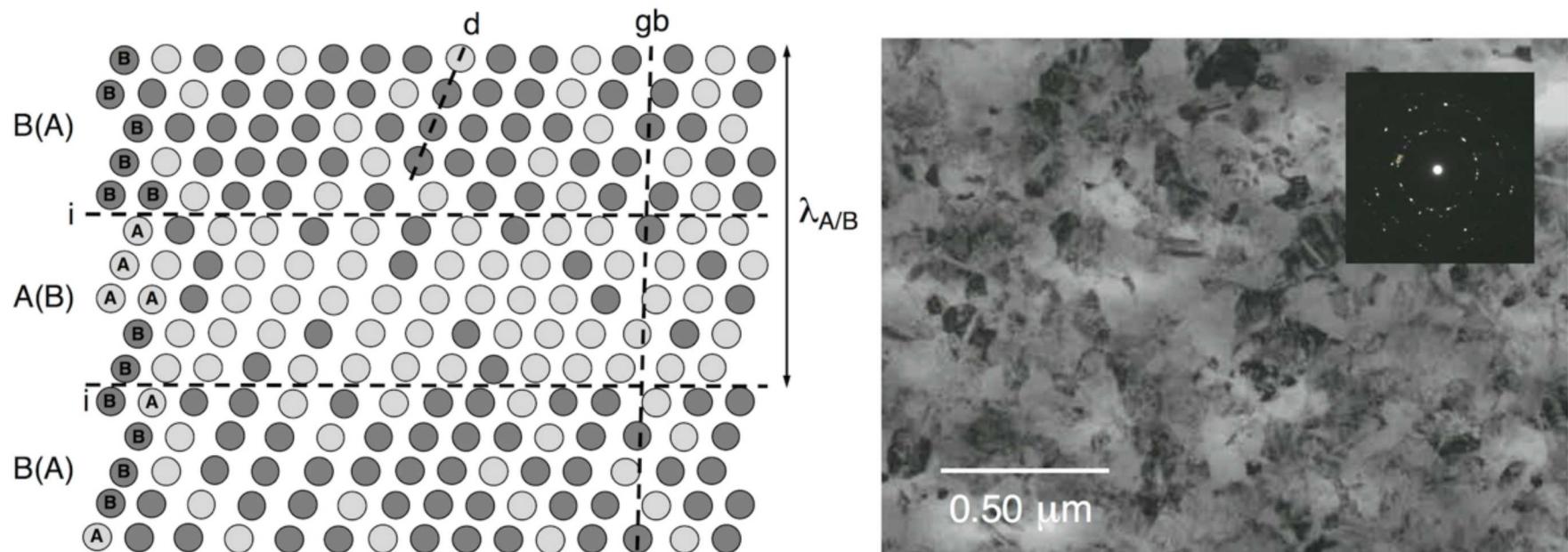



*Exceptional service in the national interest*



# Interdiffusion kinetics in Cu-Ni(Fe) nanolaminate structures

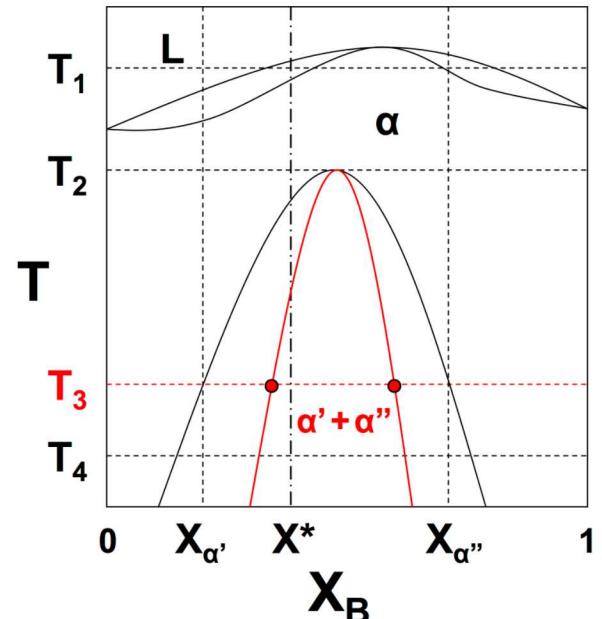
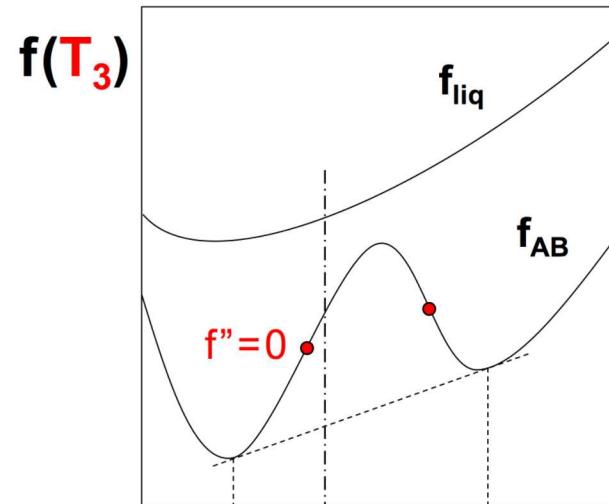
Alan F. Jankowski




Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

# Overview

- What is a synthetic nanolaminate structure?
  - A metastable structure with an artificial short-range order.
  - Anisotropic physical properties as strength, hardness, magnetism ...
  - Nanolaminates are useful to quantify transport properties.
- *The application of interest* – to study the kinetics of the phase transformation for spinodal decomposition at a temperature that is well within the chemical spinodal, i.e. 23°C.
  - The classic Cahn-Hilliard model and Khachaturyan static concentration wave theory are supplemented with a new protocol for analysis of the composition wave fluctuations.
- Results reveal the quantifiable effects of nano structure on the diffusion kinetics.
  - i.e. effects of strain energy and defect structure of the nanolaminates.



# Cu-Ni(Fe) nanolaminate



- A laminate of A and B atoms is viewed in cross-section.
  - Features include a threading dislocation (d), a grain boundary (gb) between columnar grains, and the A/B layer pair spacing, i.e. the composition wavelength ( $\lambda_{A/B}$ ).
- TEM BF and SAED images for a nanolaminate with a 4.34 nm composition wavelength reveal its ultra-fine grain nanostructure.

# Spinodal decomposition

- Phase separation of an A-B alloy in  $\alpha$ -solid solution occurs without a change in crystal structure.
  - The  $\alpha \rightarrow \alpha' + \alpha''$  transformation proceeds via uphill diffusion when the 2<sup>nd</sup>-order derivative of the Helmholtz free energy  $f$  with respect to composition  $c$  is less than zero, i.e.  $f'' = \partial^2 f / \partial c^2 < 0$ .
  - The *locus of points* defined by  $f'' = 0$  is the chemical spinodal.
  - It can be shown at a temp  $T$  beneath the spinodal temperature  $T_s$  that  $f'' = N_v \cdot k_B \cdot (T - T_s) / [c \cdot (1 - c)]$ .



