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Abstract— We extend our approach capturing and relating the 
provenance and performance metrics of computational workflows 
as a diagnostic tool for runtime optimization and placement.    One 
important challenge is the volume of extracted data, both for 
performance metrics and provenance, even when specifying filters 
and focusing on quantities of interest in a simulation.  We reduce 
this data by performing anomaly detection on streaming data and 
store provenance for the detected anomalies, an approach we call 
prescriptive provenance.  This paper discusses the Chimbuko 
architecture enabling the approach.  We present the use of a 
protein structure propagation workflow based on NWChemEx.  
We are testing algorithms for anomaly detection and present 
preliminary results here obtained with Local Outlier Factor.  
While scaling remains a challenge, these results show that our 
robust Chimbuko architecture for streaming analysis with 
prescriptive provenance is a promising approach. 

Keywords—computational workflows, prescriptive provenance, 
performance analysis, Chimbuko. 

I. INTRODUCTION 
The provenance of scientific workflows has traditionally been 
used to explicate scientific results - for instance, how a dataset 
was derived, what transformations have been applied to data, 
what dependencies exist in the workflow graph and its 
execution on distributed systems.  Provenance is used to 
provide information enabling quality control, re-run 
computational workflows, and reproduce results.   In this paper, 
we extend the use of provenance to encompass the performance 
of workflows on distributed systems.  Performance in the 

execution of scientific workflows on shared systems can 
fluctuate at runtime due to many factors, including system 
workload, placement of the execution, shared libraries, etc.  
When cloud resources are used to execute workflows, 
provenance can be useful to predict the minimum amount of 
resources needed given time or resource constraint executions.  
In High Performance Computing environments, such as the 
DOE Leadership Class Facilities, scientists spend much time 
debugging and optimizing their codes with the goal of 
achieving performance improvements.  These efforts are often 
impeded because, in these environments, many underlying 
libraries and variables that affect implementation change 
frequently.  In this context, extracting detailed provenance for 
the optimization of workflow performance becomes 
advantageous to highlight latencies, possible contention for 
resources in workflows, and other bottlenecks that can slow 
down or crash execution.  In previous work we have designed 
the Chimbuko system to capture, analyze and visualize the 
detailed provenance of a workflow and relate the extracted 
information to performance metrics [1, 2].  We have been using 
the Tuning and Analysis Utilities (TAU [3]) suite of tools 
modified to extract provenance variables of interest and extract 
the performance metrics for workflows, not just of single 
applications.   The TAU + Chimbuko system captures 
performance metrics and provenance characteristics in a single 
trace file.    

One important challenge encountered when extracting 
provenance and performance metrics for distributed workflow 
applications is the volume of extracted data [4].  Even when 
specifying filters and groups of variables - for instance, 
extracting only the execution events of MPI communication 
and suppressing performance extraction of all sub-routines, 
provenance and performance traces are very large and verbose.  
Given that simulation codes may run for hours on thousands of 
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cores or more, saving unreduced provenance and performance 
metrics for post-analysis is intractable.   We address this 
challenge by analyzing the performance trace at runtime to 
detect anomalies (the events of interest) using anomaly 
detection algorithms.  Once anomalies have been detected, we 
save all the provenance and a detailed trace for a time window 
of interest preceding the detected anomalies and make it 
available for future inspection (Fig. 1).  We call prescriptive 
provenance the provenance of these events selected for 
retention by anomaly detection and retained for a time window 
preceding the occurrence of the events.  As streaming 
performance trace data is produced during the course of a 
simulation, the amount of trace available for download and 
inspection preceding the interesting events is constrained by the 
memory resources of the system.   

In this paper, we discuss the architecture enabling the 
collection, aggregation and saving of provenance and 
performance data and the provenance window.  We present a 
use case of extracting performance metrics and provenance for 
an NWChem application.  Global runtime performance traces 
are provided by TAU integrated with the SOSFlow architecture 
that provides aggregation of the traces for distributed 
applications [5]. We are testing several algorithms to detect 
anomalous events in performance data and support data 
reduction.  We present preliminary results for one such 
algorithm.   

