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Conservative model reduction for
finite-volume models in CFD
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High-fidelity simulation: captive carry




High-fidelity simulation: captive carry

+Validated and predictive: matches wind-tunnel experiments to within 5%
- Extreme-scale: 100 million cells, 200,000 time steps
- High simulation costs: 6 weeks, 5000 cores

computational barrier

Many-query problems

e explore flight e quantify effects of ® robust design of
envelope uncertainties on store load store and cavity

Goal: break computational barrier

Nonlinear reduced-order modeling Kevin Carlberg




How to construct a ROM given a basis ®7?

ODE Galerkin ODE
dx res:dual dx -
dr f(x )) minimization Cd_ = & f(ox, tD
}
LSPG OAE ( — X, t —) (bx, t) = argmin |[r(v, ®x, t)]2
[C., Bou-Mosleh, Farhat, 2011] VErange(‘b)
W (") " (@%") = 0 time time
n=1..,T discretization discretizationl
¢ v
Galerkin OAE
(55 oA TR OAE -
vErange(®) _residual ( r"(x") =0 ¢ r"(®x") =0
k n:].,...,T J minimizaﬁonknzl,“_,T n:1,...,T

» FOM ODE residual: r(v,x,t) :=v —f(x, t)
» FOM OAE residual: r"(w) := aow — AtBof(w, t )+Zajx" (v) —AtZﬁjf(x” ")
j=1 Jj=1

» LSPG test basis: ¥"(w) = (aol + @oAta—(d)w )) ®
» Detailed comparative analysis: C, Barone, Antil, J Comp Phys, 2017.
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Discrete-time error bound

If the following conditions hold:

1. f(-; t) is Lipschitz continuous with Lipschitz constant «

2. The time step At is small enough such that 0 < h := |ag| — |Bo|kAL,
3. A backward differentiation formula (BDF) time integrator is used,

k
n - 1 n 2711 1 n— AN—
[x" — dxg[2 < EHrG((bXG)HT'_E Z g [|x"" — DXL
=1 .

o L N 1 —¢ an—~¢
X" — ®Klspclla < min [ spe (@) o+ > ol — O
/=1

+ LSPG sequentially minimizes the error bound
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Captive carry

» Unsteady Navier—Stokes *Re=6.3x106 *» M..=0.6

Spatial discretization Temporal discretization
> 2nd-order finite volume > 2nd-order BDF
» DES turbulence model » Verified time step At =15 x 107>

» 1.2 x 10° degrees of freedom » 8.3 x 10° time instances
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High-tidelity model solution

vorticity field
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Principal components
x(t) ~ ® x(t)
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Galerkin and LSPG performance

probe
2.8r
— high-fidelity:
i dim 1.2x106
a —— Galerkin: dim 204
g_ 21 WO W . Galerkin: dim 368
o TN : - — Galerkin: dim 564
Q q1] .
5 ) — LSPG: dim 204
«J
& 20_ ::,
o | NI 1 &I "W w V- LSPG: dim 368
Q |
- - LSPG: dim 564
16 | | | | | |
0 y, 4 6 8 10 12

time
- Galerkin projection fails regardless of basis dimension
+ LSPG is far more accurate than Galerkin

- However, both ROMs are slower than the high-fidelity model
Why does this occur, and can we fix it?
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Hyper-reduction

Galerkin: minimize r(® 0, P %, t)2 LSPG: minimize[| r"( & ©)

‘{I I I \ ‘ I )
\ /12 2
- Costly: minimizing large-scale high-fidelity model residua
Hyper-reduction: minimize sampling-based residual approximations
HR-Galerkin: minimize |[f(®VU, ®X, t)|2  HR-LSPG: minimize ||¥"(®V)||-
1. Residual gappy POD: ¥ = ®,(P,®,)"P,r, ¥" = & (P, ®,)"P,¢"
P,
— "+ Cost independent of

Dy high-fidelity model
. r . .
dimension

value

» GNAT [c., Bou-Mosleh, Farhat, 2011] = LSPG + residual gappy POD
2. Velocity gappy POD: ¥ and #” computed from f = ®¢(P;®¢) " Pf
» POD-DEIM [chaturantabut and Sorensen, 2011] = Galerkin + velocity gappy POD

