with Eqs. (2.48)-(2.50).

The approach described in Eqs. (11.14)-(11.19) as a possible way to construct CBFs, CCBFs,
CBFs and CCBFs is not as computationally efficient as the procedure described in conjunction
with Eqs. (2.48)-(2.50). However, it is useful for determining belief and plausibility for specific
sets of margins on the form defined in Eqs. (11.14) and (11.15).

As examples, the calculation of Bel[S(0)] and Pl[S(0)] for the WL/SL system in Fig. 11.1

produces the results
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and

Bel[S(0)] = 1.600 x10-2 1.595 x10-2 (11.20)

Pl[S(0)] = 4.880 x10-1 = 4.879 x10-1 (11.21)

with (i) the values for Bel[S(0)] and Pl[S(0)] in the initial equalities determined as indicated in

Eqs. (11.10) and (11.11), and (ii) the values for Bel[S(0)] and Pl[S(0)] in the following

approximate equalities determined in a sampling-based verification procedure with a sample of

size 107 as described in Sect. 5.2. The agreement of the plotted results in Fig. 11.1a (i.e.,
Bel[S(0)] = 0.016 and Pl[S(0)] = 0.488) and the two numerical results in Eqs. (11.20) and (11.21)

provides a strong verification result that Bel[S(0)] and Pl[S(0)] are being calculated correctly.

Additional verification is provided by the agreement of (i) the preceding values for Bel[S(0)] and

Pl[S(0)], and (ii) the corresponding values for LOAS in Eqs. (5.6) and (5.7).

As additional examples, two special cases of potential interest are now considered: (i) belief
Bel(f—ool) and plausibility /34 {—co} ) for -CO (i.e., for nonfailure of the WL and failure of both

SLs) and (ii) belief Bel(fool) and plausibility /34{00) for oo (i.e., for nonfailure of one of the SLs).

Specifically, Bel(f—col) and Bel(fool) are defined as in Eq. (11.10) with

5 ,-co(MTA4,ijk) =

and

g B,Do(MTMLijk) =

Similarly, P/({—co}) and P/({co}

1 for MEMIiik C {-00}

0 otherwise

{1 for MTA4,iik g fool

0 otherwise

) are defined as in Eq. (11.11)

1 for -co = Mit = T71lt jjk
0 otherwise

1 for oo = inli,iik = r7111,iik

0 otherwise.

with

(11.22)

(11.23)

gp,_.0(MTA4,,fic) =

and

P,00(MTMLyk) =

{1 for 0 ~ MT- n {-00}A4, 01c  
=

0 otherwise

{1 for 0 ~ MTMi ijk n lool, =
0 otherwise

1 for - °° = nt ,ijk

0 otherwise

1 for c''') = 1711t ,zjk

0 otherwise.

(11.24)

(11.25)

As examples, the calculation of Be/({—co}), Bel( fool) , P/({-0o}) and /31({co}) for the WL/SL

system in Fig. 11.1 produces the results

Be/({—co}) = 0.000 x10° = 0.000 x10°, (11.26)
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and

Be/({00}) = 0.2000 = 0.2002, (11.27)

/3/({—c0}) = 8.000 x10-2 —= 7.987 x10-2 (11.28)

/3/({00) = 0.6000 = 0.5998 (11.29)

with (i) the values for Be/( {-0,0) , Be/({00}) , P/({—oo}) and P/({00}) in the initial equalities

determined as indicated in Eqs. (11.10) and (11.11) and (ii) the values for Be/({—co}), Be/({Go}) ,

P/({-00) and P/({oo}) in the following approximate equalities determined in a sampling-based

verification procedure with a sample of size 107 as described in Sect. 6.2. The agreement of the
two computational procedures provides a strong verification result that Bel(f—ool) , Bel(lool) ,

Pl({—oo}) and P/({oo}) are being calculated correctly.

The sampling-based procedure used to obtain the CDF and CCDF in Fig. 11.1 yields values of

In1Ft = • —137 212 min and 1711Ft — • 137 131 min- (11.30)

for the smallest failure time margin /7/1Ft > —00 and the largest failure time margin 7711Ft <co. As

a verification test, a closed form determination of MIR and wilFt can be performed as described

below.

Focal elements T.Mik for link failure times result in one or more failure time margins int in

MEA4,,ik satisfying —00 < mt < 00 only if (i, j,k) E /im with

ZiM — max {L alp SL2J5 kWL1,k} < °91 •

The maximum of the link failure times for EA4,ik with (i, j,k) E Z1M that result in time margins

satisfying —co < mt <co can be represented by

tiF,SL1,i = max{t : t E TA4sai and t < Go} ,

tiF,SL2,j = max {t : t E TMSL2J and t < co} ,

t1F,WL1,k = max{t : t E EA4wL1,k and t < 00}.

The minimum MIR ,ijk and maximum rT71Ft,ijk of the time margins contained in MTNIIiik with

(i, j,k) E Z1M that satisfy —co < mt <co are defined by
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and

1111Ft,ijk = max alp L'SL2, ,WL1,k

t711Ft,ijk = max {ilF,SL1,i 9 I 1 F,SL2,j} kWL1,1‘•

(11.35)

(11.36)

In turn, the minimum m and maximum1Ft 1711Ft of the time margins contained in MEAA that

satisfy —00 < mt < oo are defined by

and

1111Ft = (t, ,k) E I1F I

1711Ft = max k) E I1F 15

(11.37)

(11.38)

respectively.

As an example,

M1Ft =-137.877 min L' —137.212 min and r7i1Ft =137.222 min 137.131 min (11.39)

for the results illustrated in Fig. 11.1, with (i) the first values for m1Ft and IniFt obtained as

indicated in Eqs. (11.37) and (11.38) and (ii) the following approximate values obtained as
indicated in Eq. (11.30).

The failure time margin evidence space (MEM , MTM1, mmTA,n) and its associated CPF,

CBF, CCPF and CCBF for SL 1 and SL 2 both failing before WL 1 fails can also be defined with

use of the evidence spaces (T.M.T1, tnTMF1) and (7:A/61,11WwL1,mn1) • Specifically, (i)

(TM.F0TMllTi,mTmn) is defined in Sect. 8.1 for the times at which a system consisting of SL 1

and SL 2 fails with system failure time corresponding to the time at which the second SL fails and
(ii) (7:Mka1, TMWL1, mWL1 ) is defined in Sect. 4 for the time at which WL 1 fails.

11.2 Cumulative and Complementary Cumulative Belief and Plausibility for Failure
Time Margins with LOAS Defined by Failure of Either SL before Failure of the WL

This section presents failure time margin results for a 2 SL, 1 WL system with LOAS occurring
if either SL fails before the WL fails. Similarly to Eq. (11.2), the failure time margin under
consideration is defined by

M 2t(t) = M 2t(KL1,t SL2,tWL1])

—00 for tFal = oo, min ft SL1,t SL21 < 00

min Ital t SL 2 for tivn < oo, min ftsu,ts,L21 < Go

for minftal,ta21 = 00
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for t = [tsil, tsE2, tw-L1] belonging to the set TM= TMSLl x TMSL2 x TA/61 defined in Eq. (4.13)

is considered for analysis.

Application as indicated in Eqs. (11.3)-(11.7) of the function M 2t (t) defined in Eq. (11.40) to

the elements t = [t al,ts12,tyvi,1] of the sample space TM for the evidence space (TM, TM, mTM
for link failure time defined in conjunction with Eqs. (4.13) -(4.16) results in the evidence space
(MT,M2 , MTM2, /j/Nnm2 ) for failure time margins. The difference in the functions M1t (t) and

M2t (t) defined in Eqs. (11.2) and (11.40) results in the focal element bounds M1t,iik and rnit,tik

defined in Eqs. (11.8) and (11.9) now being defined by

and

7712tijk

=

—°° for 4L1,k = co and min {t t }< 00

min{ t SL1,i, t SL2,j} -4L1,k for TWL1,k < 00 and mil-1ft t SL2J1 < GO (11.41)

00 for min ft sup t SL2 = GO

—00 for t yru,k= 00 and minlisat , -A .- 2,j 1 < C°

min {TSLI4 , ISL2j } - -t Wil,k for t wn,k< GO and min {Tal,t , ISL2, j} < x (11.42)

oo for min {Tsai Te 1, 0L2,j 5 = (4).

Once the evidence space (MT.A42, MTM2, mi,,ny 2 ) is constructed, cumulative plausibility

and belief functions for failure time margins can be obtained from the pairs (,m2t,ijk ,7712t,ijk) as

indicated in conjunction with Eqs. (2.48)-(2.50). As examples, cumulative and complementary
cumulative plausibility and belief functions for failure time margins are presented in Fig. 11.2 for
systems with 2 SLs and 1 WL. In addition, Fig. 11.2 also contains the CDF and CCDF for SL/WL
failure time margins obtained by assigning uniform distributions to the individual focal elements
for link failure temperature as described for the construction of the link failure time CDFs in Fig.
4.4. Specifically, the CDF and CCDF in Fig. 11.2 are constructed as indicated in Eqs. (7.9)-
(7 • 1 3)With M21. (tal tsE2 tni ) replacing TML1(tal ta2 tnl) .
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Fig. 11.2 Graphical summary of evidence space (A4TA/12, MTM2, mmim2) for SL/WL failure

time margins for (i) a system composed of SL 1, SL 2 and WL 1 defined in Sect. 4 and (ii) LOAS
corresponding to failure of either SL before failure of the WL: (a) Cumulative plausibility

m), probability Pr(iiim) and belief Bel(112m), and (b) Complementary cumulative

plausibility Pl(m < hi), probability Pr(m < th) and belief Bel(m <hi).

Belief Bel(S) and plausibility Pl(S) for subsets S of NITA/12 can be calculated from the

relationships defined in Eqs. (11.10)-(11.19). As a reminder, this requires that the evidence space
GMTA/12, MTM2, mmim2) for failure time margins be defined to be consistent with the function

M2t(t) defined in Eq. (11.40) and the corresponding focal element bounds m2t,iik and rn2t,ijk

defined in Eqs. (11.41) and (11.42).

As examples, calculation of Bel[S(0)] and Pl[S(0)] for the WL/SL system in Fig. 11.2 yields

the results

and

Bel[S(0)] = 1.340 x10-1 L- 1.341 x10-1 (11.43)

Pl[S(0)] = 8.720 x10-1 = 8.719 x10-1 (11.44)

with (i) the values for Bel[S(0)] and Pl[S(0)] in the initial equalities determined as indicated in

Eqs. (11.10) and (11.11) and (ii) the values for Bel[S(0)] and Pl[S(0)] in the following

approximate equalities determined in a sampling-based verification procedure with a sample of

size 107 as described in Sect. 6.2. The agreement of the plotted results in Fig. 11.2 (i.e.,

Bel[S(0)] = 1.340 x10-1 and Pl[S(0)] = 8.720 x10-1) and the numerical results in Eqs. (11.43)

and (11.44) provides a strong verification result that Bel[S(0)] and Pl[S(0)] are being calculated
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correctly. Additional verification is provided by the agreement of (i) the preceding values for
Bel[S(0)] and Pl[S(0)] and (ii) the corresponding values for LOAS in Eqs. (5.27) and (5.28).

If desired, Bel(f—col) , Bel( fool) , P/({—co}) and Pl({co}) can be calculated as indicated in Eqs.

(11.22)-(11.29).

The sampling-based procedure used to obtain the CDF and CCDF in Fig. 11.2 yields values of

2Ft — •—135 228 min and in2Ft 70 681 min—= — • (11.45)

for the smallest failure time margin m2Ft > —00 and the largest failure time margin in2Ft < Go . As

a verification test, a closed form determination of m2Ft and r712, can be performed as described
below.

Focal elements IMik for link failure times result in one or more failure time margins int in

MEA42,tik satisfying —00 < mt < co only if (i, j,k) E /211/ with

I2M = ,k) t WIA,k< and min{t SL1,ASL2,j} < x} • (11.46)

The maximum of the link failure times for TNliik with (i, j,k) E /2Ad that result in time margins

satisfying —GC) < 1111T t,ijk < c0 are

max{t : t E T.A4sil,i and t < 00} for ALLi <
t2F,SL1,i

undefined for IsE1,i = 00,

max{t : t E EMSL2 and t < 00} for AL2,./ < 00

(11.47)

12F ,SL2,j

j

undefined for AL2,./ = 00,
(11.48)

and

T2F,WL1,k = max{t :t ETMwLI,k and t < 00} . (11.49)

The minimum M2Foik and maximum tn2Ft,tik of the time margins contained in MEA42tfr with

(i, j,k) E /2A,/ that satisfy —00 < mt <co are defined by

and

1/2Ft,iik = min{LSL1,i, L SL2, j} —T 2F,WL1,k

144

(11.50)



1T12Ft,ijk

min IT2F,R,Li 9 T2F,SL2,j} — L WL1,k for T2F,SL1,i,T2F,SL2,j both defined

T2F,SL1,i — —t [yak for only T2F,SL1,i defined

T2F,SL2,j — Liyak for only InLF,SL2,j defined.

In turn, the minimum m2Ft and maximum rTi2Ft of the time margins contained in MEA42 that
satisfy —Go < mt < 00 are defined in the same manner as shown in Eqs. (11.37) and (11.38).