II. DEFINING PRESCRIPTIVE PROVENANCE 
Prescriptive Provenance includes the traditional lineage of an 
application session (code names, versions, static metadata) and 
the provenance of the execution trace of scientific workflows at 
runtime, including application behavior, software stack, 
runtime environment, and system information.  

We extract the following 
performance metrics for 
each workflow 
component:  start and 
end timestamp, call 
stack, memory 
allocation, I/O in 
network or disk, 
communication time and 
volume including 
between functions and 
nodes, and number of 
synchronization points.  
For each workflow, we 
extract the number of 
components, the amount 
of communication for 
each pair of components 
and size, the aggregated 

number of communication calls, and communication execution 
time.  More traditional static provenance information such as 
executable names and versions, github hash of the codes, 
standard libraries and units of measurement are also extracted.  

The time window to collect prescriptive provenance and the 
performance trace preceding the detected anomalies must be 
defined.  Based on the purpose for which provenance is 
collected, this window will vary.  For instance, in order to build 
training sets for anomaly detection algorithms, the entire 
provenance and the performance trace must be kept to train 
algorithms before they can be used with a streaming 
application.  For the test sets, when anomalies are detected, only 
the prescriptive provenance is stored.  For both training sets and 
in situ analytics, the rolling window will be algorithm 
dependent and can be specified for a particular algorithm.  The 
window can be defined by time, steps in a simulation, or any 
other variable of interest to the event detection (a feature in ML 
parlance).  If collecting prescriptive provenance is more generic 
than event detection and includes the goal of testing various 
event detection algorithms for forensic analysis, the window 
will need to be larger in order to accommodate varying factors.  
In addition, the amount of prescriptive provenance stored and 
the size of the rolling window will be bound by the available 
resources for computation and memory.  

III.  NWCHEM USE CASE 
We are using a protein structure propagation workflow based 
on classical Molecular Dynamics simulations with the 
NWChem application [6] which is the precursor to the current 
NWChemEx development.  The NWChemEx project targets 
two different science challenges, one in catalysis, and one in 
biology. The biology science challenge considers the function 
and regulation of a transmembrane protein that acts as a calcium 
channel. The simulations need to include the protein structure 
itself but also the membrane, and the cell plasma and the 
aqueous environment outside the cell. To provide a realistic 
description of this environment it is expected that about one 
million atoms should be included in the model. In addition the 
regulation of the protein activity involves conformational 
changes to the channel. For one of the proteins of interest a 
change of protonation of one of the residues in the channels 
drives the protein to open or close the channel [7]. These 
conformational changes may take as long as a microsecond to 
complete. Given that the typical timesteps in these kinds of 
simulations are on the order of a femtosecond, accurate 
simulations may require on the order of a billion timesteps. This 
means, in principle, these calculations produce on the order of 
petabytes of data. Currently this data is reduced largely by using 
smaller models, storing the structure only every hundred or 
thousand timesteps, and running much shorter simulations. In 
fact, today, microsecond long simulations are typically one-off 
demonstration calculations and not routine simulations [8]. As 
compute capacity grows both larger models and longer 
timescales can be explored, but still the data storage capacity 
imposes practical limits if a conventional post simulation data 
analysis approach is used. If streaming data analysis is used the 
total volume of data produced is no longer a limiting factor, 
instead the size of the final analysis results becomes the critical 
factor. Dependent on the analysis techniques used these data 
sets may be considerably smaller as they often provide 
statistical measures and in addition may provide samples of 

Figure 1:  Schematic of data reduction 
approach - the events of interest 

(outliers) are saved, the non-events are 
discarded.  The x axis are start 
timestamps of code functions; y 

represents execution time.  



trajectories that are selected based on features of particular 
interest rather than an interval sampling method. 