Conservative model reduction for finite-volume models in CFD
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Sa Im p‘e Im eSh [C., Farhat, Cortial, Amsallem, 2013]

minimize||(P®,) " Pr"(®V)||,
G N

sample . Ede— s —
mesh
+ HPC on a laptop
vorticity field pressure field

GNAT ROM
32 min, 2 cores

high-fidelity
5 hours, 48 cores

+229x savings in core—hours
+< 1% error in time-averaged drag
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» Unsteady Navier—Stokes

Spatial discretization

» 2nd-order finite volume

* DES turbulence model

» 1.7 x 10" degrees of freedom

Conservative model reduction for finite-volume models in CFD

*Re=4.3x10% » M.=0.175

Temporal discretization

» 2nd-order BDF

» Time step At =8 x 107°s
» 1.3 x 10° time instances

Carlberg, Choi, Sargsyan
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Ah med bOdy resu ‘tS [C., Farhat, Cortial, Amsallem, 2013]

sample
mesh + HPC on a laptop
GNAT ROM high-fidelity model

13 hours, 512 cores

pressure
field

+438x savings in core—hours
Can we equip the ROM with stronger a priori guarantees?
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Structure preservation in model reduction

Sta bl I |ty [Moore, 1981; Bond and Daniel, 20018; Amsallem and Farhat, 2012; Kalashnikova et al., 2014]

' SECOnd'O rder Stru Ctu '@ [Freund 2005; Salimbahrami, 2005; Chahlaoui, 2015]

DEIay [Beattie and Gugercin, 2008; Michiels et al., 2011; Schulze and Unger, 2015]

Bl | | near [Zhang and Lam, 2002; Benner and Damm, 2011; Benner and Breiten, 2012; Flagg and Gugercin, 2015]
Inf—SU p Sta b| I |ty [Rozza and Veroy, 2007; Gerner and Veroy, 2012; Rozza et al., 2013; Ballarin et al., 2014]
Pa SSiVity [Phillips et al., 2003; Sorensen 2005; Wolf et al., 2010]

g Energy conservation [Farhat et al., 2014; Farhat et al., 2015]

v

(PO rt') Ha mi ItOn Ian [Polyuga and van der Schaft, 2008; Beattie and Gugercin, 2011; Arkham and
Hesthaven, 2016; Chaturantabut et al., 2016; Peng and Mohseni, 2016]

What structure should we preserve in finite-volume models?
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Finite-volume method

[ODE: % = f(x; t)]

XI(,J) ’QJ‘/ u,(X t)dX

» average value of conserved variable j over control volume j

fr(ij) (X, t) = Qi / g;(x; X, t) -n;j(x) ds(x) ‘éj /Qs,-(x;f(, t) dX

H/—/ | N——
flux source
» flux and source of conserved variable / within control volume j
dXI(,
reiij) = (t) — fz(i j)(%, t)

» rate of conservation violation of variable j in control volume
(OAE: r"(x)=0, n=1,..,N]

tn+1

(i) = xz(i jy(t") = xzi ) (t7) + fzij)(x, t)dt

tn
» conservation violation of variable j in control volume j over time step n

Conservation is the intrinsic structure enforced by finite-volume methods

Conservative model reduction for finite-volume models in CFD Carlberg, Choi, Sargsyan



Galerkin and LSPG violate conservation

Galerkin LSPG
dx ((Dx t) = argmin |[r(v, DX, t)|> ®x" = argmin [[r"(v)]|2
vErange(®) vErange(P)
» Minimize sum of squared » Minimize sum of squared
conservation-violation rates conservation violations
over all conserved variables and over time step n over all
control volumes conserved variables and control
volumes

- Neither Galerkin nor LSPG enforces conservation!
Objectives

+ Reduced-order models that enforce conservation
+ Conditions that determine when conservation enforcement is ensured
+ Hyper-reduction to ensure low cost if nonlinear flux and source
+ A posteriori error bounds
Approach: leverage optimization structure of Galerkin and LSPG

Reference: C., Choi, and Sargsyan. Conservative model reduction for finite-
volume models. Journal of Computational Physics, 371:280-314, 2018.
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Finite-volume method over subdomains

DE: C— Cf
[O - (x, t)

