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Abstract— We extend our approach capturing and relating the
provenance and performance metrics of computational workflows
as a diagnostic tool for runtime optimization and placement. One
important challenge is the volume of extracted data, both for
performance metrics and provenance, even when specifying filters
and focusing on quantities of interest in a simulation. We reduce
this data by performing anomaly detection on streaming data and
store provenance for the detected anomalies, an approach we call
prescriptive provenance. This paper discusses the Chimbuko
architecture enabling the approach. We present the use of a
protein structure propagation workflow based on NWChemEx.
We are testing algorithms for anomaly detection and present
preliminary results here obtained with Local Outlier Factor.
While scaling remains a challenge, these results show that our
robust Chimbuko architecture for streaming analysis with
prescriptive provenance is a promising approach.

Keywords—computational workflows, prescriptive provenance,
performance analysis, Chimbuko.

I. INTRODUCTION

The provenance of scientific workflows has traditionally been
used to explicate scientific results - for instance, how a dataset
was derived, what transformations have been applied to data,
what dependencies exist in the workflow graph and its
execution on distributed systems. Provenance is used to
provide information enabling quality control, re-run
computational workflows, and reproduce results. In this paper,
we extend the use of provenance to encompass the performance
of workflows on distributed systems. Performance in the
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execution of scientific workflows on shared systems can
fluctuate at runtime due to many factors, including system
workload, placement of the execution, shared libraries, etc.
When cloud resources are used to execute workflows,
provenance can be useful to predict the minimum amount of
resources needed given time or resource constraint executions.
In High Performance Computing environments, such as the
DOE Leadership Class Facilities, scientists spend much time
debugging and optimizing their codes with the goal of
achieving performance improvements. These efforts are often
impeded because, in these environments, many underlying
libraries and variables that affect implementation change
frequently. In this context, extracting detailed provenance for
the optimization of workflow performance becomes
advantageous to highlight latencies, possible contention for
resources in workflows, and other bottlenecks that can slow
down or crash execution. In previous work we have designed
the Chimbuko system to capture, analyze and visualize the
detailed provenance of a workflow and relate the extracted
information to performance metrics [1,2]. We have been using
the Tuning and Analysis Utilities (TAU [3]) suite of tools
modified to extract provenance variables of interest and extract
the performance metrics for workflows, not just of single
applications. The TAU + Chimbuko system -captures
performance metrics and provenance characteristics in a single
trace file.

One important challenge encountered when extracting
provenance and performance metrics for distributed workflow
applications is the volume of extracted data [4]. Even when
specifying filters and groups of variables - for instance,
extracting only the execution events of MPI communication
and suppressing performance extraction of all sub-routines,
provenance and performance traces are very large and verbose.
Given that simulation codes may run for hours on thousands of



cores or more, saving unreduced provenance and performance
metrics for post-analysis is intractable. = We address this
challenge by analyzing the performance trace at runtime to
detect anomalies (the events of interest) using anomaly
detection algorithms. Once anomalies have been detected, we
save all the provenance and a detailed trace for a time window
of interest preceding the detected anomalies and make it
available for future inspection (Fig. 1). We call prescriptive
provenance the provenance of these events selected for
retention by anomaly detection and retained for a time window
preceding the occurrence of the events. As streaming
performance trace data is produced during the course of a
simulation, the amount of trace available for download and
inspection preceding the interesting events is constrained by the
memory resources of the system.

In this paper, we discuss the architecture enabling the
collection, aggregation and saving of provenance and
performance data and the provenance window. We present a
use case of extracting performance metrics and provenance for
an NWChem application. Global runtime performance traces
are provided by TAU integrated with the SOSFlow architecture
that provides aggregation of the traces for distributed
applications [5]. We are testing several algorithms to detect
anomalous events in performance data and support data
reduction. We present preliminary results for one such
algorithm.

II.  DEFINING PRESCRIPTIVE PROVENANCE

Prescriptive Provenance includes the traditional lineage of an
application session (code names, versions, static metadata) and
the provenance of the execution trace of scientific workflows at
runtime, including application behavior, software stack,
runtime environment, and system information.

We extract the following
performance metrics for

Events

of each workflow
interest component:  start and
end timestamp, call
stack, memory

allocation, I/0 in
network or disk,
communication time and
volume including
between functions and
nodes, and number of
synchronization points.
For each workflow, we
extract the number of
components, the amount
of communication for
each pair of components
and size, the aggregated
number of communication calls, and communication execution
time. More traditional static provenance information such as
executable names and versions, github hash of the codes,
standard libraries and units of measurement are also extracted.
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Figure 1: Schematic of data reduction
approach - the events of interest
(outliers) are saved, the non-events are
discarded. The x axis are start
timestamps of code functions, y
represents execution time.

