

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

¹ Mechanochemical Nonhydrolytic Sol–Gel-Strategy for the Production of Mesoporous Multimetallic Oxides

³ Zihao Zhang,^{†,‡,§} Shize Yang,[†] Xiaobing Hu,^{#,∇} Haidi Xu,[§] Honggen Peng,[‡] Miaomiao Liu,[§]

⁴ Bishnu Prasad Thapaliya,[§] Kecheng Jie,[§] Jiahua Zhao,^{||} Jixing Liu,[§] Hao Chen,[†] Yan Leng,[§]

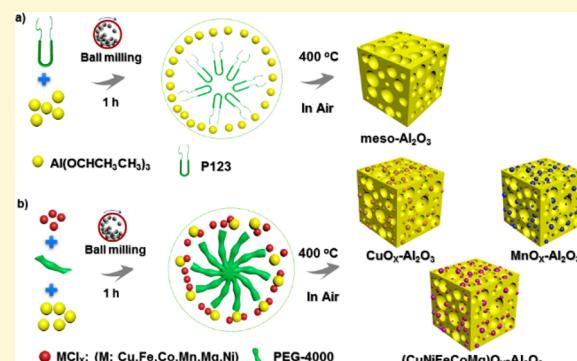
⁵ Xiuyang Lu,[†] Jie Fu,^{*,†} Pengfei Zhang,^{*,||} and Sheng Dai^{*,‡,§}

⁶ [†]Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China

⁸ Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States

⁹ Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37916, United States

¹⁰ School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China


¹¹ Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States

¹² Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States

¹³ [∇]The NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States

¹⁴ Supporting Information

ABSTRACT: Mesoporous metal oxides with wide pore size, high surface area, and uniform porous structures have demonstrated excellent advantages in various fields. However, the state-of-art synthesis approaches are dominated by wet chemistry, accompanied by use of excessive solvent, and the requirement of time-consuming drying process. Herein, we report a mechanochemical solid-state route to synthesize mesoporous Al_2O_3 (meso- Al_2O_3) via aluminum isopropoxide-copolymers assembly. The obtained meso- Al_2O_3 shows a record high surface area ($\sim 644 \text{ m}^2 \text{ g}^{-1}$) and narrow pore size distribution (centered at $\sim 5 \text{ nm}$). Moreover, a mechanochemical nonhydrolytic sol–gel strategy is introduced to fabricate mesoporous transition metal (Cu, Co, Mn, Fe, Mg, Ni)-aluminum binary oxide by using anhydrous metal chlorides and aluminum isopropoxide interplay. More importantly, four or five metals-aluminum oxide complexes with abundant mesopores and single cubic crystalline phase known as high-entropy ceramics are produced. To the best of our knowledge, mesoporous high-entropy metal oxides have not been prepared before, because the high crystallization temperature would make mesopores collapse. Additionally, this high-entropy property endows $(\text{CuNiFeCoMg})\text{O}_x\text{-Al}_2\text{O}_3$ with superior SO_2 -resisting performance (1000 ppm of SO_2 in N_2 at 280°C) in the catalytic oxidation of CO compared to single $\text{CuO-Al}_2\text{O}_3$.

1. INTRODUCTION

Mesoporous metal oxides with wide pore size, high surface area, uniform pore size distribution, as well as a variety of structures and compositions endow them particularly attractive for applications in catalysis, adsorption, battery technology, sensing, and so on.^{1–6} Template-assisted processes via either soft- or hard templates were usually used for the synthesis of mesoporous metal oxides.^{7–12} In general, the hard-templating technique relied on mesoporous silica or carbon aerogel as the hard templates, which inevitably required additional steps and costs.^{9,13–21} In comparison, organic–inorganic assembly routes, using block copolymers or surfactants as soft templates have been developed as a more straightforward method.^{22–26} It is undeniably that the solvent evaporation-induced self-assembly method has been successfully applied into the synthesis of many

mesoporous metal oxides.^{27–29} However, several issues seem to remain in this wet soft-templating process, including: (1) excessive organic solvents are used; (2) it requires the metal precursors that have to be dissolved in the solvents, which limits the applications of many insoluble metal precursors;^{3,30} and (3) the slow solvent evaporation is a time-consuming step.³¹

To resolve these disadvantages, solid-state synthesis, an old method in material processing, has been revisited.^{32–35} Several porous materials, such as zeolite, metal–organic frameworks, covalent–organic frameworks, ordered mesoporous polymers, and mesoporous carbons have been already synthesized via

Received: March 29, 2019

Revised: June 30, 2019

Published: July 1, 2019

mechanical processes.^{36–38} Although a solvent-free assembly method has also been introduced for the construction of mesoporous metal oxide (TiO_2), this route needs HCl as the solvent and aged at 140 °C for 24 h before calcination, making it not a “true” solvent-free system.³⁷ As a result, the synthesis of mesoporous metal oxides via mechanochemical solid-state method, especially for metal oxides hybrids, is highly welcome. Moreover, alumina has been widely used as an important carrier in catalysis, and alumina-based mixed mesoporous metal oxides also display extensive application prospect.^{39–43} Therefore, the one-pot preparation of mesoporous alumina-supported metal oxides via mechanochemical solid-state method seems like a more efficient and straightforward pathway toward industrial catalysis.

Herein, we demonstrate the facile, rapid, and solid-state synthesis of mesoporous aluminum oxide (meso- Al_2O_3) by a mechanochemical assembly between aluminum isopropoxide and commercial polymers (e.g., PEO-PPO-PEO, P123; polyethylene glycol, PEO, PEG). Moreover, binary Al-based oxides (Cu, Co, Mn et al.) with abundant mesopores can be easily constructed by mechanochemical nonhydrolytic sol–gel processes (NHSG, metal chlorides and aluminum isopropoxide interplay).^{44–46} More interestingly, four or five transition metal species-aluminum oxide hybrids—the so-called high-entropy oxides—with single cubic crystalline phase and rich mesoporous structure were synthesized via this mechanochemical NHSG method. To our surprise, the high-entropy feature endows $(CuNiFeCoMg)O_x-Al_2O_3$ with superior SO_2 -resisting performance (1000 ppm of SO_2 in N_2 at 280 °C) in the catalytic oxidation of CO compared to $CuO-Al_2O_3$.

2. EXPERIMENTAL SECTION

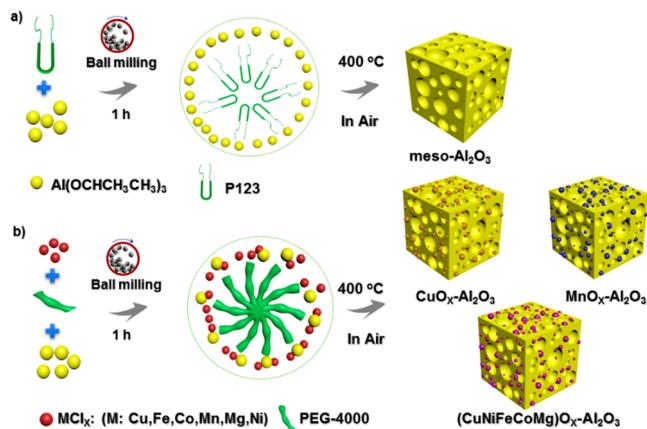
2.1. Catalyst Synthesis. **2.1.1. meso- Al_2O_3 .** One gram of metal precursor (aluminum isopropoxide) and 0.2~0.4 g soft templates (Pluronic P123:5.800 g mol⁻¹; PEG: 4000 g mol⁻¹, Pluronic F127 (F127), and cetyltrimethylammonium bromide (CTAB)) were added in a 9.5 mL screw-capped iron reactor with two big (diameter: 1.2 cm) and three small (diameter: 0.5 cm) iron steel ball bearings. The sealed reactor was placed in a high-speed vibrating ball miller (Retsch MM400), and the mixtures were ball milled for 60 min at a vibrational frequency of 30 Hz. The resulting samples were washed using ethanol and dried at 40 °C under vacuum conditions, followed by calcination at 400 °C with a heating rate of 2 °C min⁻¹.

2.1.2. Mesoporous Binary Metal Oxides (Cu, Co, and Mn et al.). Aluminum isopropoxide (2.67 mmol) and a transition metal chloride (4 mmol) as well as 0.4 g PEG were added in a 9.5 mL screw-capped iron reactor with two big (diameter: 1.2 cm) and three small (diameter: 0.5 cm) iron steel ball bearings. After ball milling for 60 min, the post-treatment procedure is the same as that with the synthesis of meso- Al_2O_3 . All catalysts were washed using water for three times before use.

