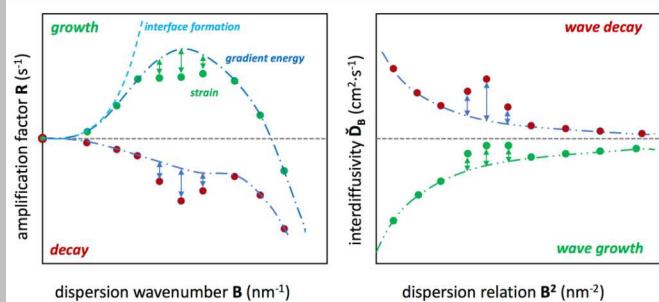
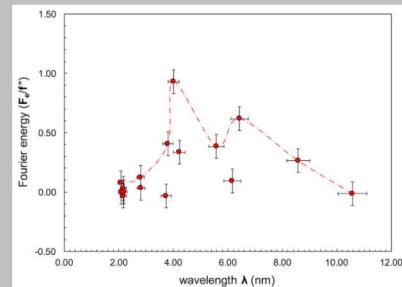
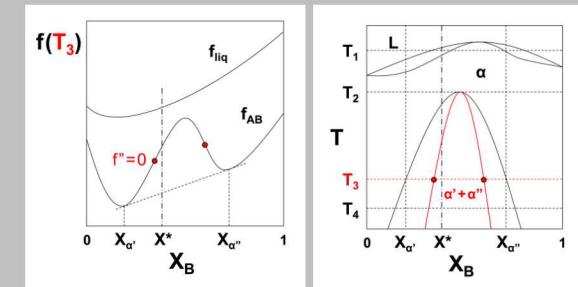


Exceptional service in the national interest



Interdiffusion kinetics in Cu-Ni(Fe) nanolaminate structures

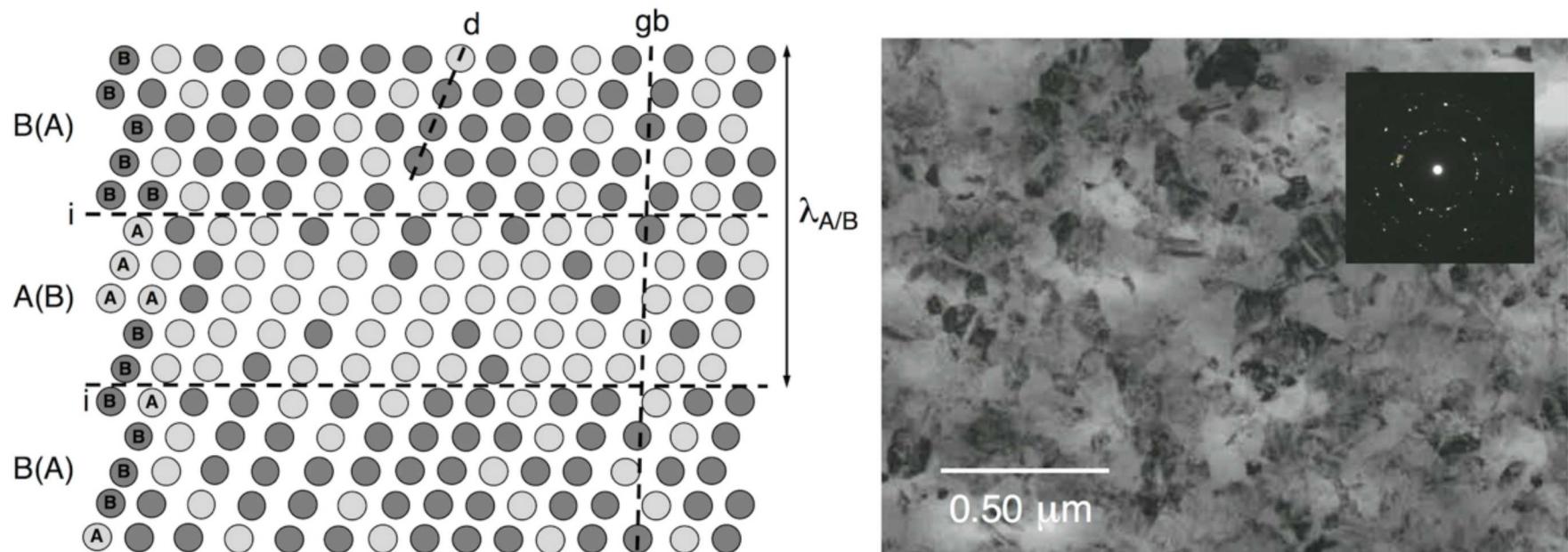
Alan F. Jankowski

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Overview

- What is a synthetic nanolaminate structure?
 - A metastable structure with an artificial short-range order.
 - Anisotropic physical properties as strength, hardness, magnetism ...
 - Nanolaminates are useful to quantify transport properties.
- *The application of interest* – to study the kinetics of the phase transformation for spinodal decomposition at a temperature that is well within the chemical spinodal, i.e. 23°C.
 - The classic Cahn-Hilliard model and Khachaturyan static concentration wave theory are supplemented with a new protocol for analysis of the composition wave fluctuations.
- Results reveal the quantifiable effects of nano structure on the diffusion kinetics.
 - i.e. effects of strain energy and defect structure of the nanolaminates.

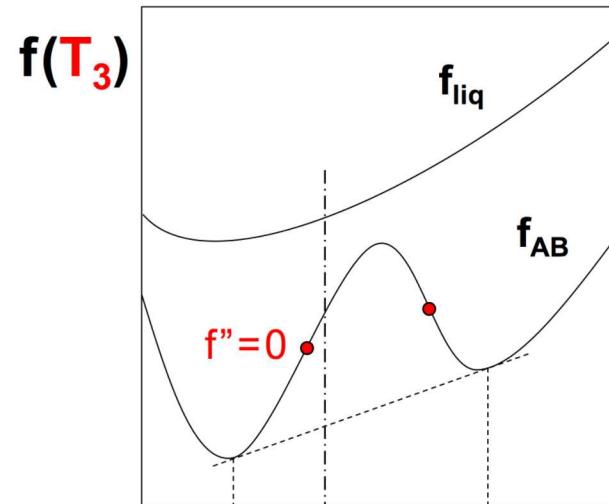
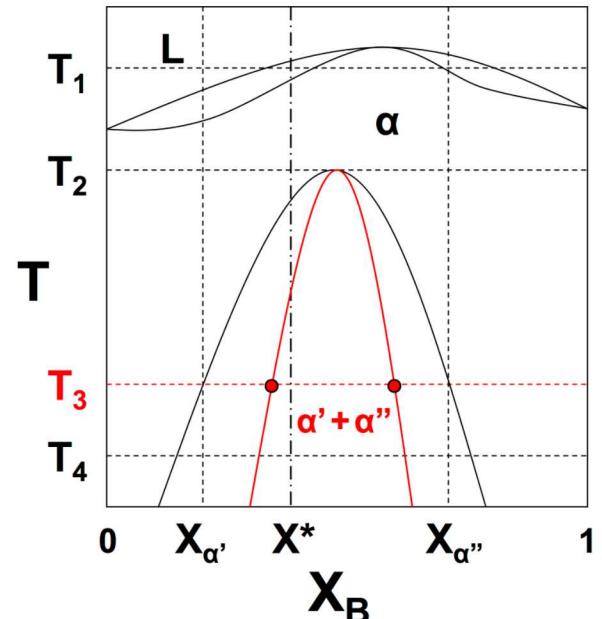
Cu-Ni(Fe) nanolaminate



- A laminate of A and B atoms is viewed in cross-section.
 - Features include a threading dislocation (d), a grain boundary (gb) between columnar grains, and the A/B layer pair spacing, i.e. the composition wavelength ($\lambda_{A/B}$).
- TEM BF and SAED images for a nanolaminate with a 4.34 nm composition wavelength reveal its ultra-fine grain nanostructure.