Sz vz = 1!/ 110! (e € Q) B
» performs summation over control volumes within subdomain j M3
_ 1 s S
Ex(lz;)(x ti) = 5 [ wils, ) o5
’ j| QQ;

» average value of conserved variable i over subdomain j

_ 1 o 1 S S
[CF(x, t)]z(ij) = |Q | g,(x X, t)-nj(X)ds(X) + a1 ) si(x; X, t) dX
! flux Iy source

» flux and source of conserved variable i within subdomain j

[(_:r]f(i,j) = d[éx(t)]f(i,j)/dt — [Cf(x, t)z)
» rate of conservation violation of conserved variable i in subdomain j

[ 0AE: Cr"(x") =0, n=1,..., T |
tu#l
[Cr 25y = [Cx(t" Dz, — [Cx(E)] 24, +/ [Cf(x, t)]7(;)dt
tn
» conservation violation of conserved variable i in subdomain j over time step n
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Nested conservation

2 .

-9 A v —

M ./\;ll ./\;12 -/\;lglobal

* If a decomposed mesh M is nested in another decomposed mesh M

such that Q,; = jeRC(t... Ny S = 5, then we say M C M.
» If M C M and M is non- overlapplng, then satisfaction of
conservatlon on M implies satisfaction of conservation on M, i.e.,

(_:r( X, t)=0= Cr( C:t( x,t) =0, Cr'(x")=0= (=:r”(x”) =0

If the decomposed mesh M satisfies uf\'jlfz,- = Q and is non-overlapping,
then it is globally conservative.
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Conservative model reduction

Conservative Galerkin Conservative LSPG
minimize |[r(®U, ®x, t)|- minimize |[r"(®v)||>

vERP vERP

» Minimize sum of squared » Minimize sum of squared
conservation-violation rates conservation violations
over all conserved variables and over time step n over all conserved
control volumes subject to zero variables and control volumes
conservation-violation rates subject to zero conservation
over subdomains violations over time step n over
subdomains

+ If feasible, ROMs enforce conservation over subdomains

Conservative model reduction for finite-volume models in CFD Carlberg, Choi, Sargsyan



Questions

Conservative Galerkin Conservative LSPG
minimize |[r(®U, ®x, t)|- minimize |[r"(®V)||>

vERP vERP

* What are conditions for feasibility?

* How to handle infeasibility?

* How to solve?
* Are the two methods ever equivalent?

* How to apply hyper-reduction in a structure-preserving way?

* How do a posteriori error bounds compare with standard ROMs?

Conservative model reduction for finite-volume models in CFD Carlberg, Choi, Sargsyan
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vERP vERP
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Conservative Galerkin feasibility
Conservative Galerkin

minimize |[r(®v, ®x, t)|-
JERP

The conservative Galerkin model is feasible if the Galerkin feasible set

Fo(®%, t) := {0 € RP | Cr(®U, ®%, t) = 0}
IS non-empty.

The conservative Galerkin model is feasible, i.e., Fg(®X%, t) # ()
if Cd has full row rank (i.e., inf=sup stability). This in turn requires
fewer constraints (i.e., rows in C) than unknowns (i.e., columns in ®).

Constraint equations should be underdetermined.

Conservative model reduction for finite-volume models in CFD Carlberg, Choi, Sargsyan



Conservative LSPG feasibility
Conservative LSPG

. Mo
minimize e (D)2

The conservative LSPG model is feasible if the LSPG feasible set
Fb = {0 € RP|Cr"(d7) = 0}
IS non-empty.

The conservative LSPG model is feasible, i.e., Fp # 0 if

1. an explicit time integrator is used and C® has full row rank

2. the limit At — 0 is taken, or

3. The velocity f is linear in the state and Clagl — AtB3y0f /Ox(-, t")]®
has full row rank.

Constraint equations should be underdetermined.
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Questions

Conservative Galerkin Conservative LSPG
minimize |[r(®U, ®x, t)|- minimize |[r"(®V)||>

vERP vERP

* What are conditions for feasibility?

* How to handle infeasibility?

» How to solve?

* Are the two methods ever equivalent?

>

>

ow to apply hyper-reduction in a structure-preserving way?

ow do a posteriori error bounds compare with standard ROMs?
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Handling infeasibility

1. Reduce number of subdomains

What if infeasibility is detected?