2.1.3. $(CuNiFeCo)_x-Al_2O_3$. Aluminum isopropoxide (2.67 mmol), copper chloride (1 mmol), nickel chloride (1 mmol), cobalt chloride (1 mmol), and ferrous chloride (1 mmol), as well as 0.4 g PEG are added in a 9.5 mL screw-capped iron reactor with two big (diameter: 1.2 cm) and three small (diameter: 0.5 cm) iron steel ball bearings. After ball milling for 60 min, the post-treatment procedure is the same as that with the synthesis of meso- Al_2O_3 .

2.1.4. $(CuNiFeCoMg)_x-Al_2O_3$. Aluminum isopropoxide (3.33 mmol), copper chloride (1 mmol), nickel chloride (1 mmol), cobalt chloride (1 mmol), ferrous chloride (1 mmol), and magnesium chloride (1 mmol), as well as 0.4 g PEG are added in a 9.5 mL screw-capped iron reactor with two big (diameter: 1.2 cm) and three small (diameter: 0.5 cm) iron steel ball bearings. After ball milling for 60 min, the post-treatment procedure is same with the synthesis of meso- Al_2O_3 .

2.2. Characterizations. X-ray diffraction (XRD) was collected on a PANalytical Empyrean diffractometer operated at 45 kV and 40 mA


(scanning step: 0.02° per step). N_2 adsorption–desorption isotherms were analyzed on a TriStar 3000 volumetric adsorption analyzer manufactured and by Micromeritics Instrument Corp. A classical Barrett–Joyner–Halenda (BJH) method was employed to determine the pore size distribution by using adsorption branch of isotherms. Prior to analysis, all samples were activated at 160 °C for 8 h. Scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) mapping results were recorded using a Zeiss EVO-MA15 scanning electron microscope with a Bruker XFlash 6130 detector. Scanning electron microscopy (SEM) images were recorded using a Zeiss AURIGA. Scanning transmission electron microscopy (STEM) was performed on a Nion microscope operated at 200 kV and ARM 200CF equipped with a probe corrector. The images are recorded using high angle annular dark field (HAADF) and bright field (BF) imaging. X-ray photoelectron spectroscopy (XPS) was performed by AXIS Ultra DLD spectrometer (Kratos, Japan). The obtained data were calibrated by C 1s standard peak and analyzed by Casa XPS software. Temperature-programmed desorption (TPD) of CO was recorded using FineSorb-3010 from Zhejiang Finetec Instruments Co., Ltd. with a thermal conductivity detector (TCD). Prior to characterization, fresh and spent catalysts were preheated at 120 °C under argon atmosphere. Elemental analysis of the samples was done by inductively coupled plasma atomic emission spectroscopy (ICP-AES) using the Optima 2100 DV spectrometer (PerkinElmer Corporation). The actual metal ratios are summarized in Table S1 of the Supporting Information (SI). Fourier Transform infrared spectroscopy (FTIR) spectra were collected on a Bio-Rad FTIR spectrometer (Excalibur series).

2.3. Experimental Procedures. CO oxidation experiments were carried out in a fixed bed reactor (straight quartz tube with 4 mm inner diameter) at atmospheric pressure. For the measurement of CO light-off curves showing CO conversion as a function of reaction temperature, 20 mg of catalyst supported by quartz wool was loaded in the reactor. The feed gas of 1% CO balanced with dry air (<4 ppm water) passed through the catalyst bed at a flow rate of 10 mL/min corresponding to a gas hourly space velocity (GHSV) of 30 000 mL/(h g cat). The concentrations of CO and CO_2 in the reactor were analyzed by a Buck Scientific 910 gas chromatograph equipped with a dual molecular sieve/porous polymer column (Alltech CTR1) and a thermal conductivity detector. CO conversion is calculated as the peak areas of CO of consumption divided by that of CO before the reaction.

3. RESULTS AND DISCUSSION

Scheme 1 summarizes a mechanochemical route for the synthesis of meso- Al_2O_3 and related metal oxide hybrids using aluminum isopropoxide and anhydrous metal chlorides as the precursors, and P123 or PEG as the soft template. An efficient assembly between aluminum isopropoxide and P123 micelles is realized by mechanically grinding the mixture in a vibrating ball

Scheme 1. Synthesis of meso- Al_2O_3 , Mesoporous Mixed Metal Oxides Using the Mechanochemical NHSG Method

169 miller for 60 min (much shorter than the traditional solvent
 170 evaporation induced assembly process, 1–3 days in most
 171 cases).^{23,47} It has been reported that the condensation between
 172 chloride and alkoxide by mixing the chloride precursors (MCl_x)
 173 and oxygen donor ($Al(OR)_3$) to produce the xerogels is
 174 considered to be an NHSG process.⁴⁸ The resulting xerogels are
 175 then washed and dried under vacuum and finally calcined in air
 176 to achieve the corresponding metal oxides. In this work, the
 177 mechanochemical NHSG process between metal chlorides and
 178 aluminum isopropoxide in the solid-state via complex
 179 mechanism is restricted to the periphery of micelles. The
 180 obtained xerogels are performed by XRD (Figure S1) and then
 181 calcinated at 400 °C in air to remove template. By combining
 182 with aluminum isopropoxide-copolymers cross-linking and
 183 NHSG process in one-step, the mixed oxides with uniform
 184 mesopores can be prepared.

185 The textural properties of the as-synthesized Al_2O_3 without
 186 and with different surfactants are summarized (Table 1) by N₂

Table 1. Summary of Pore Parameter for Different Metal Oxides Calculated Using N₂ Adsorption–Desorption Isotherms at 77 K

samples	S_{BET} ($m^2 g^{-1}$)	pore volume ($cm^3 g^{-1}$)	average pore size (nm)
Al_2O_3	246	0.32	
meso- Al_2O_3 (0.4 g P123)	644	0.75	4.2
meso- Al_2O_3 (0.2 g PEG)	257	0.16	2.3
meso- Al_2O_3 (0.2 g CTAB)	380	0.26	
meso- Al_2O_3 (0.2 g F127)	329	0.24	
meso- Al_2O_3 (0.2 g P123)	415	0.34	2.6
$CuO-Al_2O_3$	115	0.11	2.8
$Mn_3O_4-Al_2O_3$	143	0.27	4.9
$Co_3O_4-Al_2O_3$	133	0.14	7.2
$Fe_2O_3-Al_2O_3$	178	0.24	5.8
$NiO-Al_2O_3$	168	0.15	3.3
$MgO-Al_2O_3$	176	0.18	6.3
($CuNiFeCo$) $O_x-Al_2O_3$	129	0.13	3.9
($CuNiFeCoMg$) $O_x-Al_2O_3$	198	0.24	4.8

^aSpecific surface area calculated using the BET equation. ^bSingle point adsorption total pore volume of pores. ^cAverage pore diameter from the distribution maxima by resolving adsorption branch with BJH model.

limitation and accuracy of BJH model used. The transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) image of meso- Al_2O_3 with 0.4 g P123 as the template also reveal the existence of a sponge-like nanoarchitecture with a large number of apparent mesopores (Figure 2a,b). A portion of mesopores is marked by yellow circles from STEM-EDS image in Figure S4. The wide-angle X-ray diffraction (XRD) result of meso- Al_2O_3 calcined at 400 °C with different templates shows an amorphous structure (Figures 3a and S5).