Spinodal decomposition

- Phase separation of an A-B alloy in α -solid solution occurs without a change in crystal structure.
 - The $\alpha \rightarrow \alpha' + \alpha''$ transformation proceeds via uphill diffusion when the 2nd-order derivative of the Helmholtz free energy f with respect to composition c is less than zero, i.e. $f'' = \partial^2 f / \partial c^2 < 0$.
 - The *locus of points* defined by $f'' = 0$ is the chemical spinodal.
 - It can be shown at a temp T beneath the spinodal temperature T_s that $f'' = N_v \cdot k_B \cdot (T - T_s) / [c \cdot (1 - c)]$.



Coherency effects on the spinodal

- The Cahn-Hilliard model considers the energetic effects of new interfaces, the composition gradient created, and the presence of interface separation-dependent strain.
 - R is used to compute the interdiffusivity \check{D}_B , and model its behavior to determine the diffusion coefficient $\check{D}(T)$ at a temperature T .
 - The decomposition process stops, and decay occurs beyond a critical wavenumber, i.e. $\beta > \beta_c$, where the maximum growth occurs at a wavenumber β_m equal to $\beta_c/\sqrt{2}$, and $\beta = 2\pi/\lambda_{A/B}$.
- The presence of strain energy will decrease the composition wave amplitude as quantified by its amplification factor R .
 - The energetic effect is to increase the magnitude of interdiffusivity \check{D}_B outside the spinodal, but decrease its magnitude within the spinodal.
 - A curve fit for R using a polynomial expansion of the gradient energy coefficients K_μ now allows for the computation of strain energy.

Generalized \check{D}_B equations

- The diffusivity \check{D} expressions account for nonlinear effects with time, and are related to the interdiffusivity \check{D}_B through the Fourier transform of the elastic strain energy $F_e(h)$, the second derivative f'' of the Helmholtz free energy per atom volume N_v , and gradient-energy coefficients K_μ .

$$\check{D}_B = \check{D} \cdot \{1 + F_e(h)/f'' + (2/f'') \cdot \sum [K_\mu \cdot B^{2\mu}(h)]\} = \check{D} \cdot [1 + \sum K'_\mu \cdot B^{2\mu}(h)]$$

where h is equal to $d_{(hkl)}/\lambda_{A/B}$ for an interplanar spacing $d_{(hkl)}$,

the dispersion relation $B^2(h) = 2\{1 - \cos(2\pi h)\}/d_{(hkl)}^2$ for cubic metals,

$\check{D} = (M/N_v) \cdot f''$ for the mobility M ,

the per atom volume N_v equals $4/a^3$, and $K'_\mu = 2K_\mu/f''$

- The strain energy $F_e(h)$ for the distorted lattice is a function of $B(h)$.

$$F_e(h) = 2\eta(h)^2 \cdot Y(h)$$

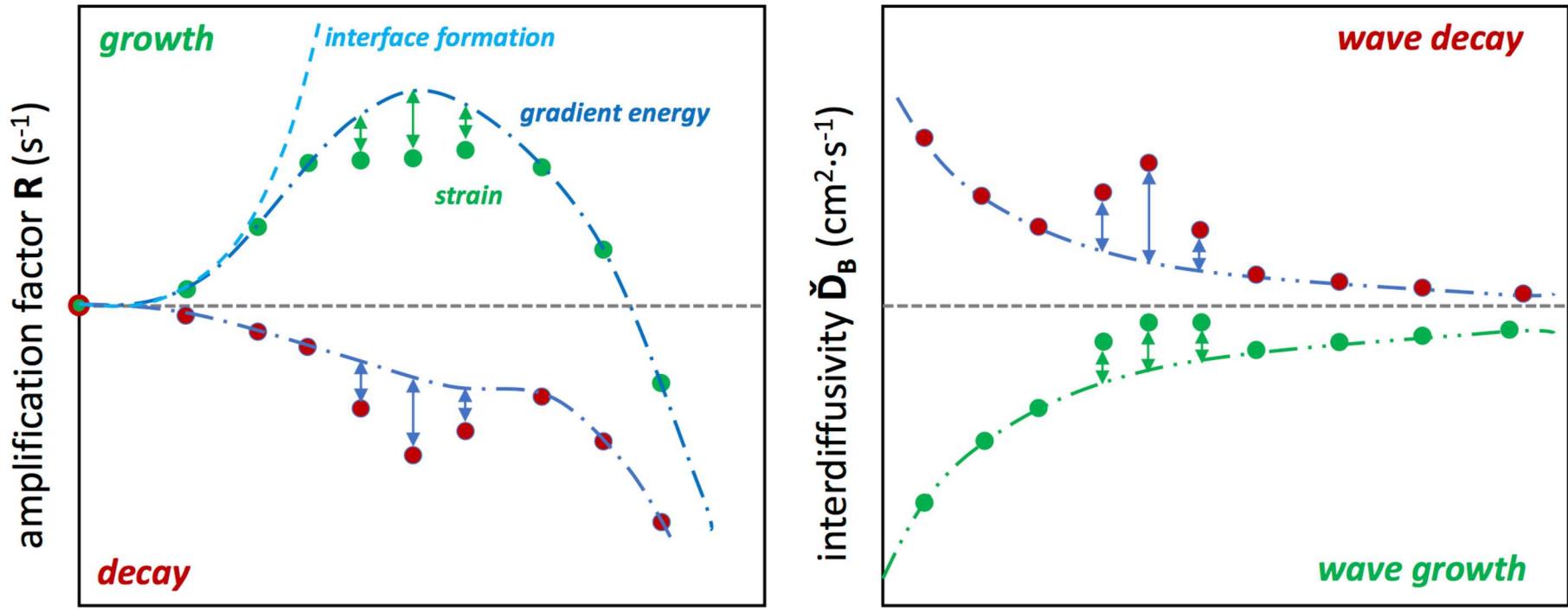
where the compositionally dependent strain $\eta = (1/a) \cdot (\partial a / \partial c)$, and

Y is the $\langle hkl \rangle$ orientation-dependent biaxial modulus.