# Coherency effects on the spinodal

- The Cahn-Hilliard model considers the energetic effects of new interfaces, the composition gradient created, and the presence of interface separation-dependent strain.
  - $R$  is used to compute the interdiffusivity  $\check{D}_B$ , and model its behavior to determine the diffusion coefficient  $\check{D}(T)$  at a temperature  $T$ .
  - The decomposition process stops, and decay occurs beyond a critical wavenumber, i.e.  $\beta > \beta_c$ , where the maximum growth occurs at a wavenumber  $\beta_m$  equal to  $\beta_c/\sqrt{2}$ , and  $\beta = 2\pi/\lambda_{A/B}$ .
- The presence of strain energy will decrease the composition wave amplitude as quantified by its amplification factor  $R$ .
  - The energetic effect is to increase the magnitude of interdiffusivity  $\check{D}_B$  outside the spinodal, but decrease its magnitude within the spinodal.
  - A curve fit for  $R$  using a polynomial expansion of the gradient energy coefficients  $K_\mu$  now allows for the computation of strain energy.

# Generalized $\check{D}_B$ equations

- The diffusivity  $\check{D}$  expressions account for nonlinear effects with time, and are related to the interdiffusivity  $\check{D}_B$  through the Fourier transform of the elastic strain energy  $F_e(h)$ , the second derivative  $f''$  of the Helmholtz free energy per atom volume  $N_v$ , and gradient-energy coefficients  $K_\mu$ .

$$\check{D}_B = \check{D} \cdot \{1 + F_e(h)/f'' + (2/f'') \cdot \sum [K_\mu \cdot B^{2\mu}(h)]\} = \check{D} \cdot [1 + \sum K'_\mu \cdot B^{2\mu}(h)]$$

where  $h$  is equal to  $d_{(hkl)}/\lambda_{A/B}$  for an interplanar spacing  $d_{(hkl)}$ ,

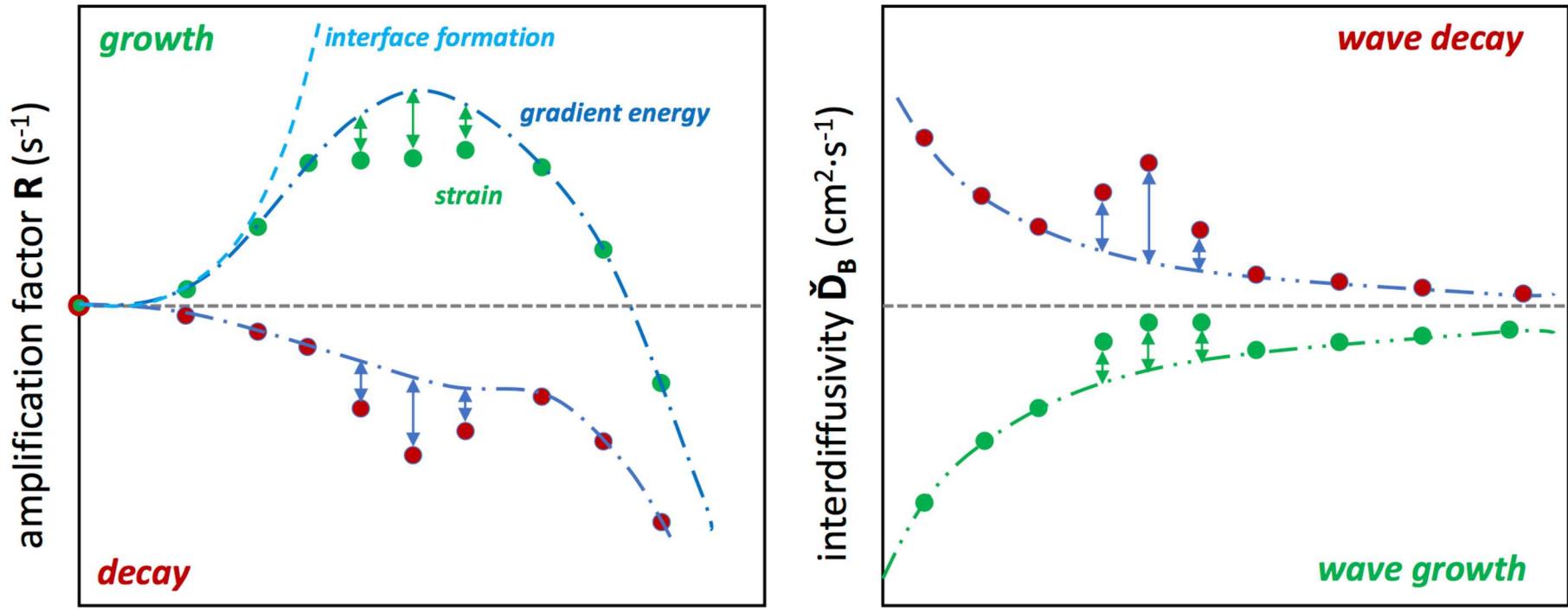
the dispersion relation  $B^2(h) = 2\{1 - \cos(2\pi h)\}/d_{(hkl)}^2$  for cubic metals,