Compared with monometallic oxide, binary metal oxides tend to possess wider applications in catalysis. The traditional NHSG method for the production of metal oxides often takes place in organic solvents, and the corresponding pore size distribution is much wider.^{46,48} By the mechanochemical NHSG route in the solid-state, mesoporous binary metal oxides ($CuO-Al_2O_3$, $Mn_3O_4-Al_2O_3$ and $Co_3O_4-Al_2O_3$) with uniform pore size distribution could be successfully synthesized with optimized PEG as the optimized template (Figures 1c–h and S6). In comparison to P123 and F127, PEG is a safe, inexpensive and renewable material. However, PEG has been used as soft templates with only limited success in directing mesopores until now. XRD results reveal the clear crystalline structures of CuO [JCPDS 44–0706], Mn_3O_4 [JCPDS 18–0803], and Co_3O_4 [JCPDS 43–1003] in $CuO-Al_2O_3$, $Mn_3O_4-Al_2O_3$, and $Co_3O_4-Al_2O_3$ samples, respectively (Figure 3a), and the corresponding crystalline sizes calculated by the Scherrer equation are 15.9, 13.4, and 11.8 nm, respectively. Additionally, no diffraction peaks associated with Al_2O_3 can be found in three binary metal oxides. Moreover, the diffraction peaks corresponding to NiO , MgO , and Fe_2O_3 crystalline phase, respectively, were discovered in the $NiO-Al_2O_3$, $MgO-Al_2O_3$, and $Fe_2O_3-Al_2O_3$ samples, respectively, as shown in XRD results (Figure S7).

The surface area and pore structure of $CuO-Al_2O_3$, $Mn_3O_4-Al_2O_3$, and $Co_3O_4-Al_2O_3$ were examined with N₂ adsorption–desorption isotherm measurements (Figure 1c,e,g). All samples show representative type-IV curves with clear capillary condensation steps between the relative pressure (P/P_0) of 0.4–0.8, underscoring the presence of rich mesopores. The specific surface areas of $CuO-Al_2O_3$, $Mn_3O_4-Al_2O_3$, and $Co_3O_4-Al_2O_3$ are 115, 144, and 133 $m^2 g^{-1}$, respectively (Table 1). More importantly, the pore size distributions by resolving the adsorption branch of N₂ isotherms with Barrett–Joyner–Halenda (BJH) method centered at 4, 6, and 7 nm for $CuO-Al_2O_3$, $Mn_3O_4-Al_2O_3$, and $Co_3O_4-Al_2O_3$, respectively (Figure 1d,f,h).⁴⁹ Moreover, N₂ adsorption and pore size distribution results of $NiO-Al_2O_3$, $MgO-Al_2O_3$, and $Fe_2O_3-Al_2O_3$ samples also reveal the existence of abundant mesoporous structure (Table 1; Figure S8). These obtained abundant and uniform mesopores in binary metal oxides should be ascribed to solid-state self-assembly behavior of PEG micelles and different metal ions, confining NHSG process within the periphery of micelles. The results indicate that the mechanochemical NHSG route has the traits of universality for the preparation of a variety of binary metal oxides with uniform mesopore distributions. Additionally, the obtained surface area for both meso- Al_2O_3 and binary metal oxides are comparable to the previously reported mesoporous alumina and metal containing mesoporous alumina synthesized by conventional wet chemistry.^{24,50}

$Mn_3O_4-Al_2O_3$ is then chosen as a representative to investigate the pore structure of binary metal oxides in a more tangible manner. Wormhole architectures with rich mesopores

adsorption–desorption isotherms at 77 K in Figure S2. The blank Al_2O_3 sample without templates offers a low surface area ($246 m^2 g^{-1}$) with a broad pore size distribution in Figure S2a,c. In comparison, a meso- Al_2O_3 sample with 0.2 g P123 as the template gives a type-IV isotherm with a H3-type hysteresis loop, resulting in both high surface area ($415 m^2 g^{-1}$) and narrow pore size distribution centered at ~3 nm (Figure S2). For meso- Al_2O_3 , a higher calcination temperature at 800 °C will lead to the collapse of a portion of the mesopores, as seen in Figure S3. Additionally, PEG, F127, and CTAB as templates also contribute to the formation of mesopores smaller than 10 nm (Table 1). The weight ratio of P123/Al precursor exhibits significant influence for the formation of mesopores. The N₂ adsorption–desorption isotherms and pore size distribution results of meso- Al_2O_3 synthesized with 0.4 g P123 displays a higher surface area of $644 m^2 g^{-1}$ and narrower pore size distribution of ~5 nm (Figure 1a,b). It is noteworthy that the difference between the average pore size from Table 1 and the pore size distribution from Figure 1 should be ascribed to the

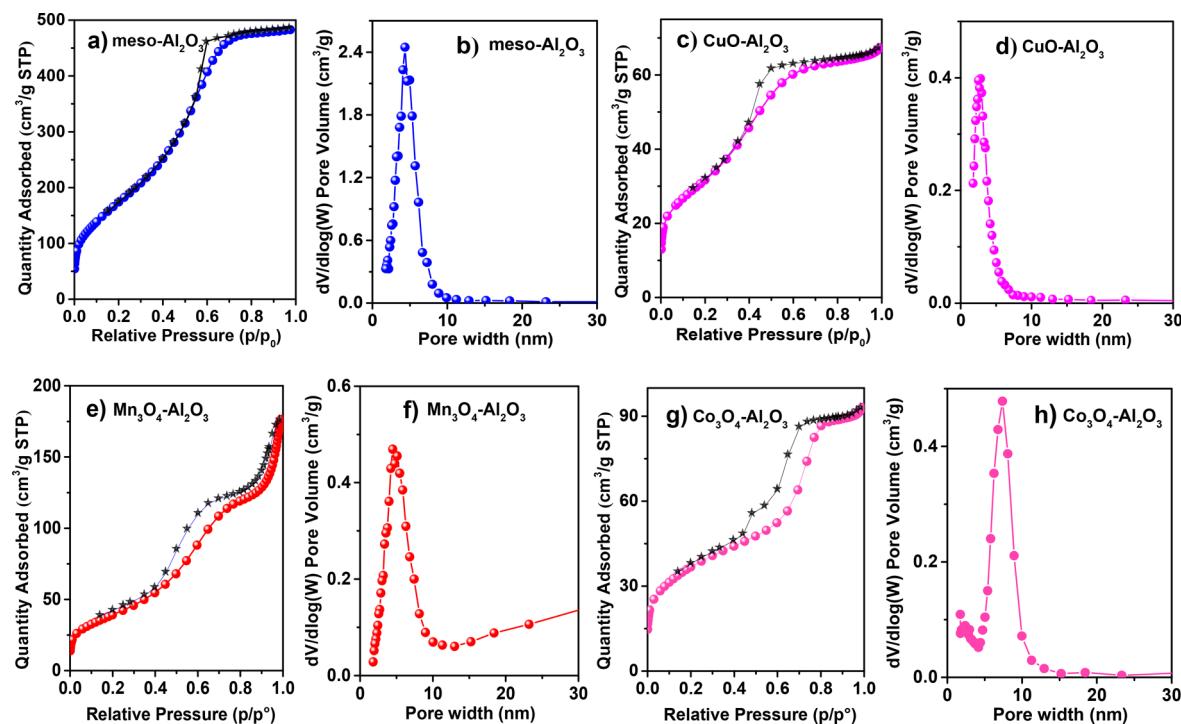
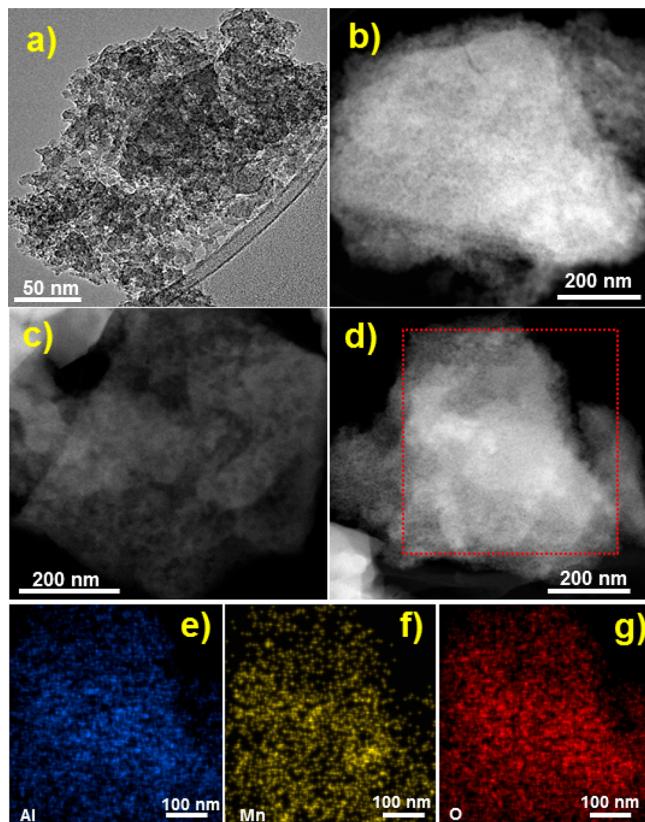
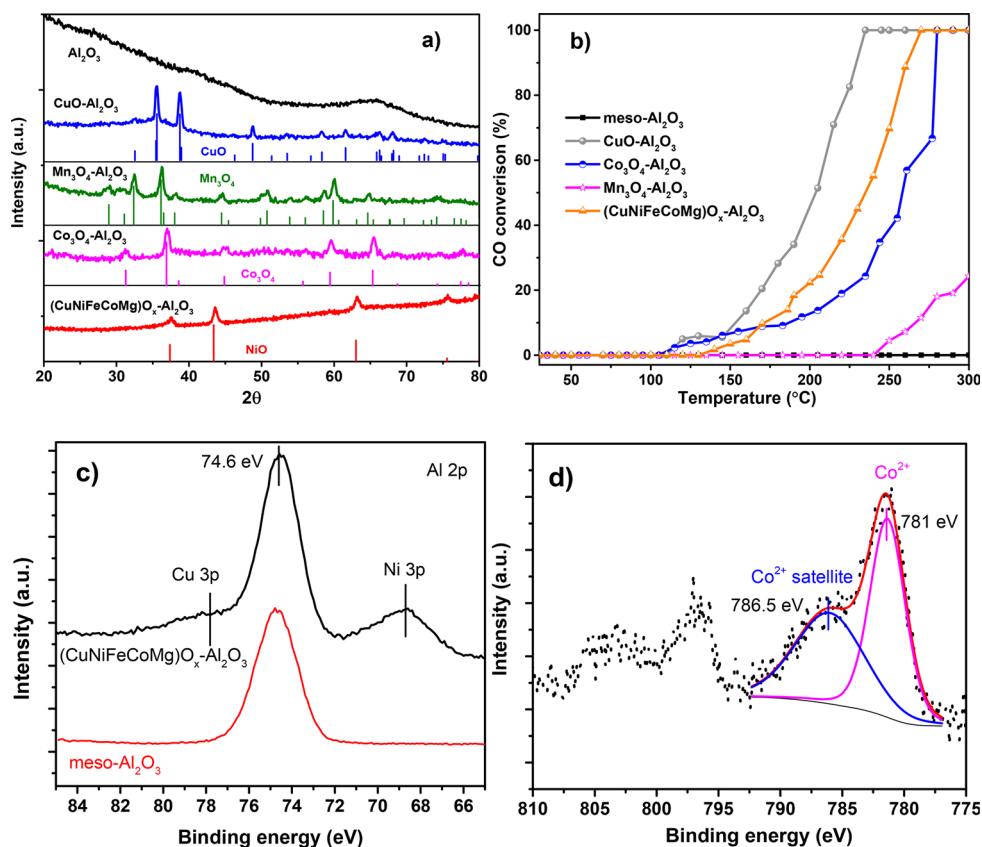


