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Introduction .

= Radiation heat transfer from
soot is important in fires

= “Soot” refers to carbonaceous
particles that develop during
through chemical and aerosol
processes in a fire

= Accurately describing soot radiation interaction is important to
making quantitative predictions

= Soot can strongly radiate heat away from a flame, causing low strain
rate extinction

= Soot deposited on an object will greatly enhance the heat transfer to
that object
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Evaluating turbulent reacting
flow models

= Sandia has conducted
measurements and code validation
for pool/plume configurations with
methane and helium sources in the
past.

= Pool models are a canonical
configuration for highly-sooting
fires,

= ... But pool fires are challenging to
guantify

= Sensitive to surrounding

perturbations 1-m methane fire
Tieszen et al, C&F, 2004
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= Optically thick for realistic fuels




Turbulent ethylene jet flame burner @&

= Well-defined boundary
conditions in piloted jet flame

= Sandia CRF design (Shaddix)

= Pilot stablized jet, Reynolds
number of 20,000

= Pure ethylene

Re = 20,000

= Soot volume fraction
measurements available

Soot LIl data QShaddixg 4




SIERRA thermal/fluid module: Fuego®&.

= Variable density, low-Mach
reacting flow code

= Second-order in space using a
control-volume finite element
discretization.

= Generalized unstructured meshes.

= Combustion models include EDC and flamelet approaches
= Flamelet library can be tabulated for up to five variables:
= Mixture fraction, mixture fraction variance, scalar dissipation, heat loss,
wall heat loss.
= Discrete ordinates method for participating media radiation

= Absorptivity and radiative intensity are determined through a combination
of tabulated data and soot volume fraction
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Two-equation soot model UL

= General reacting scalar evolution linked to flamelet source terms.

= Soot represented as progress variables describing the number
density (N) and mass concentration (M)
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= Mass concentration provides radiative source and absorptivity
for participating media radiation solve (discrete ordinates)

Tabulated source terms from flamelet simulation
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Table coarsening 2 ) e

temperature

2200
2000
1800
1600
1400
1200
1000
800
| 600
400

= Multidimensional tables can become
very large
= Gigabytes for four dimensional tables
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= What are the resolution requirements in each ’

dimension?
= Depends on variable and location.

= |nput resolution from solving flamlet PDE rather than what is
necessary for interpolation during a simulation

=  Automatically coarsen: find points where splines are
most effective at describing the solution. Try deleting
some of those points.

= Can save 5-20 times the memory




Why use LES for soot? UL

= Soot is highly intermittent

= Peak soot volume fractions

roughly 10 times as large as the ootsf ! Y ‘
means ' R
< 001}
s
: : : : o
= High scalar variance implies & .|
. . i
averaging over both oxidation =z | /
and surface growth regions 0K}/
. . 0005 ———55 54 06 08 1
= Would like to quantify effect z

of resolution on soot
predictions with a simple
model




RANS simulation ) e
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Underpredicts soot volume fraction by a E
factor of 10

= Sooting parameters can in principle be tuned to
give good results (tuned for methane)

200 |

Spatially, peak soot volume fraction lower =
in the flame |

RANS simulation can be used to provide a
reasonable initial condition for LES

= Still have to wait for perturbations to travel ‘
down the length of the jet
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RANS sooting parameterization
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LES Comparison: temperature ) =,

= Computational expense is high

= Long time for development, PMR solve, high dimensional interpolation

= LES can capture some of the stochastic behavior
= Need to refine

= Steady state higher in the jet is slow to be achieved
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LES Comparison: volume fraction W&

= What is the effect of capturing mixing on the soot behavior?
= Better soot model or better mixing?

= |ntermittency in mixing gives large fluctuations in volume fraction
= How does this vary with resolution?
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LES simulation
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Scatter plots from low in the flame
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= Early in flame (0.075m)
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Summary UL

= Have a capability to produce large-eddy simulations with flow
coupling through participating media radiation

= RANS results with two-equation soot model underpredict
experimental results (but could be tuned)

= Provides initial condition, hopefully accelerating statistical convergence
for LES

= LES with higher dimensional flamelets has some challenges
regarding effective tabulation strategies