Provenance is important in this context in two different ways. 
The target simulations are to be performed on extreme scale 
compute facilities. The facilities have a considerable number of 
factors that may affect the performance of the code. These 
factors include the hardware architecture, as well as various 
software aspects such as the versions of compilers, libraries, 
and the simulation source code. Even the particular workload 
on the machine when a calculation is run may affect the 
performance if different concurrent simulations cause 
contention for resources. Hence understanding the performance 
of the simulations requires storing a class of provenance data of 
key aspects that may affect performance. This data is needed 
both to understand the current run as well as a reference point 
for future comparison. The other way in which provenance data 
is important is that all computational campaigns involve a 
significant number of simulations run with different 
parameters, such as temperatures, pH, initial starting structures, 
etc. In addition the streaming data analysis will reduce the total 
amount of output data, for example, by selecting particular 
molecular configurations. To facilitate the interpretation of the 
results an additional set of provenance data is required that 
records key parameters of how the data was generated initially, 
and how the data was analyzed or reduced. 

The simulations in this study use the AMBER95 force field [9]. 
The NWChem data analysis approach is modified to 
demonstrate streaming analysis methods. This was achieved by 
having the simulation write the trajectory file (subroutine 
SP_WTTRJ) while, in another process, the analysis module 
reads the file as new data becomes available, thus transforming 
data analysis subroutine (ANA_RDFRAM) into a data 
producer/consumer model. The performance instrumentation 
used in this case is the TAU source instrumentation - the only 
TAU method providing an executable for trace and profile data 
with readable symbol names in our case, extended to record 
POSIX data transfer through the trajectory file.  This way we 
are able to demonstrate the performance implications of data 
transfer between workflow components.  In addition,  MPI job 
execution time was also recorded. While the approach used here 
still passes all data from one workflow component to another 
through a file, ongoing work will redirect this data stream 
through ADIOS [10] using in memory data staging.  

IV. ARCHITECTURE OVERVIEW 

A. The Chimbuko system 
We developed the Chimbuko system for streaming data 
analysis composed of three major components: provenance data 
collection, online anomaly detection, and provenance storage 
(Fig.2).  The provenance data collection is implemented by 
using the Tuning Analysis Utilities (TAU) and Scalable 
Observation System (SOSFlow)[3,5] and they dynamically 
collect performance trace data for the workflow components 
and communication layer (green lines). Online anomaly 
detection parses the trace data collected by TAU and SOSFlow 

and then analyzes the performance data by using the LOF 
algorithm (red lines).  The input of the anomaly detection are 
trace data and the output are indices that lead to the trace data 
with anomalies.  ADIOS enables data staging between 
components (blue lines).  Provenance is saved in database for 
the detected anomalies.  We collect metadata related to the 
environment, libraries, software stack, instrumentation 
parameters, function calls, per node, per thread, and indices for 
the anomalies. 
Our current design (Fig. 2) is to fetch the provenance data from 
TAU and SOSFlow directly and save to the provenance 
database. Then the online anomaly detection sends signals to 
prune the provenance data stored in the provenance database to 
reduce volume. In this case, the online anomaly detection is 
more self-contained and efficient as it only reads trace data and 
dumps it whenever it does not need anymore. Also, the 
provenance database could keep a relatively larger size and 
longer time window of provenance data.  

B. SOSFlow 
To provide application performance measurement, we 
integrated the TAU Performance System into each of the 
applications in the workflow. TAU gathers performance data 
from parallel applications through several methods, including 
source instrumentation, binary instrumentation, profiling 
interfaces, runtime callbacks, and periodic sampling.  For 
minimally intrusive experiments, TAU can simply be linked 
into the application or preloaded into the execution 
environment, providing access to a number of available runtime 
measurements from libraries that provide tool interfaces, such 
as MPI, ADIOS and OpenMP.  With NWChemEx we use 
source instrumentation.  To measure the application software, 
some selective instrumentation is used to capture main loops, 
computation routines, or suspected performance bottlenecks.  
TAU also captures a broad set of application metadata, 
including hardware, operating system, and input parameters.  
This metadata makes up part of the provenance available at 