As an example,

m = —141.463 —141.182 and in = 70 904 70 6812Ft 2Ft — • • (11.52)

for the results illustrated in Fig. 11.2, with (i) the first value for m2Ft and 1712Ft obtained as

indicated in conjunction with Eqs. (11.37) and (11.38) and (ii) the following approximate value
obtained as indicated in Eq. (11.45).

The failure time margin evidence space (MT.A42, MTM2, mmTm2) and its associated CPF,

CBF, CCPF and CCBF for either SL 1 or SL 2 failing before WL 1 fails can also be defined with

use of the evidence spaces (EMT2 TMF2 5 mTMF2) and (,Th4n1,TMK,1,min1). Specifically, (i)

(T.A4T2, TMIF2, mTivF2) is defined in Sect. 8.2 for the times at which a system consisting of SL 1

and SL 2 fails with system failure time corresponding to the time at which the first SL fails and
(ii) (7-Mpa,1, TMWL1 mWL1) is defined in Sect. 4 for the time at which WL 1 fails.
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12. Cumulative and Complementary Cumulative Belief and Plausibility for
WL/SL Temperature Margins for a System with 2 SLs and 1 WL

For simplicity, this section considers a system with 2 SLs and 1 WL and two definitions of
system failure: (i) LOAS occurs when both SLs fail before the WL fails and (ii) LOAS occurs
when either SL fails before the WL fails.

12.1 Cumulative and Complementary Cumulative Belief and Plausibility for WL/SL
Temperature Margins with LOAS defined by Failure of Both SLs before Failure
of the WL

Failure temperature margins defined by

M T = (temperature at which SL failure potentially causes LOAS)

— (temperature at which WL failure potentially prevents LOAS)
(12.1)

are another possible summary result in the analysis of WL/SL systems. Again, the descriptor
"potentially" is used in the definition of M T because the occurrence of LOAS depends on the

relative timing of SL failure and WL failure. The margin M T is positive if SL failure occurs at a

higher temperature than WL failure (i.e., the desired occurrence) and negative if SL failure occurs
at a lower temperature than WL failure (i.e., the undesired occurrence). However, a negative failure
temperature margin is not necessarily associated with the occurrence of LOAS.

This section presents failure temperature margin results for a 2 SL, 1 WL system for which
LOAS occurs if both SLs fail before the WL fails. Nonfailure of either of the SLs or the WL is a
possibility for this system that must be addressed as part of the analysis of margins. To handle this
situation, a generalized margin defined by

M 1T (t) = M1T SL1 It SL2 twL11)

—co for ti,vm = co, max {tat , ts,L2} < oo

TSL1(t SL1) TWL1(tWL1) for tr4,11 < 03, t sE2 < tsLl < 00

TSL2(t SL2) for tin l TWL1(tWL1) < ')°,t SL1 < t SL2 < °°
max {Tal (ty ), Ta2 (t )1 - TwL1(tim) for cL1 < °°, tii = tsL1 = tsL2 < 00

oo for max {tad , ts,L2} = co

(12.2)

for t = [tal , ta2, tau] belonging to the set TM= T,MsLI x TMTMSL2 x WL1 defined in Eq. (4.13)

is considered for analysis.

Application of the function M1T (t) defined in Eq. (12.2) to the elements t r SL1 t SL2,t1f7L11
of the sample space TM for the evidence space (TM, TM, mTM) for link failure time defined in

conjunction with Eqs. (4.13) -(4.16) results in the evidence space (M7, mMT1) for failure

temperature margins with
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{mu- mu- (t) for t =[tsLl , ts,,2 , twil E TM},

MTLijk {m1T : in1T = M1T (t) for t = [tsLl , t a2 twil] E imuk

MTI = {A/11'14k : (i, j,k) E I = {1, 2,..., nSL1} x {1, 2,..., nSL2} x {1, nWL1}}

and

In addition, the bounds

mMT10/17-1,ijk) = MTM (TA/tijk) = /Wyk •

(12.3)

(12.4)

(12.5)

(12.6)

, m1T,ijk ) = (glb(MTLijk ), max(M7i,iik )) (12.7)

are introduced for use in the determination of the cumulative values of belief and plausibility for
the WL/WL failure temperature margins defined in Eq. (12.2).

Definition of the focal element bound 1111T,ijk is considered first. Specifically, M1T ,ijk has a

definition that (i) involves greatest lower bounds (glb's) for sets of link failure temperatures and
(ii) is conditional on various equalities and inequalities involving the times t SLt,i , t a2 T SL1,i

T SL2,j and t wak . The following possibilities exist for the definition of 1111T,iik :

Possibility (1): If T-L1,k = cc) and max{ t sLl,i , t sL2, < oo , then

rn1T,ijk =

Possibility (2): If max{Lal,i t—SL2,j} = oo , then

1111T ,ijk CC)*

(12.8)

(12.9)

Possibility (3): If max{ t syd,i , t 5E2 J T,1,k < c)() 1 and t sLl,i < t , then either (3.1)-wL 

tWL1,k tmx t SL1,i <TSL1,i < t SL2 tmx and,

,ijk = TSL2(LSL2,j) TWI,1(T WL1,k)

or (3.2) Tw-Luc t t < t t mx t SL2, TSL1,i 9 [ t SL2,j It mx] n EA/111 = 0 and
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= max {glb {T : T for t sy,2,j t and t e ,TSL2(L91,2,j)}nhT ,ijk = TSL1(t)

TWL1(TWL1,k)

= max {Ta1( t,-SL2,j),TSL2(SL2,j)} TWL1(T Wil,k) if t SL2,j TA/11

or (3.3) irn1,k C ti71.5C t SL1,i < t SL2,j C t mx t SL2,j [ t SL2,j ,t mx] ñEMii = 0 and

111T ,ijk = TSL2(LSL2,j) TWL1(TWL1,k). (12.12)

Possibility (4): If max{ t sLl,i , t 1r L1,k < and t-SL2,j < LSL1,i then either (4.1)

tWL1,k t 5 t SL2, j<TSL2,j < t tmx and

7111T ,ijk TSL1(LSL1,i) TWL1(T WL1,k),

or (4.2) Twak t mx t az.), < t t mx t sat TSL2,j [t ,t mx] n TA42 ~ and

= max {T (t .) glb IT : TSL1 = TSL2(t) for t S1,1,1• < t and t E TMSL2 .}}

-TSL1(T WL1,k)}

= max {Tal(t au), Ta2 (t al,i)} if t E TM21,

or (4.3) tWLl,k t mx t 5E2, < t tmx t TSL2,j [ t SL1,i ,t mx] n TA42 j= 0 and

1111T ,ijk = TSL1(LSL1,i) TWL1(T WL1,0*

(12.13)

(12.14)

(12.15)

Possibility (5): If max{ t sLl,i , t az ,TWIA,k} < oo and t-SL1,i = t sLz, j= -t ij < tmx , then either (5.1)

tWL1,k tmx t ij = tmx and

TAT ijk = max { TSL1(Lij), TSL2(Lij)) TWL1(T WL1,k)

or (5.2) twll,k t mx t = t mx (t y ,tmx1n T.A4i ~ 0 , (ty,t„,x1 n TA42i ~QS and

(12.16)

mIT ,ijk = min {glb {T :T = TSL1(t) for t e [t ip t,nx]nT.A4i},

glb {T :T = TsL2 (t) for t e [ t tmx [ nEM2i1}- Tyvn (twil,k) (12.17)

ming:5D ( t y TSL2(4)} TWL1(TWL1,k),

or (5.3) Twak t mx -t = tmx, (t ii,tmx1nT.A4i =0 , (t ii,tmx1n7A42j =0 and
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- glb {T • T - TSL1(t) for t E[t t T.A4u 1- Twn(TWL1,k)1111T,ijk • Pa

= TSL1(t ij)-TWL1(4L1,k),

or (5.4) twn,k tmx , t = tmx , (t ij,tmx]nT.A4ii = 0 , (t u ,t„,x1nT.A42i = 0 and

m = glb {T :T = T (t) for t E [ t t ]nT,A42.} - (E„1,k)TWL1‘ vvL-1T,ijk SL2 zi mx

= TSL2(t ") TWL1(TWL1,k),

or (5.5) twLl,k tmx , t = t„ , (t iptmin7Mi = 0 , (tiptmx] n7A42i = 0 and

mlTijk = maxITSLI(Lii),TSL2 (Lii )1 - Tr.„ WL1,k)•

(12.18)

(12.19)

(12.20)

The bound rnmiik also has a definition that is conditional on various equalities and inequalities

involving the times t , t . t-WL1,k, T SL1,i and T sL2 j as stated for the following

possibilities:

Possibility (1): If Iwn,k = 00 and max{Tszu icoL2,j}< oo , then

=

Possibility (2): If max{Tati T = , then01,2,j 

T711T,ijk = °C).

(12.21)

(12.22)

Possibility (3): If max{Tsai T01,2, j 51WL1,k} < and Tal,i < tsL2,j , then either (3.1) LI k t mx

t SL2,j SL1,i <T SL2,j t,nx and

Y121Ttjk - max {Tal (\Tsai ),TSL2(T SL2,j)}- TWL1(Lim,k),

or (3.2) lwak tmx, TSLI,i < t SL2,j <T SL2, j < tmx and

= TSL2 (T SL2,j)- TSL1(Lkvil,k)•

(12.23)

(12.24)

Possibility (4): If max{Tsai 01,2,j ,IWL1,k} < and Ta2,J < Al,„ then either (4.1) livak t„,„

t_SW < t SL2,j <T SL1,i < tmx and

1711T,ijk = max {Ts/A (\Tsai ),TSL2(T SL2,j)}- TWL1(Lim,k), (12.25)
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or (4.2) 11,17L1 T SL2,j < t SLI,t < T SL1,i tmx and

7711r,iik — TSL1(T SL1,i) TSL1( tWL1,k)*

Possibility (5): If max fisn,i L,L2,j9i_nif <00 and Ts L1 = tsL2, j = ttj , then

r711T ,ijk = max {Tad (T./ ), TSL2(Tj)} TWL1(LWL1,k).

(12.26)

(12.27)

Once the evidence space (MEI, MET1,mmT1) is constructed, cumulative and complementary

cumulative plausibility and belief functions for SL/WL failure temperature margins can be
obtained from the pairs (m1T ,ijk 9 7711T ,iik as indicated in conjunction with Eqs. (2.48)-(2.50). As

examples, cumulative and complementary cumulative plausibility and belief functions for failure
time margins are presented in Fig. 12.1 for a system with 2 SLs and 1 WL. In addition, also contains
the CDF and CCDF for SL/WL failure temperature margins obtained by assigning uniform
distributions to the individual focal elements for link failure temperature as described for the
construction of the link failure time CDFs in Fig. 4.4. Specifically, the CDF and CCDF in Fig.

12.1 are constructed as indicated in Eqs. (7.9)-(7.13) with M1T ([t SD, t SL2 twL1]) replacing

TML1(t , t s2,2 , t wil) .

SL1, SL2, WL1

LOAS - Both SLs
before WL

10
-oo -400 -200 0 200 400 600

m: SL/WL Temperature Margin (°C)

SL1, SL2, WL1

LOAS - Both SLs

before WL

Bel(m < rn

-oo -400 -200 0 200 400 600

m: SL/WL Temperature Margin (°C)

Fig. 12.1 Graphical summary of evidence space (.A/17, MT1, mmT1) for SL/WL failure

temperature margins for (i) a system composed of SL 1, SL 2 and WL 1 defined in Sect. 4 and (ii)
LOAS corresponding to failure of both SLs before failure of the WL: (a) Cumulative plausibility
Pl(iitm), probability Pr(iiim) and belief Bel(iiim), and (b) Complementary cumulative

plausibility Pl(m < hi), probability Pr(m<th) and belief Bel(m

Margin results of the form shown in Fig. 12.1 are valuable because they show and quantify the
uncertainty in the temperature difference between when (i) failure of the SL system potentially
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results in LOAS and (ii) failure of the WL potentially averts LOAS. In addition, the sampling-
based procedure used to obtain the CDF and CCDF in Fig. 12.1 produced values of

1FT —358 059 °C and m1FT - • 549 204 °C-= - • (12.28)

for the smallest failure temperature margin !HIFI, > -00 and the largest failure temperature. margin

ffi1FT < °° •

Belief Bel(S) and plausibility Pl(S) for subsets S of M7 can be calculated from the

relationships defined in Eqs. (11.10)-(11.19). As a reminder, this requires that the evidence space
(.A/17, MT1,mmT1) for failure temperature margins be defined to be consistent with the function

M 17, (t) defined in Eq. (12.2) and the corresponding focal element bounds rnTiik and TT1T ,ijk defined

in Eqs. (12.8)-(12.27).

As examples, the calculation of Bel[S(0)] and Pl[S(0)] for temperature margin values of 0

for the WL/SL system in Fig. 12.1 produces the results

and

Bel[S(0)] = 5.000 x10-3 = 5.002 x10-3 (12.29)

Pl[S(0)] = 2.800 x10-1 = 2.800 x10-1 (12.30)

with (i) the values for Bel[S(0)] and Pl[S(0)] in the initial equalities determined as indicated in

Eqs. (11.10) and (11.11), and (ii) the values for Bel[S(0)] and Pl[S(0)] in the following

approximate equalities determined in a sampling-based verification procedure with a sample of

size 107 as described in Sect. 6.2. The agreement of the plotted results in Fig. 12.1 (i.e.,
Bel[S(0)] = 0.005 ,Pl[S(0)]= 0.280) and the numerical results in Eqs. (12.29) and (12.30)

provides a strong verification result that Bel[S(0)] and Pl[S(0)] are being calculated correctly.