The time window to collect prescriptive provenance and the
performance trace preceding the detected anomalies must be
defined. Based on the purpose for which provenance is
collected, this window will vary. For instance, in order to build
training sets for anomaly detection algorithms, the entire
provenance and the performance trace must be kept to train
algorithms before they can be used with a streaming
application. For the test sets, when anomalies are detected, only
the prescriptive provenance is stored. For both training sets and
in situ analytics, the rolling window will be algorithm
dependent and can be specified for a particular algorithm. The
window can be defined by time, steps in a simulation, or any
other variable of interest to the event detection (a feature in ML
parlance). If collecting prescriptive provenance is more generic
than event detection and includes the goal of testing various
event detection algorithms for forensic analysis, the window
will need to be larger in order to accommodate varying factors.
In addition, the amount of prescriptive provenance stored and
the size of the rolling window will be bound by the available
resources for computation and memory.

III. NWCHEM USE CASE

We are using a protein structure propagation workflow based
on classical Molecular Dynamics simulations with the
NWChem application [6] which is the precursor to the current
NWChemEx development. The NWChemEx project targets
two different science challenges, one in catalysis, and one in
biology. The biology science challenge considers the function
and regulation of a transmembrane protein that acts as a calcium
channel. The simulations need to include the protein structure
itself but also the membrane, and the cell plasma and the
aqueous environment outside the cell. To provide a realistic
description of this environment it is expected that about one
million atoms should be included in the model. In addition the
regulation of the protein activity involves conformational
changes to the channel. For one of the proteins of interest a
change of protonation of one of the residues in the channels
drives the protein to open or close the channel [7]. These
conformational changes may take as long as a microsecond to
complete. Given that the typical timesteps in these kinds of
simulations are on the order of a femtosecond, accurate
simulations may require on the order of a billion timesteps. This
means, in principle, these calculations produce on the order of
petabytes of data. Currently this data is reduced largely by using
smaller models, storing the structure only every hundred or
thousand timesteps, and running much shorter simulations. In
fact, today, microsecond long simulations are typically one-off
demonstration calculations and not routine simulations [8]. As
compute capacity grows both larger models and longer
timescales can be explored, but still the data storage capacity
imposes practical limits if a conventional post simulation data
analysis approach is used. If streaming data analysis is used the
total volume of data produced is no longer a limiting factor,
instead the size of the final analysis results becomes the critical
factor. Dependent on the analysis techniques used these data
sets may be considerably smaller as they often provide
statistical measures and in addition may provide samples of



trajectories that are selected based on features of particular
interest rather than an interval sampling method.

Provenance is important in this context in two different ways.
The target simulations are to be performed on extreme scale
compute facilities. The facilities have a considerable number of
factors that may affect the performance of the code. These
factors include the hardware architecture, as well as various
software aspects such as the versions of compilers, libraries,
and the simulation source code. Even the particular workload
on the machine when a calculation is run may affect the
performance if different concurrent simulations cause
contention for resources. Hence understanding the performance
of the simulations requires storing a class of provenance data of
key aspects that may affect performance. This data is needed
both to understand the current run as well as a reference point
for future comparison. The other way in which provenance data
is important is that all computational campaigns involve a
significant number of simulations run with different
parameters, such as temperatures, pH, initial starting structures,
etc. In addition the streaming data analysis will reduce the total
amount of output data, for example, by selecting particular
molecular configurations. To facilitate the interpretation of the
results an additional set of provenance data is required that
records key parameters of how the data was generated initially,
and how the data was analyzed or reduced.

The simulations in this study use the AMBERG9S force field [9].
The NWChem data analysis approach is modified to
demonstrate streaming analysis methods. This was achieved by
having the simulation write the trajectory file (subroutine
SP_WTTRIJ) while, in another process, the analysis module
reads the file as new data becomes available, thus transforming
data analysis subroutine (ANA RDFRAM) into a data
producer/consumer model. The performance instrumentation
used in this case is the TAU source instrumentation - the only
TAU method providing an executable for trace and profile data
with readable symbol names in our case, extended to record
POSIX data transfer through the trajectory file. This way we
are able to demonstrate the performance implications of data
transfer between workflow components. In addition, MPI job
execution time was also recorded. While the approach used here
still passes all data from one workflow component to another
through a file, ongoing work will redirect this data stream
through ADIOS [10] using in memory data staging.