Bounding the wave amplification

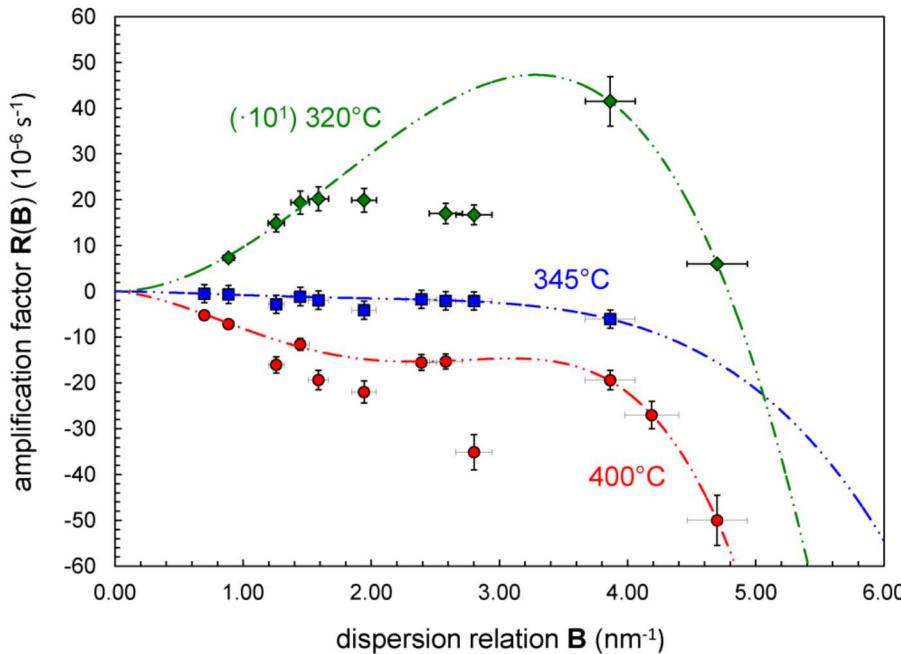
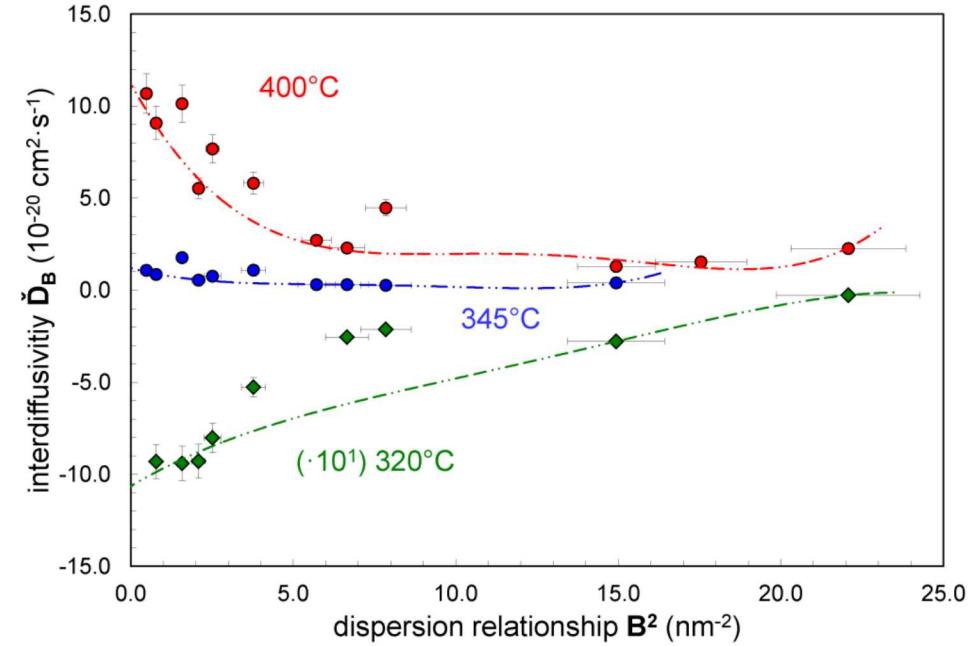
- The boundary condition of zero amplification at an infinite wavelength is now used to first model the amplification \mathbf{R} behavior.
 - This step ensures a rigorous computation of $\check{\mathbf{D}}_B$ values, and the subsequent modeling of interdiffusivity behavior to determine $\check{\mathbf{D}}(T)$.
- A higher-order polynomial is fit to the experimental \mathbf{R}_{exp} data to simulate its behavior as $\mathbf{R}_{sim} = \sum \mathbf{k}'_\mu \cdot \mathbf{B}^\mu(h)$.
- The \mathbf{k}'_μ terms are then used to compute values for a simulated interdiffusivity $\check{\mathbf{D}}_{Bsim}$ behavior as $\check{\mathbf{D}}_{Bsim} = -\mathbf{R}_{sim}/\mathbf{B}^2(h)$.
- The $\Delta\mathbf{R} = (\mathbf{R}_{sim} - \mathbf{R}_{exp})$ and $\Delta\check{\mathbf{D}}_B = (\check{\mathbf{D}}_{Bexp} - \check{\mathbf{D}}_{Bsim})$ differences are the consequence of strain energy, and positive quantities at all temperatures.
- From the Cahn-Hilliard formulation, it's now found that the strain energy $\mathbf{F}_e(h)$ equals $\Delta\check{\mathbf{D}}_B \cdot [\mathbf{f}''(h)/\check{\mathbf{D}}]$.
- *With this approach*, the strain energy can be rigorously quantified as a function of the composition wavelength $\lambda_{A/B}$.

Schematic of strain energy effects



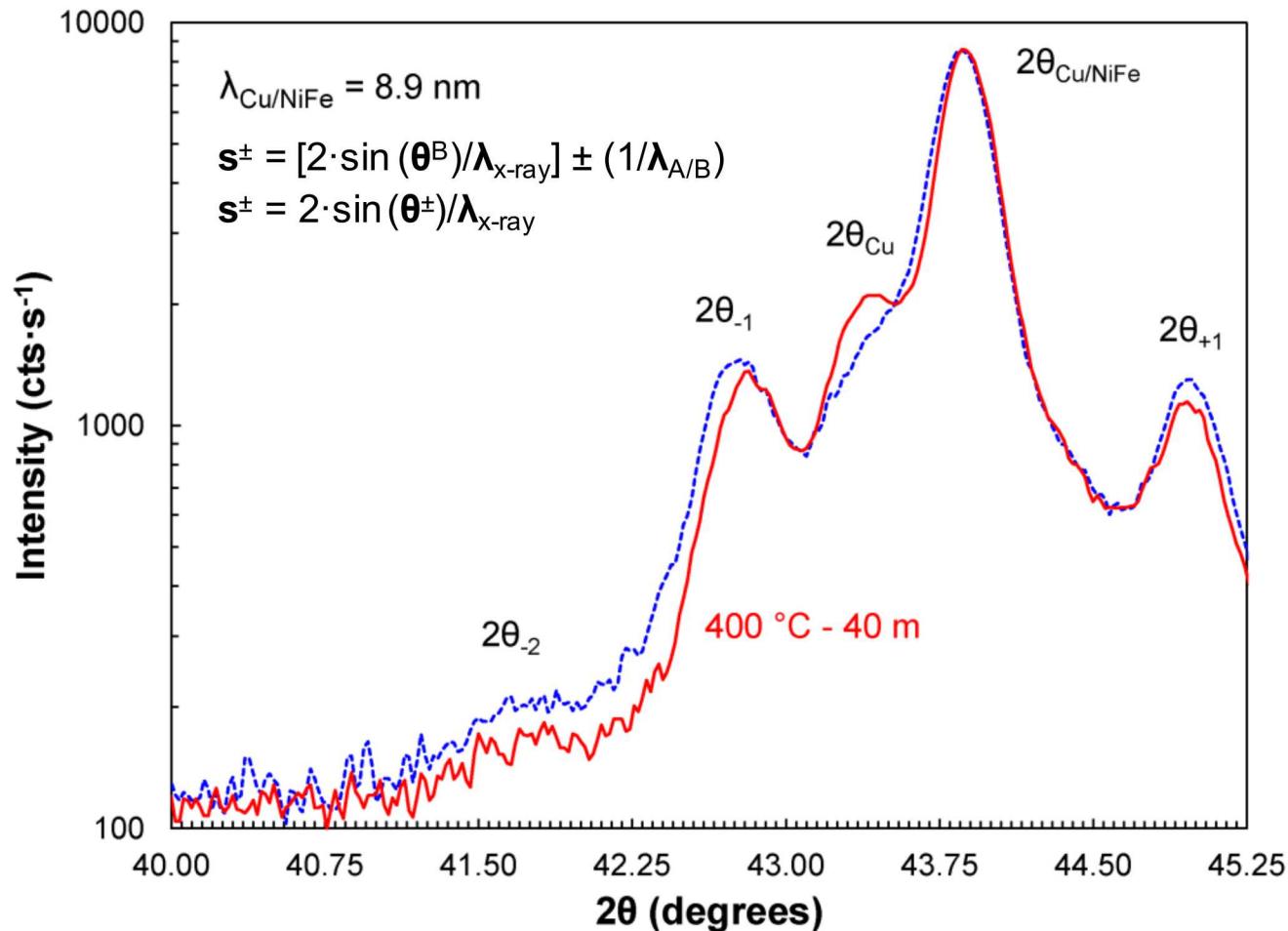
- The polynomial fit envelopes the R -data as an upper bound curve.
- The corresponding interdiffusivity \check{D}_B shows an enhancement of decay to the composition wave; and a slowing of its growth.