Figure 1. N_2 adsorption–desorption isotherms (a,c,e,g) and the corresponding pore size distribution (b,d,f,h) of meso- Al_2O_3 , $\text{CuO}-\text{Al}_2\text{O}_3$, $\text{Mn}_3\text{O}_4-\text{Al}_2\text{O}_3$, and $\text{Co}_3\text{O}_4-\text{Al}_2\text{O}_3$ synthesized using a mechanochemical NHSG method.




Figure 2. TEM a) and STEM-HAADF b) images of meso- Al_2O_3 ; STEM-HAADF images (c,d) of $\text{Mn}_3\text{O}_4-\text{Al}_2\text{O}_3$; and the corresponding element mapping signals e) Al, f) Mn and g) O.

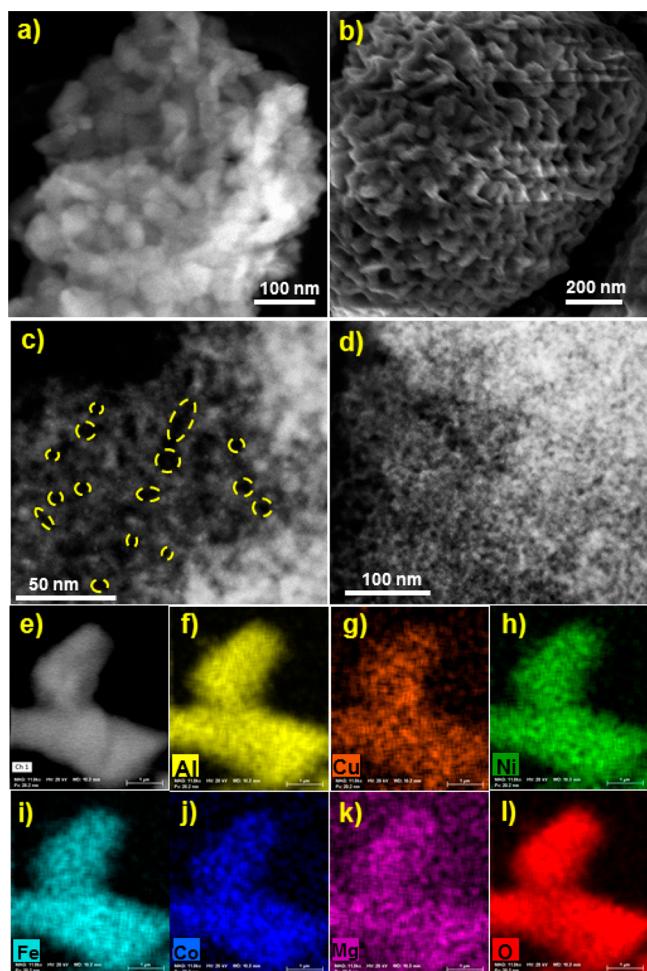
269 side by side are observed throughout the material backbone in
270 the range of several hundred nanometers (Figure 2c,d).

Furthermore, energy-dispersive X-ray spectroscopy (EDS) 271 mapping results of representative binary $\text{Mn}_3\text{O}_4-\text{Al}_2\text{O}_3$ sample 272 (Figures 2e–g and Figure S9) show the well distribution of Mn, 273 Al, and O, suggesting that the mesoporous structure is fabricated 274 by the uniform mixture of Mn_3O_4 and Al_2O_3 . Additionally, TEM 275 and EDS-mapping results for $\text{CuO}-\text{Al}_2\text{O}_3$ and $\text{Co}_3\text{O}_4-\text{Al}_2\text{O}_3$ 276 samples in Figures S10 and S11 also display existence of 277 mesopores and uniform mixture of CuO (Co_3O_4) and Al_2O_3 . 278

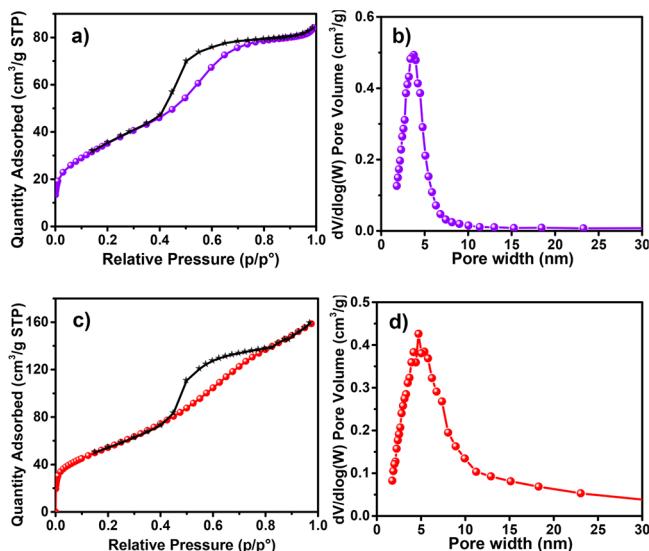
Interestingly, the XRD result of $(\text{CuNiFeCo})\text{O}_x-\text{Al}_2\text{O}_3$ 279 sample synthesized by the same method does not show the 280 characteristic diffraction peaks of CuO , Fe_2O_3 , or Co_3O_4 (Figure 281 S12). The XRD pattern of $(\text{CuNiFeCo})\text{O}_x-\text{Al}_2\text{O}_3$ reveals its 282 crystalline structure, which is close to 37.2 (111), 43.3 (012), 283 62.8 (110), and 75.4 (113) reflections of cubic NiO (JCPDS 65- 284 2901). The above results suggest that Cu, Fe, and Co may be 285 incorporated into the sublattice of NiO to form a solid solution. 286 STEM-HAADF images of $(\text{CuNiFeCo})\text{O}_x-\text{Al}_2\text{O}_3$ sample 287 reveal the aggregations of hybrid crystallites with a high degree 288 of interstitial porosity (Figure 4a,b). EDS-mapping results show 289 the highly uniform distribution of four metal species (Cu, Ni, Fe, 290 and Co), further suggesting the existence of $(\text{CuNiFeCo})\text{O}_x$ 291 solid solution (Figure S13). The pore nature of $(\text{CuNiFeCo})-\text{O}_x-\text{Al}_2\text{O}_3$ 292 sample was then evaluated via N_2 adsorption– 293 desorption measurement at 77 K. A type-IV isotherm with an H_3 294 type hysteresis loop between the relative P/P_0 of 0.4 to 0.7 can 295 be observed, leading to a surface area of $129 \text{ m}^2 \text{ g}^{-1}$ (Table 1) 296 with narrow pore size distribution ($\sim 4 \text{ nm}$) (Figure 5a,b). The 297 molar ratio of Al:(CuNiFeCo) obtained from ICP-AES result is 298 1.9, similar to 1.5 determined from EDS result in Figure S13. 299

