
SANDIA REPORT
SAND2015-4706
Unlimited Release
Printed March 2016XX

Exploring the Interplay of Resilience
and Energy Consumption for a
Task-Based Partial Differential
Equations Preconditioner

F. Rizzi, K. Morris, K. Sargsyan, P. Mycek, C. Safta, O. Le Maı̂tre, O. Knio, B.
Debusschere

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2015-4706
Unlimited Release

Printed March 2016XX

Exploring the Interplay of Resilience and
Energy Consumption for a Task-Based

Partial Differential Equations Preconditioner

Francesco Rizzi ∗ Karla Morris † Khachik Sargsyan ‡ Paul Mycek §

Cosmin Safta ¶ Olivier Le Mâıtre ‖ Omar Knio ∗∗

Bert Debusschere ††

Abstract

We discuss algorithm-based resilience to silent data corruption (SDC) in a task-
based domain-decomposition preconditioner for partial differential equations (PDEs).
The algorithm exploits a reformulation of the PDE as a sampling problem, followed
by a solution update through data manipulation that is resilient to SDC. The imple-
mentation is based on a server-client model where all state information is held by the
servers, while clients are designed solely as computational units. Scalability tests run
up to ∼ 51K cores show a parallel efficiency greater than 90%. We use a 2D elliptic
PDE and a fault model based on random single bit-flip to demonstrate the resilience
of the application to synthetically injected SDC. We discuss two fault scenarios: one
based on the corruption of all data of a target task, and the other involving the corrup-
tion of a single data point. We show that for our application, given the test problem
considered, a four-fold increase in the number of faults only yields a 2% change in the
overhead to overcome their presence, from 7% to 9%. We then discuss potential savings
in energy consumption via dynamics voltage/frequency scaling, and its interplay with
fault-rates, and application overhead.

∗Sandia National Laboratories, Livermore, CA (fnrizzi@sandia.gov).
†Sandia National Laboratories, Livermore, CA (knmorri@sandia.gov).
‡Sandia National Laboratories, Livermore, CA (ksargsy@sandia.gov).
§Duke University, Durham, NC (paul.mycek@duke.edu).
¶Sandia National Laboratories, Livermore, CA (csafta@sandia.gov).
‖Laboratoire d’Informatique pour la Mécanique et les Sciences de l’Ingénieur, Orsay, France

(olm@limsi.fr).
∗∗Duke University, Durham, NC (omar.knio@duke.edu).
††Sandia National Laboratories, Livermore, CA (bjdebus@sandia.gov).

3

Acknowledgment

This work is supported by the U.S. Department of Energy, Office of Science, Office of Ad-
vanced Scientific Computing Research, under Award Number 13-016717. Sandia National
Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

This material is based upon work supported by the U.S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research, under Award Number 13-016717.

This research used resources of the National Energy Research Scientific Computing Cen-
ter, a DOE Office of Science User Facility supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231.

4

Contents

1 Introduction . 7
2 Mathematical Formulation . 9
3 Implementation Details . 13

3.1 Server-Client Model . 13
3.2 Algorithm Implementation . 14

4 Results . 15
4.1 Nominal Scalability . 15
4.2 Resiliency . 16

5 Trade-off between Energy and Resilience . 21
6 Conclusion . 25
References . 26

Figures

1 Schematic of the workflow of the algorithm. For clarity, starting with stage 2
we only show the steps for Ω01 but the same “operations” are applied to all
subdomains. 9

2 Simple test proving the resilience of the `1 regression using the PDE described
later in the results section. Panel (a) shows sample PDE solutions generated
over a target subdomain for sampled boundary conditions. Panel (b) shows
the distance of the approximate map obtained through `1 and `2 regressions,
to the “true” map for the target blue point in (a). The “true” map is obtained
using regression with uncorrupted samples, while the approximate map uses
the data presented in (a), where two samples are corrupted. 10

3 Schematic of the server-client structure. 13
4 Nominal weak scaling results: the mean efficiency is defined as tref/t ∗ 100,

where tref is the execution time for the smallest case. 16
5 Statistical results obtained from the ensemble runs performed for the resilience

analysis. The radar-plots correspond to the following four cases: first row
shows results when all data in a sampling task is corrupted, with ρ = 1.1 (a)
and ρ = 1.07 (b); second row shows results for single data point corruption in
a sampling task, with ρ = 1.1 (c) and ρ = 1.07 (d). 20