- e

+ Fewer constraints, so likelihood of feasibility increases
+ Nested: solutions at previous time steps are feasible on new mesh
- No guarantee of feasibility (global conservation may be infeasible)

2. Penalty formulation

4

>

Pena

Pena

izec

izec

Galerkin: migei%jpize [r(®V, dX, t)H% + p||Cr(®7, ®x, t)H%
LSPG: minimize [F"(D0)]|5 + p||Cr"(x° () + D)3
VvEIRP

+ Always solvable

- No longer strictly conservative

Conservative model reduction for finite-volume models in CFD Carlberg, Choi, Sargsyan



Questions

Conservative Galerkin Conservative LSPG
minimize |[r(®U, ®x, t)|- minimize |[r"(®V)||>

vERP vERP

* What are conditions for feasibility?

* How to handle infeasibility?

» How to solve?

* Are the two methods ever equivalent?

>

>

ow to apply hyper-reduction in a structure-preserving way?
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Conservative model reduction for finite-volume models in CFD Carlberg, Choi, Sargsyan



Conservative Galerkin

minimize |[r(®U, ®x, t)|-
VERP

Convex linear least—squares problem Wlth lmear equa/lty constraints

If the conservative Galerkin model is feasible, i.e., Fg(®X, t) # ()
then its solution exists, is unique, and satisfies the following:
1. a time-dependent saddle pomt problem

| &7C’ {Z’;} _ {?Tf(fbfm t)}

~ d\
Co 0 ||Zs

2. a modified Galerkin projection
dx

= O f(dX, t) + £C¢)+[Cf(x, t;v) — Cod " f(x, t)]

Cf(dx, t; u)

N

modification from Galerkin velocity

3. orthogonal projection of the Galerkin velocity onto the feasible set

d3
d: (0%, t) = argmin ||[v — ®TF(®%, 1)
vEFg(dx,t)

» Solver: any time integrator applied to these systems of ODEs
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Conservative LSPG

)
nglgplze ||r ( V)||2

Non-convex nonlinear least-squares problem with
nonlinear equality constraints

If the conservative LSPG model is feasible, i.e., Fp # (), then its
solution exists and satisfies the nonlinear saddle-point problem

W) T [en(oxn) + C_ZTX,;] _0
Cr"(®x") =0
» Solver: SQP with Gauss—Newton Hessian approximation

\un( n(k))Twn( n(k)) wn( n(k))TC 5x”(k)
n(k)
Cwn (k) 0 P

_ _\ll”()'in(k))T (rn(xo(“) i (D)'E”(k)) + CT)\’I;(k))_
Cr(x%() + ®x"(4)
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Questions

Conservative Galerkin Conservative LSPG
minimize |[r(®U, ®x, t)|- minimize |[r"(®V)||>

vERP vERP

* What are conditions for feasibility?

* How to handle infeasibility?

* How to solve?
> Are the two methods ever equivalent?

* How to apply hyper-reduction in a structure-preserving way?

* How do a posteriori error bounds compare with standard ROMs?
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Are the two approaches ever equivalent?

Conservative Galerkin OAE Conservative LSPG OAE
k
T (052) + > ;€ AL =0 wrrn)T [rn(cbf(g) + CTAg} _0
J=0 —~_n Any\
Cr"(dx2 =0 Cri(®xg) =0

These are equivalent if, for some constant a,

\un()/zn) — a0 and wn(/\n TC A _ azaj TC A _J

Recall w"(x™) := (gl — AtSp (‘)f( dx": t)) ®

The two approaches are equivalent (with a = )
1. in the limit of At — 0, or
2. if the scheme is explicit (8o = 0).

Further, the Lagrange multipliers are related as Ap = ZajAg‘f

Conservative model reduction for finite-volume models in CFD Carlberg, Choi, Sargsyan



Questions

Conservative Galerkin Conservative LSPG
minimize |[r(®U, ®x, t)|- minimize |[r"(®V)||>

vERP vERP

* What are conditions for feasibility?

>

>

ow to handle infeasibility?

ow to solve?

* Are the two methods ever equivalent?

* How to apply hyper-reduction in a structure-preserving way?