Near the Cu-Ni(Fe) spinodal



- The interdiffusivity \check{D}_B ($\text{cm}^2 \cdot \text{s}^{-1}$) variation with the square of the dispersion relation wavenumber B^2 (nm^{-2}) is computed from the amplification factor R (s^{-1}) for the Cu/Ni(Fe) nanolaminate samples that were annealed at 320°C (diamond), 345°C (squares), and 400°C (circles).
- The variation from each polynomial fit is due to the effect of strain energy.
- A peak value of $9.4 \cdot 10^7 \text{ J} \cdot \text{m}^{-3}$ for the strain energy is computed for the nanolaminate coatings with 2-4 nm composition wavelengths at 400 °C.

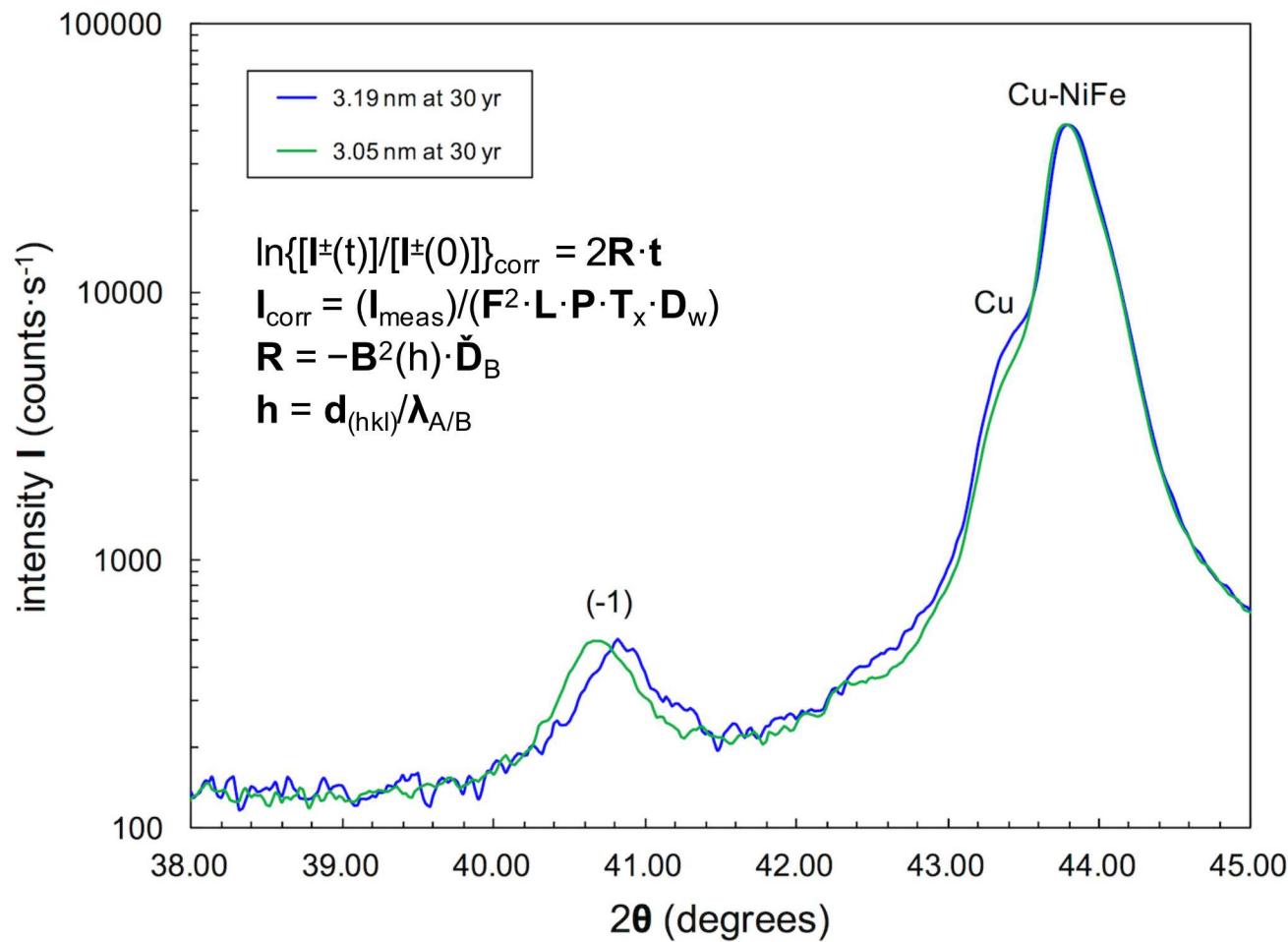
$\theta/2\theta$ X-ray diffraction (XRD) scans



Short-range compositional order produces satellite peaks about the (111) Bragg reflection of the Cu/NiFe nanolaminate. The Bragg peak of the Cu base layer for epitaxial growth is seen.

- The Bragg and satellite peak variation with 2θ position for the Cu/Ni(Fe) nanolaminate coating with a 8.9 nm wavelength λ before (dashed line) and after (solid line) a 40 min at 400°C anneal treatment – *decay outside the spinodal*.