$\check{D} = (M/N_v) \cdot f''$  for the mobility  $M$ ,

the per atom volume  $N_v$  equals  $4/a^3$ , and  $K'_\mu = 2K_\mu/f''$

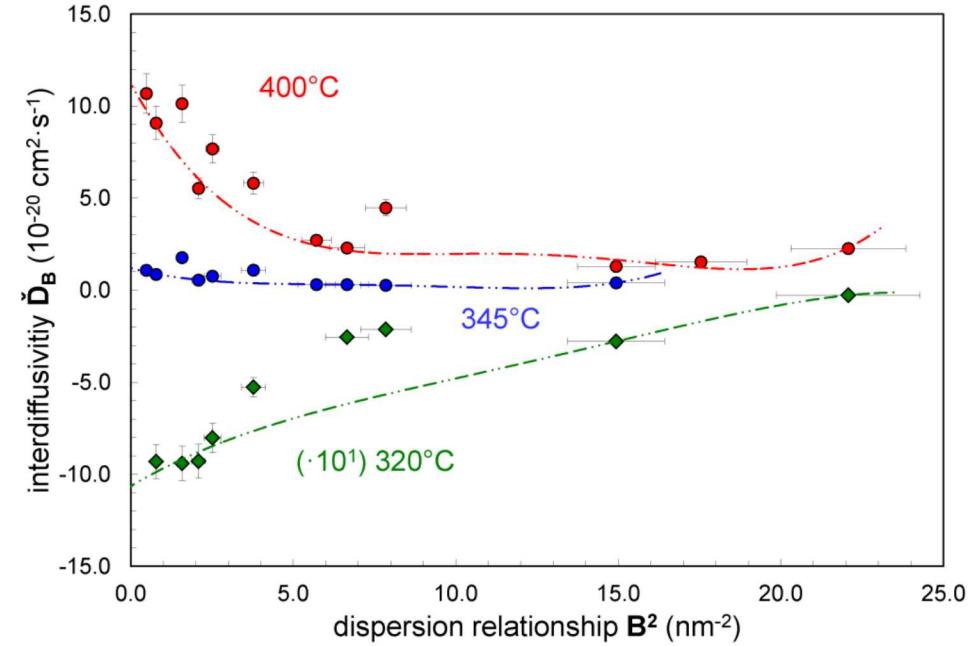
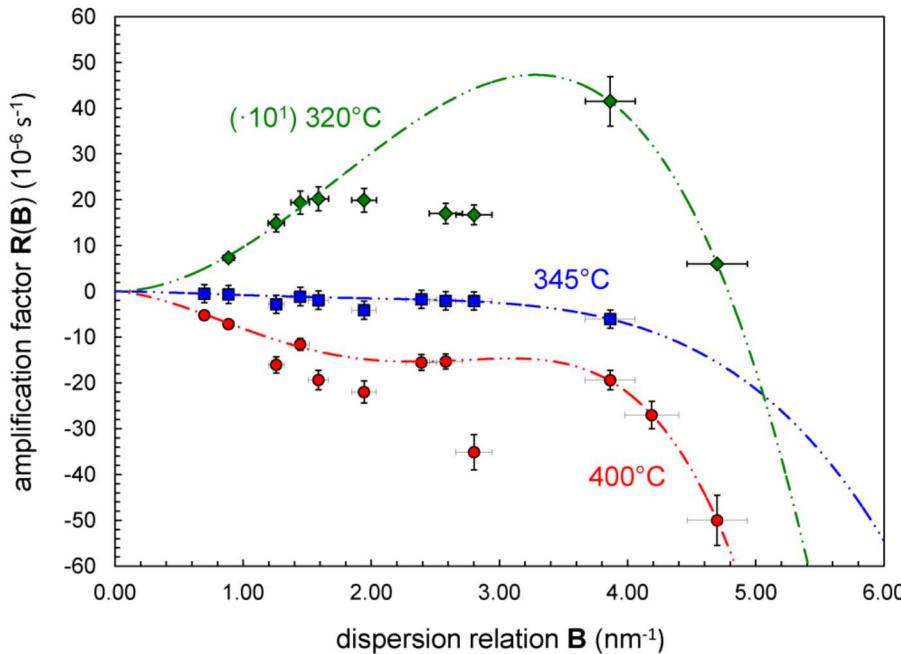
- The strain energy  $F_e(h)$  for the distorted lattice is a function of  $B(h)$ .

$$F_e(h) = 2\eta(h)^2 \cdot Y(h)$$


where the compositionally dependent strain  $\eta = (1/a) \cdot (\partial a / \partial c)$ , and

$Y$  is the  $\langle hkl \rangle$  orientation-dependent biaxial modulus.

# Bounding the wave amplification



- The boundary condition of zero amplification at an infinite wavelength is now used to first model the amplification  $\mathbf{R}$  behavior.
  - This step ensures a rigorous computation of  $\check{\mathbf{D}}_B$  values, and the subsequent modeling of interdiffusivity behavior to determine  $\check{\mathbf{D}}(T)$ .
- A higher-order polynomial is fit to the experimental  $\mathbf{R}_{exp}$  data to simulate its behavior as  $\mathbf{R}_{sim} = \sum \mathbf{k}'_\mu \cdot \mathbf{B}^\mu(h)$ .
- The  $\mathbf{k}'_\mu$  terms are then used to compute values for a simulated interdiffusivity  $\check{\mathbf{D}}_{Bsim}$  behavior as  $\check{\mathbf{D}}_{Bsim} = -\mathbf{R}_{sim}/\mathbf{B}^2(h)$ .
- The  $\Delta\mathbf{R} = (\mathbf{R}_{sim} - \mathbf{R}_{exp})$  and  $\Delta\check{\mathbf{D}}_B = (\check{\mathbf{D}}_{Bexp} - \check{\mathbf{D}}_{Bsim})$  differences are the consequence of strain energy, and positive quantities at all temperatures.
- From the Cahn-Hilliard formulation, it's now found that the strain energy  $\mathbf{F}_e(h)$  equals  $\Delta\check{\mathbf{D}}_B \cdot [\mathbf{f}''(h)/\check{\mathbf{D}}]$ .
- *With this approach*, the strain energy can be rigorously quantified as a function of the composition wavelength  $\lambda_{A/B}$ .