IV. ARCHITECTURE OVERVIEW

A. The Chimbuko system

We developed the Chimbuko system for streaming data
analysis composed of three major components: provenance data
collection, online anomaly detection, and provenance storage
(Fig.2). The provenance data collection is implemented by
using the Tuning Analysis Utilities (TAU) and Scalable
Observation System (SOSFlow)[3,5] and they dynamically
collect performance trace data for the workflow components
and communication layer (green lines). Online anomaly
detection parses the trace data collected by TAU and SOSFlow

Online
anomaly
To % detection
TAU and : Provenance
SOSFlow &====== e + Database
Chimbuko
Workflow ADIOS Workflow
Compone Compone
nt 1 ADIds nt 2
Data streaming/ workflow execution

Figure 2: Overview of Streaming Architecture

and then analyzes the performance data by using the LOF
algorithm (red lines). The input of the anomaly detection are
trace data and the output are indices that lead to the trace data
with anomalies. =~ ADIOS enables data staging between
components (blue lines). Provenance is saved in database for
the detected anomalies. We collect metadata related to the
environment, libraries, software stack, instrumentation
parameters, function calls, per node, per thread, and indices for
the anomalies.

Our current design (Fig. 2) is to fetch the provenance data from
TAU and SOSFlow directly and save to the provenance
database. Then the online anomaly detection sends signals to
prune the provenance data stored in the provenance database to
reduce volume. In this case, the online anomaly detection is
more self-contained and efficient as it only reads trace data and
dumps it whenever it does not need anymore. Also, the
provenance database could keep a relatively larger size and
longer time window of provenance data.

B. SOSFlow

To provide application performance measurement, we
integrated the TAU Performance System into each of the
applications in the workflow. TAU gathers performance data
from parallel applications through several methods, including
source instrumentation, binary instrumentation, profiling
interfaces, runtime callbacks, and periodic sampling. For
minimally intrusive experiments, TAU can simply be linked
into the application or preloaded into the execution
environment, providing access to a number of available runtime
measurements from libraries that provide tool interfaces, such
as MPI, ADIOS and OpenMP. With NWChemEx we use
source instrumentation. To measure the application software,
some selective instrumentation is used to capture main loops,
computation routines, or suspected performance bottlenecks.
TAU also captures a broad set of application metadata,
including hardware, operating system, and input parameters.
This metadata makes up part of the provenance available at



runtime.  In typical cases, the overhead from TAU
measurement is less than 1-2% because either manual or
automatic selective instrumentation helps eliminate the
measurement of frequent, short-duration functions. With the
addition of SOSflow, the overhead can increase slightly (in the
5-10% range) because every timer event measured with TAU is
also packed to be periodically and asynchronously pushed over
the SOS aggregation network. In this integration, a timer event
is either a timer start/stop or a send/receive event, and may
include other counter data such as bytes transferred or the
current heap size when the event happened.

Global, runtime access to application performance information
from multiple distributed applications requires an aggregation
infrastructure. TAU cannot provide this global view on its own,
and so it is integrated with the Scalable Observation System
(SOS) implementation called SOSflow. The SOSflow
topology is shown in Fig. 3. SOS is integrated into TAU using
a plugin design, and performance events are selectively
aggregated over the SOS aggregation tree. Analysis is executed
at runtime using an additional allocated node or on one of the
SOS aggregation nodes. The analysis extracts the streaming
data as an ADIOS data stream, which is used as input for the
Chimbuko anomaly detection. In this integration, the ADIOS
stream represents the data as a full event trace, optionally
reduced as necessary to control data volume.
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Figure 3: The SOSFlow topology

The SOS client library publishes to a data aggregation tree with
an optional persistent store at each stage. Analysis clients can
query the streaming or persistent store for online feedback
control.

C. Anomaly detection

In this paper we will focus on detecting point anomalies in
function execution times by using the Local Outlier Factor
(LOF) [11] algorithm, an unsupervised outlier detection
method. Our input data comes from NWChem trace files which
were produced by TAU + ADIOS. Using these traces we
identify the ten most frequently called functions, and extract
their entry time stamps and execution times. The resulting time-
series data are handled individually for each function; thus, it
has only two attributes, timestamp (x-axis) and execution time
(y-axis).

The LOF method computes an anomaly score called Local
Outlier Factor (LOF) for each data point. LOF measures density

deviation with respect to k-nearest neighbors. Data points
whose local density is low compared to the local densities of its
k-nearest neighbors are considered outliers. The score for a data
point p is computed by the following formula:

1 Ird,(0)
LOF,(p) = ; X lrdi(p)
0 EN ’

(pk)
where k is the number of nearest neighbors, Ny is the set of &
nearest neighbors of p, and /lrdk(o) is the local reachability
distance of a data point o.