$\theta/2\theta$ XRD scans after 30 yrs



F : composition-averaged atomic scatterings F_i

$L \cdot P$: Lorentz-Polarization effect as corrected for a graphite monochromator; in this case, at a Bragg angle 2θ of 25°

T_x : product of the mass absorption coefficient μ/ρ with density ρ and specimen film thickness x

D_w : Debye-Waller temperature effect on lattice vibration

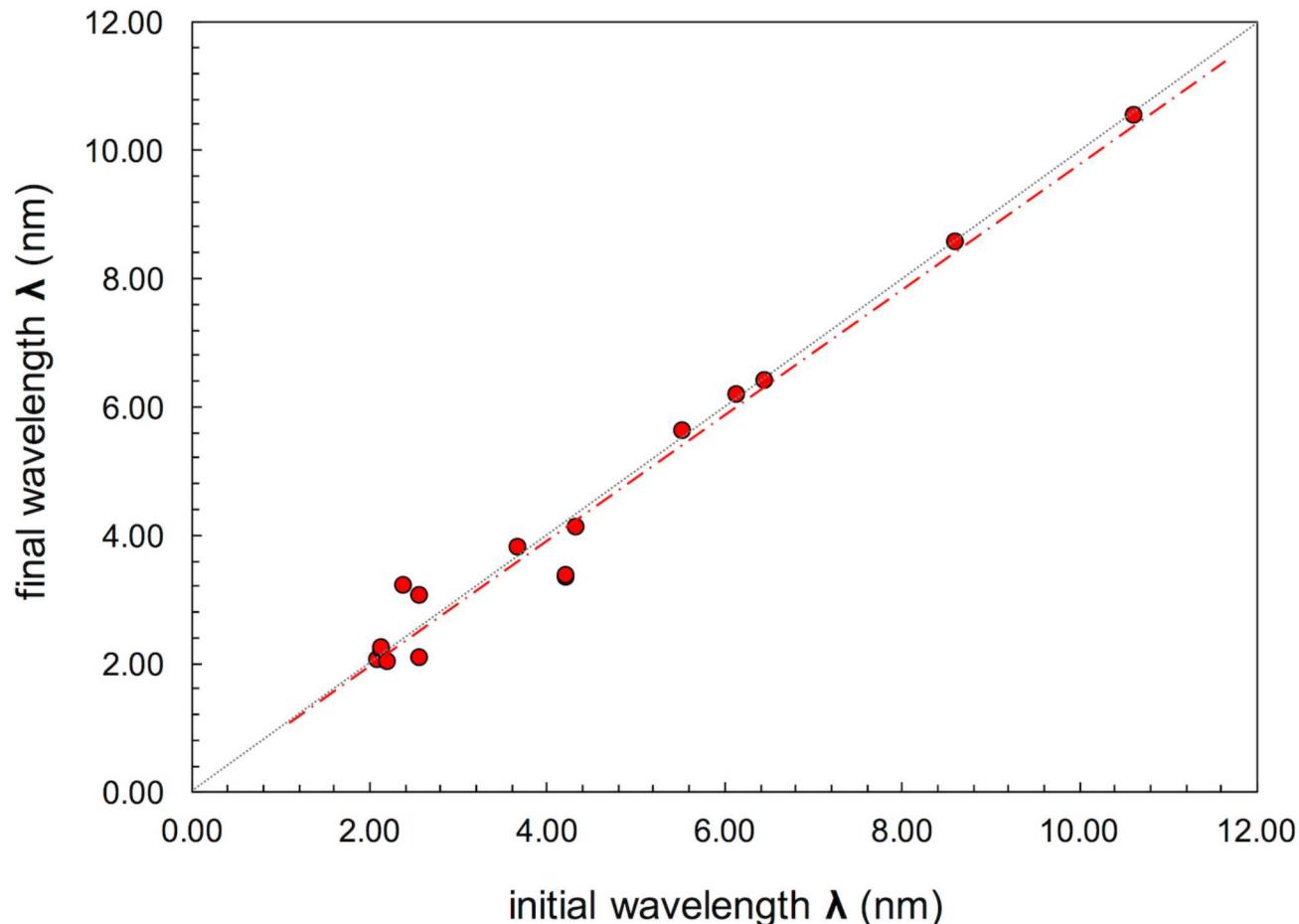
- XRD scans of 3.05 and 3.19 nm nanolaminates after 30 yrs at 23°C are shown. The integrated intensity of the satellites are normalized to the Bragg peak intensity.

Table 1. XRD interdiffusivity at 23°C

Wavelength λ (nm)		B^2 (nm $^{-2}$)	$(I_{-1}/I_B)_{\text{corrected}}$		$R(B)$ (10 $^{-10}$ s $^{-1}$)	$\check{D}(B)$ (10 $^{-24}$ cm $^2\cdot$ s $^{-1}$)
Initial	Final		Initial	Final		
10.63	10.51	0.35	0.17590	0.18879	0.37	-1.037
8.61	8.54	0.54	0.11493	0.13803	0.94	-1.746
6.46	6.40	0.95	0.06798	0.10785	2.44	-2.563
6.16	6.17	1.04	0.03480	0.07060	3.74	-3.612
5.55	5.61	1.26	0.03427	0.07445	4.10	-3.248
4.34	4.11	2.20	0.01351	0.04003	5.82	-2.648
4.24	3.32	2.43	0.00344	0.00627	3.20	-1.314
4.24	3.37	2.70	0.00959	0.02561	5.19	-1.919
3.68	3.80	2.80	0.00286	0.01136	7.24	-2.588
2.58	3.05	4.91	0.00539	0.01349	4.86	-0.991
2.41	3.19	4.95	0.00413	0.00890	4.05	-0.818
2.22	2.01	8.16	0.00331	0.00955	5.65	-0.692
2.16	2.23	7.97	0.00302	0.00851	5.54	-0.695
2.14	2.19	8.17	0.00156	0.00383	4.71	-0.576
2.10	2.05	8.77	0.00126	0.00221	2.99	-0.341
2.07	2.07	8.90	0.00539	0.00654	1.00	-0.112