# Schematic of strain energy effects

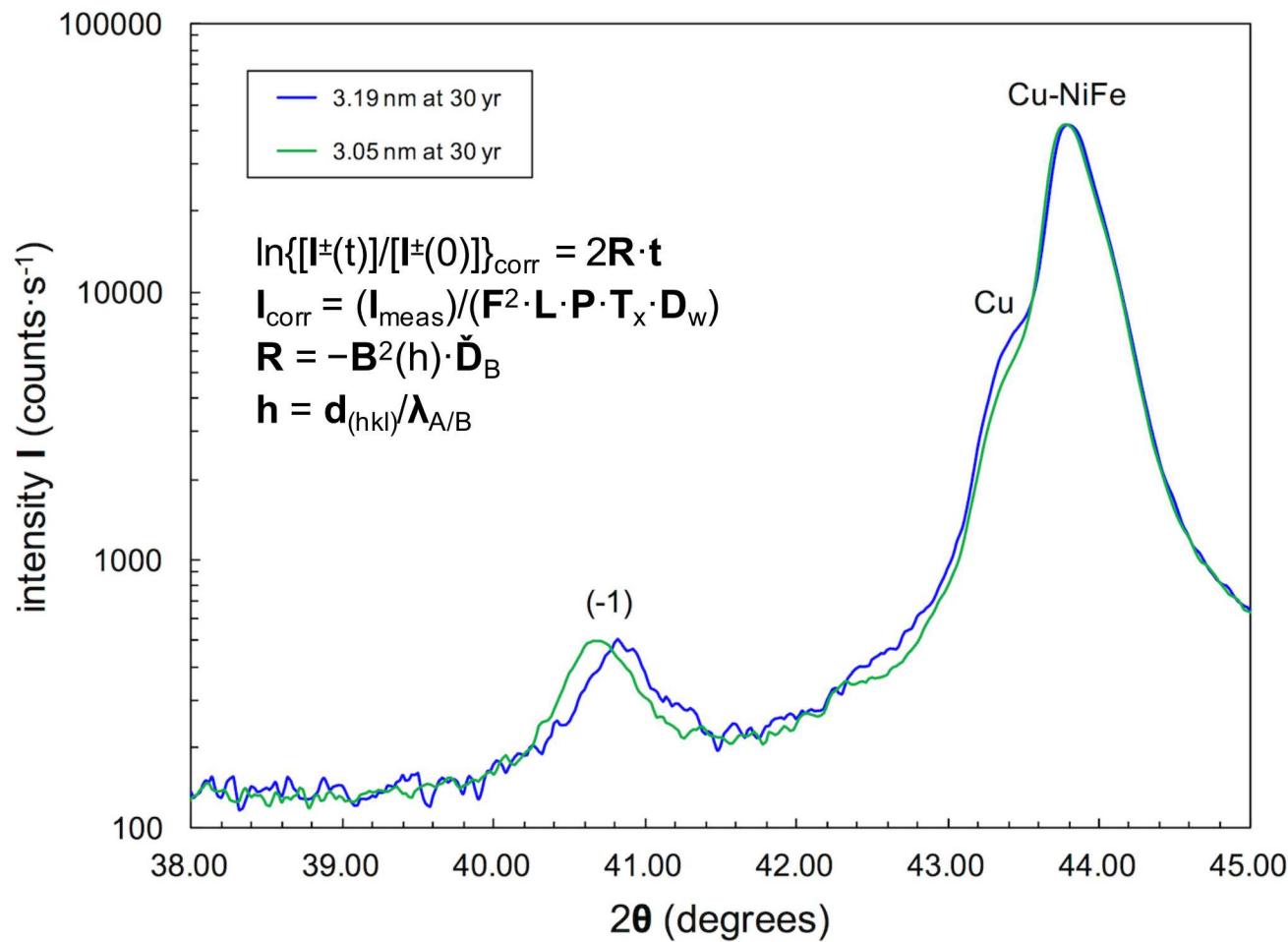


- The polynomial fit envelopes the  $R$ -data as an upper bound curve.
- The corresponding interdiffusivity  $\check{D}_B$  shows an enhancement of decay to the composition wave; and a slowing of its growth.

# Near the Cu-Ni(Fe) spinodal



- The interdiffusivity  $\check{D}_B$  ( $\text{cm}^2 \cdot \text{s}^{-1}$ ) variation with the square of the dispersion relation wavenumber  $B^2$  ( $\text{nm}^{-2}$ ) is computed from the amplification factor  $R$  ( $\text{s}^{-1}$ ) for the Cu/Ni(Fe) nanolaminate samples that were annealed at 320°C (diamond), 345°C (squares), and 400°C (circles).
- The variation from each polynomial fit is due to the effect of strain energy.
- A peak value of  $9.4 \cdot 10^7 \text{ J} \cdot \text{m}^{-3}$  for the strain energy is computed for the nanolaminate coatings with 2-4 nm composition wavelengths at 400 °C.


# $\theta/2\theta$ X-ray diffraction (XRD) scans



Short-range compositional order produces satellite peaks about the (111) Bragg reflection of the Cu/NiFe nanolaminate. The Bragg peak of the Cu base layer for epitaxial growth is seen.

- The Bragg and satellite peak variation with  $2\theta$  position for the Cu/Ni(Fe) nanolaminate coating with a 8.9 nm wavelength  $\lambda$  before (dashed line) and after (solid line) a 40 min at  $400^\circ\text{C}$  anneal treatment – *decay outside the spinodal*.

# $\theta/2\theta$ XRD scans after 30 yrs

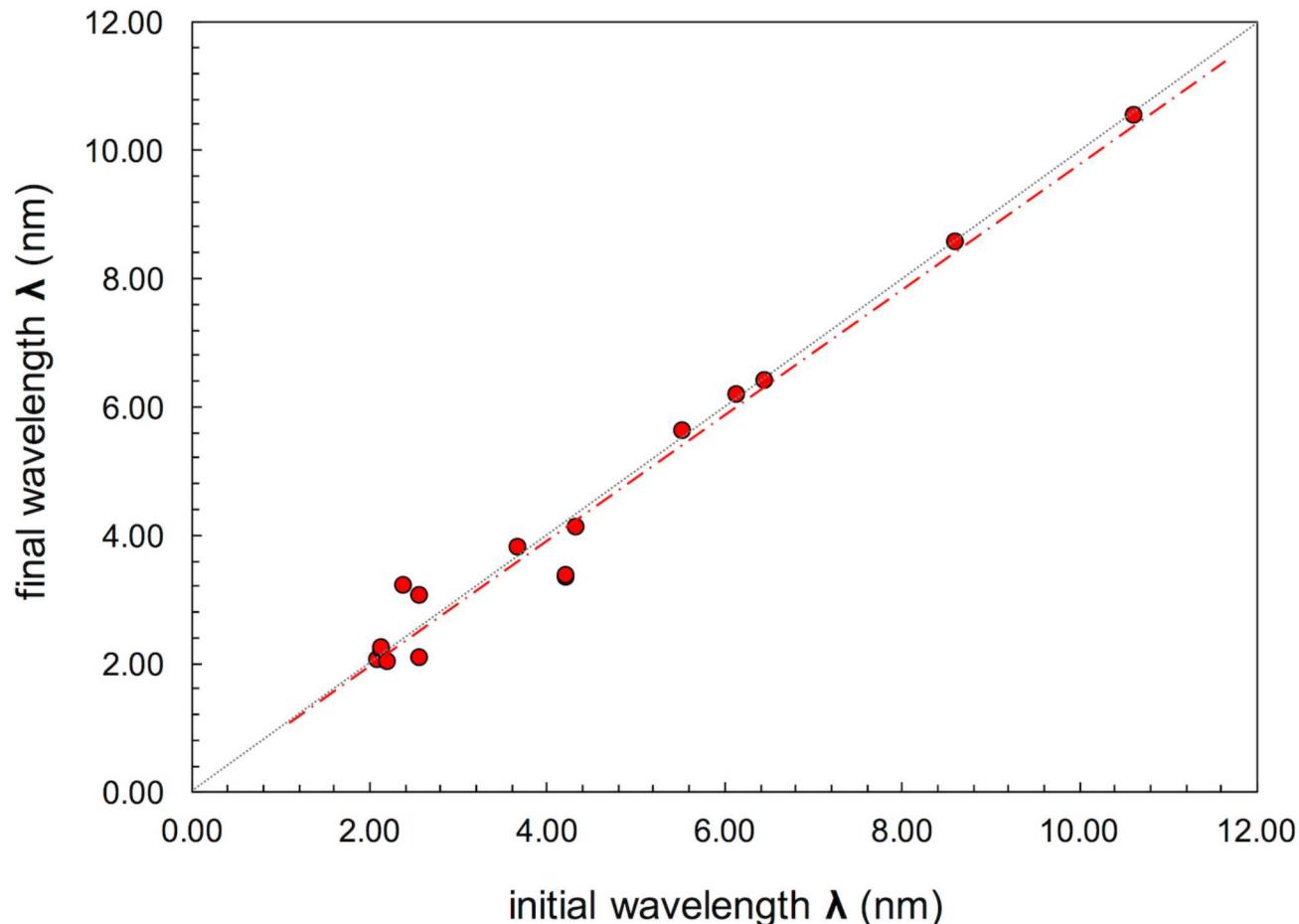


$F$ : composition-averaged atomic scatterings  $F_i$

$L \cdot P$ : Lorentz-Polarization effect as corrected for a graphite monochromator; in this case, at a Bragg angle  $2\theta$  of  $25^\circ$