V. RESULTS

The performance data from TAU + ADIOS currently consists
of an aggregated trace-stream which is stored in the ADIOS
specific .bp file format. Using the ADIOS python module, we
extract the necessary function execution time data from the .bp
files for analysis, which is done by the LOF method
implemented in python’s scikit-learn package.
We ran NWChem for approximately 200 seconds, then
examined the resulting trace to extract the timestamps and
execution times for 3 frequently called functions (Fig.4).

e Function 21:int_my isend(void *, int, MPI Datatype, int,

int, MPI_Comm, MPI_Request *) — (Fig. 4a)
e Function 23: void _make progress if needed(void) —
(Fig. 4b)

e Function 26: MPI_Iprobe() — (Fig. 4c)
Fig. 4 illustrates the results of the anomaly detection runs on
these time series, where each figure (4a, 4b, 4c) shows data
obtained for a specific function. The two most important
parameters of the LOF algorithm are the number of nearest
neighbors (k-nearest neighbor) and the contamination
parameter. If the number of nearest neighbors is large, relative
to the number of data points, then LOF detects global
anomalies; if the number of nearest neighbors is small then LOF
will detect local anomalies. This is why the anomalies
(represented by red dots in fig. 4) sometimes appear at the
bottom rather than the top, since the density of the neighbors at
the bottom is higher than on the top. The contamination
parameter determines what percentage of the data is considered
to be anomalous. We have kept the contamination parameter at
a fixed size and we will look at the top 10 anomalies i.e. the 10
most anomalous points. This approach helps application
developers focus on a relatively small number of events.
Table 1 shows the data for the most anomalous points of
Function 21 with k=50. It exemplifies the provenance
characteristics in its columns headings. When this data is
stored and discoverable through search or through the
visualization afforded by Chimbuko [12] scientists can easily
find details of functions that exhibit latencies, where they are
executed, and what the dependencies are. The benefits of
storing provenance data in this way is the ease of discovery, an
improvement over the raw NWChem trace files in .bp format
serving as input to anomaly detection. In these trace files,
function names, rank, and other counters are only referred to as
indexing positions, making it tedious to get relevant functions
names and other metadata.



Table 1: data for the most anomalous points of function 21

Anomaly MPI Execution
rank Program |rank |Thread |Entry timestamp time
1 0 0 0| 1534053599305340 8486
2 0 2 0| 1534053722620850 11859
3 0 3 0| 1534053806325120 40220
4 0 2 0| 1534053724677150 9749
5 0 0 0| 1534053724825120 10419
6 0 3 0| 1534053601208750 5917
7 0 3 0| 1534053631189130 4689
8 0 1 0| 1534053597337720 4691
9 0 1 0| 1534053722381030 6684
10 0 1 0| 1534053785874220 5490

VI. DISCUSSION AND FUTURE WORK

The LOF algorithm can identify both local and global
anomalies and has been successfully used in a wide range of
applications [13]. However, the method has a complexity of
O(n?), where 1 corresponds to the number of data points, and
requires that all the data are stored in file system before the
computations begin. Therefore, applying a vanilla version of
the LOF algorithm for outlier detection on data streams with a
high data rate is not feasible. In such cases we are investigating
other anomaly detection algorithms in future work, for instance
the memory efficient incremental local outlier (MiLOF)
detection algorithm designed for high-rate data streams [14].
The MiLOF algorithm does not require storing all the data and
works in a streaming fashion. Thus, it is a good alternative for
situations where computations need to be executed online and
the amount of data exceeds the storage capacity of the
underlying system.

In the Chimbuko architecture, there are two possible design
options for properly storing the prescriptive provenance data
into the provenance database. In our current option,
provenance data is collected by TAU/SosFlow and directly
saved to the provenance database. This streamlines anomaly
detection that operates only on trace data. Another design
option is that the online anomaly detection reads all the
provenance data from TAU and SOSFlow directly and
processes it internally. The provenance database stores the
output that contains the provenance data and the selected
performance trace window from the online anomaly detection.
Since the online anomaly detection might need to read
provenance data it does not need for calculations and store it in
a time window, the performance degrade could be a potential
issue. But one advantage of this design is that the overall
Chimbuko framework is simpler than the other design.

VII. CONCLUSION

In this paper we have presented a system for streaming analysis
of performance informed by detailed provenance about
function execution, location, and call stack that enables culling
performance data while retaining events of interest selected by
anomaly detection. Our plug-in architecture allows collecting
performance and provenance data from distributed processes
for workflow components executing on high performance
systems in a streaming fashion. We demonstrated that the
prescriptive provenance approach is useful for extracting
provenance related to job execution from computational
workflows.
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Figure 4c: Function 26

Figure 4: Anomalies detected for functions 21, 23, and 26, with k=50, 250, and 500 shown as red dots. Execution time for each function 21,
23, 26 is the y axis and entry time into the function the x axis. The data were scaled to have values between [0, 1] for the function execution
time.



