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High-fidelity simulation: captive carry

Nonlinear reduced-order modeling



digh-fidelity simulation: captive carry

Validated and predictive: matches wind-tunnel experiments to within 5%

Extreme-scale: 100 million cells, 200,000 time steps

High simulation costs: 6 weeks, 5000 cores

* explore flight
envelope

computational barrier

Many-query problems
* quantify effects of
uncertainties on store load

* robust design of
store and cavity

Goal: break computational barrier
Nonlinear reduced-order modeling Kevin Carlberg



How to construct a ROM given a basis 0?
ODE Galerkin ODE

LSPG OAE
[C., Bou-Mosleh, Farhat, 2011]
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► FOM ODE residual: r(v,x, := v — f(x,t)

d
Tf(OR, t)

Jdt 
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arg min t)112
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► FOM OAE residual: rn(w) := aow — AtOof(w, tn) (1jXn—i (V) — At 13 jf (Xn—i , tn—J)

► LSPG test basis: tr(IIII) := (CO 00Atl ( W, tn)ri

► Detailed comparative analysis: C, Barone, Antil, J Comp Phys, 2017.

time
discretization

Galerkin OAE
07-rn(pxn) 0
n= 1, , T

J=

k

1
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Discrete-time error bound

Theorem [C., Barone, Antil, 2017]

If the following conditions hold:
1. f(.; t) is Lipschitz continuous with Lipschitz constant
2. The time step At is small enough such that 0 < h := 0o KAt,

3. A backward differentiation formula (BDF) time integrator is used,
1  

2 Xn 41)RG) < 11 1V(DRIG)112+ lat (1)K—t112

f=1

Xn (1)K 

1 . 

sPG112 < h rLisiDG (e")
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h
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n--e 0KaX GII2

+ LSPG sequentially minimizes the error bound
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Captive carry

v„

► Unsteady Navier-Stokes ► Re = 6.3 x 106 ► Moo= 0.6

Spatial discretization

' 2nd-order finite volume

' DES turbulence model
► 1.2 x 106 degrees of freedom

Temporal discretization

' 2nd-order BDF

' Verified time step At = 1.5 x 10-3
► 8.3 x 10'3 time instances

I Conservative model reduction for finite-volume models in CFD Carlberg, Choi, Sargsyan



High-fidelity model solution
vorticity field

y
pressure field
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Galerkin and LSPG performance
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- Galerkin projection fails regardless of basis dimension

+ LSPG is far more accurate than Galerkin

However, both ROMs are slower than the high-fidelity model

Why does this occur, and can we fix it?

►

1

high-fidelity:
dim 1.2x106

Galerkin: dim 204

Galerkin: dim 368

Galerkin: dim 564

LSPG: dim 204

LSPG: dim 368

LSPG: dim 564

8 10 12
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Hyper-reduction
Galerkin: minimize r( ei , „, 2 LSPG: minimize rn(0012

2

- Costly: minimizing large-scale high-fidelity model residual

Hyper-reduction: minimize sampling-based residual approximations

HR-Galerkin: minimize 11400, (rocr, HR-LSPG: minimize Ir(")112

1. Residual gappy POD: i rn
Or(PrOr)+Prr,

4 6 72 3 8 9

index
10

rn

• Prn
-n

'r(PrOr)+Prrn

+ Cost independent of
high-fidelity model
dimension

► GNAT [C., Bou-Mosleh, Farhat, 2011] = LSPG + residual gappy POD
2. Velocity gappy POD: I' and in computed from f = (Pf )± Pff

► POD-DEIM [Chaturantabut and Sorensen, 2011] = Galerkin + velocity gappy POD
Conservative model reduction for finite-volume models in CFD Carlberg, Choi, Sargsya



Sample mesh [C., Farhat, Cortial, Amsallem, 2013]

sample
mesh

minimize

GNAT ROM

32 min, 2 cores

high-fidelity

5 hours, 48 cores

( (D

r)+
 rn(00)1 2

+ HPC on a laptop

vorticity field

•
fo

pressure field

•

Freeskse_rwr

2.3

9 :1

7

1 4 6.1

+ 229x savings in core—hours
+ < 1% error in time-averaged drag

Conservative model reduction for finite-volume models in CFD Carlberg, Choi, Sargsyan 10



Ahmed body [Ahmed, Ramm, Faitin, 1984]
044 frirri

Fr
202 47 10

Unsteady Navier Stokes ► Re = 4.3 x 106 M.= 0.175

Spatial discretization

2nd-order finite volume

DES turbulence model
► 1.7 x 107 degrees of freedom

Temporal discretization

2nd-order BDF

Time step At = 8 x 10-5s

► 1.3 x 103 time instances

Conservative model reduction for finite-volume models in CFD



Ahmed body resu lts [C., Farhat, Cortial, Amsallem, 2013]

pressure

field

sample
mesh + HPC on a laptop

IP°
GNAT ROM

4 hours, 4 cores

high-fidelity model

13 hours, 51z cores

+ 438x savings in core—hours
Can we equip the ROM with stronger a priori guarantees?