If desired, Be/({—ool) , Be/({oo}) , Pl({-00}) and /3/({co}) can be calculated as indicated in Eqs.

(11.22)-(11.29).

The failure temperature margin evidence space (A4 , MT1, mivin ) and its associated CPF,

CBF, CCPF and CCBF for SL 1 and SL 2 both failing before WL 1 fails can also be defined with
use of the evidence spaces (TT

TIF1 inTF1 and (TT\--WL1 TFWL1 111TF ,WL1) • Specifically, (i)

(TTi, r171, mTF1) is defined in Sect. 9.1 for the temperatures at which a system consisting of SL 1

and SL 2 fails with system failure temperature corresponding to the temperature at which the
second SL fails and (ii) (T.Fyal,TFini , mTF ,WL1) is defined in Sect. 4 for the temperature at which

WL 1 fails.
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In turn, the focal element bounds MIT 4k and 77117- vik can be defined on the basis of (i) the bounds

, TFLy ) for focal elements EFLy, associated with the evidence space ( 1,TF1,171TF1)
defined in Eqs. (9.8)-(9.23) for the failure temperatures for a system consisting of SL 1 and SL 2
with system failure corresponding to failure of the second SL and (ii) the bounds

(TF wn,k,TF wak) for focal elements TYWL1,k associated with the evidence space

(EFWL1, TFin11mWL1,TF) defined in Eqs. (4.20)- (4.25) for the actual temperatures at which WL 1

fails. Given known values for the bounds (TF10, TF14) and (TF wak,TF Irak), the bounds

(mu' ,ijk 5 1711T ,ijk) for MTLi jk are defined by

m1T —1 = TF ij —TFlyil,k and Wiliwk = TFi,u — T± WL1,k

with the assumption that

a — b
oo if a = oo

—oo if a < 00 and b = co.

(12.31)

(12.32)

The evidence space ( WL1,TIFWL1,mTF,WL1) is for the actual temperatures at which WL 1 fails

with Tx = 00 included to indicate that that link system failure did not occur. A slightly different

failure temperature margin evidence space is obtained if the WL 1 failure temperature evidence
space (741,1, Twn,mwn) defined in Sect. 4 is used instead of ( WL1 5 TFWL1 , mTF,WL1) • The sample

space TwLl contains all originally specified possible failure times for WL 1. In contrast, 7:Fwn

contains only (i) the failure temperatures that actually occurred and (ii) the indicator Tx assigned

to failure temperatures in TyyLl that were never reached by the WL 1 temperature curve Tfyll(t)

for t t .

12.2 Cumulative and Complementary Cumulative Belief and Plausibility for WL/SL
Temperature Margin with LOAS Defined by Failure of Either SL before failure of
the WL

This section presents failure temperature margin results for a 2 SL, 1 WL system for which
LOAS occurs if either SL fails before the WL fails. Nonfailure of either of the SLs or the WL is a
possibility for this system that must be addressed as part of the analysis of margins To handle this
situation, a generalized margin defined by
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M2T CO = M2T ([tSil ' t SL2,tWL1])

—GO for tffu = cx), min ftal , t SL21 < cl)

T SL2 (t SL2) — TWL1(tWL1) for tWL1 < c°, t 51,2 < t SL1

= TSL1(t SL1) — Tivid(twil) for tw-Ll < 0 0 ,t — •31,1 < tSL2

)9 TSL2 (t ij )1 — TWL1(tWL1) for tim < 00,ty = tSL1  = tSL2  < 00min VSL1(t ij

00 for min ftsTA,ta21 = 00

(12.33)

for t = [tad, t 5E2 , twid belonging to the set TM= IMSL1 X TMSL2 x TA4wil defined in Eq. (4.13)

is considered for analysis.

Application of the function M2T (t) defined in Eq. (12.33) to the elements t r= SL1,t SL2,tWL11

of the sample space TM for the evidence space (TM, TM, mTM ) for link failure time defined in

conjunction with Eqs. (4.13) -(4.16) results in the evidence space (MT2 , MT2 , ilmT 2) for failure

temperature margins defined in the same manner as used in Eqs. (12.3)-(12.7) to define the
evidence space (MT, MT1,mmT1).

Definition of the focal element bound m2T,i~k is considered first. Specifically, m2T ,ijk has a

definition that is conditional on various equalities and inequalities involving the times t sLl,i ,

LSL2,j _t Wak TSL1,i TSL2,j and TWL1,k The following possibilities exist for the definition of

rn2T,ijk

Possibility (1): If 41,1,k = 00 and min{ t sil , t sE2 < c0 , then

m2T =

Possibility (2): If min ft sLl,i , t sL2 = 00 , then

1112T ,ijk =

(12.34)

(12.35)

Possibility (3): If T yal,k t mx , t t mx and t < t sL2J , then either: (3.1) t WL1,k t mx

t SL1,i t mx t S11,i < t SL2, 
= CO and

in .. =T' t . )— 7' (T— 2T ,jk ,SL1( —SL1,1 WL1 WL1,k),

or (3.2) T Wak tmx LSL1,i <TsLl,i < t SL2, t mx and

2T ,ijk = TSL1(LSL1,i) TWL1(T WL1,k)
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or (3.3) t Wak t t < t SL2, t mx SL2,j Sai and

7112T,ijk = mingsu (LSL1,i),TSL 2 (LSL2, j)} TWL1(i WL1,k). (12.38)

Possibility (4): If TyyLl k <_ t mx t sy,2, t and t sL2, < t sLl,i , then either: (4.1) t TYL1,k t

t SL2, t mx tSL2,j < t = °° and

112T ,ijk = TSL2(LSL2,j) TWL1(7 Wil,k),

or (4.2) t Wak t t SL2, j<T SL2, j< LSL1,i t mx and

/112T ,ijk = TSL2(LSL2, j) TWL1(i Wil,k),

or (4.3) Twid,k t t s-L -, •j < LSL1,i t nix LSL1,i SL2, j and

m2T,ijk = min {Tat (Lsil,i ), TSL2(LSL2,j)} TWL1(7 WL1,k).

Possibility (5): If Tyalk t mx and t sL2,i = t = t t mx , then

11/2T,ijk — min {Tsm(Lii ), TSL2(Lij)} TWL1(7 WL1,k)•

Similarly, /T12 T ,ijk is defined by

Possibility (1): If t~iLlk= 00 and min{Tal,i j < 00, then

1712T ijk =

Possibility (2): If min{Tsn,i SL2,j} = a) , then

r712Tijk = °°.

(12.39)

(12.40)

(12.41)

(12.42)

(12.43)

(12.44)

Possibility (3): If Iwn,k t mx T sai t mx and t Sai <F SL2,j then either: (3.1) Iwil,k tmx,

t <T .<t T < T—SL2,j SL1,1 — mx SL1,1 SL2,j and

1712T ,ijk = max { TsL1(T sai), lub {T : T= TSL2 (t) for t [t—SL2, T 1 SL1,i n TA4SL2,j1}

TWL1(LWL1,k)

= max { Tal(T sai),TsL2(T sai)} — TwL-- 1(LWL1,k) if t SL1,i E TA/ISL2,j

154

(12.45)



or (3.2) lyvak t„ tij = t SL2,j =T tmx, TSL1,i <T SL2,j and

1112T,ijk = lub {T : T = TSL1(t) for t E [ t 9 T SL1,i) n TMSL1,i} TWL1(LWL1,k)

= TSL1(T TWL1(WL1,k),

or (3.3) lwLI,k tmx 9 TSLl,i < t SL2,j SL2,j 9 T tmx and

17I2T,ijk = TSL1(T SL1,i)- TWL1(kWL1,k).

(12.46)

(12.47)

Possibility (4): If Iwil,k tmoc TSL2,j tmx and T 5E2 j <T SL1,i then either: (4.1) Iwil,k t mx

t . <T SL2, j - <tmx T SL2, / . <T . and

1112T y-ic = max IT (T ) lub {T : T = T (t) for t E [ t . TSL2 SL2,j ' SL1 -SL1,1 9 SL2, j) n7:1\4511,, }

- TWL1(LWL1,k)

= max ITsL2 (T SL2,j)'TSL1(T SL2,j)} - TWL1(LWL1,k) if T SL2,j E TAIISL1,i'

or (4.2) lwLI,k tmx tii
= t SL1,i = T SL2,j tmx, T SL2,j <T Sai and

TT12T,iik = lub {T : T= TSL2 (t) for t E [ t SL2,j 5T SL2,j) n TA/ISL2,j} TWL1(LWL1,k)

= TSL 2 (T SL2,j)- TWL1(LWL1,k),

or (4.3) Iwil,k tmx, T SL2,j < t SL1,i SL1,i T SL2,j C t and

1712T,ijk = TSL2(T SL2,j)- TWL1(LWL1,k)•

(12.48)

(12.49)

(12.50)

Possibility (5): If bvij,k tmx and ti =T SL2,j =T SL1,i tmx, then max ft sLl,i , t sE2 J1 <Ti and

t712T,ijk = max Ilub {T : T = THAW for tE[tsai,Ti) n TA/ISLU } 9

lub {T : T = TSL2(t) for t E [t sy,2, A) n TMSL2,j}}

- TWL1(LWL1,k)

= max Vat (Ti ), TSL2(Tj)} - TWL1(LWL1,k).

(12.51)

Once the evidence space (.A47-2, MT2 ,1112mT) is constructed, cumulative and complementary

cumulative plausibility and belief functions for SL/SL failure temperature margins can be obtained
from the pairs (m2T,ijk 712T ,ijk) as (i) indicated in conjunction with Eqs. (2.48)-(2.50) and (ii)

illustrated in Fig. 12.2. In addition, Fig. 12.2 also contains the CDF and CCDF for WL/SL failure
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temperature margins obtained by assigning uniform distributions to the individual focal elements
for link failure temperature as indicated for the construction of the link failure time CDFs in Fig.
4.4. Specifically, the indicated CDF and CCDF are constructed as indicated in Eqs. (7.9)-(7.13)
with M2T (tszl ,t sL2 , t wil) replacing TML1(tal,t 512 , twil) .
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Fig. 12.2 Graphical summary of evidence space (MEI , METI , miwn ) for SL/WL failure

temperature margins for (i) a system composed of SL 1, SL 2 and WL 1 defined in Sect. 4 and (ii)
LOAS corresponding to failure of either SL before failure of the WL: (a) Cumulative plausibility

m), probability Pr(th m) and belief Bel(th m), and (b) Complementary cumulative

plausibility Pl(m < probability Pr(m < lit) and belief Bel(m <

As for Fig. 12.1, margin results of the form shown in Fig. 12.2 are valuable because they show
and quantify the uncertainty in the temperature difference between when (i) failure of the SL
system potentially results in LOAS and (ii) failure of the WL potentially averts LOAS. In addition,
the sampling-based procedure used to obtain the CDF and CCDF in Fig. 12.2 produced values of

m2FT — • —408 174 °C and in2FT — • 549 552 °C (12.52)

for the smallest failure temperature margin m2FT > —co and the largest failure temperature. margin

rT22FT < c() •

Failure temperature margin evidence spaces for either SL failing before the WL fails can also
be defined with use of (i) the evidence space ( 2 TF2 171TF 2) defined in Sect. 9.2 for the

temperatures at which a system of 2 SLs fails with system failure temperature corresponding to
the temperature at which the first SL fails and (ii) and the evidence space for WL failure
temperature (e.g., ( WL1,97WL1 9 nITF ,WL1) for WL 1 failure time defined in Sect. 4).
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The failure temperature margin evidence space (.A47-2, MT2 , mm7,2 ) and its associated CPF,

CBF, CCPF and CCBF for either SL 1 or SL 2 failing before WL 1 fails can also be defined with
use of the evidence spaces (TT2,7F2,m7T2) and (7:Fwll TFWL1 9 nITF ,WL1) • Specifically, (i)

(TT2, TF2 , mTF2 ) is defined in Sect. 9.2 for the temperatures at which a system consisting of SL 1

and SL 2 fails with system failure temperature corresponding to the temperature at which the first
SL fails and ( (ii)--, .7- pal , TFwn, nITF ,WL1) is defined in Sect. 4 for the temperature at which WL 1

fails.

The bounds m2T,z~k and 1712T ijk for focal elements .A47-2,,fr associated with the evidence space

(.A4 7-2 , MT2 , 171MT 2) can be defined on the basis of (i) the bounds (7T2ii , TF 2,0) for focal elements

T.F2y associated with the evidence space (T.F2, TF2, mTF2) defined in Sect. 9.2 for the failure

temperatures for a system consisting of SL 1 and SL 2 with system failure corresponding to failure

of either SL and (ii) the bounds (TF yru,k,TF im,k) for focal elements T.Fyvid,k associated with the

evidence space (7:FwLl ,TFWL1,7121,m,TF) defined in Eqs. (4.20)- (4.25) for the actual temperatures

at which WL 1 fails.