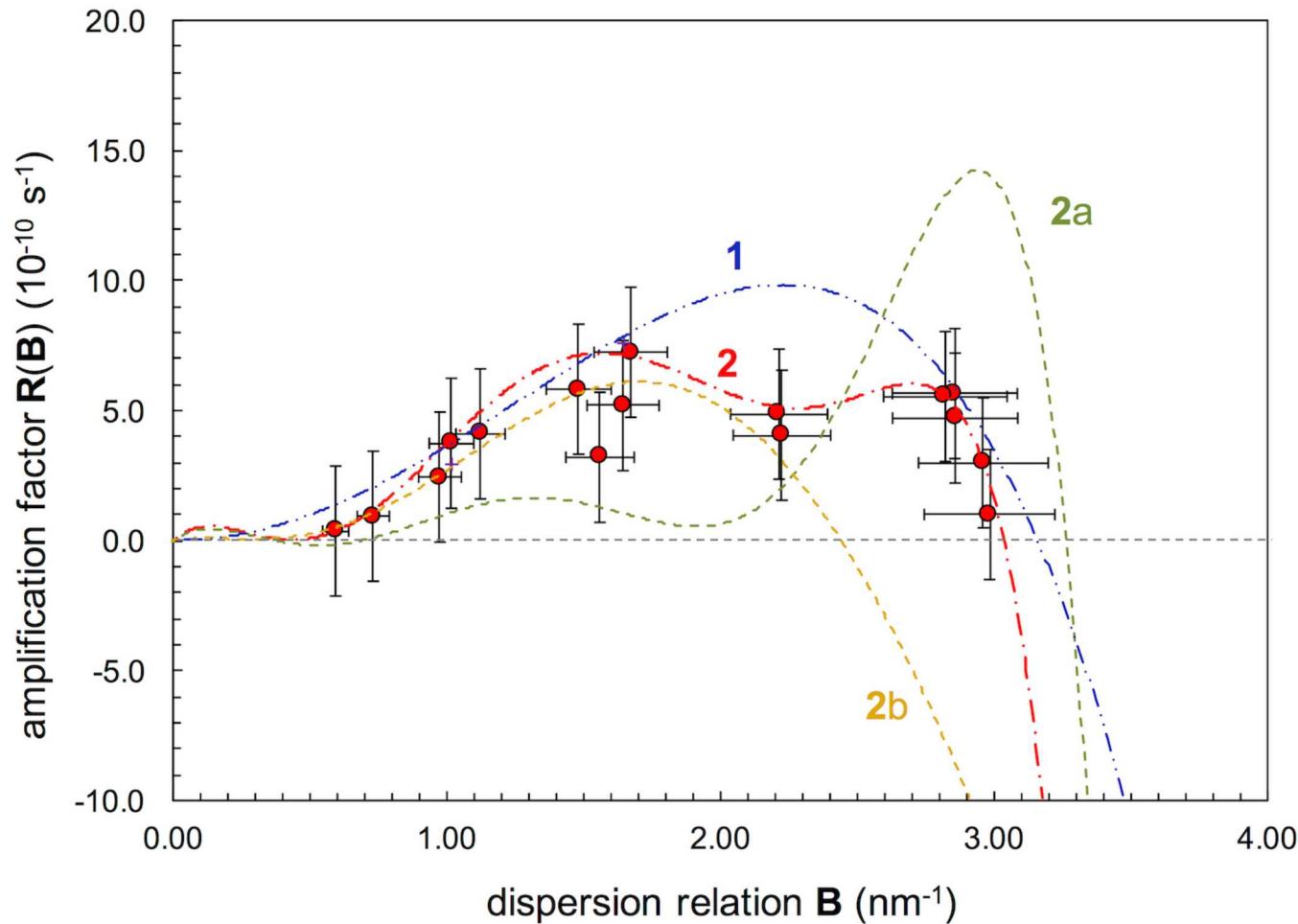
- Corrected, integrated-intensities I_{corr} are used for the initial ($t=0$) and final ($t=30$ yr) condition to compute R – growth is seen within the spinodal.

Wavelength λ (nm) change



- The wavelength λ of the composition modulation after long-term aging is plotted as a function of the initial, as-deposited value for each Cu-Ni(Fe) nanolaminate.

Amplification factor R (s^{-1})

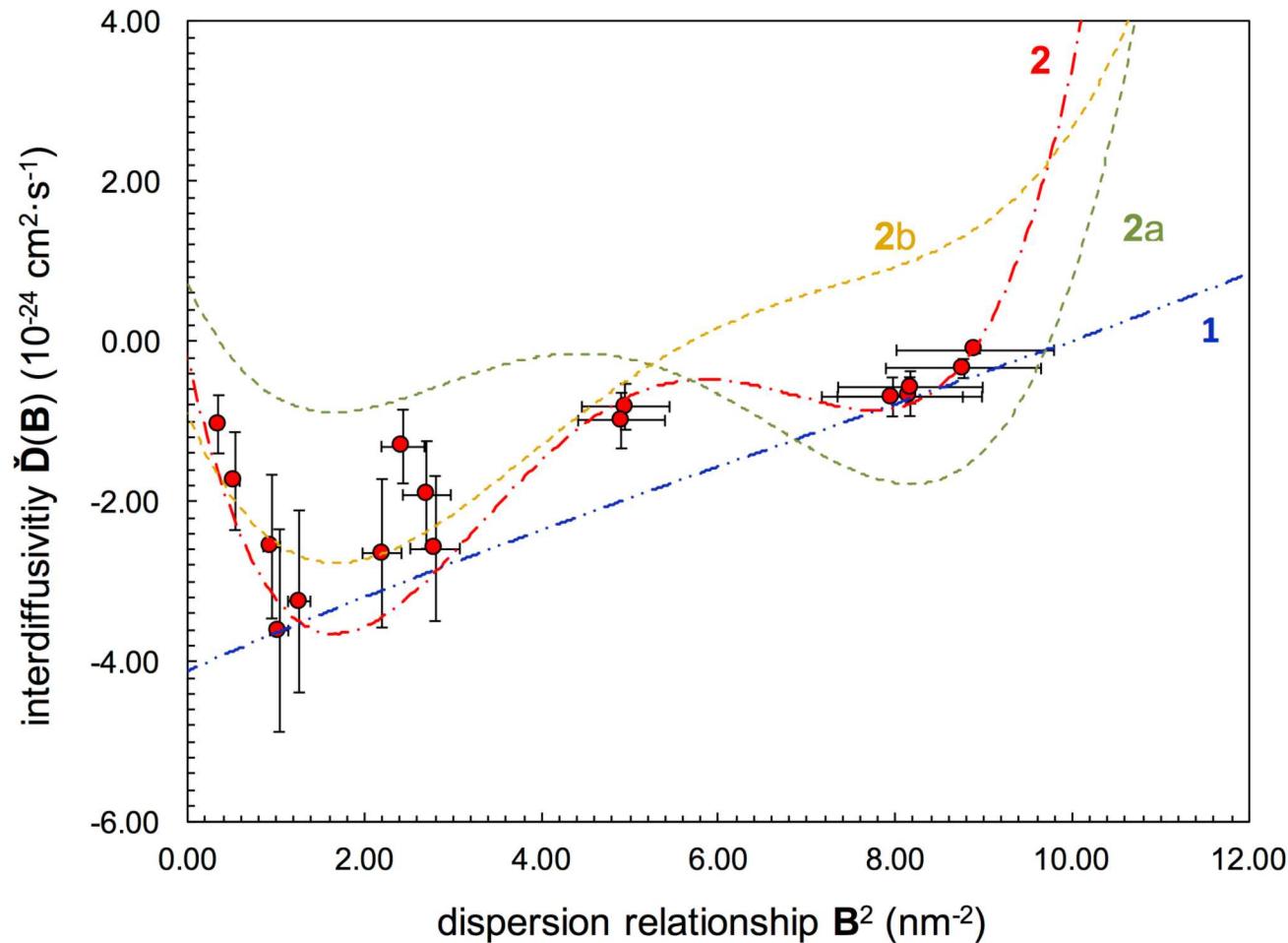


- R (s^{-1}) is computed for Cu-Ni(Fe) from changes in the XRD profile. R is plotted as a function of the dispersion relation wavenumber B (nm^{-1}) in several ways.

Bimodal amplification factor R

- The wavenumber β_{\max} for the maximum amplification of the composition wave should decrease with time as attributed to nonlinear diffusion as independent of strain energy.
- However, the suppression of the coherent spinodal for long wavenumbers with strain energy contributions will tend to shift the critical wavenumber β_{crit} for allowable growth to greater values since the driving force of the Helmholtz free energy increases proportional to the decrease in the process temperature below the chemical spinodal.
- Consequently, the change in β_{crit} would tend to shift the maximum amplification to a larger wavenumber β_{\max} although with slower kinetics.

