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, Value proposition for meshfree

> ease of discretization

• use of point cloud and surface representation

> robust large deformation

• shape functions defined on reference configuration 
focus of this talk

> local adaptivity
• hp adaptivity — easy to change approximation order

> conversion from Lagrangian to semi-Lagrangian

• "seamless" update of connectivity without tangling



4 Modeling challenges for meshfree

➢ surface representation

• explicit vs. implicit representation
• adaptivity on surface
• new surface generation for fracture

➢ nonconvex domains

• weight functions around re-entrant corners

➢ assemblies of parts, material interfaces

➢ consistent quadrature, stabilization

• stress points vs. nodal integration
• integration consistency



5 Large deformation example

EFP formation process with copper liner
(Liu, et.al, 2017, International Journal of Impact Engineering, 109, 264-275)

t =0 us t =35 us t =60 us t =80 us t =160 us



6 Shear localization

SANDIA REPORT
SAND2015-2850
Unlimited Release
Printed April, 2015

An Experimental Study of
Shear-Dominated Failure in the 2013
Sandia Fracture Challenge Specimen

Edmundo Corona, Lisa A. Deibler, Benjamin Reedlunn, Mathew D. Ingraham and
Shelley Williams
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• 7075 aluminum



' I Shear localization
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8 Sierra/RKPM (Jake Koester, Frank Beckwith)

Equivalent Plastic Strain
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9 ALEGRA / SHISM (Soft-Hard Interface Surface Mechanics)
• External ALE mesh 'tracks' the c.m. of the

penetrator (translation and rotation).

• Target material 'flows' around the penetrator.

• External mesh interacts with penetrator via

contact algorithm.

Assumptions 

1. The penetrator is much harder than the target.

2. The target material may flow extensively around the

penetrator.

3. There is no penetrator erosion or breakup, but the

penetrator may exhibit significant deformation.

Bishop and Voth, "Semi-Infinite Target Penetration by Ogive-Nose Penetrators:
ALEGRA/SHISM Code Predictions for ldeal and Nonideal Impacts," JPVT, 2009. 131



I Effect of AOA at high striking velocities
Bishop and Voth, "Semi-Infinite Target Penetration by Ogive-Nose Penetrators:
ALEGRA/SHISM Code Predictions for ldeal and Nonideal Impacts," JPVT, 2009. 131
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Normal Impact, Vs = 1580 m/s, AOA = 2

severe mesh distortion at t = 5 0 p, s
prevents further simulation

Bishop and Voth, "Semi-Infinite Target Penetration by Ogive-Nose Penetrators:
ALEGRA/SHISM Code Predictions for ldeal and Nonideal Impacts," JPVT, 2009. 131
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Comparison of mesh-free and mesh-based
Lagrangian approximations of a manufactured
shear-dominated deformation field

• Would like to develop an exact solution to compare FE to meshfree discretizations.

• Use to compare robustness, sensitivity to initial distortion.

• Use to explore surface representations.

• Use to explore adaptivity.

• In this talk, explore best-approximation error, FE vs. MLS



13 1 Interpolation bounds for isoparametric finite
element spaces

for linear elements

(shape regular) interpolation
operator

u Ihulli < chlu

similar bounds for MLS space

2

L2 norm

H1 norm



14 I Best approximation

best approximation in H1 u arg min
ttEvh

11
u uexact 

11111

so 1 1 fi —
uexact 

1 1Hi < I I
Ihuexact — uexact



15

• • • • • •
• • • • M

E

N
E • • • •
• • • • • •

reference configuration

x = 000

current configuration



16 I Define deformation map using stream function

1
‘11 = —

47 
sin[47(xi + 1/2)] cos[47(x2 + 1/2)]

V1 =  
Ox2 '

V2 —
OX1

Ov1 02)2 02 w 

+ 

02T
divergence free since V •• V = ,j1 +   

—

Ux1 0x2 OxiA Ax2 JX2J AX1

isochoric J = det (F) = 1 for all time

0

F is deformation gradient

How to convert this Eulerian description to Lagrangian?
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t 0

t = 0.125

t = 0.25 1
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How to convert Eulerian description to Lagrangian?

F

l =

• Ov Ov Ox
F = — = — — = 1F l is velocity gradient

OX Ox OX

[ 111 112  
= 

0v1/0x1 02)1 /0X2

l21 122 0v2/0x1 0v2/0x2

[ F11 F12  [ Ox1/0X1 ax110X2
[ F21 F22 [ Ox2/0X1 ax2/0X2 -

{ P11 111F11 + 112F21

}

F12 /11F12 + 112F22

F21 121F11 + 122F21

F22 /21F12 + /22F22
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{ Y1

i2

F11

F12

F21

F22

v1

v2

111F11 + 112F21

111F12 + 112F22

121F11 + 122F21

121F12 + 122F22} system of ODEs with initial conditions

x1 = X1 , x2 = X2 1 F(0) = /

This system can be integrated in time to get
Lagrangian description of motion.



" I Strain magnitude
Lagrange strain E = 

1 
—
2
(FT F — I)

Frobenius norm

t = 0.1

Ell = E

strain mag

10 •
1
0
0.1

t = 0.2
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Compare best approximation in HI: FE vs. MLS

• FE bilinear quad

• MLS: linear reproduction{l x y}, support size = 2 dx

• look at effect of initial mesh distortion



Lagrangian motion (mesh interpolation)

t t = 0.1 t = 0.2

*to..t=4-4b.-21:t
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27 1 FE vs. meshfree (MLS)

FEA

LS
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28 1 Best-approximation error comparison
L2 convergence at a fixed time
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• MLS is significantly more accurate than FE.
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29 1 Best-approximation error comparison

H1 convergence at a fixed time
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30 I Robustness

H1 error in time for a fixed mesh
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31 Summary

1. Examples of limitations of mesh-based discretizations for extreme events.

2. Developing manufactured solutions to compare robustness of FE vs. meshfree
discretizations in large deformation regime.

3. Exploring best-approximation error in L2 and H1 norms.

4. Will also explore surface representations and adaptivity.
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