* How do a posteriori error bounds compare with standard ROMs?
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Hyper—reducﬂon for finite- vo\ume models
1. Residual gappy POD: ¥ = ®,(P,®,) P,r, ¥" = & (P, ®,)"P,r"

». Velocity gappy POD: ¥ and #¥" computed from f = & (Psds)TPsf

3. Flux and source gappy POD
flux source
gappy POD gappy POD

h = &, (P,d,) Pyh s) P

» ¥ and ¥ computed from f = f° + f where f = Bh
+Structure preserving: approximated velocity is sum of flux and source
+ Less expensive: no need to compute all fluxes for a control volume

mlnlﬁnze |r(DU, DX, t)]|2 mmlg{nze FCHIE
vERP JERP
“subject to CH(®, ®%,t) =0 subject to CF(®0) = 0

+ Can apply different hyper-reduction to the objective ¥ and constraints F
- Constraint hyper-reduction: no longer strictly conservative
+ Constraint hyper-reduction: unneeded if no source and few subdomains
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Questions

Conservative Galerkin Conservative LSPG
minimize |[r(®U, ®x, t)|- minimize |[r"(®V)||>

vERP vERP

* What are conditions for feasibility?

>

>

ow to handle infeasibility?

ow to solve?

* Are the two methods ever equivalent?

* How to apply hyper-reduction in a structure-preserving way?

* How do a posteriori error bounds compare with standard ROMs?
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Discrete-time error bound: previous results

If the following conditions hold:

1. f(-; t) is Lipschitz continuous with Lipschitz constant «

2. The time step At is small enough such that 0 < h := |ag| — |Bo|kAL,
3. A backward differentiation formula (BDF) time integrator is used,

k
n s ]' n S n ]' n— AN—
[x" — @2 < - [Ira(®%@) |2+ > laellx" " — @xg
=1 L

o L N 1 —¢ an—¢
[x" — ®X(spgll2 < - min [|rispc(PV)]2+ D lael[x" — ®R755c 12
¢=1

+ LSPG sequentially minimizes the error bound
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Discrete-time error bound: new results

If the following conditions hold:

1. f(-; t) is Lipschitz continuous with Lipschitz constant ~

2. The time step At is small enough such that 0 < h := |ag| — |Bo|kAL,
3. A backward dlfferentlatlon formula (BD -) time integrator is used,

. 1 o —
Ix" — dXgll2 < (1+CG)—HVG(¢ c)ll2 + EZ ol [[x"7F — %G "|2
=1

k
R 1 . 1 N At
X" =X spgll2 < EHrIIZSPG((bXCSPG)‘b T " Z e || X"~ — ¢XCSP<3H2

Cn At n n A C ”A H2 An—~¥
| LSPhG (1 —[P"]"P )f(¢XLspg)H2 | LSPGh,, Z oy [X spll2
/=0

v (6= [ Zc'ULC,, Csee = [[[Elspal ~ [Ulspgl ' Cll2, A” := W (@ W)™ — @
» Ch = UgXgV{, CW" (@ W)™ = UlspcElspe[Vispe] "

- State-space error bound is larger for both models
- LSPG no longer strictly minimizes the residual
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Discrete-time error bound: new results

The error in the conserved quantities computed with either
conservative Galerkin or conservative LSPG can be bounded as:

IE(x" — ®37) <Z A

‘040‘

|CF(x") — CF(®%")||2

k

Oén‘ —~( . N— An—~
+Z ’O;;‘HC(X €_¢x )HZ
0

=1

» Error depends only on velocity error on decomposed mesh
+ No source, global conservation: error due to flux error along boundary!

Conservative model reduction for finite-volume models in CFD Carlberg, Choi, Sargsyan



Quasi-1D Euler equation

flow direction\_/

> Supersonic inlet A(x)

/\l
0 T L
» 3 conserved variables: u1 = Ap, us = Apu, uz = Ae
» Flux: g1 = Apu, g = A(pu® + p), g3 = Ale + p)u
* Source: s1 =53 =0, 5 = Pg—i\
* Domain length: L=0.25 m
* Time domain: t € [0, 0.29 s]
* Time integration: backward Euler with At = 0.01 s
» Parameter: the initial Mach number at the domain center
* Considered ROMs:
* Galerkin * GNAT: hyper-reduced objective
» LSPG * GNAT-FV: hyper-reduced objective
» LSPG-FV * GNAT-FV(GNAT-FV): hyper-reduced objective & constraints