Conservative model reduction for finite-volume models in CFD



Structure preservation in model reduction

Stability [Moore, 1981; Bond and Daniel, 20018; Amsallem and Farhat, 2012; Kalashnikova et al., 2014]

Second-order structure [Freund 2005; Salimbahrami, 2005; Chahlaoui, 2015]

Delay [Beattie and Gugercin, 2008; Michiels et al., 2011; Schulze and Unger, 2015]

Bilinear [Zhang and Lam, 2002; Benner and Damm, 2011; Benner and Breiten, 2012; Flagg and Gugercin, 2015]

lnf—sup stability [Rozza and Veroy, 2007; Gerner and Veroy, 2012; Rozza et al., 2013; Ballarin et al., 2014]

Passivity [Phillips et al., 2003; Sorensen 2005; Wolf et al., 2010]

Energy conservation [Farhat et al., 2014; Farhat et al., 2015]

(Port-)Hamiltonian [Polyuga and van der Schaft, 2008; Beattie and Gugercin, 2011; Arkham and
Hesthaven, 2016; Chaturantabut et al., 2016; Peng and Mohseni, 2016]

What structure should we preserve in finite-volume models?

Conservative model reduction for finite-volume models in CFD Carlberg, Choi, Sargsyan 13



Finite-volume method

\ 1 f
xiu,J)(t) IQ.J1 ic2i

dx
ODE:

dt
f(x, t)

Lii(c, t) dc

► average value of conserved variable i over control volume j

fiu J)(x, t) gi(x,c, t) .n.irc) WO +  cl f si(x, 'c, t) cF'c
c2i L, 1 a Li Qi \iiiiiis,,,./

1 1

flux source

► flux and source of conserved variable i within control volume j
dx/(ii) ,

ri" — dt 
(t) fium(x, t)

► rate of conservation violation of variable i in control volume j

OAE: rn(xn) = 0, n= 1, ... , N
tn+l

qui) )(,(0(tn+1) Xl(im(tn) + I flum(X, t)dt

r
► conservation violation of variable i in control volume j over time step n
Conservation is the intrinsic structure enforced by finite-volume methods

Conservative model reduction for finite-volume models in CFD Carlberg, Choi, Sargsyan



Galerkin and LSPG violate conservation
Galerkin LSPG

arg min 1 rn(
dt Erange( ) Erange($)

► Minimize sum of squared ► Minimize sum of squared
conservation-violation rates conservation violations

over all conserved variables and over time step n over all
control volumes conserved variables and control

volumes
- Neither Galerkin nor LSPG enforces conservation!

Objectives

+ Reduced-order models that enforce conservation

+ Conditions that determine when conservation enforcement is ensured

+ Hyper-reduction to ensure low cost if nonlinear flux and source
+ A posteriori error bounds

Approach: leverage optimization structure of Galerkin and LSPG
Reference: C., Choi, and Sargsyan. Conservative model reduction for finite-
volume models. Journal of Computational Physics, 371:280 314, 2018.

_ dx
(m-, t) = arg min r( „ M2 )2

Conservative model reduction for finite-volume models in CFD Carlberg, Choi, Sargsyan



Finite-volume method over subdomains
dx

ODE: C 
dt 

Cf(x, t)

Clu , k) = PkI/A1 Old (C.2 k C )

Ifilarrk
"PAW 1 NG r
irAVAINIedir

► performs summation over control volumes within subdomain

[tx(tAlum(x, t; p,) =  _
1  
f t; cF'c

1C?il (2J
► average value of conserved variable i over subdomain j

[f(x, )]1(i,j) gi( ) •rip)dg() / si(x; t) CIX
11 Li

1 1

sourceflux

► flux and source of conserved variable i within subdomain j

[er]pii) = d[ex(t)]pim/ dt — [ef(x, t)]pim

► rate of conservation violation of conserved variable i in subdomain j

OAE: Crn(xn) = 0, n= 1, , T
til 

[trn]pim — [tx(tn+1)]pim [tx(tnApii) [Cf(x, tApimdt

► conservation violation of conserved variable i in subdomain j over time step n
Conservative model reduction for finite-volume models in CFD Carlberg, Choi, Sargsyan