Crystalline high-entropy metal oxides (normally containing 300 five or more metal species), as a new class of material, have 301 attracted great interest because of their unique structure and 302 potential applications.^{51,52} To date, the state-of-art high-entropy 303 metal oxides only possess very limited surface area (e.g., < 30 304 $\text{m}^2 \text{ g}^{-1}$),^{53,54} because their porous structures would collapse 305

Figure 3. XRD results of a) meso- Al_2O_3 , binary metal oxides and $(\text{CuNiFeCoMg})\text{O}_x\text{-Al}_2\text{O}_3$; b) CO oxidation activity over different catalysts; normalized XPS spectra of c) Al 2p and d) Co 2p transitions for meso- Al_2O_3 (peak intensity for Al 2p is reduced) and $(\text{CuNiFeCoMg})\text{O}_x\text{-Al}_2\text{O}_3$ samples.


306 during the removal of templates and the crystallization process, 307 which limits their performance in catalysis. To synthesize 308 mesoporous high entropy metal-Al mixed oxides, Mg was 309 chosen as the fifth metal element for the preparation of 310 $(\text{CuNiFeCoMg})\text{O}_x\text{-Al}_2\text{O}_3$. The basis for the choice of these 311 metals is their similar atomic radius. The corresponding XRD 312 patterns are displayed (Figure 3a). It is reassuring that when Mg 313 is used as the fifth metal, the diffraction peaks become similar to 314 the shift of diffraction peaks of cubic crystalline NiO. The 315 diffraction peaks belonging to CuO , Fe_2O_3 , Co_3O_4 , and Mn_3O_4 316 in binary metal-Al oxides disappeared accidentally, suggesting 317 the formation of single high-entropy phase. The crystalline size 318 of high-entropy phase is approximately 11.6 nm determined by 319 Scherrer equation. Moreover, SEM-EDS results reveal that five 320 elements (Cu, Ni, Fe, Co, and Mg) signal are simultaneous 321 discovered in selected regions (Figure 4e–l). The obtained 322 results suggested that the high-entropy metal oxides 323 $(\text{CuNiFeCoMg})\text{O}_x$ should be formed and mixed uniformly 324 with Al_2O_3 to form a mesoporous complex. We deduced that the 325 mechanochemical process together with calcination step in are 326 the major reason for the formation of solid solution.

327 The metal valence is illustrated by X-ray photoelectron 328 spectroscopy (XPS) analysis, and the results are shown in 329 Figures 3c,d and S14. The Al 2p XPS spectra in Figure 3c show 330 the primary peak located at 74.6 eV for both meso- Al_2O_3 and 331 $(\text{CuNiFeCoMg})\text{O}_x\text{-Al}_2\text{O}_3$ samples, suggesting the existence of 332 Al–O bonds in Al^{3+} (often known as Al_2O_3 species). The Cu 2p 333 spectrum in Figure S14a can be fitted into four peaks, 334 corresponding to $\text{Cu 2p}_{3/2}$ (933.0 eV) and $\text{Cu 2p}_{1/2}$ (953.0 335 eV) and their satellite peaks. These characteristics match well


336 with standard peaks of CuO . The similar results in Ni 2p 337 spectrum can identify the possible existence of NiO (Figure 337 S14b).⁵⁵ The main peak from Mg 2p spectrum in Figure S14c is 338 located around 50 eV, but the valence state of Mg is difficult to 339 determine due to the close peak position of different state (Mg^0 340 and Mg^{2+}). However, Mg should exist in MgO form considering 341 that the synthesis process is difficult to generate Mg^0 . For Co 2p 342 spectrum in Figure 3d, the peaks at 781 eV together with strong 343 satellite at 786.5 eV indicate the existence of Co^{2+} , since the 344 signature of Co^{3+} have no satellite peak.⁵⁶ The Fe 2p spectrum in 345 Figure S14d suggests the coexistence of Fe^{2+} and Fe^{3+} .³⁴⁶

347 STEM-HAADF images of $(\text{CuNiFeCoMg})\text{O}_x\text{-Al}_2\text{O}_3$ sample 348 suggest the existence of rich mesoporosity marked with small 349 yellow circles (Figure 4c,d), which is also revealed by SEM 350 images in Figure S15. The pore nature of $(\text{CuNiFeCoMg})\text{O}_x\text{-Al}_2\text{O}_3$ 351 sample was then evaluated by N_2 adsorption–desorption 352 measurement at 77 K. A type-IV isotherm with steep adsorption 353 peaks between the relative pressure (P/P_0) of 0.2–0.8, revealing 354 the abundant mesoporous structure (Figure 5c,d). It offered a 355 surface area up to $198 \text{ m}^2 \text{ g}^{-1}$, and the relatively lower surface 356 area compared to meso- Al_2O_3 should be attributed to the 357 blockage and collapse of pore channels during the crystallization 358 process of high-entropy metal oxides. The molar ratio of Al: 359 (CuNiFeCoMg) obtained from the ICP-AES result is 1.3.

360 Subsequently, the catalytic activities of different mesoporous 361 metal oxides are evaluated for CO oxidation (Figure 3b). The 362 T_{100} values (temperature for 100% CO conversion) are 220 °C 363 ($\text{CuO}\text{-Al}_2\text{O}_3$), 270 °C ($\text{Co}_3\text{O}_4\text{-Al}_2\text{O}_3$), and 260 °C 363 ($(\text{CuNiFeCoMg})\text{O}_x\text{-Al}_2\text{O}_3$), respectively. Among these cata- 364 lysts, $\text{Mn}_3\text{O}_4\text{-Al}_2\text{O}_3$ exhibits much worse activity for the 365

Figure 4. STEM (a) and SEM (b) images of $(\text{CuNiFeCo})\text{O}_x\text{--Al}_2\text{O}_3$; STEM (c,d) images of $(\text{CuNiFeCoMg})\text{O}_x\text{--Al}_2\text{O}_3$; SEM-EDS image (e) of $(\text{CuNiFeCoMg})\text{O}_x\text{--Al}_2\text{O}_3$; and the corresponding element mapping signals f) Al, g) Cu, h) Ni, (i) Fe, j) Co, k) Mg, and l) O.