Given known values for the bounds (TF2,ii, TF2,ii ) and (TF wak,TF wak), the bounds

(m2T ,ijk 7712T ,ijk) for MT k are defined by

1712T ijk = TF2 ij — TF wil,k and TTI2T = TF - TF wak- 

with the assumption that

{oo if a = 00
a —b =

—co if a <oo and b = oo

(12.53)

(12.54)

as previously indicated in Eq. (12.32). Once the focal element BPAs mmT1(MTLijk ) and the focal

element bounds (m1T ,ijk 5 1711T ,ijk) for MTLyk are obtained, cumulative and complementary

cumulative plausibility and belief functions for temperature margin can be obtained as (i) indicated
in conjunction with Eqs. (2.48)-(2.50) and (ii) illustrated in Fig. 12.2.

The evidence space (TTWL1 TFPa1 , mTF,pal ) is for the actual temperatures at which WL 1 fails

with T. = co included to indicate that that link system failure did not occur. A slightly different

failure temperature margin evidence space is obtained if the WL 1 failure temperature evidence
space (741,15TWL1,111wL1) defined in Sect. 4 is used instead of (TTni 

5 TFWL1 5 mTF ,WL1) • The sample

space TwLl contains all originally specified possible failure times for WL 1. In contrast, 7-TwL1

contains only (i) the failure temperatures that actually occurred and (ii) the indicator To assigned
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to failure temperatures in Tni that were never reached by the WL 1 temperature curve Tyll(t)

for tm, t t .
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13. Cumulative and Complementary Cumulative Belief and Plausibility for
SL/SL Temperature Margin for a System with 2 SLs and 1 WL

For simplicity, this section considers a system with 2 SLs and 1 WL and two definitions of
system failure: (i) LOAS occurs when both SLs fail before the WL fails and (ii) LOAS occurs
when either SL fails before the WL fails.

13.1 Cumulative and Complementary Cumulative Belief and Plausibility for SL/SL
Temperature Margin with LOAS defined by Failure of Both SLs before failure of
the WL

Another possibility is a SL/SL failure temperature margin M 3T defined by

M T = (SL temperature at which second SL failure potentially causes LOAS)
(13.1)

— (temperature of second SL to fail when WL failure potentially prevents LOAS).

for (i) systems with two SLs and one WL and (ii) LOAS corresponding to failure of both SLs
before failure of the WL. If the SL temperature curves are increasing as illustrated in Fig. 4.1, then
the margin M T is (i) positive if the second SL failure occurs after failure of the WL (i.e., the

desired occurrence) and (ii) negative if the second SL failure occurs before failure of the WL (i.e.,
the undesired occurrence).

To incorporate the possibility of nonfailure of individual links, a generalized margin M T (t)

is considered for analysis with t = [tad, tsL2 KA] belonging to the set

TA4= TMSL1 x TMSL2 x TA4wid defined in Eq. (4.13). Specifically, M T (t) is defined by (i)

M 3T = M 3T (Nil t 5E2 ,t1FL11)

—00 for twil = Go, max ftal tsu < Go

TSL1(t SL1) TSL1(tWL1) for tnl < 00, t SL2 < t sil < 00

T SL2 (t SL2) TSL2(tWL1) for tnl < c)°, tSL1 < t SL2 <

min Val (t ij) TSL1(tWL1),TSL2(tij) TSL2(tWL1)1 for twn < oo,ty = t SL1 = t SL2 <

00 for max {tad , tsL2 = co.

(13.2)

Application of the function M 3T (t) to the elements t = [tal,ta2,twn] of the sample space TM

for the evidence space (TM, TM, mTM ) for link failure time as indicated in Eqs. (12.3)-(12.6)

results in the evidence space (A47-3, MT3, m3mT ) for SL/SL failure temperature margins.

Definition of the focal element bounds M3T ,ijk and TTI3T,ijx for focal elements M;ok associated

with the evidence space (,A47-3, MT3, m3MT ) is now considered.

Definition of the focal element bound M 3T ,ijk is considered first. Specifically, m3T,ijk has a

definition that (i) involves greatest lower bounds (glb's) for sets of link failure temperatures and
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(ii) is conditional on various equalities and inequalities involving the times t SL1,i , t SL2J , t wak

SL1,i t SL2,j and Twil,k . The following possibilities exist for the definition of rn 3T

Possibility (1): If T.,Ll,k = oo and max { t sLl,i , t sL2, J} < then

m-3T ,ijk = -cc•

Possibility (2): If max{t SL1,1 -SL2,j t } = 00 , then

(13.3)

(13.4)1113T ,ijk =

Possibility (3): If max{t Sao t j, yrL1,k}<a) and then either (3.1)< L SL2,j

< Tsai < t tmx andTWL1,k t mx t

1113T ,ijk = TSL2(SL2,j) TSL2(i WL1,k), (13.5)

mx ] ()Emuor (3.2) Tyyll,k t mx 5 t < t 512, t mx , t sE2,j [t SL2,j , t = 0 and

1713T jk = min glb : T = TSL1(t) for t SL2 j < t and t E - Tal (T WL1,k),

TSL2(LSL2,j) TSL2(i WL1,k)}

= minfTsLi (LSL2,j) TSL1(T WL1,k),TSL2(SL2,j) TSL2(i WL1,k)} if SL2,j E

or (3.3) TWL1,k t mx 5 t < t SL2, j t mx t SL2, j tsLl,i [tSL2,j I t mx] 0 and

m = T t ( (T-3T ,tjk SL2 -SL2, j ) - T SL2 WL1,k).

Possibility (4): If max{ t SL,2,j ,41,1,k} < Gc)

tWL1,k C t mx t SL2,j <ISL2,j < t sLi,i C t mx and

and t 5E2,

1113T ,ijk = TSL1(SL1,i) TSL1(i Wak),

< t SL1,i

(13.6)

(13.7)

then either (4.1)

(13.8)

or (4.2) tWLl,k t mx , t < t t mx , t sat 7SL2,i , [tSL1,i  ,t mx] n TA42i ~ 0 and

m3T ,ijk = min {glb {T : T= TSL2 (t) for t sLl,i < t and t c EAL2 - T sE2- WL1,k),

TSL1(LSL1,i) TSL1(i WL1,k)}

= minITa2(t SW) TSL2 (7 WL1,k),TSL1(LSL1,i) TSL1 (7 WL1,k)} if LSL1,i E EM2 j
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or (4.3) TyaLk tmx t sE2, < t tmx t3Li TSL2,j [t ,t minT.A42i = 0 and

1113T ,ijk TSL1(LSL1,i)— TSL1(T Wak).

Possibility (5): If max{ t ot I l< 00 and t .= t =tj then—SL1,z —SL2,j WL1,k —SL1,1 —SL2,j — mx

r713T ,ijk = min {TSE1 (Lij) TSL1(T Wil,k),TSL2(Li") TSL2(T WL1,k)}

(13.10)

The bound 77137, jk also has a definition that is conditional on various equalities and inequalities

involving the times t t SL2,j frL1,k T SL1,1 and T SL2j as stated for the following possibilities:

Possibility (1): If tiyLl k= 00 and max{Tati < oo , then

1713T ,ijk =

Possibility (2): If max{Tal,i = co , then

rTi = 00.3T ijk

(13.12)

(13.13)

Possibility (3): If max{Tsai, tsL2,j,IWL1,k} < and Tal,i < tsL2,j , then either (3.1) 11,vak t„

tSL2,j < T SL2,j and

t713T,iik = max {Tsll (T SL1,i) TSL1(LWL1,k),TSL2(T SL2,j) TSL2(LWL1,k)}

or (2.2) Iwil,k tmx , t SL1,i < t SL2,j <T SL2,j and

1713T,ijk = TSL2(T SL2,j) TSL2(LWL1,k)•

(13.14)

(13.15)

Possibility (4): If max{Tsai 0L2, j ,IWL1,k} < c)" and la 2,./ G Tsai , then either (4.1) Iwnk t

SL2,j < t sn,i and

1T13T ,ijk = max {Tsll (T SL1,i) TSL1(LWL1,k),TSL2(T SL2,j) TSL2(LWL1,k)}

or (4.2) In1 < tmx , T SL2,j < t SL1,i <T SL1,i and

1T13T,ijk = TSL1(T SL1,i)— TSL1(LWL1,k).

Possibility (5): If max{Tsai .1,2,j In1} < 00 and Tau = Te =T.], , then
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1713T ,ijk = max lub {T : T = TsLl (t) for t E [ t sy,Li , n TA/tal,i} TSL1(LWL1,k),

lub : T = TSL2(t) for t E [ t 5E2, Ej5 ) TMSL2,j} TSL2(LWL1,k)} (13.18)

= max ITSL10;)- 3L1 (LWL1,k),TSL2(71j)— TSL2(LWL1,k)} •

Once the evidence space (,A47-3, MT3 , m3mT ) is constructed, cumulative and complementary

cumulative plausibility and belief functions for SL/SL failure temperature margins can be obtained
from the pairs (M3T , r7/37-vik) as indicated in conjunction with Eqs. (2.48)-(2.50). As examples,

cumulative and complementary cumulative plausibility and belief functions for SL/SL failure
temperature margins are presented in Fig. 13.1 for a system with 2 SLs and 1 WL. In addition, Fig.
13.1 also contains the CDF and CCDF for SL/SL failure temperature margins obtained by
assigning uniform distributions to the individual focal elements for link failure temperature as
described for the construction of the link failure time CDFs in Fig. 4.4. Specifically, the CDF and
CCDF in Fig. 13.1 are constructed as indicated in Eqs. (7.9-(7.13) with M 3T at , t ST, 2 , tivn D

replacing TML1(tal , ts12, twil ) .

10

10-

Pr(777 < m

-00 -400 -200

SL1, SL2, WL1
LOAS - Both SLs

before WL 

0 200 400 600

m: SL/SL Temperature Margin (°C)

Fig. 13.1 Graphical summary of evidence space

margins for (i) a system composed of SL 1, S
corresponding to failure of both SLs before

rn), probability Pr(rii rn) and belief

plausibility Pl(rn < hi) , probability Pr(rn <th)

SL1, SL2, WL1
LOAS - Both SLs
before WL 

-00 -400 -200 0 200 400 600

m: SL/SL Temperature Margin (°C)

CA47-3, MT3 711mT3) for SL/SL failure temperature

L 2 and WL 1 defined in Sect. 4 and (ii) LOAS
failure of the WL: (a) Cumulative plausibility
Bel(117 in), and (b) Complementary cumulative

and belief Bel(rn <

Margin results of the form shown in Fig. 13.1 are valuable because they show and quantify the
uncertainty in the temperature difference between (i) temperature of the second SL to fail when
this failure corresponds to failure of the SL link system and thus potentially results in LOAS and
(ii) the temperature of the second SL to fail at the time that the WL fails and potentially averts
LOAS. This provides perspective on how far apart failure of the SL system and failure of the WL
are in temperature space relative to the potential occurrence of LOAS.
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In addition, the sampling-based procedure used to obtain the CDF and CCDF in Fig. 13.1
produced values of

m —459 674 °C and rT2 441 949 °C3FT • 3FT — • (13.19)

for the smallest failure ternperature margin M3FT > —Go and the largest failure temperature. margin

IT13FT < °C' •

Belief Bel(S) and plausibility Pl(S) for subsets S of .A47-3 can be calculated from the

relationships defined in Eqs. (11.10)-(11.19). As a reminder, this requires that the evidence space
(.A47, MT3, m3A4T ) for failure temperature margins be defined to be consistent with the function

M3T (t) defined in Eq. (13.2) and the corresponding focal element bounds M3T 4k and r773T,ok
defined in Eqs. (13.3)-(13.18).

As examples, the calculation of Bel[S(0)] and Pl[S(0)] for a SL/SL temperature margin value

of 0 for the WL/SL system in Fig. 13.1 produces the results

and

Bel[S(0)] = 1.600 x 10-2 1.602 x 10-2 (13.20)

Pl[S(0)]= 4.880 x10-1 = 4.880 x10-1 (13.21)

with (i) the values for Bel[S(0)] and Pl[S(0)] in the initial equalities determined as indicated in

Eqs. (11.10)-(11.19) and (ii) the values for Bel[S(0)] and Pl[S(0)] in the following approximate

equalities determined in a sampling-based verification procedure with a sample of size 107 as
described in Sect. 5.2. The agreement of the plotted results in Fig. 13.1 (i.e., Bel[S(0)] = 0.016 ,

Pl[S(0)] = 0.488) and the numerical results in Eqs. (13.20) and (13.21) provides a strong

verification result that Bel[S(0)] and Pl[S(0)] are being calculated correctly. Additional

verification is provided by the agreement of (i) the preceding values for Bel[S(0)] and Pl[S(0)]

and (ii) the corresponding values for LOAS in Eqs. (4.31) and (4.32).