Nested conservation
AWN%
iii ritiwom,
070781Zir

AIWA&
a savor& i r
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Wilk
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Theorem: Nested conservation [C., Choi, Sargsyan, 2018]

► If a decomposed mesh M is nested in another decomposed mesh .A-4
such that Qi = Ujekc{1,...,N0Q.i, i = 1, ... 7 N6, then we say A-4 c M.
If M c M and M is non-overlapping, then satisfaction of
conservation on .A-4 implies satisfaction of conservation on M, i.e.,

dx x 0 
— 0 > Er( dxt , x, t) 0, trn(xn) 0  > Ern(xn) 0Cr(  dt d „ 

Corollary: Global conservation [C., Choi, Sargsyan, 2018]

If the decomposed mesh M satisfies U,N1C2; = Q and is non-overlapping,
then it is globally conservative.

Conservative model reduction for finite-volume models in CFD Carlberg, Choi, Sargsyan



Conservative model reduction
Conservative Galerkin

minimize 0-(41:00, (I)X,
E-vc.

subject to er(Oii, OX, t) = 0

► Minimize sum of squared
conservation-violation rates
over all conserved variables and
control volumes subject to zero
conservation-violation rates
over subdomains

Conservative LSPG

minimize Irn(40012
E--vJ

subject to Crn(00) = 0

► Minimize sum of squared
conservation violations

over time step n over all conserved
variables and control volumes
subject to zero conservation
violations over time step n over
subdomains

+ If feasible, ROMs enforce conservation over subdomains

Conservative model reduction for finite-volume models in CFD Carlberg, Choi, Sargsyan 18



Questions
Conservative Galerkin

minimize 0-(41:00, (I)X, W2
E-vc.

subject to er(Oii, OX, t) = 0

Conservative LSPG

minimize Irn(40012
E--vJ

subject to Crn(00) = 0

' What are conditions for feasibility?

' How to handle infeasibility?

' How to solve?

' Are the two methods ever equivalent?

' How to apply hyper-reduction in a structure-preserving way?

' How do a posteriori error bounds compare with standard ROMs?

Conservative model reduction for finite-volume models in CFD



Questions
Conservative Galerkin

minimize 0-(41:00, (I)X, W2
E-vc.

subject to er(Oii, OX, t) = 0
is

Conservative LSPG

minimize Irn(40012
E--vJ

subject to Crn(00) = 0

What are conditions for feasibility?

' How to handle infeasibility?

' How to solve?

' Are the two methods ever equivalent?

' How to apply hyper-reduction in a structure-preserving way?

' How do a posteriori error bounds compare with standard ROMs?

Conservative model reduction for finite-volume models in CFD



Conservative Galerkin feasibility
Conservative Galerkin

minimize 00(40ii, 41:01, Oh
E P

subject to Cr( , OX, t) = 0

Definition: conservative Galerkin feasibility

The conservative Galerkin model is feasible if the Galerkin feasible set

TG( , t) : { c -V3 1 Cr (01:0i1 7 (P) 7 t) = Of
is non-empty.

Proposition: sufficient conditions for conservative Galerkin feasibility

The conservative Galerkin model is feasible, i.e., TG(41), t) / 0
if CI) has full row rank (i.e., inf—sup stability). This in turn requires
fewer constraints (i.e., rows in t ) than unknowns (i.e., columns in 0).

Constraint equations should be underdetermined.

Conservative model reduction for finite-volume models in CFD Carlberg, Choi, Sargsyan



Conservative LSPG feasibility
Conservative LSPG

minimize rn(41:0C4)b
ERP

subject to Crn(41:00) = 0

Definition: conservative LSPG feasibility

The conservative LSPG model is feasible if the LSPG feasible set

.Fi .1 : { E -"Vj 1 trn( ) O}

is non-empty.

Proposition: sufficient conditions for conservative LSPG feasibility

The conservative LSPG model is feasible, i.e., .FI)1 / 0 if

1. an explicit time integrator is used and t has full row rank
2. the limit At 0 is taken, or
3. The velocity f is linear in the state and t[aol — At,300f/Ox(., tn)] (1)

has full row rank.