Figure 5. N_2 adsorption–desorption isotherms and the corresponding pore size distribution of $(\text{CuNiFeCo})\text{O}_x\text{--Al}_2\text{O}_3$ (a,b) and $(\text{CuNiFeCoMg})\text{O}_x\text{--Al}_2\text{O}_3$ (c,d) synthesized using mechanochemical NHSG method.

oxidation of CO, which may be attributed to the relatively 366 inactive of Mn_3O_4 phase. And the mesoporous $\text{CuO--Al}_2\text{O}_3$ 367 catalyst becomes active at 120 °C, and CO was completely 368 converted at 220 °C, which are superior to most catalysts 369 especially for Cu–Al mixed oxides prepared using traditional 370 impregnation and precipitation method as shown in Table 371 S2.^{57–59} Moreover, both $\text{CuO--Al}_2\text{O}_3$ and $(\text{CuNiFeCoMg})\text{O}_x\text{--Al}_2\text{O}_3$ 372 catalysts exhibited remarkable stability even after being 373 used for 48 h (Figure S16a,b). Considering the facile, fast, and 374 solvent-free preparation method, these mesoporous mixed 375 oxides may have great potential applications in industrial 376 catalysis. As shown in Figure S17, XRD results of fresh and 377 spent $\text{CuO--Al}_2\text{O}_3$ and $(\text{CuNiFeCoMg})\text{O}_x\text{--Al}_2\text{O}_3$ catalysts 378 display similar diffraction peaks and crystallite size. Additionally, 379 temperature-programmed desorption (TPD) of CO in Figure 380 S18 reveals similar CO desorption peak area, indicating the 381 dispersion of metal active species does not decrease remarkably 382 after use.³⁸³

The sulfur tolerance is of great importance in real-world 384 catalysis. However, CO oxidation activity of most catalysts went 385 down remarkably in the presence of SO_2 , greatly affecting the 386 process of industrialization. Therefore, we compared the 387 performance of SO_2 resistance over $\text{CuO--Al}_2\text{O}_3$ and 388 $(\text{CuNiFeCoMg})\text{O}_x\text{--Al}_2\text{O}_3$ catalysts. Before the catalytic 389 activity test, each catalyst was treated in 1000 ppm of SO_2 at 390 280 °C for 5 h. The catalytic activity of $\text{CuO--Al}_2\text{O}_3$ decreased 391 remarkably after SO_2 treatment (Figure S19a). It is noteworthy 392 that there is a negligible effect of SO_2 on $(\text{CuNiFeCoMg})\text{O}_x\text{--Al}_2\text{O}_3$ 393 catalyst (Figure S19b). The decreased activity of $\text{CuO--Al}_2\text{O}_3$ is 394 attributed to the formation of sulfites, evidenced by the 395 feature in FTIR spectra around 1100 cm^{-1} (Figure 396 S10).^{60,61} However, it is clear that the formation of crystalline 397 high-entropy metal oxides protect itself from SO_2 poisoning, 398 contributing to the superior SO_2 tolerance compared with 399 $\text{CuO--Al}_2\text{O}_3$. This result indicates that the $(\text{CuNiFeCoMg})\text{O}_x\text{--Al}_2\text{O}_3$ 400 catalyst may be stabilized by the relative higher 401 configurational entropy, preventing itself from being sulfu- 402 rated.⁵¹⁴⁰³

4. CONCLUSIONS

In summary, an efficient, fast, and facile route for the synthesis of 404 mesoporous Al_2O_3 and its metal oxide hybrids has been 405 developed based on a mechanochemical nonhydrolytic method. 406 The obtained meso- Al_2O_3 shows a record high surface area 407 ($\sim 644 \text{ m}^2 \text{ g}^{-1}$) and uniform pore size ($\sim 5 \text{ nm}$). Moreover, 408 mesoporous metal–aluminum oxide and four or five metal solid 409 solution–aluminum oxide hybrids with rich mesoporous 410 structure and single cubic crystalline phase was discovered. 411 More importantly, this mechanochemical method does not need 412 solvents and can shorten the pore filling process from 1–3 days 413 to 60 min. The obtained mesoporous mixed metal oxide (such as 414 $(\text{CuNiFeCoMg})\text{O}_x\text{--Al}_2\text{O}_3$) exhibit not only an exceptional 415 catalytic performance in CO oxidation, but also the superior SO_2 416 tolerance. This mechanochemical NHSG method may open the 417 door to the scalable preparation of a new class of metal oxide 418 catalysts.⁴¹⁹

■ ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the 422 ACS Publications website at DOI: 10.1021/acs.chemma- 423 ter.9b01244.⁴²⁴

425 Additional results of characterization results (XRD, SEM,
426 TEM, N₂ adsorption–desorption, CO-TPD, ICP-AES,
427 and FTIR) (PDF)

428 ■ AUTHOR INFORMATION

429 Corresponding Authors

430 *E-mail: jiefu@zju.edu.cn.

431 *E-mail: chemistryzpf@sjtu.edu.cn.

432 *E-mail: dais@ornl.gov.

433 ORCID ®

434 Xiaobing Hu: [0000-0002-9233-8118](https://orcid.org/0000-0002-9233-8118)

435 Haidi Xu: [0000-0002-6045-5600](https://orcid.org/0000-0002-6045-5600)

436 Honggen Peng: [0000-0001-9133-5727](https://orcid.org/0000-0001-9133-5727)

437 Hao Chen: [0000-0002-6658-4198](https://orcid.org/0000-0002-6658-4198)

438 Yan Leng: [0000-0001-7618-0456](https://orcid.org/0000-0001-7618-0456)

439 Xiuyang Lu: [0000-0002-6289-3110](https://orcid.org/0000-0002-6289-3110)

440 Jie Fu: [0000-0002-3652-7715](https://orcid.org/0000-0002-3652-7715)

441 Pengfei Zhang: [0000-0001-7559-7348](https://orcid.org/0000-0001-7559-7348)

442 Sheng Dai: [0000-0002-8046-3931](https://orcid.org/0000-0002-8046-3931)

443 Notes

444 The authors declare no competing financial interest.

445 ■ ACKNOWLEDGMENTS

446 S.D. was supported by the Division of Chemical Sciences,
447 Geosciences, and Biosciences, Office of Basic Energy Sciences,
448 US Department of Energy. J.F. was supported by the National
449 Natural Science Foundation of China (No. 21436007,
450 21706228), the Zhejiang Provincial Natural Science Foundation
451 of China (No. LR17B060002). Z.Z. thanks the China
452 Scholarship Council for financial support as a joint PhD student.
453 P.F.Z. acknowledges Shanghai Pujiang Program (Grant No.
454 17PJ1403500), Thousand Talent Program, National Natural
455 Science Foundation of China (Grant No. 21776174), and the
456 Open Foundation of the State Key Laboratory of Ocean
457 Engineering (Shanghai Jiao Tong University of China) (No.
458 1809) for the support.

459 ■ REFERENCES

- (1) Gu, D.; Schmidt, W.; Pichler, C. M.; Bongard, H. J.; Spliethoff, B.; Asahina, S.; Cao, Z.; Terasaki, O.; Schüth, F. Surface-casting synthesis of mesoporous zirconia with a CMK-5-like structure and high surface area. *Angew. Chem., Int. Ed.* **2017**, *56*, 11222.
- (2) Gu, D.; Jia, C.-J.; Weidenthaler, C.; Bongard, H.-J.; Spliethoff, B.; Schmidt, W.; Schüth, F. Highly ordered mesoporous cobalt-containing oxides: structure, catalytic properties, and active sites in oxidation of carbon monoxide. *J. Am. Chem. Soc.* **2015**, *137*, 11407.
- (3) Zhou, Y.; Antonietti, M. Synthesis of very small TiO₂ nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates. *J. Am. Chem. Soc.* **2003**, *125*, 14960.
- (4) Zhang, Z.; Zuo, F.; Feng, P. Hard template synthesis of crystalline mesoporous anatase TiO₂ for photocatalytic hydrogen evolution. *J. Mater. Chem.* **2010**, *20*, 2206.
- (5) Ma, C. Y.; Mu, Z.; Li, J. J.; Jin, Y. G.; Cheng, J.; Lu, G. Q.; Hao, Z. P.; Qiao, S. Z. Mesoporous Co₃O₄ and Au/Co₃O₄ catalysts for low-temperature oxidation of trace ethylene. *J. Am. Chem. Soc.* **2010**, *132*, 2608.
- (6) Liu, J.; Qiao, S. Z.; Hu, Q. H.; Max Lu, G. Q. Magnetic nanocomposites with mesoporous structures: synthesis and applications. *Small* **2011**, *7*, 425.
- (7) Ko, Y. N.; Park, S. B.; Jung, K. Y.; Kang, Y. C. One-pot facile synthesis of ant-cave-structured metal oxide–carbon microballs by continuous process for use as anode materials in Li-ion batteries. *Nano Lett.* **2013**, *13*, 5462.