13.2 Cumulative and Complementary Cumulative Belief and Plausibility for SL/SL
Temperature Margin with LOAS defined by Failure of Either SL before Failure of
the WL

This section presents SL/SL failure temperature margin results defined by

M T = (SL temperature at which first SL failure potentially causes LOAS)

— (temperature of first SL to fail when WL failure potentially prevents LOAS).
(13.22)

for a 2 SL, 1 WL system for which LOAS occurs if either SL fails before the WL fails. To
incorporate the possibility of nonfailure of individual links, a generalized margin M T (t) is
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considered for analysis with t = [tad , ts7,2,tn1] belonging to the set

TM— TMSL1 x TMSL2 x i'Mwid defined in Eq. (4.13). Specifically, M T (t) is defined by (i)

M 4T (t) = M 4T ([tSL1,t SL2,411,1])

—00 for twil = °99min {tat t SL2 } < °°

TSL2(t SL2) TSL2(tWL1) for tWL1 < oo, ta2 < tal

T' t for tinl-5E1,( SL1, TSL1(tWL1) < °°,t SL1 < t SL2

min {Tal (tii TSL1(tWL1 TSL2(tij) TSL2(tWL1)1 for tuu < °99 tij = t SL1 = t SL2 <

00 for min {tad , ta,2} = CO.

(13.23)

Application of the function M4T (t) to the elements r t= Lt sL2,twL1] of the sample space TM

for the evidence space (TM, TM, mTM ) for link failure time defined in conjunction with Eqs.

(4.13)-(4.16) results in the evidence space (./147-4, MT4 /1/4A,n, ) for SL/SL failure temperature

margins defined as indicated in Eqs. (12.3)-(12.6). Definition of the focal element bounds M4T,Iik

and In4T ,iik for focal elements .A47-4,,ik associated with the evidence space (MT4 MT4 9 m4MT) is

now considered.

Definition of the focal element bound M 4T ,iik is considered first. Specifically, m 4T ,ijk has a

definition that is conditional on various equalities and inequalities involving the times t 511,0

t SL2,j WL1,1( T SL1,i T SL2, j and TyyLl  . The following possibilities exist for the definition of

7114T,ijk •

Possibility (1): If Tyvil,k = CO and min{ t syd , t sE2 < 00 , then

ill 4T ,ijk = c>°'

Possibility (2): If min ft sLl,i , t sL2 = GO , then

I 114T ,ijk = °°.

(13.24)

(13.25)

Possibility (3): If T wij,k t nt,„ t sLl,i t mx and t sLl,i < t 5E2, , then either: (3.1) T TYL1,k tmx

t SL1,i t mx t < t SL2,j cx) and

1114T ,ijk = TSL1(LSL1,i) TSL1(T WL1,k),

or (3.2) T WL1,k tmx SL1,i <T SL1,i < t SL2,j t inx and
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TB 4T ,ijk TSL1(LL1,i)- TSL1(T WL1,k),

or (3.3) T Wak tmz 5 t  SL1,i < t SL2,j t mx 9 t SL2,j t SL1,i and

m4T,ijk = ming:sE1 (Lau) TSL1(T WL1,k),TSL2(LSL2,j) TSL2(T WL1,k)1 •

(13.27)

(13.28)

Possibility (4): If WL1,k t mx t SL2,j t and t 5E2 < t , then either: (4.1) T tmx

t SL2,j C t mx t SL2,j < t SL1,i = °° and

/i4T ,ijk TSL2(SL2,j)- TSL2 (T Wak),

or (4.2) T Wak trrix 9 t SL2,j <T SL2, j< t mx and

= TSL2(LSL2,j) TSL2 (Twil,k)

or (4.3) T t t L • < LSL1,i tmx LSL1,i SL2,j and

/14T ,ijk = min Val (SL1,i) TSL1(T WL1,k),TSL2(SL2,j) TSL2(T WL1,k)1 •

Possibility (5): If TwLlk t„,ix and t a2,f = t SL1,i=ti tmx, then

m 4T ,ijk = min{Tal (L )— TSL1(T WL1,k),TSL2(L ) TSL2(T WL1,k)1 •

Similarly, r7/4T,ijk is defined by

Possibility (1): If bnlic = 00 and min{Tal,i, t SL2,j} < 00 , then

1714T ,ijk = 
-00.

Possibility (2): If min {t sLl,i , t sL2, j} = 00 , then

1714T ,ijk = °cc

(13.29)

(13.30)

(13.31)

(13.32)

(13.33)

(13.34)

Possibility (3): If Iwil,k < tm„, T < tmx and T <T 5E2 j then either: (3.1) Iwil,k < tm„

t <I .<t T <T . and-SL2,j SL1,1 - mx SL1,1 SL2, 1 
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1T14T ,ijk = max IT ad( SL1,i) TSE1(WL1,k),

lub {T : T = TSL2 (t) for t e [tSL2,j 5 T SL1,i) n j} TSL2(LWL1,k)}

= max IT5L1(T 511,i) TSL1(LWL1,k) TSL2 (T SL1,i) TSL2(tWL1,k)}

if T SL1,i j 5

or (3.2) lyvak t„ tij = t SL2,j = T t tnx T SL1,i < T SL2,j and

= lub {T :T= TSL1 (t) for t e [tSL1,i T SL1,i) nEA4sil,i}- TSL1(LWL1,k)

= TSL1(T SL1,i) TSL1(LWL1,k ),

or (3.3) If I 1,1,k t mx TSL1,i < t SL2, T SL2,j T t mx and

1714T,iik = TSL1(T SL1,i) TSL1(t

(13.35)

(13.36)

(13.37)

Possibility (4): If Iwil,k tna 5 TSL2,j t mx and T 5E2 j <T SE1,i then either: (4.1) Iwil,k t,„„

t <T < t T <I . and-SD,t SL2, j - ntoc 5 SL2, j SL1,t 

1714T ,ijk = max IT a2 ( SL2, j) TSL2(WL1,k),

lub {T : T = TSL1(t) for t E [tSL1,i T SL2,j) n TA4SL1,i} TSL1(LWL1,k)}
(13.38)

= max {Tsy,2(TH,2,J)- TSL2(LWL1,k) TSL1(T SL2,j) TSL1(kWL1,k )}

if T E TMSL2,j SL1,1 5

or (4.2) lyvak t„ tii = t SL1,i = T SL2, tmx SL2, j <T SL1,i and

= lub {T : TTI14T,uk = TSL2 (t) for t e [t 2, j 5 I-SL SL2,j) n TMSL2 TSL2(LWL1,k)

=T (I )-T (SL2 SL2,j SL2 t -WL1,1c),

or (4.3) lwak tmx, T SL2, j< t Sal T Sal 9 T SL2, t mx and

1714T ,ijk = TSL2(T SL2,j) TSL2(LIFL1,k).

(13.39)

(13.40)

Possibility (5): If Iwn,k tmx and Ti = TsE2J = T SL1,i t mx , then max{ t sLl,i , t sE2 J} <Tii and
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1T14T ,ijk = max Ilub {T : T = TSE1(t) for t E[t n TAIISL1,i} TSL1(LWL1,k),

lub : T = TSL2(t) for t E [ tsLz,j -y T n I-A4 
5E2j 

I TSE2 (LWL1,k)} (13.41)

= max IT sE1 Ct; ) —
3L1 (LWL1,k), TSE2(Tij) TSE2(LWL1,k)} •

As examples, cumulative and complementary cumulative plausibility and belief functions for
SL/SL failure temperature margins are presented in Fig. 13.2 for a system with 2 SLs and 1 WL.
In addition, Fig. 13.2 also contains the CDF and CCDF for SL/SL failure temperature margins
obtained by assigning uniform distributions to the individual focal elements for link failure
temperature as described for the construction of the link failure time CDFs in Fig. 4.4. Specifically,
the CDF and CCDF in Fig. 13.2 are constructed as indicated in Eqs. (7.9)-(7.13) with

M 4T ([t SL1,t SL2 ItWL1]) replacing TMLI(tal,ta2,4,m).

SL1, SL2, WL1

LOAS — Either SL

before WL

Bel(fh, < m)

-oo -400 -200 0 200 400 600

m: SOL Temperature Margin (°C)

Pl(m <

Bel(m<rn

SL1, SL2, WL1

LOAS — Both SLs

before WL

m <

-oc -400 -200 0 200 400 600

m: SL/SL Temperature Margin (°C)

Fig. 13.2 Graphical summary of evidence space (,A47-3, MT3,7//m7,3) for SL/SL failure temperature

margins for (i) a system composed of SL 1, SL 2 and WL 1 defined in Sect. 4 and (ii) LOAS
corresponding to failure of either SL before failure of the WL: (a) Cumulative plausibility

m), probability Pr(tii m) and belief Bel(rh in), and (b) Complementary cumulative

plausibility Pl(rn < , probability Pr(rn < th) and belief Bel(m <

of
The sampling-based procedure used to obtain the CDF and CCDF in Fig. 13.2 produced values

• 4FT — 4FT — •—498 310 °C and 442 404 °C— (13.42)

for the smallest failure temperature margin in4FT > —00 and the largest failure temperature. margin

1714FT < c() •
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14. Plausibility and Belief for LOAS with Two WLs and Two SLs

To this point, plausibility and belief for LOAS have been considered for 2 SLs and 1 WL with
LOAS corresponding to (i) both SLs failing before the WL fails or (ii) either SL failing before the
WL fails. Past analyses have considered the following four definitions of LOAS for systems with
nSL SLs and nWL WLs (e.g., see Table 1, Ref [83]): (i) Failure of all SLs before failure of any
WL, (ii) Failure of any SL before failure of any WL, (iii) Failure of all SLs before failure of all
WLs, and (iv) Failure of any SL before failure of all WLs. For notational simplicity, plausibility
and belief representations for LOAS will be developed for the preceding four definitions of LOAS
for a system with 2 SLs and 2 WLs.

14.1 Plausibility and Belief for Occurrence of LOAS

The two SLs (i.e., SL 1 and SL 2) and two WLs (i.e., WL 1 and WL 2) are assumed to have
the evidence theory representations and properties defined in Sect. 4.1. In turn, combining the
evidence spaces (7tilsll, TMSL1 111SL1,t) (TA4SL2 )7M451,2 111SL2,t) (TA4VL1,TMWL1,mwLl,t) and

(EA/62 9 TMWL2 ) MwL2,t) for link failure time produces the product evidence

(TM, TM, mTM ) with

space

TM = TMsll x TMsL2 X IMWL1 X 1:A WL2 (14.1)

= TA4SE1,i X 7--MSL2,j X TMwrA,k X TA4WL2,1 E TM, (14.2)

ISLA — {1, 2, ..., nSL1} ,151,2 = {1, 2,..., nSL2} ={1, 2,..., nWL1} , 41,2 = {1,2,...,nWL2}, (14.3)

TM = j, k, l) E Z= ZSL1 X ZSL2 X 1-WL1 X IWL2

and

mTM (TA4i kl = m (TM (TA/ISL 2 dm WL1,t (EMWLlk )711 w L 2 ,t (TA4wL2,1)j SL1,t SL1,i)in SL2,t ,

(14.4)

(14.5)
m

ykl •

Indicator functions analogous those defined in Eqs. (4.28) and (4.30) for use in Eqs. (4.27) and
(4.29) in the determination of plausibility and belief are now defined for 2 SLs and 2 WLs.
Specifically, gps (T.Mijkl ) and 8Bs (T.Mykl) as defined below for s = 1, 2,3, 4 are the indicator

functions used in the determination plausibility and belief for the subsets .Cs of TM that satisfy

the definitions of the four failure patterns:

(i) Pattern 1, Failure of all SLs before failure of any WL:

= {(t , t , tw-L,1 , tw-L2 ) E TM with max 4511, ta2 < min }t , t w-L,2}}
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(TAAjkl ) =

C5B1(TAAjkl) =
0 otherwise.

(ii) Pattern 2, Failure of any SL before failure of any WL:

A = {(tal t SL2 ,tWL1,tWL2) e TM with minftsu,tsL21 < min{twn,twL2}}

{1 if max{ t sw, t sy,2,f} < min {4/AA 
5 TWL2,l}

0 otherwise,

6P2(7:141) =
0 otherwise,

{1 if max{Tat1 i ,,L Tc, 2,j ,1< min{ t WL1,k 1 t WL2,1}

6112(EAllijkl) =

(iii) Pattern 3, Failure of all SLs before failure of all WLs:

A = {(tal ,t,SL2,tWL1,41/L2) c TM with max ft t SL21 < max {twL1, twL2}} (14.12)

1 if min ft sai,{ t SL2,j} < mill{Tni,x , TWL2,/ }_

(14.7)

(14.8)

{1 if mingsai 
9 
E,31,2, j ,1 < min{t W t L1,k , WL2,1}

0 otherwise 

= 

1 if max t Sai t SL2,j} < max {411,k TWUJ}
p3(TiWykl) 

(14.13)
0 otherwise,

1 if max{inti Te j < max{ t wak, t WL
6 B3 (7Mikl) = 

(14.14)
0 otherwise.