Constraint equations should be underdetermined.
Conservative model reduction for finite-volume models in CFD s~r•ivaae-/XIiT•]1*1TiF



Questions
Conservative Galerkin

minimize 0-(41:00, (I)X, W2
E-vc.

subject to er(Oii, OX, t) = 0

Conservative LSPG

minimize Irn(40012
E--vJ

subject to Crn(00) = 0

' What are conditions for feasibility?

How to handle infeasibility?

' How to solve?

' Are the two methods ever equivalent?

' How to apply hyper-reduction in a structure-preserving way?

' How do a posteriori error bounds compare with standard ROMs?
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Handling infeasibility
What if infeasibility is detected?

1. Reduce number of subdomains

A 1 WM IL
grAvAireir
OPIEllar

IOW&
NirAvAtireir
Alleiralr

+ Fewer constraints, so likelihood of feasibility increases

+ Nested: solutions at previous fime steps are feasible on new mesh

- No guarantee of feasibility (global conservation may be infeasible)

2. Penalty formulafion

► Penalized Galerkin: minimize 111-(1:00, 4:1:05, t)11 + p IC r(00, 05i, t)E-RP
► Penalized LSPG: minimize Ilrn(00) + plItrn(x°(//) + & )11E-V3
+ Always solvable

- No longer strictly conservative

2
2
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Questions
Conservative Galerkin

minimize 0-(41:00, (I)X, W2
E-vc.

subject to er(Oii, OX, t) = 0

Conservative LSPG

minimize Irn(40012
E--vJ

subject to Crn(00) = 0

' What are conditions for feasibility?

' How to handle infeasibility?

How to solve?

' Are the two methods ever equivalent?

' How to apply hyper-reduction in a structure-preserving way?

' How do a posteriori error bounds compare with standard ROMs?
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Conservative Galerkin
minimize r(41:00,

c

subject to Cr( DO, t)

Convex linear least-squares problem with linear equality constraints

Theorem

If the conservafive Galerkin model is feasible, i.e., TG( t) / 
then its solution exists, is unique, and satisfies the following:
1. a time-dependent saddle point problem

07-C1 [ 
r Tf(0

dt 
[Cf (stK, t; A)]

2. a modified Galerkin projection

Tf(05i, t) (e )±[ef(x, t; v) e Tf(x, t)]
dt

modification from Galerkin velocity

3. orthogonal projection of the Galerkin velocity onto the feasible set

dt (Di( I t )

arg min
ETG( ,t)

Tf(46,

► Solver: any time integrator applied to these systems of ODEs
Conservative model reduction for finite-volume models in CFD er , Sargsyan 26



Conservative LSPG
minimize rn( )b

G--13

subject to Crn( ) = 0

Non-convex nonlinear least-squares problem with
nonlinear equality constraints

Theorem

If the conservative LSPG model is feasible, i.e., Ti;' I 0, then its
solution exists and satisfies the nonlinear saddle-point problem

qin( n - T
) [rn(Etoin) + CT All.] = 0

ern(0Xn) — 0

► Solver: SQP with Gauss—Newton Hessian approximation
[kr( n(k))Tti In( n(k)) qjn( n(k))7- CT65in(k)]

ttlin(Se(k)) 
O r x n(k)

°AP

I lin (iin(k))T (rn (x0 (pi) + cin(k)) + t 7- Anp(11

trn (x0 (to + q n(k))
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Questions
Conservative Galerkin

minimize 0-(41:00, (I)X, W2
E-vo

subject to er(Oii, OX, t) = 0

Conservative LSPG

minimize Irn(40012
E--vJ

subject to Crn(00) = 0

' What are conditions for feasibility?

' How to handle infeasibility?

' How to solve?

Are the two methods ever equivalent?

' How to apply hyper-reduction in a structure-preserving way?

' How do a posteriori error bounds compare with standard ROMs?
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Are the two approaches ever equivalent?
Conservative Galerkin OM Conservative LSPG OM

k
ito T [rn (05 D + >..: ajtT ArL ji

j=0

trn ( D = 0

These are equivalent if, for some constant a ,

qin( riN) = a and Wn(cfn)Tt 7- Ärp7 a

Recall Wn( n) ' (aol — At/30-
0f

(105in, t))
Ox

0 w ri (4)T [rn ( 05, rF7)) + c7- Ali,-]=0

trn ( ID) 4) = 0

k

>.: ai
j o

T CT An—jG .