Figure 2: Overview of Streaming Architecture 



runtime.  In typical cases, the overhead from TAU 
measurement is less than 1-2% because either manual or 
automatic selective instrumentation helps eliminate the 
measurement of frequent, short-duration functions.  With the 
addition of SOSflow, the overhead can increase slightly (in the 
5-10% range) because every timer event measured with TAU is 
also packed to be periodically and asynchronously pushed over 
the SOS aggregation network.  In this integration, a timer event 
is either a timer start/stop or a send/receive event, and may 
include other counter data such as bytes transferred or the 
current heap size when the event happened. 
Global, runtime access to application performance information 
from multiple distributed applications requires an aggregation 
infrastructure.  TAU cannot provide this global view on its own, 
and so it is integrated with the Scalable Observation System 
(SOS) implementation called SOSflow.  The SOSflow 
topology is shown in Fig. 3.  SOS is integrated into TAU using 
a plugin design, and performance events are selectively 
aggregated over the SOS aggregation tree.  Analysis is executed 
at runtime using an additional allocated node or on one of the 
SOS aggregation nodes.  The analysis extracts the streaming 
data as an ADIOS data stream, which is used as input for the 
Chimbuko anomaly detection.  In this integration, the ADIOS 
stream represents the data as a full event trace, optionally 
reduced as necessary to control data volume. 
 

The SOS client library publishes to a data aggregation tree with 
an optional persistent store at each stage.  Analysis clients can 
query the streaming or persistent store for online feedback 
control. 

C. Anomaly detection 
In this paper we will focus on detecting point anomalies in 
function execution times by using the Local Outlier Factor 
(LOF) [11] algorithm, an unsupervised outlier detection 
method.  Our input data comes from NWChem trace files which 
were produced by TAU + ADIOS. Using these traces we 
identify the ten most frequently called functions, and extract 
their entry time stamps and execution times. The resulting time-
series data are handled individually for each function; thus, it 
has only two attributes, timestamp (x-axis) and execution time 
(y-axis).  
The LOF method computes an anomaly score called Local 
Outlier Factor (LOF) for each data point. LOF measures density 

deviation with respect to k-nearest neighbors. Data points 
whose local density is low compared to the local densities of its 
k-nearest neighbors are considered outliers. The score for a data 
point p is computed by the following formula: 

 
where k is the number of nearest neighbors, N(p,k) is the set of k 
nearest neighbors of p, and lrdk(o) is the local reachability 
distance of a data point o. 

V. RESULTS 
The performance data from TAU + ADIOS currently consists 
of an aggregated trace-stream which is stored in the ADIOS 
specific .bp file format. Using the ADIOS python module, we 
extract the necessary function execution time data from the .bp 
files for analysis, which is done by the LOF method 
implemented in python’s scikit-learn package.  
We ran NWChem for approximately 200 seconds, then 
examined the resulting trace to extract the timestamps and 
execution times for 3 frequently called functions (Fig.4).   
• Function 21: int _my_isend(void *, int, MPI_Datatype, int, 

int, MPI_Comm, MPI_Request *) – (Fig. 4a) 
• Function 23: void _make_progress_if_needed(void) – 

(Fig. 4b) 
• Function 26: MPI_Iprobe() – (Fig. 4c) 