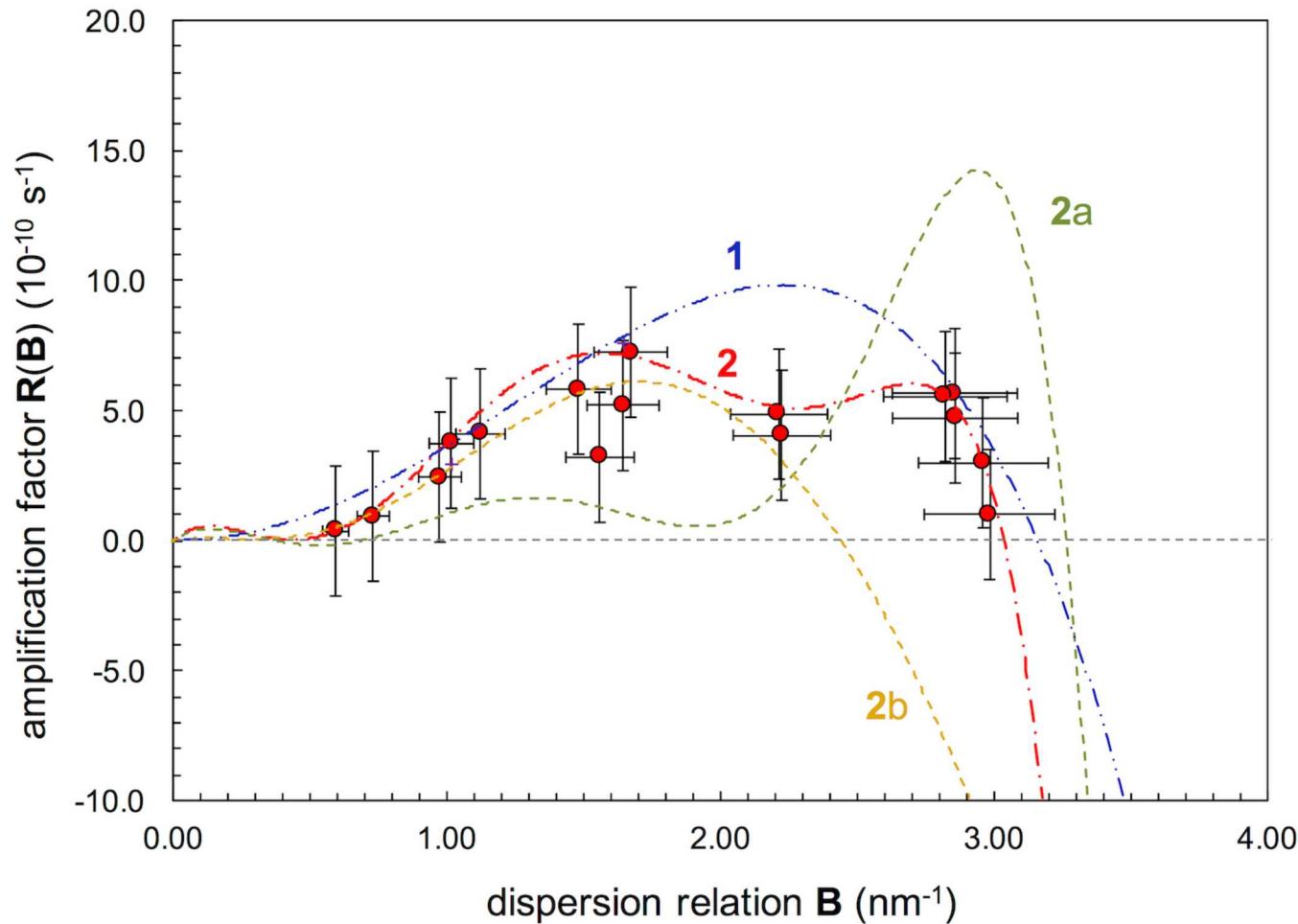
$T_x$ : product of the mass absorption coefficient  $\mu/\rho$  with density  $\rho$  and specimen film thickness  $x$

$D_w$ : Debye-Waller temperature effect on lattice vibration


- XRD scans of 3.05 and 3.19 nm nanolaminates after 30 yrs at 23°C are shown. The integrated intensity of the satellites are normalized to the Bragg peak intensity.

# Table 1. XRD interdiffusivity at 23°C

| Wavelength $\lambda$ (nm) |       | $B^2$<br>(nm $^{-2}$ ) | $(I_{-1}/I_B)_{\text{corrected}}$ |         | $R(B)$<br>(10 $^{-10}$ s $^{-1}$ ) | $\check{D}(B)$<br>(10 $^{-24}$ cm $^2\cdot$ s $^{-1}$ ) |
|---------------------------|-------|------------------------|-----------------------------------|---------|------------------------------------|---------------------------------------------------------|
| Initial                   | Final |                        | Initial                           | Final   |                                    |                                                         |
| 10.63                     | 10.51 | 0.35                   | 0.17590                           | 0.18879 | 0.37                               | -1.037                                                  |
| 8.61                      | 8.54  | 0.54                   | 0.11493                           | 0.13803 | 0.94                               | -1.746                                                  |
| 6.46                      | 6.40  | 0.95                   | 0.06798                           | 0.10785 | 2.44                               | -2.563                                                  |
| 6.16                      | 6.17  | 1.04                   | 0.03480                           | 0.07060 | 3.74                               | -3.612                                                  |
| 5.55                      | 5.61  | 1.26                   | 0.03427                           | 0.07445 | 4.10                               | -3.248                                                  |
| 4.34                      | 4.11  | 2.20                   | 0.01351                           | 0.04003 | 5.82                               | -2.648                                                  |
| 4.24                      | 3.32  | 2.43                   | 0.00344                           | 0.00627 | 3.20                               | -1.314                                                  |
| 4.24                      | 3.37  | 2.70                   | 0.00959                           | 0.02561 | 5.19                               | -1.919                                                  |
| 3.68                      | 3.80  | 2.80                   | 0.00286                           | 0.01136 | 7.24                               | -2.588                                                  |
| 2.58                      | 3.05  | 4.91                   | 0.00539                           | 0.01349 | 4.86                               | -0.991                                                  |
| 2.41                      | 3.19  | 4.95                   | 0.00413                           | 0.00890 | 4.05                               | -0.818                                                  |
| 2.22                      | 2.01  | 8.16                   | 0.00331                           | 0.00955 | 5.65                               | -0.692                                                  |
| 2.16                      | 2.23  | 7.97                   | 0.00302                           | 0.00851 | 5.54                               | -0.695                                                  |
| 2.14                      | 2.19  | 8.17                   | 0.00156                           | 0.00383 | 4.71                               | -0.576                                                  |
| 2.10                      | 2.05  | 8.77                   | 0.00126                           | 0.00221 | 2.99                               | -0.341                                                  |
| 2.07                      | 2.07  | 8.90                   | 0.00539                           | 0.00654 | 1.00                               | -0.112                                                  |