6 Energy ratio Es
2/E

s
1 between the reduced, E2, and full, E1, case as a function of

the normalized frequency. We show the curves obtained for P̂ = {0.1, 0.2, 0.4},
and varying oversampling factor ρ = {1.01, 1.05, 1.1, 1.2}. (Frequencies below
0.25 are not shown assuming 0.25 to be a reasonable value for the lowest
operational frequency of a processor.) . 22

7 Fault rate, λ, as a function of the frequency, for three different values of P̂ ,
see Eq.(12). For clarity, the y-axis is plotted in log-scale. 23

5

This page intentionally left blank.

1 Introduction

The evolution of computing platforms towards exascale presents key challenges related to
resiliency, power, memory access, concurrency and heterogeneous hardware [1, 2, 7, 10, 11].
There is no consensus on what a “typical” exascale architecture might look like [1]. One of
the main concerns is understanding how hardware will affect future computing systems in
terms of reliability, energy consumption, communication and computational models.

The main constraint to making exascale computing a reality is energy consumption [11].
The current target is to build an exascale machine consuming 20MW by 2020. Significant
technological advances are required to make this objective feasible, since current systems
cannot be simply scaled up to reach this goal. These advancements need to span different
hardware aspects, ranging from underlying circuits, to power delivery as well as cooling
technologies. Hardware-oriented research should be complemented by cross-cutting efforts
tackling energy efficiency at the algorithm and programming model level. There is consensus
that a coordination of efforts is required between advances in programming systems and the
development of hardware to enable applications to run efficiently and correctly on exascale
machines [2, 10].

Exascale simulations are expected to rely not only on thousands of CPU cores running
up to a billion threads, but also on extensive use of accelerators, e.g. GPUs [2, 7, 10].
This framework will necessarily lead to systems with a large number of components. The
presence of many components, the variable operational modes (e.g. lower voltage to address
energy requirements) and the increasing complexity of these systems (e.g. more and smaller
transistors) can become a liability in terms of system faults. Exascale systems are expected
to suffer from errors and faults more frequently than the current petascale systems [6, 7].
Current parallel programming models and applications will require a resilient infrastructure
to be suitable for fault-free simulations across many cores for reasonable amounts of time. It
will become increasingly more important to develop resilient-aware applications for exascale,
where fault-tolerance and checkpointing overhead is explored and quantified to assess whether
or not they can tolerate expected failure rates.

Energy and resilience are tightly linked challenges. For instance, high resilience could
be achieved through extensive hardware redundancy, but this approach would yield a large
power overhead, e.g. three times more expensive for triple-redundancy. Checkpointing is
currently the approach most widely used to recover from faults, but it is expected to become
unfeasible for exascale applications given the higher failure rates [2,7]. To address resilience
without an excess power and/or performance costs will require innovations and coordinated
efforts across all system levels. At the application level, one approach would be to design
applications such that they are structured into stages having different resilience requirements.
This would allow us to isolate those data and computational units that require resilience
through expensive duplication/redundancy techniques.

This work presents a new task-based resilient domain-decomposition partial differen-
tial equation (PDE) preconditioner implemented with a server-client programing model.

7

The problem is reformulated such that the PDE solver is reduced to a number of indepen-
dent tasks to favor concurrency and parallelism. The algorithm enables the application to
be resilient to silent data corruption (SDC), while the server-client model (SCM) enables
resiliency to hard faults. Our implementation uses the User Level Fault Mitigation MPI
(MPI-ULFM) [3], a fault tolerance capability proposed for the MPI standard that enables a
fault-tolerant MPI framework. In this work, we don’t focus on hard faults, whose analysis
will be the subject of a separate study. Our application can be seen as a preconditioner
that will enable today’s solvers to be used effectively on future architectures by operating on
subdomain levels. Scalability tests run up to ∼ 51K cores show a parallel efficiency greater
than 90%.