Fig. 4 illustrates the results of the anomaly detection runs on 
these time series, where each figure (4a, 4b, 4c) shows data 
obtained for a specific function.  The two most important 
parameters of the LOF algorithm are the number of nearest 
neighbors (k-nearest neighbor) and the contamination 
parameter. If the number of nearest neighbors is large, relative 
to the number of data points, then LOF detects global 
anomalies; if the number of nearest neighbors is small then LOF 
will detect local anomalies. This is why the anomalies 
(represented by red dots in fig. 4) sometimes appear at the 
bottom rather than the top, since the density of the neighbors at 
the bottom is higher than on the top.  The contamination 
parameter determines what percentage of the data is considered 
to be anomalous. We have kept the contamination parameter at 
a fixed size and we will look at the top 10 anomalies i.e. the 10 
most anomalous points. This approach helps application 
developers focus on a relatively small number of events.   
Table 1 shows the data for the most anomalous points of 
Function 21 with k=50.  It exemplifies the provenance 
characteristics in its columns headings.   When this data is 
stored and discoverable through search or through the 
visualization afforded by Chimbuko [12] scientists can easily 
find details of functions that exhibit latencies, where they are 
executed, and what the dependencies are.  The benefits of 
storing provenance data in this way is the ease of discovery, an 
improvement over the raw NWChem trace files in .bp format 
serving as input to anomaly detection.  In these trace files, 
function names, rank, and other counters are only referred to as 
indexing positions, making it tedious to get relevant functions 
names and other metadata. 
 

Figure 3: The SOSFlow topology 



 
Table 1: data for the most anomalous points of function 21 
Anomaly 
rank Program 

MPI 
rank Thread Entry timestamp 

Execution 
time 

1 0 0 0 1534053599305340 8486 

2 0 2 0 1534053722620850 11859 

3 0 3 0 1534053806325120 40220 

4 0 2 0 1534053724677150 9749 

5 0 0 0 1534053724825120 10419 

6 0 3 0 1534053601208750 5917 

7 0 3 0 1534053631189130 4689 

8 0 1 0 1534053597337720 4691 

9 0 1 0 1534053722381030 6684 

10 0 1 0 1534053785874220 5490 

 

VI. DISCUSSION AND FUTURE WORK 
The LOF algorithm can identify both local and global 
anomalies and has been successfully used in a wide range of 
applications [13]. However, the method has a complexity of 
O(n2), where n corresponds to the number of data points, and 
requires that all the data are stored in file system before the 
computations begin. Therefore, applying a vanilla version of 
the LOF algorithm for outlier detection on data streams with a 
high data rate is not feasible. In such cases we are investigating 
other anomaly detection algorithms in future work, for instance 
the memory efficient incremental local outlier (MiLOF) 
detection algorithm designed for high-rate data streams [14]. 
The MiLOF algorithm does not require storing all the data and 
works in a streaming fashion. Thus, it is a good alternative for 
situations where computations need to be executed online and 
the amount of data exceeds the storage capacity of the 
underlying system. 
In the Chimbuko architecture, there are two possible design 
options for properly storing the prescriptive provenance data 
into the provenance database.  In our current option, 
provenance data is collected by TAU/SosFlow and directly 
saved to the provenance database.  This streamlines anomaly 
detection that operates only on trace data.  Another design 
option is that the online anomaly detection reads all the 
provenance data from TAU and SOSFlow directly and 
processes it internally. The provenance database stores the 
output that contains the provenance data and the selected 
performance trace window from the online anomaly detection. 
Since the online anomaly detection might need to read 
provenance data it does not need for calculations and store it in 
a time window, the performance degrade could be a potential 
issue. But one advantage of this design is that the overall 
Chimbuko framework is simpler than the other design. 
 

VII. CONCLUSION 
In this paper we have presented a system for streaming analysis 
of performance informed by detailed provenance about 
function execution, location, and call stack that enables culling 
performance data while retaining events of interest selected by 
anomaly detection. Our plug-in architecture allows collecting 
performance and provenance data from distributed processes 
for workflow components executing on high performance 
systems in a streaming fashion.   We demonstrated that the 
prescriptive provenance approach is useful for extracting 
provenance related to job execution from computational 
workflows. 
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Figure 4: Anomalies detected for functions 21, 23, and 26, with k=50, 250, and 500 shown as red dots.   Execution time for each function 21, 
23, 26 is the y axis and entry time into the function the x axis.  The data were scaled to have values between [0,1] for the function execution 

time. 