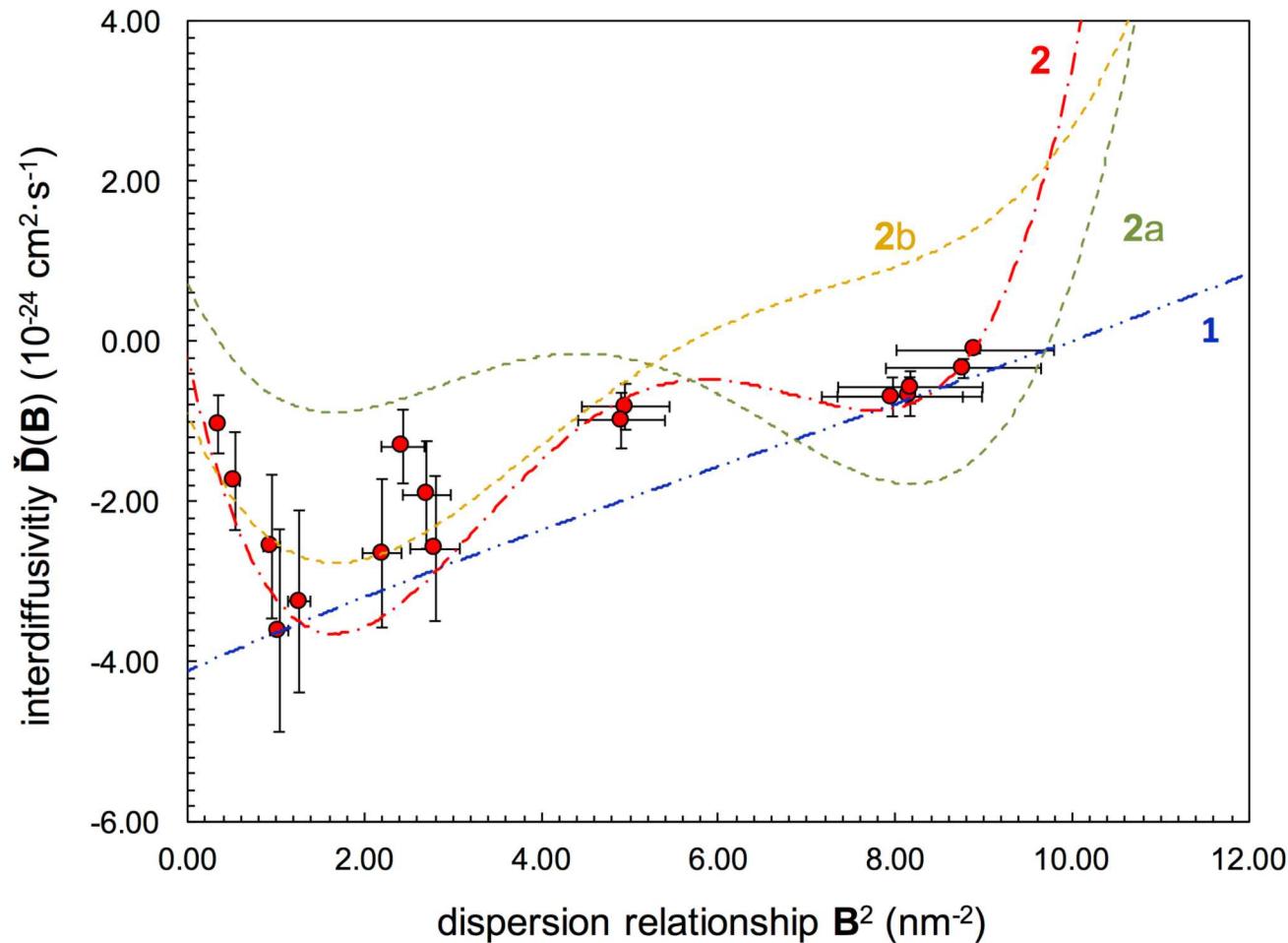

- Corrected, integrated-intensities  $I_{\text{corr}}$  are used for the initial ( $t=0$ ) and final ( $t=30$  yr) condition to compute  $R$  – growth is seen within the spinodal.

# Wavelength $\lambda$ (nm) change



- The wavelength  $\lambda$  of the composition modulation after long-term aging is plotted as a function of the initial, as-deposited value for each Cu-Ni(Fe) nanolaminate.

# Amplification factor $R$ ( $s^{-1}$ )



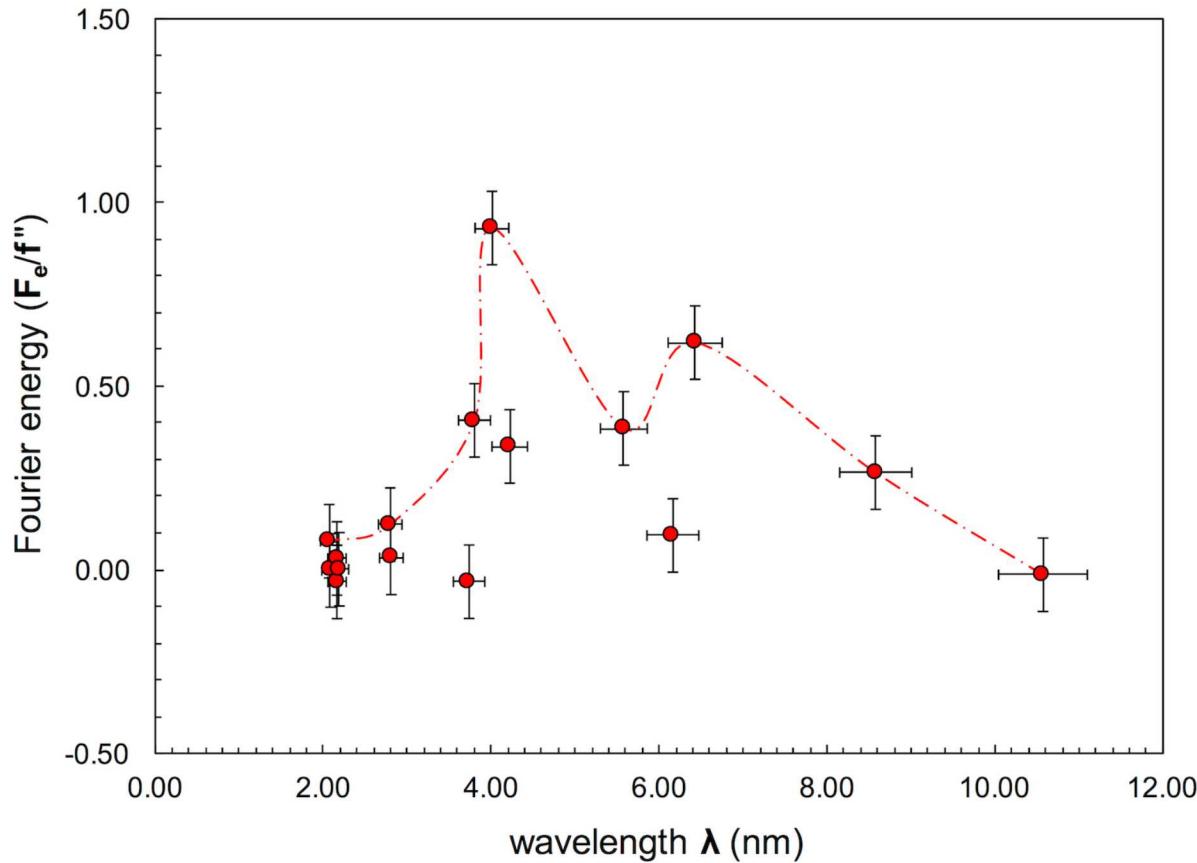

- $R$  ( $s^{-1}$ ) is computed for Cu-Ni(Fe) from changes in the XRD profile.  $R$  is plotted as a function of the dispersion relation wavenumber  $B$  ( $\text{nm}^{-1}$ ) in several ways.