(iv) Pattern 4, Failure of any SL before failure of all WLs:

In turn,

1 if minfinu Tc,
9 .L2,j ,1 < max { t Wak , t WL2,1}

r4 = (t ,SL1,t,SL2 9 tWL1 9 tWL 2 ) E TM with min {t SD, t SL2} < max ftwid , 4E1,211 (14.15)

1 if min{t t SE2,j} < maxlintk ,
8P4(7:Mijkl) = 

(14.16)
0 otherwise,

6B4(TAltijkl) =
0 otherwise.
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and

Pl(Cs) = plausibility that LOAS occurs for failure pattern s, s =1,2,3,4

= E n 1 TM (TM j kl )
0~T.Mod

nSL1 nSL2 nWL1 nWL2

=EZE E åp,(7-mikomiJkli=1 j =1 k=1 1=1

Bel(4)= belief that LOAS occurs for failure pattern s, s = 1, 2,3, 4

= E 11 TM (T)Wijkl)

nSL1 nSL2 nWL1 nWL2

=EZE E SB,(Emykomykl.i=1 j =1 k=1 1=1

(14.18)

(14.19)

As examples, the calculation of Bel(Ls) and Pl(4) for the links defined in Table 4.1 and

Fig. 4.1 yields the results

Bel(L,

and

1.800 x 1 0-3 for s =1 (i.e., failure of all SLs before failure of any WL)

2.420 x10-2 for s -= 2 (i.e., failure of any SL before failure of any WL)

2.420 x10-2 for s = 3 (i.e., failure of all SLs before failure of all WLs)

2.198 x10-1 for s = 4 (i.e., failure of any SL before failure of all WLs)

1.791x 10-3 for s =1

2.428 x10-2 for s = 2

2.427 x10-2 for s = 3

2.196 x10-1 for s = 4
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Pl(G,

3.824 x 10-1 for s =1 (i.e., failure of all SLs before failure of any WL)

8.336 x 10-1 for s = 2 (i.e., failure of any SL before failure of any WL)

6.416 x10-1 for s = 3 (i.e., failure of all SLs before failure of all WLs)

9.424 x10-1 for s = 4 (i.e., failure of any SL before failure of all WLs)

3.826 x10-1 for s =1

8.334 x10-1 for s = 2

6.415 x10-1 for s = 3

9.423 x10-1 for s = 4

(14.21)

with (i) the values for Bel(Ls) and Pl(rs) in the initial equalities determined as indicated above

in Eqs. (14.6)-(14.19) and (ii) the values for Bel(rs) and Pl(Gs) in the following approximate

equalities determined in a sampling-based verification procedure with a sample of size 107 as
indicated below in Eqs. (14.22)-(14.35). The agreement of the two computational procedures
provides a strong verification result that Bel(4) and Pl(4) are being calculated correctly.

The results in Eqs. (14.6)-(14.19) also generalize in a straight forward manner to
representations for plausibility and belief for the 4 link failure patterns for nSL SLs and nWL WLs.
In this generalized form, each min and max in Eqs. (14.7)-(14.17) will contain the analogous times
for nSL SLs rather than for 2 SLs or nWL WLs rather than for 2 WLs.

To obtain the desired probability space for checking the calculation of Bel(4) with the

representations defined in Eqs. (14.6)--(14.19), (i) the most probability possible (i.e.,

tnWL1,t(TMWL1,k) = mWL1,k and mn2,t (EA4n2,1) = 1%2,1 ) is assigned to t wil,k and t n2,1 , (ii) the

most probability possible (i.e., M .A4 MSL1,t \T- SE1,i = SL1,1 and trISL2,t(EMSL2,j) = nISL1,j) is assigned

to Tal,i and IsL2, , and (iii) a probability of zero is assigned to every subset of T.A4 that does not

contain one or more of the vectors [T,,,AulTSL2,j, —t Wak L' 1,17L2,1] • This produces the probability space
that has the smallest possible probabilities for the sets Ls for a probability space that is consistent

with the evidence space (TM, TM, mTM ) and the properties that (i)

MISL1,i,TSL2,j WL2,11)

WL2,1=mSL1 (TM -)111 (TM .)111 (TA4v11,0111 (EA4WL2,lSL2d n1), ) (14.22)

= rnykl

for (i, j,k,l) belonging to the set I defined in Eq. (14.4) and (ii) any set that does not contain one

or more of the vectors [TAU, TSL2,j T,r/L1,k, t Fa2,1] has a probability of zero. Then, with a large

random sample
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[tSL1r ,tSL2r,tWL1r,tWL2r],r = 1, 2, ..., nR, (14.23)

of size nR from the failure time vectors [ie ,TSL2,j t yr/L1,k t ya2,1] generated consistent with the

probabilities my*/ , Bel(4) can be approximated by

nR

Bel(rs)'-'E Bs ([tSLlr ,tSL2, ,tWL1, ,tWL2r])I nR = p(4)
r=1

for s =1,2,3,4 with

5 B1([tSL1r ,tSL2r ,tWL1r ,tWL2r]) = 
1 for max{tSL1r,tSL2r} <min{tWilr,tWL2r}

0 otherwise,

8B2 ([talr ,tSL2r ,tWL1r,tWL2r]) =
oerwise,

8B3 ([tSL1r , tSL2r ,tWL1r,tWL2r])

and

{1 for min {tSL1r ,tSL2r} < min {tWL1, r,tWL2}

0 o th

(14.24)

(14.25)

(14.26)

1 for max {tSLlr,tSL2r} < max {tW4,tWL2r}
(14.27)

0 otherwise,

1 for min {tS/Ar ,tSL2r} < max {tWL1 }r,tWL2r
5 B 4 GtSL1r ,tSL2r ,tWL1r,tWL2r])= (14.28)

0 otherwise,

The estimates for Bel(Ls) indicated in Eq. (14.24) are illustrated in Eq. (14.20) for the links

defined in Table 4.1 and Fig. 4.1.

Similarly, to obtain the desired probability space for checking the calculation of Pl(rs) with

the representations defined in Eqs. (14.6)--(14.19), (i) the most probability possible (i.e.,

InwL1,t (TMWL1,k) ttlwak and mnzt (T.A4wL2/)- min21 ) is assigned to Twilk and inzi , (ii) the

most probability possible (i.e., 171SL1,t (TMSL1,i) — I SL1,i and 1115L2,t (IMSL2,j) n SL1, is assigned

to IsE1,i and lazi , and (iii) a probability of zero is assigned to every subset of TM that does not

contain one or more of the vectors [t RAJ , t SL2,j ,TWL1,k ,ITYL2,l] • This produces the probability

space that has the largest possible probabilities for the sets Ls for a probability space that is
consistent with the evidence space (TM, TM,m7m) and the properties that (i)
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(T.MWL

P(ft 51,1,ti SL2,j 'TWL1,k TWL2,/ ])

= m (7MSL1 .)m (T.A4 • )m (T.A4v (14.29)
SL2,j L1,1c)111w-L2,1SL1,t SL2,t

mijkl

for (i, j ,k ,l) belonging to the set / defined in Eq. (14.4) and (ii) any set that does not contain one

or more of the vectors [t 5E14 t SL2,j has a probability of zero. Then, with a large

random sample

[tSL1r ,tSL2r,tWL1r ,tWL2r],r = 1, 2,...,nR, (14.30)

of size nR from the failure time vectors [t SL1,i t SL2,j ,Tya2,1] generated consistent with the

probabilities myk1, Pl(Cs) can be approximated by

niPl()4 gps ([61,1r ,tSL2r,tWL1r ,tWL2r]) 1 nR = p(4)
r=i

for s = 1,2,3,4 with

1 for max {tSL1, , tSL2r, } < min {tWL1, , tWL2r}
piatSL1r ,tSL2r ,tWL1r ,tWL2,]) =

0 otherwise,

1 for min {64 ,tSL2r} < min {tWL1, ,tWL2r}
p2([tSL1r ,tSL2r ,tWL1r ,tWL2r]) =

0 otherwise,

8P3  ,tSL2r ,tWL1r ,tWL2r]) =

and

(14.31)

(14.32)

(14.33)

1 for max ftSL1,,tSL2r1 < max {tWL1, ,tWL2r}
(14.34)

0 otherwise,

1 for min {talr , tSL2r} < max {tWL1r ,tWL2r}gr4([tair ,61,2r ,tWL1r ,tWL2r]) = (14.35)
0 otherwise.

The estimates for Pl(Cs) indicated in Eq. ( 14.3 1) are illustrated in Eq. (14.21) for the links

defined in Table 4.1 and Fig. 4.
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{min {tsLi , ta2 } for max ft al, t SL21 < max {twil , twL2 } 

SLl 

14.2 Cumulative and Complementary Cumulative Belief and Plausibility for LOAS
Occurrence Time

Evidence spaces (TMLS,TMLs,mnvms), s =1,2,3,4 , associated with the four failure

patterns for the time at which LOAS occurs can also be defined and used to obtain CPFs, CBFs,
CCPFs and CCBFs for LOAS occurrence time. Construction of the indicated evidence spaces is
based on the following definitions for the function TMLS for s = 1,2,3,4 that maps the sample

space T.A4 for the evidence space (TM, TM, mTM) defined in Eqs. (14.1)-(14.5) into the sample

space TML, for the evidence space (EA 4r„ TMIL, 1nTML,$) :

{max {/ Al, t a 2 } for max liAl , t si, 2 1 < min ftw-L1, tin 2 I

TAIL 1 (t SL1,t SL2 9 tWL1 9 tWL2) = co
for min ltinl,411,2} max ft al, t sL21

for failure pattern 1 (i.e., failure of all SLs before failure of any WL),

{min {t SL1 , t SL2} for min{./Al , t 5E2} < min ftwil, twi, 2 1

MI2(t sll,t sE2,twll,twL2) = co
for min ftinl,tryL21 min ftsll , t SL2}

for failure pattern 2 (i.e., failure of any SL before failure of any WL),

TML3(t SD, t SL2 tWL1,tWL2) =
GO for max ftwil,tn2} max {t ,t 512}

for failure pattern 3 (i.e., failure of all SLs before failure of all WLs), and

min Its/A 2} for min {ta ] , tSL 2 < max {/w-L1,twi, 2}
(tsL1 sL2,tyvL1,twL2) =

00 for max ftwil , twL2 min It sn,t 5121

(14.36)

(14.37)

(14.38)

(14.39)

for failure pattern 4 (i.e., failure of any SL before failure of all WLs).

In turn, the evidence space (EA 4r, ,TMI S,mTmL,S) is defined by

'TM Ls - ft : t - TML, (t) for t = (tal t sE2 twid tw-L2) E EA/11 , (14.40)

7:A44,ifid = ft : t = TAILS(t) for t (= sll,t 5E2 ,tWL1 9 IWL2) 7:1\4,,k,} (14.41)

TMILS = ITMCS,ok1 : (i, j,k,l) E l= -- ISL1 x - ISL2 X ZWLI x /n2; see Eq. (13.3)} (14.42)

and

MTAIL,S (TM ,U Id ) = 111TM (rWijkl) = mtjkt (see Eq. (13.5)).
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Further, the minimum t sjjkl and maximum t s,ijkl for TA44,,ifid are defined by

{max{t au , t a2 J} for max{ t SL1,i 5 LSL2,j} < min frwt,l,k 1 TWL,2,/ 1
=

co

T1,ijkl ={max{rszi j5 l01,e 2,j r1 for max {IsLij ITSL2,j} < min Ilwri,k , In2,/ /
CO

for min {4L1,k TWL2,1} max t kSL2JI,

for min {Inv, , buz/ maxlisai Te 1, Az.;

for failure pattern 1 (i.e., failure of all SLs before failure of any WL),

min {Lai,/ 5 LSL2,j}
L2,ijkl = 00

min {TSLA,i tSL2,j}
T2,ijkl = Jl

GO

for mint t,-SL1,i 5 LSL2,j} < min {riviA,k ,TWL2,1}

for min {TwL1,k E5 r r , L2,1 } min {Lau kSL2r.i}

for minfTsai le < minflww,5 9 1wL2,11

for min ftwak , min {Tau r 1
9 AZ./

for failure pattern 2 (i.e., failure of any SL before failure of any WL),

k3,y"k1 =
-max{ t , t SL2J} for max{ t , t SL2J} < max gnu rrLfrr 2,1,1

00 for max {IwL1,k tWL 2,l }< max {Lau ksz2,t

u le 1 for max{Tsw 5 0 ,5 L2j < max fI- lffiLl,kI 
max{rsz

3,ijkl = 00 for max flwL1,k max {Tau TA 12J}

for failure pattern 3 (i.e., failure of all SLs before failure of all WLs), and

L4,ijkl

min{ t SE1,i 5 t SL2,j} for min { t , t sE2 }< max {lwak TWL2,1}
00 for max {4L , in21} min {t SL2,j) 5

min fTst.l,i ,TSE2,j1 for minfisai5 ,)eL2,j l < max{lwak 5 1wL2,1}
T4,ijkl =

GO for max {_twak , {Tau re }5 0L2,j

for failure pattern 4 (i.e., failure of any SL before failure of all WLs).

(14.43)

(14.44)

(14.45)

(14.46)

(14.47)

(14.48)

(14.49)

(14.50)

Once the focal element bounds (t 
yid s,ijkl are available, CPFs, CBFs, CCPFs and CCBFs

for LOAS occurrence time can be obtained as (i) described in Eqs. (2.48) - (2.50) and (ii) illustrated
in Fig. 14.1. The indicated figures also contain CDFs and CCDFs for LOAS occurrence time
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obtained by assigning uniform distributions to the focal elements for link failure temperature as
described in conjunction with Eqs. (7.9)-(7.13).