Interdiffusivity $\check{D}(B)$ ($\text{cm}^2 \cdot \text{s}^{-1}$)



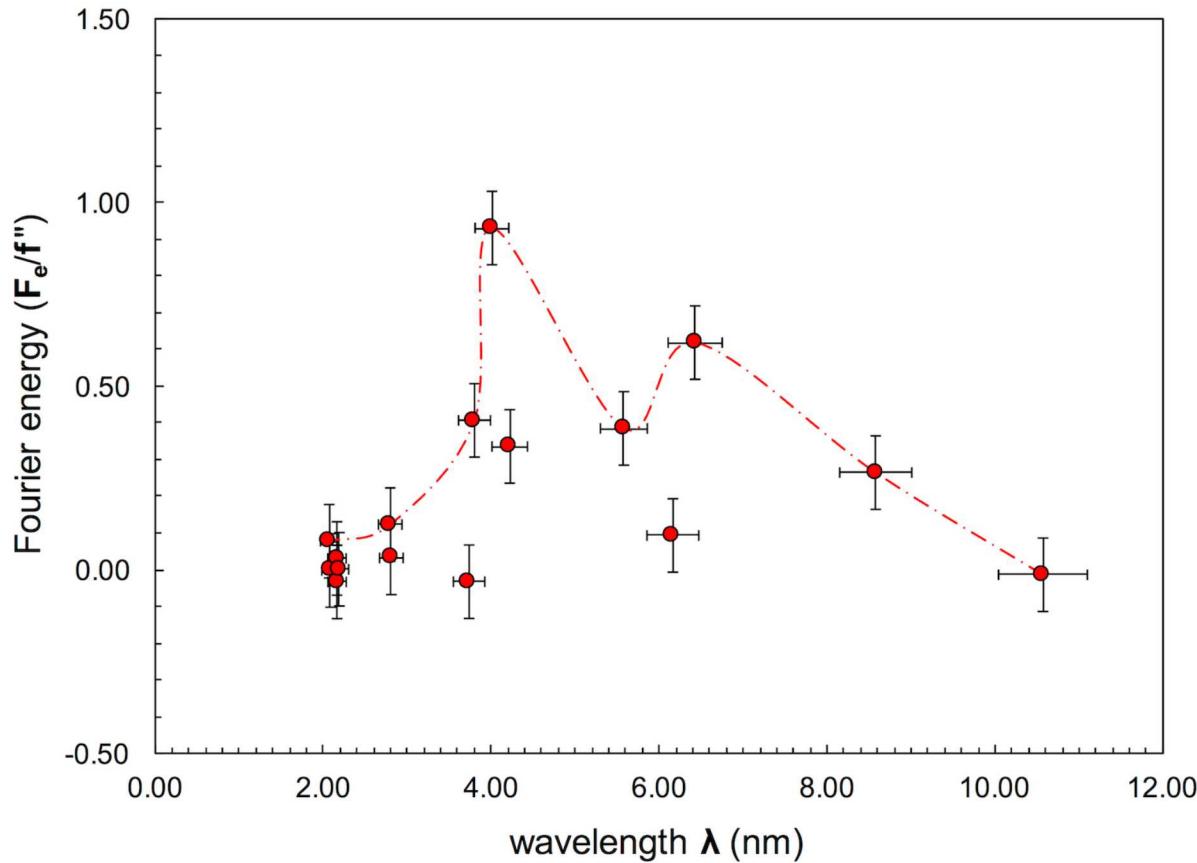
- $\check{D}(B)$ is plotted as a function of the dispersion relationship B^2 (nm^{-2}) for Cu-Ni(Fe) as computed using the tabulated amplification values $R(B)$ (s^{-1}).

Table 2. Computed diffusivity and gradient energy coefficients at 23°C

Curve Fit	1	2	2a	2b	3
\check{D} (10^{-10} nm 2 ·s $^{-1}$)	-4.108	-1.767	0.7208	-0.9222	-1.00×10^{-16}
M (10^{10} nm 2 ·J $^{-1}$ ·s $^{-1}$)	2.383	1.025	-41.82	53.51	5.80×10^{-17}
f'' (10^{-18} J·nm $^{-3}$)	-1.484	-1.484	-1.484	-1.484	-1.484
K_1 (10^{-20} J·nm $^{-1}$)	8.683	-140.2	244.2	-204.1	-1.93×10^{-10}
K_2 (10^{-21} J·nm)	-2.438	711.3	-1166	866.9	1.30×10^{-11}
K_3 (10^{-22} J·nm 3)	1.264	-1106	1945	-1142	-2.35×10^{-12}
K_4 (10^{-23} J·nm 5)	-	554.3	-	506.8	1.36×10^{-11}

- Curve 1: nearly a straight line, as in accordance with a 1st-order gradient energy coefficient K_1 ; a significant deficiency is that the decrease in $\check{D}(B)$ values which trend below a B^2 value of 1 nm $^{-1}$ can't be reproduced as observed in the experimental data.
- Curves 2a and 2b: constituent curves to the bimodal behavior of curve-2
- **Curve 2: correctly envelopes the $\check{D}(B)$ values; minimizes the Fourier energy component.**
- Curve 3: considered for an extrapolated \check{D} value of $-1 \cdot 10^{-26}$ nm 2 ·s $^{-1}$ at 23°C for bulk diffusion; required K_μ values are computed along with the required order of magnitude for the amplification factor R ; it's found that the K_μ values would have to be 10-to-12 orders of magnitude smaller than values measured, and corresponding R values would need to be 16 orders of magnitude smaller than measured.

Fourier energy term (F_e/f'')