- (8) Jin, Z.; Xiao, M.; Bao, Z.; Wang, P.; Wang, J. A general approach to mesoporous metal oxide microspheres loaded with noble metal nanoparticles. *Angew. Chem., Int. Ed.* **2012**, *51*, 6406.
- (9) Xiao, W.; Yang, S.; Zhang, P.; Li, P.; Wu, P.; Li, M.; Chen, N.; Jie, K.; Huang, C.; Zhang, N.; Dai, S. Facile synthesis of highly porous metal oxides by mechanochemical nanocasting. *Chem. Mater.* **2018**, *30*, 2924.
- (10) Li, W. C.; Lu, A. H.; Weidenthaler, C.; Schüth, F. Hard-templating pathway to create mesoporous magnesium oxide. *Chem. Mater.* **2004**, *16*, 5676.
- (11) Gu, D.; Li, W.; Wang, F.; Bongard, H.; Spliethoff, B.; Schmidt, W.; Weidenthaler, C.; Xia, Y.; Zhao, D.; Schüth, F. Controllable synthesis of mesoporous peapod-like Co₃O₄@carbon nanotube arrays for high-performance lithium-ion batteries. *Angew. Chem., Int. Ed.* **2015**, *54*, 7060.
- (12) Liu, H.; Li, W.; Shen, D.; Zhao, D.; Wang, G. Graphitic carbon conformal coating of mesoporous TiO₂ hollow spheres for high-performance lithium ion battery anodes. *J. Am. Chem. Soc.* **2015**, *137*, 13161.
- (13) Zhen, M.; Zhou, B.; Ren, Y. Crystalline mesoporous transition metal oxides: hard-templating synthesis and application in environmental catalysis. *Front. Environ. Sci. Eng.* **2013**, *7*, 341.
- (14) Malgras, V.; Ataee-Esfahani, H.; Wang, H.; Jiang, B.; Li, C.; Wu, K. C. W.; Kim, J. H.; Yamauchi, Y. Nanoarchitectures for mesoporous metals. *Adv. Mater.* **2016**, *28*, 993.
- (15) Li, W.; Zhao, D. An overview of the synthesis of ordered mesoporous materials. *Chem. Commun.* **2013**, *49*, 943.
- (16) Yang, H.; Zhao, D. Synthesis of replica mesostructures by the nanocasting strategy. *J. Mater. Chem.* **2005**, *15*, 1217.
- (17) Lee, J.; Christopher Orilall, M.; Warren, S. C.; Kamperman, M.; DiSalvo, F. J.; Wiesner, U. Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. *Nat. Mater.* **2008**, *7*, 222.
- (18) Ren, Y.; Ma, Z.; Bruce, P. G. Ordered mesoporous metal oxides: synthesis and applications. *Chem. Soc. Rev.* **2012**, *41*, 4909.
- (19) Yue, W.; Zhou, W. Porous crystals of cubic metal oxides templated by cage-containing mesoporous silica. *J. Mater. Chem.* **2007**, *17*, 4947.
- (20) Sun, X.; Shi, Y.; Zhang, P.; Zheng, C.; Zheng, X.; Zhang, F.; Zhang, Y.; Guan, N.; Zhao, D.; Stucky, G. D. Container effect in nanocasting synthesis of mesoporous metal oxides. *J. Am. Chem. Soc.* **2011**, *133*, 14542.
- (21) Smått, J.-H.; Weidenthaler, C.; Rosenholm, J. B.; Lindén, M. Hierarchically porous metal oxide monoliths prepared by the nanocasting route. *Chem. Mater.* **2006**, *18*, 1443.
- (22) Yang, P.; Zhao, D.; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. *Nature* **1998**, *396*, 152.
- (23) Zhang, Z.; Zhu, Y.; Asakura, H.; Zhang, B.; Zhang, J.; Zhou, M.; Han, Y.; Tanaka, T.; Wang, A.; Zhang, T.; Yan, N. Thermally stable single atom Pt/m-Al₂O₃ for selective hydrogenation and CO oxidation. *Nat. Commun.* **2017**, *8*, 16100.
- (24) Yuan, Q.; Yin, A.-X.; Luo, C.; Sun, L.-D.; Zhang, Y. W.; Duan, W. T.; Liu, H. C.; Yan, C. H. Facile synthesis for ordered mesoporous γ -aluminas with high thermal stability. *J. Am. Chem. Soc.* **2008**, *130*, 3465.
- (25) Feng, G.; Wang, J.; Boronat, M.; Li, Y.; Su, J. H.; Huang, J.; Ma, Y.; Yu, J. Radical-facilitated green synthesis of highly ordered mesoporous silica materials. *J. Am. Chem. Soc.* **2018**, *140*, 4770.
- (26) Antonelli, D. M.; Ying, J. Y. Synthesis of hexagonally packed mesoporous TiO₂ by a modified sol-gel method. *Angew. Chem., Int. Ed. Engl.* **1995**, *34*, 2014.
- (27) Zhou, W.; Li, W.; Wang, J.-Q.; Qu, Y.; Yang, Y.; Xie, Y.; Zhang, K.; Wang, L.; Fu, H.; Zhao, D. Ordered mesoporous black TiO₂ as highly efficient hydrogen evolution photocatalyst. *J. Am. Chem. Soc.* **2014**, *136*, 9280.
- (28) Zhu, Y.; Zhao, Y.; Ma, J.; Cheng, X.; Xie, J.; Xu, P.; Liu, H.; Liu, H.; Zhang, H.; Wu, M.; Elzatahry, A. A.; Alghamdi, A.; Deng, Y.; Zhao, D. Mesoporous tungsten oxides with crystalline framework for highly sensitive and selective detection of foodborne pathogens. *J. Am. Chem. Soc.* **2017**, *139*, 10365.

554 (29) Li, Y.; Luo, W.; Qin, N.; Dong, J.; Wei, J.; Li, W.; Feng, S.; Chen, 555 J.; Xu, J.; Elzatahry, A. A.; Es-Saheb, M. H.; Deng, Y.; Zhao, D. Highly 556 ordered mesoporous tungsten oxides with a large pore size and 557 crystalline framework for H₂S sensing. *Angew. Chem., Int. Ed.* **2014**, *53*, 558 9035.

559 (30) Wang, Y.; Yang, C. M.; Schmidt, W.; Spliethoff, B.; Bill, E.; 560 Schüth, F. Weakly ferromagnetic ordered mesoporous Co₃O₄ 561 synthesized by nanocasting from vinyl-functionalized cubic *Ia3d* 562 mesoporous silica. *Adv. Mater.* **2005**, *17*, 53.

563 (31) Klimakow, M.; Klobes, P.; Thunemann, A. F.; Rademann, K.; 564 Emmerling, F. Mechanochemical synthesis of metal-organic frame- 565 works: a fast and facile approach toward quantitative yields and high 566 specific surface areas. *Chem. Mater.* **2010**, *22*, 5216.

567 (32) Savateev, A.; Dontsova, D.; Kurpil, B.; Antonietti, M. Highly 568 crystalline poly(heptazine imides) by mechanochemical synthesis for 569 photooxidation of various organic substrates using an intriguing 570 electron acceptor-Elemental sulfur. *J. Catal.* **2017**, *350*, 203.

571 (33) Cai, W.; Zhang, S.; Hu, X.; Jaroniec, M. In situ synthesis of 572 nitrogen-enriched activated carbons from *procambarus clarkii* shells 573 with enhanced CO₂ adsorption performance. *Energy Fuels* **2018**, *32*, 574 9701.

575 (34) Chen, D.; Zhao, J.; Zhang, P.; Dai, S. Mechanochemical synthesis 576 of metal-organic frameworks. *Polyhedron* **2019**, *162*, 59.

577 (35) Zhao, J.; Shu, Y.; Zhang, P. Solid-state CTAB-assisted synthesis 578 of mesoporous Fe₃O₄ and Au@Fe₃O₄ by mechanochemistry. *Chin. J. 579 Catal.* **2019**, *40*, 1078.

580 (36) Jin, Y.; Sun, Q.; Qi, G.; Yang, C.; Xu, J.; Chen, F.; Meng, X.; 581 Deng, F.; Xiao, F. S. Solvent-free synthesis of silicoaluminophosphate 582 zeolites. *Angew. Chem., Int. Ed.* **2013**, *52*, 9172.