Conservative model reduction for finite-volume models in CFD Carlberg, Choi, Sargsyan



Global conservation (M = Mgopal)

-

oo T —— I T — |

5 (ae— )
~~ TN -\ ,m =< 1

2 N o \/’ ™ % — - “

s = FOM I M

o -

— X 10— 9° === (zalerkin

- —LSPG

o = —LSPG-FV

Qo *TU GNAT -

5 8 10719 —GNATFV -_

c Uzo - - GNAT-FV(GNAT.FV) _

D! A QANI 0

(© 10— 15 . . . . .

[e 0O 0.05 0.1 0.15 0.2 0.25 0.3

>

time (seconds)

- Standard ROMs: significant global-conservation violation
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Global conservation (M = Mgopal)

-

o . . . . .

i _ [ —— _

B e

U -~ o - |

2 N I - \,/ i — “
e i SO N 7

S 5; . ==FOM v

— <:>< 10— 2t === (Galerkin

©

o e - ==[SPG

O = . —LSPG-FV _

b0 = . GNAT -

Y— T —10

o 2 10 - =—GNAT-FV ‘_

c _——GNAT-FV(GNAT.FV) _

S0 A QARee Dy

o 1015 ' ' ' ' ' _

[e 0O 0.05 0.1 0.15 0.2 0.25 0.3

>

time (seconds)

- Standard ROMs: significant global-conservation violation
+ Conservative ROMs: global conservation satisfied (always feasible)
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Global conservation (M = Mgopal)

-

O T T

m - ~ g E 4
c o 1()0(\/\ %; |
U = S W T e ]
(V)] v N v JREN

2 3 S T e
8 — = 'OM s
— <:>< 10— 9° === (Galerkin

(O

o e m—.SPG

o —LSPG-FV

Q0 = GNAT -
Y S —10 | ]
o =< 10 - —GNAT-FV _
C - - GNAT-FV(GNAT.FV) _
o'W A=A
(T 10—15 . . . . .

O O 0.05 0.1 0.15 0.2 0.25 0.3
>

time (seconds)

- Standard ROMs: significant global-conservation violation
+ Conservative ROMs: global conservation satisfied (always feasible)
+ Hyper-reduced constraints: relatively small global-conservation violation
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Error in conserved variables (M = Mgopar)
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- Standard ROMs: can produce large errors in conserved quantities
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Error in conserved variables (M = Mgopar)
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- Standard ROMs: can produce large errors in conserved quantities
+ Conservative ROMs: small (but nonzero) errors in conserved quantities
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Error in conserved variables (M = Mgopar)
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+ Conservative ROMs: smaller state-space errors
» Similar behavior of full-state error and globally-conserved quantity error!
+ Implies satisfying global conservation can improve overall accuracy
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Varying number of subdomains

» If infeasible, adopt penalty formulation with p = 10°
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+ Global conservation yields the best performance
+ Global conservation reduces errors by 10X from the unconstrained case
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Pareto optimality
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+ GNAT-FV(GNAT-FV) (hyper-reduced objective/constraints): Pareto optimal
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Pareto optimality
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+ GNAT-FV(GNAT-FV) (hyper-reduced objective/constraints): Pareto optimal
+ GNAT-FV (hyper-reduced objective, exact constraints): second-best
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Pareto optimality
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+ GNAT-FV(GNAT-FV) (hyper-reduced objective/constraints): Pareto optimal
+ GNAT-FV (hyper-reduced objective, exact constraints): second-best
- GNAT (hyper-reduced objective, no constraints): dominated
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Conclusions

+ Reduced-order models that enforce conservation
+ Conditions that determine when conservation enforcement is ensured
+ Ways to handle infeasibility
+ Structure-preserving hyper-reduction that respects the velocity structure
+ A posteriori error bounds
* Numerical experiments:
+ global conservation can reduce errors by 10X
+ hyper-reduced constraints nearly as accurate as strict constraints
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Questions?

Reference: C., Choi, and Sargsyan. Conservative model reduction for finite-
volume models. Journal of Computational Physics, 371:280-314, 2018.
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