The server-client programming model provides a task-based application with an infras-
tructure that can potentially address some of the concerns related to energy consumption
and resiliency. The work we present here assumes a SCM running on a machine with differ-
ent capacity cores assigned to servers and clients. The idea pushed forward is that high-end
high-capacity/voltage/reliability nodes are reserved for the servers which hold all the state
information of the application, while lower-voltage higher-fault-rate components are used for
clients which are in charge of the computation. This separation of data and computation
enables the overall reduction of energy consumption for large scale machines, provided that
the number of nodes hosting the servers is negligible compared to that hosting the clients,
and the overhead associated with clients with higher fault rates is sufficiently small.

The paper is organized as follows. In § 2, we describe the mathematical formulation; in
§ 3, we present the implementation details; in § 4, we discuss the results, focusing on the
scalability § 4.1, and resilience § 4.2; in § 5, we analyze the interplay between energy and
resilience. Finally, § 6 presents the conclusions.

8

St
ag

e
1:

 d
is
cr

et
iz
at

io
n

St
ag

e
2:

 p
ar

tit
io

ni
ng

W
o
rk

flo
w

St
ag

e
3:

 in
iti

al
iz
e

St
ag

e
4:

 s
am

pl
in

g

Current state

Sampling range

Local PDE samples
Stage 5: regression, build

 boundary maps

Stage 6: solve boundary

 maps system

Stage 7: update state,

 repeat loop

11Ω

Ω
y

x1

x2

Figure 1: Schematic of the workflow of the algorithm. For clarity, starting with stage 2 we
only show the steps for Ω01 but the same “operations” are applied to all subdomains.

2 Mathematical Formulation

We present the formulation for a generic 2D elliptic PDE of the form

Ly(x) = g(x), (1)

where L is an elliptic differential operator, g(x) is a given source term, and x = {x1, x2} ∈
Ω ⊂ R2, with Ω being the target domain region. We focus on Dirichlet boundary condition
y(x)|x∈Γ = yΓ along the boundary Γ of domain Ω. A formulation of the algorithm focusing
on 1D elliptic PDEs can be found in [20]. Elliptic equations are chosen as test case because
they are a fundamental problem in physics.

Figure 1 shows a high-level schematic of the algorithm’s workflow. The starting point is
the discretization of the computational domain. In general, the choice of the discretization
method is arbitrary, potentially heterogeneous across the domain, e.g. uniform, or non-
uniform rectangular grid, or a finite-element triangulation, etc.

The second step is the partitioning stage. The target 2D domain, Ω, is partitioned
into a grid of n1 × n2 overlapping regions (or subdomains), with nk being the number of
subdomains along the xk-th axis. The size of the overlap does not need to be equal and
uniform among all partitions, and can vary across the domain. The partitioning stage yields
a set of n1×n2 subdomains Ωij, and their corresponding boundaries Γsij , for i = 0, . . . , n1−1,
and j = 0, . . . , n2 − 1, where Γsij represents the boundary set of the ij-th subdomain Ωij.

We define as our object of interest the set of solution fields along the boundaries, which
we denote y(x)|x∈Γsij

for i = 0, . . . , n1 − 1, and j = 0, . . . , n2 − 1. Due to the overlapping,

each subdomain Ωij includes inner boundaries, Γin
sij

, i.e. the parts of the boundaries con-
tained within Ωij that belong to the intersecting (neighboring) subdomains. The core of the

9

x10 0.2 0.4 0.6 0.8 1
x2

0
0.2

0.4
0.6

0.8
1

y

0

0.02

0.04

0.06

Corrupted Samples

(a)

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324

Coefficient index, i

0.0

0.5

1.0

1.5

2.0

2.5

3.0

|
D

is
cr

e
p
a
n
cy

 f
ro

m
 t

ru
e
 |

`1 regression

`2 regression

(b)

Figure 2: Simple test proving the resilience of the `1 regression using the PDE described
later in the results section. Panel (a) shows sample PDE solutions generated over a target
subdomain for sampled boundary conditions. Panel (b) shows the distance of the approx-
imate map obtained through `1 and `2 regressions, to the “true” map for the target blue
point in (a). The “true” map is obtained using regression with uncorrupted samples, while
the approximate map uses the data presented in (a), where two samples are corrupted.

algorithm relies on exploiting within each subdomain Ωij the map relating the solution at the
subdomain boundaries, y(x)|x∈Γsij

, to the solution along the inner boundaries, y(x)|x∈Γin
sij

.

