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, | Value proposition for meshfree

> ease of discretization

* use of point cloud and surface representation

» robust large deformation
focus of this talk

* shape functions defined on reference configuration

» local adaptivity

* hp adaptivity — easy to change approximation order

> conversion from Lagrangian to semi—Lagrangian

* “seamless” update of connectivity without tangling



Modeling challenges for meshfree

> sutrface representation

* explicit vs. implicit representation
* adaptivity on surface
* new surface generation for fracture

» nonconvex domains
* weight functions around re-entrant corners
» assemblies of parts, material interfaces

» consistent quadrature, stabilization

* stress points vs. nodal integration
* Integration consistency



Large deformation example

EFP formation process with copper liner

(Liu, et.al, 2017, International Journal of Impact Engineering, 109, 264-275)
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¢« ' Shear localization

SANDIA REPORT

SAND2015-2850
Unlimited Release
Printed April, 2015

An Experimental Study of . . ,
Shear-Dominated Failure in the 2013 | P i
Sandia Fracture Challenge Specimen

Edmundo Corona, Lisa A. Deibler, Benjamin Reedlunn, Mathew D. Ingraham and —
Shelley Williams

specimen
& NOTE un "
MATERIAL: A286 (SUPPLIED BY SNL} = e @ [ w
® -A- PARALLEL TO -B- WITHIN 0.000: ol s
- A IR

e 7075 aluminum



7|

Shear localization

Outside Section - Center Section




Sierra/RKPM (Jake Koester, Frank Beckwith)

load-deflection response

16000
14000 -
12000 -
10000 -
8000 A
6000 A
4000 A
— Test
2000 4 —— FEM
—— RKPM, supp=1.2
0 —— RKPM, supp=1.6
Equivalent Plasfic Strain 0.00 0.02 0.04 0.06 0.08 0.10 0.12
00 025 05 075 1.0
[ O



’ | ALEG RA / SHISM (Soft-Hard Interface Surface Mechanics)

e Hxternal ALE mesh ‘tracks’ the c.m. of the
T penetrator (translation and rotation).

ALE region N:.: T * Target material ‘tlows’ around the penetrator.
| T * External mesh interacts with penetrator via
& <L contact algorithm.
] LLL-L— BEN [T Lagrangian
, e ~—- region o
Lagrangian _— m=s - g
interface ! I
i i Assumptions
1. The penetrator is much harder than the target.

lnS(Ert?dl target 2. The target material may flow extensively around the
materia

penetrator.

3. There is no penetrator erosion or breakup, but the

penetrator may exhibit significant deformation.

Bishop and Voth, “Semi-Infinite Target Penetration by Ogive-Nose Penetrators:
ALEGRA/SHISM Code Predictions for Ideal and Nonideal Impacts,” JPVT, 2009. 131



Effect of AOA at high striking velocities

Bishop and Voth, “Semi-Infinite Target Penetration by Ogive-Nose Penetrators:

ALEGRA/SHISM Code Predictions for Ideal and Nonideal Impacts,” JPVT, 2009. 131
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Modest changes in AOA can have catastrophic
effects on penetrator deformation.
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severe mesh distortion at t = 50 Us
prevents further simulation
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Comparison of mesh-free and mesh-based
Lagrangian approximations of a manufactured
shear-dominated deformation field

Would like to develop an exact solution to compare FE to meshfree discretizations.

Use to compare robustness, sensitivity to initial distortion.

Use to explore surface representations.
Use to explore adaptivity.

In this talk, explore best-approximation error, FE vs. MLS
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Interpolation bounds for isoparametric finite
element spaces

2 [2norm
for linear elements HU @HO S Ch |’U,‘2
interpolation
Opemtor

(shape regular)

HU—Ihqu SCh|u‘2 H! norm

similar bounds for MLS space



« ! Best approximation

best approximation in H! ¢ = arg min ||u — u®?"|| 1

ueVh

SO H,& . uexactHHl < thuexact . uexactHHl
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|

reference conﬁguration

X

current conﬁguration



s I Define deformation map using stream function

= % sinfdr (2, +1/2)] cosfdn(ws + 1/2)]

ov ov
V) =————, U= —
: 3562 2 (95131
0y Vs 0* 0* U
divergence free since Bery s 52105 DDy
isochoric J=det(F)=1 forall time F is deformation gradient

How to convert this Fulerian description to Lagrangian?
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How to convert FEulerian description to Lagrangian?

[ =

|

ov

F=3x

[ L1 lio

lor  loo |

Fi1 Fip |
Fo1  Fao |

_ s
- O0x0X

| o [ 81)1/8561 3’01/8262
i (91]2/(9561 (9’02/(95132

[ 8:1:1/8)(1 8331/8)(2
| (9:132/8)(1 85132/3)(2

[11F11 4 Lo Fay
l11F12 4 112 Fo9
21 F11 + o2 Foy
o1 F12 4 22 Foo

= [F [ is velocity gradient

|



22

( aj.l 3 4 " \
:{:’2 v; system of ODEs with 1nitial conditions
I gy l11F11 + 119 F5 >
Fio [ ) LiFia+ lioF
E21 lo1F711 + 22 Fo r1 = X1, 2 =Xy, F(0) =1
( 22 ) | l21F12 + l22F22

This system can be integrated in time to get
Lagrangian description of motion.



» 1 Strain magnitude

Lagrange strain

Frobenius norm
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Compare best approximation in H': FE vs. MLS

* FE bilinear quad
e MLS: linear reproduction{! x y}, support size = 2 dx

* Jook at effect of initial mesh distortion



= | | agrangian motion (mesh interpolation)
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27 | FE vs. meshfree (MLS)
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=1 Best-approximation error comparison

.2 convergence at a fixed time
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* MLS is significantly more accurate than FE.

65 | * MLS error 1s sensitive to “distortion” compared to FE.




» 1 Best-approximation error comparison

H! convergence at a fixed time
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* MLS i1s significantly more accurate than FE.

* MLS error 1s sensitive to “distortion” compared to FE.




30 l Robustness

H! error in time for a fixed mesh

0.2 . .
0.18
0.16 |

0.14

increasing
distortion, r

1 1
S 000
O -=_NW

012
I_I1 CIrror g1

0.08

0.06 ] support = 2.0

0.04

support = 2.5

0.02

ﬁ
I
=
e

I.E‘I'f

TN
Ray=vi

Ay
rl
.5‘!

v ]

/7]
Y

=.Il\

P

.
YEEB R w;

\ 7
e
0
=
5
1

...........
----------------------

...........

...........

......................
...............................
.................................
......................
......................
......................

......................

* MLS is significantly more accurate than FE.

* Increasing support size of MLS increases
accuracy.



» 1 Summary

1. Examples of limitations of mesh-based discretizations for extreme events.

2. Developing manufactured solutions to compare robustness of FE vs. meshfree
discretizations in large deformation regime.

3. Exploting best-approximation error in 1.2 and H! norms.

4. Will also explore surface representations and adaptivity.