Theorem: equivalence

The two approaches are equivalent (with a ao),
1. in the limit of At 0, or
2. if the scheme is explicit Po = 0).

Further, the Lagrange multipliers are related as A rp7 •

k,
aiArLj

j=o

Conservative model reduction for finite-volume models in CFD Carlberg, Choi, Sargsyan 2 9



Questions
Conservative Galerkin

minimize 0-(41:00, (I)X, W2
E-vc.

subject to er(Oii, OX, t) = 0

Conservative LSPG

minimize Irn(40012
E--vJ

subject to Crn(00) = 0

' What are conditions for feasibility?

' How to handle infeasibility?

' How to solve?

' Are the two methods ever equivalent?

How to apply hyper-reduction in a structure-preserving way?

' How do a posteriori error bounds compare with standard ROMs?
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Hyper-reduction for finite-volume models
L Residual gappy POD: i = 01:0,(13,10,)+Prr, = Or(PrOr)+P ,rn

2. Velocity gappy POD: i and in computed from of(Pfe•t)+Pff
3. Flux and source gappy POD

flux
gappy POD

source
gappy POD

AWED&
FATtorer

FA IPA I I IMF
oh(phohyphh r = 0503505y

and in computed from i = ig is where rig
+Structure preserving: approximated velocity is sum of flux and source
+ Less expensive: no need to compute all fluxes for a control volume

minimize ri(q)Q, 41:0X, minimize rin(4)10112

subject to ei,(00, OX, t) = 0 subject to ti'n(400) = 0

fs

+ Can apply different hyper-reduction to the objective i and constraints
Constraint hyper-reduction: no longer strictly concervative

+ Constraint hyper-reduction: unneeded if no source and few  subdomains
Assaawm-415iConservative model reduction for finite-volume models in CFD



Questions
Conservative Galerkin

minimize 0-(41:00, (I)X, W2
E-vc.

subject to er(Oii, OX, t) = 0

Conservative LSPG

minimize Irn(40012
E--vJ

subject to Crn(00) = 0

' What are conditions for feasibility?

' How to handle infeasibility?

' How to solve?

' Are the two methods ever equivalent?

' How to apply hyper-reduction in a structure-preserving way?

How do a posteriori error bounds compare with standard ROMs?
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Discrete-time error bound: previous results

Theorem: state-space error bounds [C., Barone, Antil, 2017]

If the following conditions hold:
1. f(.; t) is Lipschitz continuous with Lipschitz constant
2. The time step At is small enough such that 0 < h := 0o KAt,

3. A backward differentiation formula (BDF) time integrator is used,

X n 41) G) 2 111V(DRIG)112+ 

1  
 lat (DRIL'e ll2

f=1

Xn (1)K 
1 . 

sPG112 < h rLSIDG(e")1

k 

2 
h

1 v

 
lool I

f=1

n--e 0KaX G 112

+ LSPG sequentially minimizes the error bound
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Discrete-time error bound: new results
Theorem: local state-space error bounds

If the following conditions hold:
1. f(.; t) is Lipschitz continuous with Lipschitz constant k
2. The time step At is small enough such that 0 < h := Iccol 0o KAt,

3. A backward differentiation formula (BDF) time integrator is used,

Ilxn osca2 < ( L + (G) Ti lIr(oseal2

Xn

+ 7, E (I-e I Ilxn— ("G112

1 1
4:DRICSPG b i; 11 rill_SPG(ÌDR2SPG) b + 77

f=1
k

cv,e1 Ilx
n—f

f=1

(CSPGAt (CSPG 11 An
+ 11(l [Pr] Tpn)f(11)KSPG) 2 +h hn

th >1-7—f
.`I_SPG 112

k

1 n f‘n—t 11f 1XLSPG ..2

f=r
( 0 7-41n ) — 1 A,

II I ll-) th, (LSPG := HIrSIDG1-1[UrSPG1Ttb, An 
: qjn 

W

UGIG1/7G-1 twn(0Twn)-1
UrSPGIrSPG[VILIDG] T

State-space error bound is larger for both models

- LSPG no longer strictly minimizes the residual
Conservative model reduction for finite-volume models in CFD Carlberg, Choi, Sargsyan



Discrete-time Prror bound: new results

Lemma: local conserved-quantity error bounds

The error in the conserved quantities computed with either
conservafive Galerkin or conservafive LSPG can be bounded as:

k
\ Pne L t̀ 

X(Xn 41:1Rn)b < 2_ Xf (xnf) Cf (ORn f)b
f=0 cc(31

k 1 ni
+ \ ' Pt 1 III-4/,,n—f

-e.d1 lalSilliA

► Error depends only on velocity error on decomposed mesh
+ No source, global conservation: error due to flux error along boundary!