Example results for failure pattern 1 (i.e., failure of all SLs before failure of any WL) are
presented in Fig. 14.1.

10° LOAS — Both SLs before either WL
SL1, SL2, WL1, WL2

10  

Pl(i < t)

./* Pr(i < t)

Bel(i < t)

50 100 150 200

Pl(t <

Pr(t <

Bel@ < t
LOAS — Both SLs before either WL
SL1, SL2, WL1, WL2 

50 100 150 200

t : LOAS Occurrence Time (min) t : LOAS Occurrence Tirne (min)

Fig. 14.1 Graphical summary of evidence space (T,A44,TMILi,m7mL1) for time t at which LOAS

occurs for (i) a system composed of SL 1, SL 2, WL 1 and WL 2 defined in Sect. 4.1 and (ii)
LOAS corresponding to failure of both SLs before failure of either WL: (a) Cumulative plausibility
Pl(i probability Pr(i t) and belief Bel(i and (b) Complementary cumulative

plausibility Pl(t <i), probability Pr(t <i) and belief Bel(t <i).

The sampling-based procedure used to obtain the CDF and CCDF in Fig. 14.1 also yields
values of

L1L = 62.295 min and t IL =172'279 min (14 .51)

for the first time t IL and last time t2L that LOAS occurs. In turn, combination of t2L with the

cumulative plausibility and belief results at t = 200 min in Fig. 14.1a provides the analysis
outcomes

0.382 = Pl(t 200) = Pl(i t2L) = Pl(i 172.279) (14.52)

0.002 = Bel(i 200) = Bel(i t2L) = Bel(i 172.279), (14.53)

and combination of TH with the complementary cumulative plausibility and belief results at t =
200 min in Fig. 14.1b provides the analysis outcomes
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0.998 = Pl(200 < i) = Pl(t2L < i) = P/(172.279 < i) = Pl(t = too) (14.54)

0.618 = Bel(200 < i) = Bel(t2L <i)= Bel(172.279 < = Bel(t = too). (14.55)

Example results for failure patterns 2, 3 and 4 are presented in Fig. 14.2, Fig. 14.3 and Fig.
14.4. If desired, summaries of the form shown in Eqs. (14.51) -(14.55) for Fig. 14.1 can be defined
for Fig. 14.2, Fig. 14.3 and Fig. 14.4.

1 0 °

10-

: •

ir

Pl(i < t)
a) =0

tno" 12° 0.8
P t) •

E

0.6
L'
2

Be* < t)- a) D- 0.4
5,

a _0
LOAS - Either SL E .(7) 0.2

0
before either WL 0 as
SL1, SL2, WL1, WL2 cT_

10-
0

Pl(t <

Pr(t <

13 el ( t <

LOAS - Either SL before either WL

0 -SL1, SL2, WL1, WL2

50 100 150 200 0 50 100 150 200

t : LOAS Occurrence Time (m n) t : LOAS Occurrence Time (min)

Fig. 14.2 Graphical summary of evidence space (TM.C2,TMOL2,111TML2) for time t at which LOAS

occurs for (i) a system composed of SL 1, SL 2, WL 1 and WL 2 defined in Sect. 4.1 and (ii)
LOAS corresponding to failure of either SL before failure of either WL: (a) Cumulative
plausibility Pl(i probability Pr(i t) and belief Belq and (b) Complementary

cumulative plausibility Pl(t < -0, probability Pr(t <0 and belief Bel(t .
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Fig. 14.3 Graphical summary of evidence space (T.A44,TML3,1117-2vm) for time t at which LOAS

occurs for (i) a system composed of SL 1, SL 2, WL 1 and WL 2 defined in Sect. 4.1 and (ii)
LOAS corresponding to failure of both SLs before failure of both WLs: (a) Cumulative plausibility
Pl(i probability Pr(t. t) and belief Bel(i and (b) Complementary cumulative

plausibility Pl(t <i), probability Pr(t <i) and belief Bel(t <i).

100

10-
0

Pr(i < t)
•.
:

1

Pl(i < t)

Bel(i < t)

LOAS - Either SL
before both WLs
SL1, SL2, WL1, WL2

50 100 150 200

• =
>
tT3 00 0.8

o
E

(7) 0.6

, • 2
• (11- 0.4
E >7,

E .7) 0.2
C.) as

0

\
\ .1...

\♦ ,--•
..--------o•----------

Pr(t < t)

131(t <

LOAS - Either SL
before both WLs
_SL1, SL2, WL1, WL2

Bel(t <

50 100 150 200

t : LOAS Occurrence Time (min) t : LOAS Occurrence Time (min)

Fig. 14.4 Graphical summary of evidence space (TM ,C4 ,TME -14 , ITITAKA) for time t at which LOAS

occurs for (i) a system composed of SL 1, SL 2, WL 1 and WL 2 defined in Sect. 4.1 and (ii)
LOAS corresponding to failure of either SL before failure of both WLs: (a) Cumulative plausibility
Pl(i probability Pr(i t) and belief Bel(t' and (b) Complementary cumulative

plausibility Pl(t <i), probability Pr(t <i) and belief Bel(t <i).
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If desired, the evidence spaces developed in Sect. 8 for the time at which a system of two links
fails can be used define evidence spaces for failure time margins for the four failure patterns for a
2 SL, 2 WL system. Similarly, the evidence spaces developed in Sect. 9 for the temperature at
which a system of two links fails can be used define evidence spaces for failure temperature
margins for the four failure patterns for a 2 SL, 2 WL system.

The results in this section generalize to systems with nSL SLs and nWL WLs in a reasonably
straight forward manner
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15. Incorporation of Evidence Spaces for Link Temperature Curves

Up to this point, there has been no consideration of the uncertainty in the link temperature
curves that underlie the determination of LOAS. However, this is likely to be a major source of
uncertainty in the determination of LOAS in most analyses. Fortunately, if evidence spaces for the
link temperature curves for individual links can be obtained, then these evidence spaces can be
combined with the failure temperature evidence spaces for the individual links and used to
determine the evidence space for the time at which LOAS occurs.

This combination process described below for a link system with

nL = nSL + nWL

links, where nSL is the number of SLs and nWL is the number of WLs.

(15.1)

The following evidence spaces are involved in the incorporation of an evidence space for the
link i, i=1, 2, ..., nL, temperature curve into the determination of plausibility and belief for the
occurrence of LOAS:

(i) An evidence space (Ti , Tomn) for possible failure temperatures for link i with

={7i,7z,...,ri,nT(i)} and mn(Iii)=mni for j E ZTi = {1, 2,..., nT(i)} .

(ii) An evidence space (Ci , Ci , mci ) for possible link temperature curves for link i with

Ci Ci2 ,.•., Ci,nC(i)} and mo (Cik ) Mak for k E ZCi = {1, 2,...nC(i)}

(iii) A resultant product evidence space (Pi, , mpi) obtained by combining the evidence

spaces (Ti,Ti,mn) and (Ci Ci , mci ) with

and

Pi =7- CI,

= {73/ : 13, = x Cik for (j, k) E in x Zci and

= (j —1)nC(i) + k {1, 2,...,nT(i) x nC(i)} =

for (j,k) E In X la and 1 = (j —1)nC(i)+ k.

(iv) A resultant evidence space (T.A4,Thli,mmi) for possible failure tirne for link i

constructed from the evidence space (13 , , mpi ) with

(15.2)

(15.3)

MPi(Pil) = mu )mc (Cik ) = mni 111Cik =n1Pil
(15.4)

(T, C) = link failure time for (T, C) E P, (15.5)
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and

T.A4i = ft : t = (T ,C) for (T ,C) E Pi} (15.6)

TMll = ft : t = f (T ,C) for (T ,C) E PO for 1 E lpi, (15.7)

TMi = {T.A41 for 1 E /pi} (15.8)

nITMi (EMI) = 711Pi(Pil) for / E (15.9)

( t = (min(TMll ),max(T.A411)). (15.10)

(v) A resultant evidence space (TM, TM, mTM ) for possible link failure times constructed from

the failure time evidence spaces (EM , TMi , mTMt ) for the nL links that constitute the system

under consideration with

and

TM= x EM2 x • • • x ,

TM 1 = TM11(1) x 7,n42,1(2) X • • • X T.A4111, no

for I = [1 (1),1(2), ...,1(nL)] e /TM = /pl x /F.2 X • • • IP

TM = {TM, for I = [/(1), 1(2), ...,1(nL)] E ind

nL

111TM (TM 0=ummi(Tml(i)) for I = [/(1), 1(2), . ,l(nL)] E /TM •
i=1

(15.14)

The evidence space (TM, TM, mTM) and the associated time intervals (t tl ,Ti) can be used in the

determination of plausibility and belief for the occurrence of LOAS in the same manner as the
evidence spaces for link failure time are used in Sects. 4, 6 and 13 in the determination of
plausibility and belief for the occurrence of LOAS.

Caveat: Development of evidence spaces for link temperature curves may be easy or very
difficult depending on the specifics of a particular analysis.

For the links defined in Sect. 4.1, example evidence spaces for link temperature curves can be
obtained by defining evidences spaces for the quantities T. and r defined in Table 4.1 and then

constructing the evidence spaces for the resultant temperature curves.
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16. Illustration of Plausibility and Belief for LOAS for WL/SL Systems with
SL Subsystems

16.1 WL/SL System with 2 SL Subsystems

The example WL/SL system illustrated in this section has two SL subsystems, with (i) one SL
subsystem comprised of SL 1 and SL 2 with subsystem failure corresponding to failure of SL 1 or
SL 2, (ii) the other SL subsystem comprised of SL 3 and SL 4 with subsystem failure corresponding
to failure of SL 3 or SL 4, (iii) SL system failure corresponding to failure of both SL subsystems,
and (iv) LOAS corresponding to SL system failure before failure of WL1. Each link is assumed
to be characterized by (i) a continuous time-dependent temperature curve and (ii) an evidence
space characterizing the uncertainty in link failure temperature. Each SL subsystem could
correspond to different failure locations on the same SL.

The following notation is needed in the development of plausibility and belief for LOAS. The
same properties are defined for each of the 5 links (i.e., for SL 1, SL 2, SL 3, SL 4, WL 1). To
eliminate unnecessary repetition, these properties will be defined for an arbitrary link L with the
understanding that the properties for the 5 links are defined by replacing L in the following
definitions by SL1, SL2, SL3, SL4 and WL1.

The following entities are assumed to be known for the notional link L. (i) an evidence space

(7L,TL,mL) for link failure temperature with nL focal elements TL J511,2 (ii) a function

TL (t) that defines link temperature as a function of time, and (iii) a corresponding evidence space

TML ,mL,t) for link failure time constructed from (EL ,11,mL) and TL (t) as discussed in

Sect. 3 with

= 7T1 (TL,i) = It : t = T7-71 (T) = min{t : T = TL(t)} for T E (16.1)

mL,t(TML,i) = n1L(T ,i) = mL i (16.2)

( tL = min(TMLi ), max(TML,1)) (16.3)

for TL, E~L, TML,i ETML and i E ZL = {1, 2, ..., nL} .

The link failure time evidence spaces for the 5 links can be combined to produce a product
evidence space (TM, TM, mTM) for link failure time as indicated below:

TM — TMSL1xTMsz2 xTM57,3 X TA/1SL4 X TA/tWL1, (16.4)

TA/lyklr = TA/61,1 x TA/1SL2, j x TA/tSL3,k x TA/1SL4,l X TA/61,r for (i, j,k,l,r) E I , (16.5)

TM = {T-Myktr (ij,k,l5r) (16.6)
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and

mTM (7-Mijklr) = mSL1,t (TMSL1,i)r nSL2,t(TMSL2,j)ff SL3,t (TMSL3,k)

X 1 11 SL4,1- (1-MSL4,l)171WL1,t (TMTVL1,r) for (i, j, k, l, r) E Z

= n ISL1(TSL1,i)inSL2(7-SL2,j)111SL3(TSL3,k)111SL4(TSL4,l)MWL1(TWL1,r)

= •171,51,1,1117 SL2, j 111 SE 3,k- 111SL4,11nWL1,r

with 1 = Ll x SL2 X SL3 X SL4 x ZWL1 •

(16.7)

Given the link system failure definitions for the WL/SL system under consideration, LOAS
occurs for elements of the set

4 = {(t SL1,it SL,2,jt SL3,kt SE4,ltWil,r) e 7:A4 with minftsL1,itsL2, j

and minItsL3,ktn4,11<tWL1,r}
(16.8)

The following additional time definitions are now needed to define plausibility and belief for the
set 4 :

t si,ij= earliest SL subsytem 1 failure time for 7:Mal x TMSL2,i

= min { t

t S2,kl-- earliest SL subsytem 2 failure time for EA/63,k X TMSL4,1

= min { t sy3,k, t SL4,/}

isi,y= last SL subsytem 1 failure time for EMsai x TA4SL2,j

= max {Tau

S 2,k1= last SL subsytem 2 failure time for TNIs13,k X TAXISL4,1

= max {TsL3,k T 1.A4,/ •

(16.9)

(16.10)

(16.12)

With use of the preceding time definitions, the definition of plausibility and belief for the
occurrence of LOAS for the system under consideration is based on the following two indicator
functions:
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and

6P1(TMjkls)

6 B1(7:A4yklr

1 if EMijkir ñ ft # 0

13 if 7:1",jklr ñ 4 = 0
1 if max Usl,ii , Is 12,k1 , < TwL1,r

0 if Twid,r < max {IsLy ,

1 if Emix, c 4
0 if Emuklr 4
1 if max {TsLij JS2,k1} < t WL1,r
if t WL1,r < max {Tsui , s2,k1} •

In turn, plausibility and belief for LOAS are defined by

and

nSL1 nSL2 nSL3 nSL 4 nWL1
Pl(4)= mimq-Miktr)=ZEEEEgpi(T-Mijklr)mukt,

05~7--muk,rn4 i=1 j=1 k=1 1=1 r=1

nSL1 nSL2 nSL3 nSL4 nWL1
Bel(4)= E mTM (7:Mjklr) =E E E6 Bl(Tijklr)mijklr •

7:1"ijklr i=1 j=1 k=1 1=1 r=1

(16.13)

(16.14)

(16.15)

(16.16)

The preceding representations for Pl(4) and Bel(4) can be (i) evaluated with nested DO loops

with an embedded IF statement and (ii) extended to systems with more than 2 SL subsystems and
more than 2 SLs in each SL subsystem.