These maps can be written compactly as

y(x)|x∈Γin
sij

= f (ij)
(
y(x)|x∈Γsij

)
, (2)

for i = 0, . . . , n1 − 1, and j = 0, . . . , n2 − 1. The system of equations assembled from these
boundary-to-boundary maps collected from all subdomains, combined with the boundary
conditions on the full domain y(x)|x∈Γ, yields a fixed-point problem of the form

y(x) = Fy(x), (3)

where y represents the vector of the solution values at all subdomains boundaries. This
problem is only satisfied by the true solution. We remark that these boundary maps f (ij)

relate the y-values, since they are built from the restrictions of the subdomain solutions at
the corresponding boundaries.

In this work, rather than solving Eq. 3 directly, we construct approximations (or sur-
rogates) of the boundary-to-boundary maps, which we call f̃ (ij). One of the main features
of the algorithm is that the construction of these maps can be done for each subdomain
independently from all the others. This allows us to satisfy data locality which is key to
achieve scalability on extreme scale machines. To build these surrogate maps, given a cur-
rent “state” of the solution at the subdomains boundaries, we use a sampling strategy that
involves solving the target PDE equation locally within each subdomain for sampled values
of the boundary conditions on that subdomain, see stage 3 in Figure 1. These samples are

10

used within a regression approach to “infer” the approximate boundary-to-boundary maps.
In general, for non-linear problems the maps are non-linear, while for linear PDEs the bound-
ary maps are linear [20]. Following the construction of the surrogate boundary-to-boundary
maps, we can then solve the approximate version of the fixed point system in Eq. (2), which
provides us with the new solution state at all the subdomains boundaries and represents an
approximation of the true solution. An important measure of the accuracy of the current
solution y(x)|x∈Γsij

is the residual vector, defined as

z = Fy − y, (4)

which can be computed by extra subdomain solves using boundary conditions defined by
the current solution y, and subtracting the corresponding current solutions y from the
resulting values at all boundaries. Given the fixed-point problem in Eq. (3), the residual (4)
vanishes if the current solution y is the exact solution. In the case of linear PDEs, because
the boundary-to-boundary maps are linear, and assuming that all the regressions complete
successfully, the algorithm converges in one iteration.

The construction of the boundary-to-boundary maps plays a key role for ensuring re-
silience against potential silent data corruption (SDC) affecting the PDE samples. As shown
in [20], when inferring linear maps, using a `1-noise model one can seamlessly filter out the
effects of few corrupted data. The `1 noise model yields the solution with as few non-zero
residuals as possible. Under the assumption that faults are rare, the inferred maps will fit
the non-corrupted data exactly while effectively ignoring the corrupted data. In the present
work, we employ an iteratively re-weighted least squares (IRLS) method, which is effectively
equivalent to a `1 minimization [9]. Figure 2 shows a test proving the resilience of the
regression stage. The PDE used to generate these results is described later in the results sec-
tion. Panel (a) shows sample PDE solutions generated over a target subdomain for sampled
boundary conditions. We synthetically corrupt two samples using a random bit flip: in one
case, shown by the green surface, we corrupt one boundary condition point before the task
execution; for the second corrupted sample, shown by the red surface, we corrupt a single
point in the inner grid after the task execution. These two types of corruptions can both be
categorized as SDC, because they do not cause the termination of the application.

From the PDE samples above, we collect the subset obtained at a test inner location
x∗ = (0.3, 0.6) (shown as a blue circle in the figure), and infer the approximate linear map
y∗(x) = c0 +

∑N
i=1 ciyi(x), where i enumerates the points along the subdomain perimeter.

For this test, we generated a total of 30 PDE samples: 25 is the minimum number to have a
well-posed linear regression given the size of the subdomain (N = 24 for this specific case),
while 5 additional samples are added to guard against possible faulty data. We perform
the regression using both the `1 and `2 models, and report in panel (b) the error between
the approximate map and the one obtained using the uncorrupted samples. The results
show that the `1-based regression matches exactly the uncorrupted result, being completely
unaffected by the corrupted data points. On the contrary, using `2 yields the wrong answer
since the corrupted data have substantial effect. The key underlying point demonstrated is
that even in the presence of corrupted PDE samples, provided we have enough samples, we
do not need to waste resources and energy to identify them in order to have a successful

11

regression. The correctness of the result is ensured by the mathematical properties of the
regression model.