Conservative model reduction for finite-volume models in CFD Carlberg, Choi, Sargsyan 35



Quasi-1 D Euler equation

flow direction
Supersonic inlet A(x)

t
o x L

' 3 conserved variables: ui = Ap, u2 = Apu, u3 = Ae

' Flux: gi = Apu, g2 = A(ou2 + p), g3 = A(e + p)u
c.)ource: sl = 53 = 0 7 s2 — p aaAx

' Domain length: L=0.25 m
' Time domain: t c [0, 0.29 s]

' Time integration: backward Euler with At = 0.01 s

' Parameter: the initial Mach number at the domain center

' Considered ROMs:

' Galerkin ' GNAT: hyper-reduced objective

' LSPG ' GNAT-FV: hyper-reduced objective

' LSPG-FV ' GNAT-FV(GNAT-FV): hyper-reduced objecfive & constraints

Conservative model reduction for finite-volume models in CFD Carlberg, Choi, Sargsyan



CN

Global conservation Gm m )—global,

co
ns
er
va
fi
on
 

1 0

1 0 —

1 0 — 1 0

FOM
Galerkin
LSPG
LSPG-FV
GNAT
GNAT-FV
GNAT-FV(G-\ AT-FV)

0••• 

.111111 MEM
.=Mr ........ ....••••

, , , , , 10-15
0 0.05 0.1 0.15 0.2 0.25 0.3

time (seconds)

Standard ROMs: significant global-conservation violation
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Global conservation Gm Mglobal)

co
ns
er
va
fi
on
 

>

c-N 100

10 —

10 — 10

1

FOM
Galerkin
LSPG
LSPG-FV
GNAT
GNAT-FV

1

••• .....

1

.111111 MEM
MOO
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Standard ROMs: significant global-conservation violation

+ Conservative ROMs: global conservation satisfied (always feasible)
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Standard ROMs: significant global-conservation violation

+ Conservative ROMs: global conservation satisfied (always feasible)
+ Hyper-reduced constraints: relatively small global-conservation violation
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Error in conserved variables (.m Mglobal)
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Standard ROMs: can produce large errors in conserved quantities
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Error in conserved variables (.m Mglobal)
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Standard ROMs: can produce large errors in conserved quantities

+ Conservative ROMs: small (but nonzero) errors in conserved quantities
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Error in conserved variables (.m
101 

100
$a) c\I
-I—)

ZCO
4—i X
(/) 

1 0

,

10

Galerkin
LSPG
LSPG-FV
GNAT
GNAT-FV
GNAT-FV(GNAT-FV)

A4global)

0.05 0.1 0.15 0.2 0.25 0.3

time (seconds)

+ Conservative ROMs: smaller state-space errors

► Similar behavior of full-state error and globally-conserved quantity error!
+ Implies satisfying global conservation can improve overall accuracy
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Varying number of subdomains
If infeasible, adopt penalty formulation with p= 103
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+ Global conservation yields the best performance

+ Global conservation reduces errors by 10X from the unconstrained case
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Pareto optimality
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+ GNAT-FV(GNAT-FV) (hyper-reduced objective/constraints): Pareto optimal
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+ GNAT-FV(GNAT-FV) (hyper-reduced objective/constraints): Pareto optimal

+ GNAT-FV (hyper-reduced objective, exact constraints): second-best
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Pareto optimality
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+ GNAT-FV(GNAT-FV) (hyper-reduced objective/constraints): Pareto optimal

+ GNAT-FV (hyper-reduced objective, exact constraints): second-best

- GNAT (hyper-reduced objective, no constraints): dominated
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Conclusions

+ Reduced-order models that enforce conservation
+ Conditions that determine when conservation enforcement is ensured
+ Ways to handle infeasibility
+ Structure-preserving hyper-reduction that respects the velocity structure
+ A posteriori error bounds
Numerical experiments:
+ global conservation can reduce errors by 10X
+ hyper-reduced constraints nearly as accurate as strict constraints
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Questions?
Reference: C., Choi, and Sargsyan. Conservafive model reduction for finite-

volume models. Journal of Computational Physics, 371:280 314, 2018.
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