# Bimodal amplification factor $R$

- The wavenumber  $\beta_{\max}$  for the maximum amplification of the composition wave should decrease with time as attributed to nonlinear diffusion as independent of strain energy.
- However, the suppression of the coherent spinodal for long wavenumbers with strain energy contributions will tend to shift the critical wavenumber  $\beta_{\text{crit}}$  for allowable growth to greater values since the driving force of the Helmholtz free energy increases proportional to the decrease in the process temperature below the chemical spinodal.
- Consequently, the change in  $\beta_{\text{crit}}$  would tend to shift the maximum amplification to a larger wavenumber  $\beta_{\max}$  although with slower kinetics.

# Interdiffusivity $\check{D}(B)$ ( $\text{cm}^2 \cdot \text{s}^{-1}$ )




- $\check{D}(B)$  is plotted as a function of the dispersion relationship  $B^2$  ( $\text{nm}^{-2}$ ) for Cu-Ni(Fe) as computed using the tabulated amplification values  $R(B)$  ( $\text{s}^{-1}$ ).

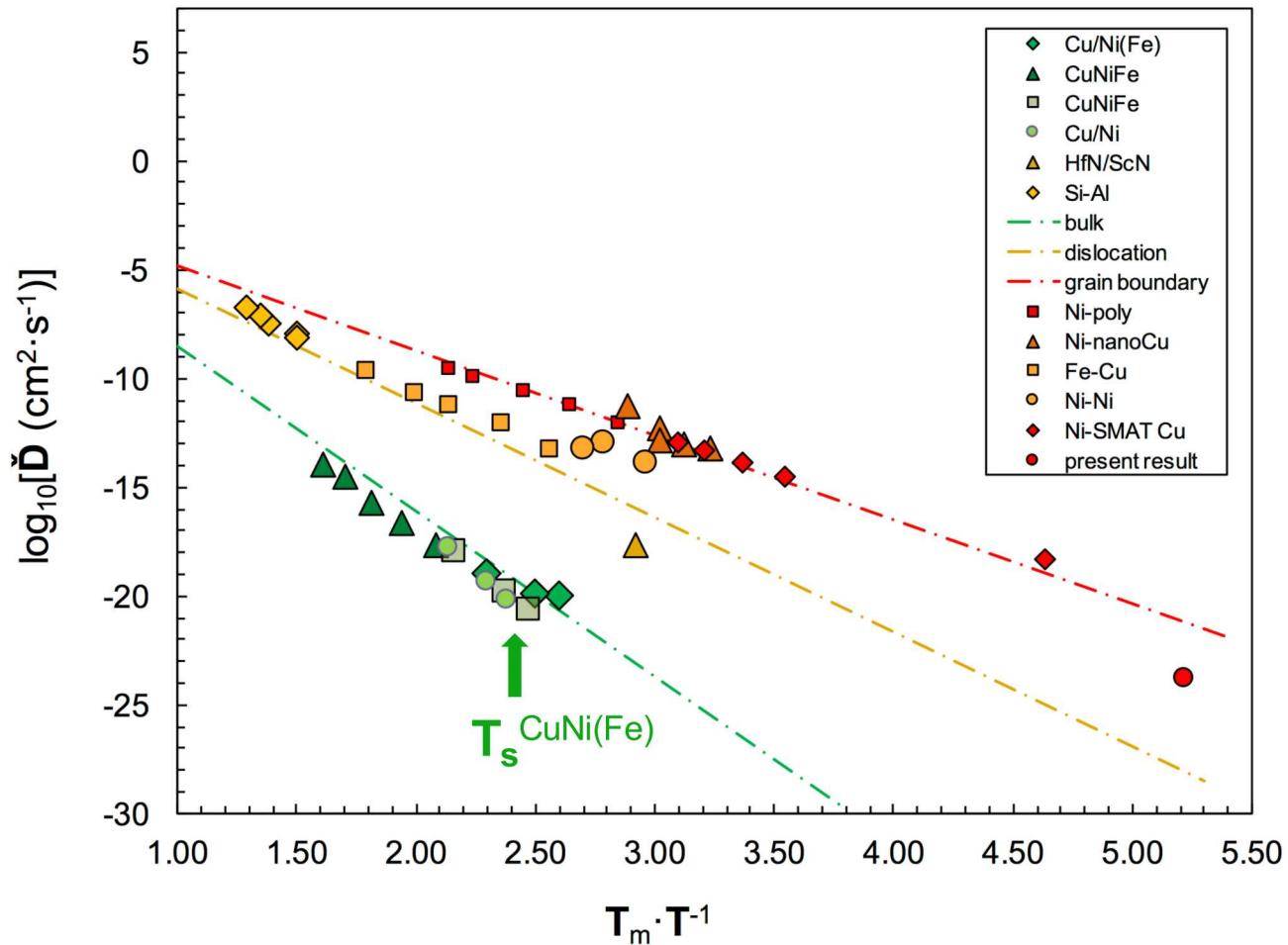
# Table 2. Computed diffusivity and gradient energy coefficients at 23°C

| Curve Fit                                       | 1      | 2      | 2a     | 2b      | 3                       |
|-------------------------------------------------|--------|--------|--------|---------|-------------------------|
| $\check{D}$ ( $10^{-10}$ nm $^2$ ·s $^{-1}$ )   | -4.108 | -1.767 | 0.7208 | -0.9222 | $-1.00 \times 10^{-16}$ |
| $M$ ( $10^{10}$ nm $^2$ ·J $^{-1}$ ·s $^{-1}$ ) | 2.383  | 1.025  | -41.82 | 53.51   | $5.80 \times 10^{-17}$  |
| $f''$ ( $10^{-18}$ J·nm $^{-3}$ )               | -1.484 | -1.484 | -1.484 | -1.484  | -1.484                  |
| $K_1$ ( $10^{-20}$ J·nm $^{-1}$ )               | 8.683  | -140.2 | 244.2  | -204.1  | $-1.93 \times 10^{-10}$ |
| $K_2$ ( $10^{-21}$ J·nm)                        | -2.438 | 711.3  | -1166  | 866.9   | $1.30 \times 10^{-11}$  |
| $K_3$ ( $10^{-22}$ J·nm $^3$ )                  | 1.264  | -1106  | 1945   | -1142   | $-2.35 \times 10^{-12}$ |
| $K_4$ ( $10^{-23}$ J·nm $^5$ )                  | -      | 554.3  | -      | 506.8   | $1.36 \times 10^{-11}$  |