16.2 WL/SL System with 2 SL Systems, Each SL System with 2 SL subsystems
and a WL

As a generalization of the example in Sect. 16.1, a more complex WL/SL system is considered
with (i) 2 SL systems, (ii) each SL system having 2 SL subsystems with each SL subsystem
consisting of 2 SLs, (iii) failure of a SL subsystem corresponding to failure of either of its
associated SLs, (iv) failure of a SL system corresponding to failure of either of its subsystems and
(v) each SL system having its own WL. Two possibilities for the definition of LOAS are
considered: (i) failure of either SL system before failure of its associated WL and (ii) failure of
both SL systems before failure of their associated WLs.

With respect to notation, SL system 1 (i.e., S1) involves the following 4 SLs and 1 WL:

SL 1, SL 2, SL 3, SL 4, WL 1, (16.17)
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with (i) SL 1 and SL 2 comprising subsystem 1 (i.e., S11) of S1 and (ii) SL 3 and SL 4 comprising
subsystem 2 (i.e., S12) of S 1. Similarly, SL system 2 (i.e., S2) involves the following 4 SLs and 1
WL:

SL 5, SL 6, SL 7, SL 8, WL 2, (16.18)

with (i) SL 5 and SL 6 comprising subsystem 1 (i.e., S21) of S2 and (ii) SL 7 and SL 8 comprising
subsystem 2 (i.e., S22) of S2. The individual links are assumed to have (i) properties as defined
earlier for link L and (ii) associated evidence spaces for link failure time as defined in in Eqs. (4.1)-
(4.12), with the individual link names (i.e., SL1, SL2, WL2) replacing L in the definitions of
link properties.

As shown in Eqs. (16.4)-(16.7) for 5 links, the link failure time evidence spaces for the 10 links
SL 1, SL WL2 can be combined to produce a product evidence space (TM, TM, mTM) for

link failure time as indicated below:

(16.19)TMSL1 X TMSL2 X —X "WL2

TA41 = TA4SL1,i X TMSL2,j x • • • x T.A4wL2,5 for i =(i, j,k,l,m,n, p, q,r, s) E I, (16.20)

TM = {TM; : i = (i, j,k,l,m,n, p,q, r, s) EZ}, (16.21)

and

mTM (TM I) = m Sat (TMSL1,i)mSL2,t (TMSL 2, j) * • • mWL2,t (TMWL2,$)

= m SL1(TSL1,i)m SL2 (TSL2, j) • • • mWL2(TWL2,$)

111SL1,i111SL2,j • • • Myr/L2,s for i =(i, j,k,l,m,n,p,q,r,$) E I

with / = Ts,Ll x /5,L2 x • • • x ifyL2 •

Given the link system failure definitions for the WL/SL system under consideration, LOAS
occurs for elements of the sets

= (tal ,t sL2t ,t , sL5 , t 6t sL7 , t sys ,twil, tw-L2) E TM with

tmin {t al t SL2 lt SL3 t SL 4} <tw-L1 or min{ t sE5 a 69a - t 5E8} <tWL21

(16.22)

(16.23)

with LOAS corresponding to failure of either SL system before failure of its associated WL and

= {(t SL19 t SL2t SL3 't SI A tSL5 t SL6t SL7 SL8 ,tWL1,417L2) e TM with

min{ t SL1 9 t SL2 9t SL3 9 t S14} <t Wil and min{ t SLS , t sy,6 ,t SL7 ,t }<t11,12}
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with LOAS corresponding to failure of both SL systems before failure of their associated WLs.

For SL system Sl, the times

t . t I .. IS11,y, S12,k1

are defined the same as the times

LS1,111S2,k1,T S1,ipT S2,k1

in Eqs. (16.9)-(16.12) for SL 1, SL 2, SL 3 and SL 4. For SL system S2, the times

Ls21,mn,LS22,pq'T S21,mn9T S22,pq

(16.25)

(16.26)

(16.27)

are also defined the same as the times in Eqs. (16.9)-(16.12) but for SL 5, SL 6, SL 7 and SL 8.

The following indicator functions are used in the definition of plausibility and belief for 4 and

rl if TM; n f2 ~ 0
8p2 (TM E I) = to if EMI n,C2=°

1 if min{ t sl Lij G < tWL1,r 
or min{ t 5,21,mn, 22,pq} < tWL2,s

if T < min {Lsl and 4L2,s min ILS21,mn9LS22,pq- WL1,r 

1 if EA 1 n.C.3 ~ 0
(5p3 (EA i E /) =

0 if EA n = 0

1 if min {45,11,ii , 12,kl <4L1,r1 and min{ls21,mn , 22,pq} <TWL2,s

CI if TwL1,r min{ 1.511,ij LS12,k1} or TWL2,s min ILS21,mn 91,522,pq 15

8112 E =
1 if T.A1 f2

0 if T.A1 (4 .C2

1 if miri{tsii,ijITS12,1d} < WL1,r or minfsTS21,mn,TS22,pq} < WL2,s

0 if t sminfTS11,ij,TS12,kl} and t TyL2,.5 minf{TS21,mn,TS22,pq},
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1 if T.A4; c .C.3
45B3(7Mi li E I) =

0 if EMI cZ Li

1 if { min{isitii 
9 TS12,k1} < —t War

° if t WL1,r min{islup isl2,kl} or t F 

and minf

a2 min

1,s,TS21,mn ,TS22,pq} < k WL2,s

,TS21,mn 9 TS22,pq} '

In turn,

and

for s = 2, 3.

(16.31)

/7/(4, = E inTm (Emi ) = E SP, (TAI)mi (16.32)
0~7:Al nLs le/

Bel(Gs) = E (7m ) = a gs (T-Mi )mi •
ici

(16.33)

If desired, similar results can be obtained for more than 2 SL systems, more than 2 SL
subsystems in a SL system, and more than 2 SLs in a SL subsystem. However, increasing system
complexity also increases the complexity of the associated notation.
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17. Sampling-Based Calculation of Belief and Plausibility

As shown in prior sections, determination of belief and plausibility for results associated with
WL/SL systems is reasonably straight forward when the only uncertainties are the failure
temperatures for the individual links. However, the calculation of belief and plausibility becomes
much more difficult when a potentially complex function maps a large number of epistemically
uncertain quantities into an analysis result of interest. As briefly described, the preceding situation
often requires the use of sampling-based procedures to estimate belief and plausibility for the
analysis results of interest.

The following discussion considers an analysis involving

(i) input quantities xl, x2 , xnx with corresponding evidence spaces (X, , X, , for

i = 1, 2, ..., nX characterizing the epistemic uncertainty associated with each xi ,

(ii) the product evidence space (X, X, mx ) constructed from the evidence spaces (X , Xi , mi )

, i = 1, nX , with focal elements sk, k = 1, nE, and each element of X corresponding to a

vector x = [xi ,x2,..., xnx ] , and

(iii) a function f (x) that maps each x E X into an analysis result y, and

(iv) the set Y = fy : y = f (x) for x .

In concept, an evidence space (y, Y,my ) exists for the possible values for y, but this evidence

space is difficult to determine when f (x) corresponds to a complex, computationally demanding

calculational procedure.

Two computationally similar results are possible for y : (i) belief and plausibility for a specific
subset S of y and (ii) the CBF, CCBF, CPF and CCPF for y . The estimation of both
possibilities starts with a large random or Latin hypercube sample [84; 85]

= 1, nR,= [xlr x2r (17.1)

of size nR from X generated in a manner so that the focal elements for each x, are well-covered

(i.e., sampled). Probably the best way to define the sampling distribution is to (i) define a uniform
density function (xi) on each of the j = 1, 2,..., nF, focal elements Xn for the evidence space

(X , Xi , mi ), (ii) define the density function for sampling from Xi by

nF

d (xi) = E mi (xi; )di., (xi )
j=1
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and (iii) then generate the sample in Eq. (17.1) by sampling each xi from the distribution defined

by the density function defined in Eq. (17.2).

Next, the function f (x) is evaluated for each element of the sample in Eq. (17.1) to create a

mapping

Y = f((,),r = 1, 2, ..., nR, (17.3)

from X to y that will be used in determining belief and plausibility. However, a very real
possibility is that evaluation of f (x) may be too computationally demanding to permit the

evaluation of all elements of a sample that is large enough to adequately cover all the focal
elements for the xi 's . In this situation, it is necessary to use nonparametric regression or some

other appropriate procedure (e.g., [86]) to construct a surrogate model that approximates f (x)

and then use this surrogate model in the generation of the mapping in Eq. (17.3).

Use of the mapping in Eq. (17.3) to estimate belief and plausibility for a specific subset S of
y is now described. To facilitate this description, Bely(U) and Ply (U) are used to represent

belief and plausibility for the evidence space (y, Y ,my) and subsets U of y . Similarly, Bel x (U)

and Pl x (U) are used to represent belief and plausibility for the evidence space (X, X, mx) and

subsets U of X . The following additional notation is also needed:

and

fy : y = f (xr) = fy : y = f (xr) Sl (17.4)

X = f -1 = : y = f (xr) , et' = f -1 ) = fxr : y = f (xr) . (17 .5)

The approximation of Ply (S) with use of the sample in Eq. (17.3) is given by

Ply(S) = Ply = Pl x (f -1 (S)) = Pl x (X) = mx(ek)
0.tnEk

with the indicated surn over the nE focal elements for the evidence space (X, X, mx) .

(17.6)

The approximation of Ply(S) in Eq. (17.6) is straight forward as a result of plausibility being

defined on the basis of set intersection (i.e., 0 # X n Ek). The approximation of Bely(S) is not

as straight forward because belief is defined on the basis of subsets (i.e., Ek c X). Specifically,

the relationship Ek c X cannot hold with sk containing an infinite number of values and X‘
containing a finite number of values. Fortunately, the relationship

Bel y (S) =1— Ply (Sc ) (17 .7)
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previously stated in Eq. (2.24) provides a solution to this problem by providing a way to convert

the approximation of Bely(S) to a problem in the approximation of Ply (SC) . Specifically,

Bely(S) can be approximated by

Bely(S) =1— Ply(Sc)

1— Ply (&)

=1— Plx (f -1 (&)) (17.8)

=1— Plx(k) with Xc

= 1— E (4)
0#.-tc nEk

= f—l(&)

with the indicated sum over the nE focal elements for the evidence space (X, X, mx).

Formal representations for the CBF, CPF, CCBF and CCPF for the evidence space (y, Y , my )

are defined by the sets of points

and

with

CB.F = ffy,Bel()2y)]: y E y}, CP.F = ffy,Pl()2y)]: y E (17.9)

CCB.F = {[y,Bel(Yy))]: y E , CCP.F = {[y,Pl(Yy)]: y (17.10)

)2y = fy : y y with = Yyc and Yy = : y with y < = )2,c. (17.11)

Construction of approximations to C,t3. F, CP.F , CCB.F and CCP.F requires (i) defining an
increasing sequence

yl < y2 < * * * < n (17.12)

of points from y and (ii) approximating Bel(y t) , PI(y) ,Bel(g) and P/(Yy, ) for
i = 1, n as indicated in Eqs. (17.6) and (17.8). In turn, the following approximations to CB.F

, CP. F , CCBT and CCP.F result:

and

CB.F = { [yi = 1, 2,..., n}, CP.F = {[yi,Pl(yyj)]:i =1,2,...,n} (17.13)
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CCB.F {[yi,Bel(ÿy ))]:i = 1, 2, ..., n} , CCP.F {[yi,Pl(ÿy )]:i = 1, 2, ..., . (17.14)

Examples of sampling-based approximations to belief and plausibility are presented in Refs.
[1; 87-89]. Sampling-based analyses of the type summarized in this section can become
computationally impractical when the product evidence space (X, X, mx) has a very large number

of focal elements. For example, if (X, X, mx) is constructed from 10 evidence spaces and each of

these evidence spaces has 10 focal elements, then (X, X, mx) has nE =1010 focal elements. This

number of focal elements makes the evaluation of the summations in Eqs. (17.6) and (17.8)
impractical. Refs. [88] and [89] discuss computational strategies to deal with this problem.
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