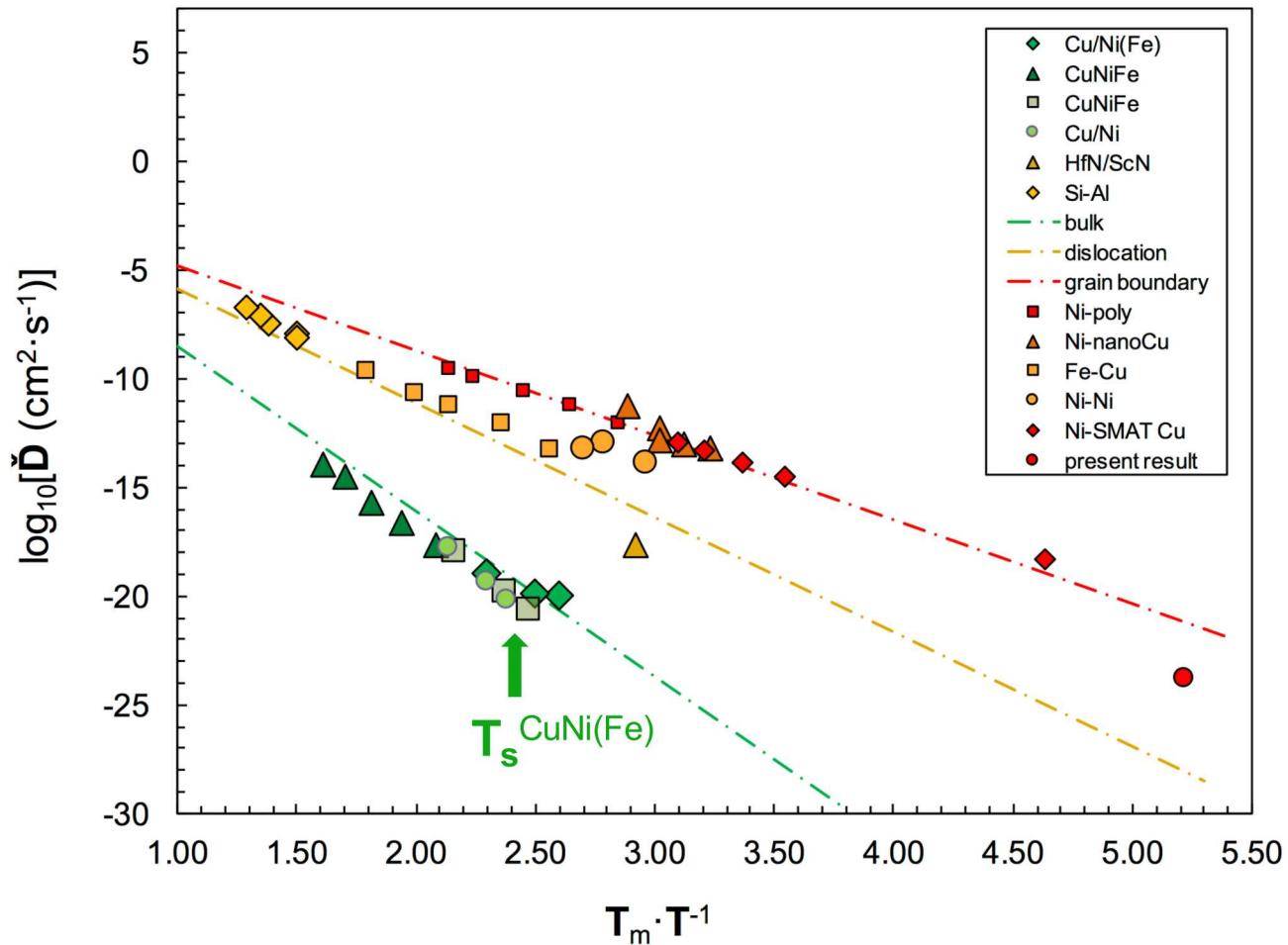
- The Fourier energy computed using the Curve 2 fit for $\check{D}(B)$ provides values for F_e/f'' that are comparable to those reported at 320, 345 and 400°C.
- The local maximum occurs at a composition wavelength consistent with the local maximum in absolute value of the interdiffusivity $\check{D}(B)$ coefficient.

Table 2. Diffusivities at 320-400°C

Material	Cu/Ni(Fe)			
T (°C)	320	345	400	23
\check{D} (10^{-6} nm 2 ·s $^{-1}$)	-1.065	1.208	11.27	$-1.767 \cdot 10^{-4}$
M (10^{+16} nm 2 ·J $^{-1}$ ·s $^{-1}$)	0.1285	0.2187	0.3139	$1.025 \cdot 10^{-6}$
f' (10^{-19} J·nm $^{-3}$)	-0.7134	0.4756	3.091	-14.84
K_1 (10^{-20} J·nm $^{-1}$)	0.3496	-0.9311	-4.494	-140.2
K_2 (10^{-21} J·nm)	-0.2735	1.890	5.752	711.3
K_3 (10^{-22} J·nm 3)	0.1496	-1.702	-3.991	-1106
K_4 (10^{-23} J·nm 5)	-0.0295	0.5397	0.6091	554.3

- Results for 23°C aging are tabulated for comparison with experimental data for \check{D} (cm 2 ·s $^{-1}$) from prior experiments at temperatures near the spinodal.
- The bulk diffusivity that would result at room temperature is well below, by 16-orders of magnitude, the anomalously high diffusivity for Cu-Ni(Fe).
- *Next – an assessment of Arrhenius behavior is made with respect to different diffusion mechanisms through the bulk, along dislocations, and at surfaces.*

Arrhenius plot of diffusivity \check{D} data



- Linear curves progress with an increasing value of \check{D} ($\text{cm}^2 \cdot \text{s}^{-1}$) from (lattice or) bulk-, to (dissociated) dislocation-, to (un dissociated dislocation) grain boundary-diffusion as is plotted with respect to the ratio of melt T_m to test T .

Anomalous fast diffusion

- Higher diffusion rates become prevalent though the transport of atoms along paths that short circuit the bulk diffusion process.
 - Alternative paths for progressively higher diffusivities can be found along dislocation-pipes, grain boundaries, and surfaces.
 - Grain boundaries between layers in nanocrystalline nanolaminate materials provides such features as needed for enhanced diffusion.
- The $\check{D}(B)$ value decreases at both longer and shorter nanolaminate wavelengths.
 - A possible cause is that the enhanced diffusion from the grain boundary mechanism diminishes as the boundary length between interfaces becomes too long; or is inhibited by strain energy effects that are predominate at shorter wavelengths.

Discussion

- Nonlinear diffusion effects will shift maximum growth to shorter wavenumbers, i.e. longer wavelengths, whereas strain energy will slow growth.
 - The interface-induced strain effect is more pronounced at longer wavenumbers, i.e. shorter wavelengths.
 - The maximum amplification for growth can shift to short wavenumbers with a further decrease of T below the spinodal.
 - *Thus, the further T is decreased below the chemical spinodal, we can expect the shape of the $R(B)$ versus B curve to become progressively more bimodal as a consequence of the β -dependence of strain energy.*
- A lack of grain growth, i.e. recrystallization, implies the role of grain-boundary motion induced diffusion is not significant, whereas the use of grain boundaries and dislocation pipes provide paths for accelerated atomic transport between the layers of the nanolaminate.

Summary.1

- The decomposition of a one-dimensional composition wave in Cu-Ni(Fe) nanolaminate structures is quantified using x-ray diffraction to determine the kinetics of interdiffusion.
 - A negative interdiffusivity is found for each sample aged at room temperature over a composition wavelength range of 2.1–10.6 nm.
- *Additional effects* are revealed as a result of the decomposition process over long time periods, such as a bifurcation of the wavelength for maximum growth.
 - *The competing effects of time, and the further suppression in temperature below the chemical spinodal for a strain layered structure produce an apparent bimodal distribution of the amplification factor R with wavenumber β .*

Summary.2

- A diffusivity value \check{D} of $1.77 \times 10^{-24} \text{ cm}^2 \cdot \text{s}^{-1}$ is determined for the Cu-Ni(Fe) alloy system – perhaps, the first such measurement at a ratio of melt-to-test temperature that's >5 .
 - Although \check{D} is extremely small, it's several orders of magnitude greater than the value extrapolated from bulk diffusion.
- Operative diffusion mechanisms may include the possible effects of short-circuit diffusion through interlayer grain boundaries.
- For further reference about this topic...
 - Jankowski A F (2018) Interdiffusion at room temperature in Cu-Ni(Fe) nanolaminates. *Coatings* 8:225-1-16.
 - Jankowski A F (2015) Strain energy effects in the spinodal decomposition of Cu-Ni(Fe) nanolaminates coatings. *Coatings* 5:246-262.
 - Jankowski A F, Tsakalakos T (1989) Phase Stability by the Artificial Concentration Wave Method. *Metall. Trans. A* 20:357-362.