583 (37) Zhang, P.; Wang, L.; Yang, S.; Schott, J. A.; Liu, X.; Mahurin, S. 584 M.; Huang, C.; Zhang, Y.; Fulvio, P. F.; Chisholm, M. F.; Dai, S. Solid- 585 state synthesis of ordered mesoporous carbon catalysts via a 586 mechanochemical assembly through coordination cross-linking. *Nat. 587 Commun.* **2017**, *8*, 15020.

588 (38) Liu, F.; Huang, K.; Wu, Q.; Dai, S. Solvent-free self-assembly to 589 the synthesis of nitrogen-doped ordered mesoporous polymers for 590 highly selective capture and conversion of CO₂. *Adv. Mater.* **2017**, *29*, 591 1700445.

592 (39) Morris, S. M.; Fulvio, P. F.; Jaroniec, M. Ordered mesoporous 593 alumina-supported metal oxides. *J. Am. Chem. Soc.* **2008**, *130*, 15210.

594 (40) Goncalves, A. A. S.; Costa, M. J. F.; Zhang, L.; Ciesielczyk, F.; 595 Jaroniec, M. One-pot synthesis of MeAl₂O₄ (Me= Ni, Co, or Cu) 596 supported on γ -Al₂O₃ with ultralarge mesopores: enhancing interfacial 597 defects in γ -Al₂O₃ to facilitate the formation of spinel structures at lower 598 temperatures. *Chem. Mater.* **2018**, *30*, 436–446.

599 (41) Gonçalves, A. A.; Jaroniec, M. Evaporation-induced self- 600 assembly synthesis of nanostructured alumina-based mixed metal 601 oxides with tailored porosity. *J. Colloid Interface Sci.* **2019**, *537*, 725– 602 735.

603 (42) Goncalves, A. A. S.; Faustino, P. B.; Assaf, J. M.; Jaroniec, M. 604 One-pot synthesis of mesoporous Ni-Ti-Al ternary oxides: highly active 605 and selective catalysts for steam reforming of ethanol. *ACS Appl. Mater. 606 Interface* **2017**, *9*, 6079–6092.

607 (43) Cai, W.; Yu, J.; Anand, C.; Vinu, A.; Jaroniec, M. Facile synthesis 608 of ordered mesoporous alumina and alumina-supported metal oxides 609 with tailored adsorption and framework properties. *Chem. Mater.* **2011**, 610 *23*, 1147–1157.

611 (44) Tian, B.; Liu, X.; Tu, B.; Yu, C.; Fan, J.; Wang, L.; Xie, S.; Stucky, 612 G. D.; Zhao, D. Self-adjusted synthesis of ordered stable mesoporous 613 minerals by acid-base pairs. *Nat. Mater.* **2003**, *2*, 159.

614 (45) Debecker, D. P.; Bouchmella, K.; Poleunis, C.; Eloy, P.; Bertrand, 615 P.; Gaigneaux, E. M.; Mutin, P. H. Design of SiO₂-Al₂O₃-MoO₃ 616 metathesis catalysts by nonhydrolytic sol-gel. *Chem. Mater.* **2009**, *21*, 617 2817.

618 (46) Liu, Y.; Wang, M.; Li, Z.; Liu, H.; He, P.; Li, J. Preparation of 619 porous aminopropylsilsesquioxane by a nonhydrolytic sol-gel method 620 in ionic liquid solvent. *Langmuir* **2005**, *21*, 1618.

622 (47) Liu, H.; Li, Y.; Yin, C.; Wu, Y.; Chai, Y.; Dong, D.; Li, X.; Liu, C. 623 One-pot synthesis of ordered mesoporous NiMo-Al₂O₃ catalysts for 624 dibenzothiophene hydrodesulfurization. *Appl. Catal., B* **2016**, *198*, 493. 623

625 (48) Debecker, D. P.; Hulea, V.; Mutin, P. H. Mesoporous mixed 624 oxide catalysts via non-hydrolytic sol-gel: a review. *Appl. Catal., A* **2013**, 625 451, 192. 626

627 (49) Gunjakar, J. L.; Kim, T. W.; Kim, H. N.; Kim, I. Y.; Hwang, S. J. 628 Mesoporous layer-by-layer ordered nanohybrids of layered double 628 hydroxide and layered metal oxide: highly active visible light 629 photocatalysts with improved chemical stability. *J. Am. Chem. Soc.* **2011**, 630 *133*, 14998. 631

632 (50) Jiang, H.; Bongard, H.; Schmidt, W.; Schüth, F. One-pot 633 synthesis of mesoporous Cu- γ -Al₂O₃ as bifunctional catalyst for direct 633 dimethyl ether synthesis. *Microporous Mesoporous Mater.* **2012**, *164*, 3. 634

635 (51) Rost, C. M.; Sachet, E.; Borman, T.; Mosallegh, A.; Dickey, E. C.; 635 Hou, D.; Jones, J. L.; Curtarolo, S.; Maria, J. P. Entropy-stabilized 636 oxides. *Nat. Commun.* **2015**, *6*, 8485. 637

638 (52) Sarkar, A.; Velasco, L.; Wang, D.; Wang, Q.; Talasila, G.; de Biasi, 638 L.; Kubel, C.; Brezesinski, T.; Bhattacharya, S. S.; Hahn, H.; Breitung, B. 639 High entropy oxides for reversible energy storage. *Nat. Commun.* **2018**, 640 *9*, 3400. 641

642 (53) Chen, H.; Fu, J.; Zhang, P.; Peng, H.; Abney, C. W.; Jie, K.; Liu, 642 X.; Chi, M.; Dai, S. Entropy-stabilized metal oxide solid solutions as CO 643 oxidation catalysts with high-temperature stability. *J. Mater. Chem. A* **2018**, 644 *6*, 11129. 645

646 (54) Sarkar, A.; Djenadic, R.; Usharani, N. J.; Sanghvi, K. P.; 646 Chakravadhanula, V. S.; Gandhi, A. S.; Hahn, H.; Bhattacharya, S. S. 647 Nanocrystalline multicomponent entropy stabilised transition metal 648 oxides. *J. Eur. Ceram. Soc.* **2017**, *37*, 747. 649

650 (55) Zhang, Z.; Yang, Q.; Chen, H.; Chen, K.; Lu, X.; Ouyang, P.; Fu, 650 J.; Chen, J. G. In situ hydrogenation and decarboxylation of oleic acid 651 into heptadecane over a Cu-Ni alloy catalyst using methanol as a 652 hydrogen carrier. *Green Chem.* **2018**, *20* (1), 197. 653

654 (56) Ovari, L.; Krick Calderon, S.; Lykhach, Y.; Libuda, J.; Erdohelyi, 654 A.; Papp, C.; Kiss, J.; Steinruck, H.-P. Near ambient pressure XPS 655 investigation of the interaction of ethanol with Co/CeO₂ (111). *J. 656 Catal.* **2013**, *307*, 132. 657

658 (57) Nikolaev, S.; Golubina, E.; Krotova, I.; Shilina, M.; Chistyakov, 658 A.; Kriventsov, V. The effect of metal deposition order on the 659 synergistic activity of Au-Cu and Au-Ce metal oxide catalysts for CO 660 oxidation. *Appl. Catal., B* **2015**, *168*, 303. 661

662 (58) Luo, M. F.; Fang, P.; He, M.; Xie, Y. L. In situ XRD, Raman, and 662 TPR studies of CuO/Al₂O₃ catalysts for CO oxidation. *J. Mol. Catal. A: 663 Chem.* **2005**, *239*, 243. 664

665 (59) Pantaleo, G.; Liotta, L.; Venezia, A.; Deganello, G.; Ezzo, E.; El 666 Kherbawi, M.; Atia, H. Support effect on the structure and CO 666 oxidation activity of Cu-Cr mixed oxides over Al₂O₃ and SiO₂. *Mater. 667 Chem. Phys.* **2009**, *114*, 604. 668

669 (60) Goodman, A.; Li, P.; Usher, C.; Grassian, V. Heterogeneous 669 uptake of sulfur dioxide on aluminum and magnesium oxide particles. *J. 670 Phys. Chem. A* **2001**, *105*, 6109. 671

672 (61) Chen, F.-F.; Huang, K.; Fan, J. P.; Tao, D.-J. Chemical solvent in 672 chemical solvent: a class of hybrid materials for effective capture of 673 CO₂. *AIChE J.* **2018**, *64*, 632. 674