- Curve 1: nearly a straight line, as in accordance with a 1<sup>st</sup>-order gradient energy coefficient  $K_1$ ; a significant deficiency is that the decrease in  $\check{D}(B)$  values which trend below a  $B^2$  value of 1 nm $^{-1}$  can't be reproduced as observed in the experimental data.
- Curves 2a and 2b: constituent curves to the bimodal behavior of curve-2
- **Curve 2: correctly envelopes the  $\check{D}(B)$  values; minimizes the Fourier energy component.**
- Curve 3: considered for an extrapolated  $\check{D}$  value of  $-1 \cdot 10^{-26}$  nm $^2$ ·s $^{-1}$  at 23°C for bulk diffusion; required  $K_\mu$  values are computed along with the required order of magnitude for the amplification factor  $R$ ; it's found that the  $K_\mu$  values would have to be 10-to-12 orders of magnitude smaller than values measured, and corresponding  $R$  values would need to be 16 orders of magnitude smaller than measured.

# Fourier energy term ( $F_e/f''$ )




- The Fourier energy computed using the Curve 2 fit for  $\check{D}(B)$  provides values for  $F_e/f''$  that are comparable to those reported at 320, 345 and 400°C.
- The local maximum occurs at a composition wavelength consistent with the local maximum in absolute value of the interdiffusivity  $\check{D}(B)$  coefficient.

# Table 2. Diffusivities at 320-400°C

| Material                                         | Cu/Ni(Fe) |         |        |                        |
|--------------------------------------------------|-----------|---------|--------|------------------------|
| $T$ (°C)                                         | 320       | 345     | 400    | 23                     |
| $\check{D}$ ( $10^{-6}$ nm $^2$ ·s $^{-1}$ )     | -1.065    | 1.208   | 11.27  | $-1.767 \cdot 10^{-4}$ |
| $M$ ( $10^{+16}$ nm $^2$ ·J $^{-1}$ ·s $^{-1}$ ) | 0.1285    | 0.2187  | 0.3139 | $1.025 \cdot 10^{-6}$  |
| $f'$ ( $10^{-19}$ J·nm $^{-3}$ )                 | -0.7134   | 0.4756  | 3.091  | -14.84                 |
| $K_1$ ( $10^{-20}$ J·nm $^{-1}$ )                | 0.3496    | -0.9311 | -4.494 | -140.2                 |
| $K_2$ ( $10^{-21}$ J·nm)                         | -0.2735   | 1.890   | 5.752  | 711.3                  |
| $K_3$ ( $10^{-22}$ J·nm $^3$ )                   | 0.1496    | -1.702  | -3.991 | -1106                  |
| $K_4$ ( $10^{-23}$ J·nm $^5$ )                   | -0.0295   | 0.5397  | 0.6091 | 554.3                  |

- Results for 23°C aging are tabulated for comparison with experimental data for  $\check{D}$  (cm $^2$ ·s $^{-1}$ ) from prior experiments at temperatures near the spinodal.
- The bulk diffusivity that would result at room temperature is well below, by 16-orders of magnitude, the anomalously high diffusivity for Cu-Ni(Fe).
- *Next – an assessment of Arrhenius behavior is made with respect to different diffusion mechanisms through the bulk, along dislocations, and at surfaces.*

# Arrhenius plot of diffusivity $\check{D}$ data



- Linear curves progress with an increasing value of  $\check{D}$  ( $\text{cm}^2 \cdot \text{s}^{-1}$ ) from (lattice or) bulk-, to (dissociated) dislocation-, to (un dissociated dislocation) grain boundary-diffusion as is plotted with respect to the ratio of melt  $T_m$  to test  $T$ .

# Anomalous fast diffusion

- Higher diffusion rates become prevalent though the transport of atoms along paths that short circuit the bulk diffusion process.
  - Alternative paths for progressively higher diffusivities can be found along dislocation-pipes, grain boundaries, and surfaces.
  - Grain boundaries between layers in nanocrystalline nanolaminate materials provides such features as needed for enhanced diffusion.
- The  $\check{D}(B)$  value decreases at both longer and shorter nanolaminate wavelengths.
  - A possible cause is that the enhanced diffusion from the grain boundary mechanism diminishes as the boundary length between interfaces becomes too long; or is inhibited by strain energy effects that are predominate at shorter wavelengths.

# Discussion

- Nonlinear diffusion effects will shift maximum growth to shorter wavenumbers, i.e. longer wavelengths, whereas strain energy will slow growth.
  - The interface-induced strain effect is more pronounced at longer wavenumbers, i.e. shorter wavelengths.
  - The maximum amplification for growth can shift to short wavenumbers with a further decrease of  $T$  below the spinodal.
  - *Thus, the further  $T$  is decreased below the chemical spinodal, we can expect the shape of the  $R(B)$  versus  $B$  curve to become progressively more bimodal as a consequence of the  $\beta$ -dependence of strain energy.*
- A lack of grain growth, i.e. recrystallization, implies the role of grain-boundary motion induced diffusion is not significant, whereas the use of grain boundaries and dislocation pipes provide paths for accelerated atomic transport between the layers of the nanolaminate.

# Summary.1

- The decomposition of a one-dimensional composition wave in Cu-Ni(Fe) nanolaminate structures is quantified using x-ray diffraction to determine the kinetics of interdiffusion.
  - A negative interdiffusivity is found for each sample aged at room temperature over a composition wavelength range of 2.1–10.6 nm.
- *Additional effects* are revealed as a result of the decomposition process over long time periods, such as a bifurcation of the wavelength for maximum growth.
  - *The competing effects of time, and the further suppression in temperature below the chemical spinodal for a strain layered structure produce an apparent bimodal distribution of the amplification factor  $R$  with wavenumber  $\beta$ .*

# Summary.2

- A diffusivity value  $\check{D}$  of  $1.77 \times 10^{-24} \text{ cm}^2 \cdot \text{s}^{-1}$  is determined for the Cu-Ni(Fe) alloy system – perhaps, the first such measurement at a ratio of melt-to-test temperature that's  $>5$ .
  - Although  $\check{D}$  is extremely small, it's several orders of magnitude greater than the value extrapolated from bulk diffusion.
- Operative diffusion mechanisms may include the possible effects of short-circuit diffusion through interlayer grain boundaries.
- For further reference about this topic...
  - Jankowski A F (2018) Interdiffusion at room temperature in Cu-Ni(Fe) nanolaminates. *Coatings* 8:225-1-16.
  - Jankowski A F (2015) Strain energy effects in the spinodal decomposition of Cu-Ni(Fe) nanolaminates coatings. *Coatings* 5:246-262.
  - Jankowski A F, Tsakalakos T (1989) Phase Stability by the Artificial Concentration Wave Method. *Metall. Trans. A* 20:357-362.