The above outline of the algorithm shows that the original PDE problem is practically
recast as a sampling problem, followed by a resilient data manipulation to achieve the final
solution update. It is important to mention that knowing the boundary-to-boundary maps
discussed above gives us the framework to potentially solve the target PDE over the target
full domain Ω for an arbitrary Dirichlet boundary conditions y(x)|x∈Γ = ỹΓ. This stems
from the fact that once the maps between the subdomain boundaries are known, solving the
PDE for any boundary condition, y(x)|x∈Γ = ỹΓ, simply translates into solving the fixed
point system for the new boundary condition.

12

... ...

...

... ...

...

...

... ...

...

server
client

root of client
cluster

..
.

...

...

...

...

..
.

... ...
...

..
. ...

...

...

..
. ...

......

...

...

...

..
.

..
.

Figure 3: Schematic of the server-client structure.

3 Implementation Details

We have developed a parallel, C++ implementation of the algorithm using a server-client
model (SCM). This section describes the SCM, its resilience properties, and how we imple-
ment each stage of the algorithm to exploit the SCM model.

3.1 Server-Client Model

Figure 3 shows a schematic of our SCM structure. We adopt a cluster-based model where
the MPI ranks are grouped into separate clusters, with each cluster containing a server and,
for resource balancing purposes, the same number of clients. All servers can communicate
between each other, while the clients within a cluster are only visible to the server within
that cluster. Moreover, within any given cluster, clients are independent, i.e. at a given time
instant, each client is handling a different work unit and they cannot communicate with each
other. This design choice allows a client to fail without affecting other clients. Only the work
being executed by the failed client is affected.

The data is distributed among the servers, and these are assumed to be highly resilient
(safe or under a “sandbox” model implementation). The sandbox model assumed for the
servers can be supported by either software or hardware. In the case of software support,
this can be accomplished by a programming model relying on data redundancy and strategic
synchronization [18], [4], [15]. The latter assumption is supported by hardware specifications
on the variable levels of resilience that can be allowed within large computer systems.

Since the servers hold the data, they are responsible for generating work in the form of
tasks, dispatching them to their pool of available clients, as well as receiving and processing
tasks. A client is defined as a set of MPI processes, and is designed solely to accept and
perform work without any assumption on its reliability. To optimize communication, it is
the root rank of a client in charge of receiving work from the server, and then distributing

13

it among the children ranks within that client. This paradigm can be exploited in certain
hardware configurations because leveraging local communication within a client is more
efficient than having the server communicate a task to all the MPI ranks in a client. One
example is the case where all ranks of a client live in the same node, so that one can exploit
in-node parallelism and faster memory access.

A key property of the SCM structure is the inherent resiliency to hard faults in the sense
that clients crashing do not affect the state safely owned by the servers. This is because clients
crashing (partial or complete node failures) only translates into missing tasks. In order to
take advantage of the SCM model, an application should be designed to handle missing data.
Our SCM is implemented using the User Level Fault Mitigation MPI (MPI-ULFM) [3], a
fault tolerance capability proposed for the MPI standard that enables a fault-tolerant MPI
framework.

The proposed SCM has the potential to be extremely compatible with hardware de-
signs targeting energy efficiency through approaches like dynamic voltage/frequency scaling
(DVFS) or heterogeneous micro-architectures (HMs) [17,19]. One can envision an architec-
ture with servers operating at the maximum allowed voltage/energy requirements for best
resilience, while the clients (in charge of doing all the computations) are adaptively operated
at various levels of power consumption to decrease the overall energy consumption. This
settings provides a suitable avenue for energy reduction given that the servers are expected
to occupy a minimal part of the machine (e.g. less than 10%), while the clients occupy most
of the machine (e.g. more than 90%).

3.2 Algorithm Implementation

The algorithm described in § 2 involves four main stages: sampling, regression, fixed-point
solve, and updating. As mentioned before, sampling and regression can be performed in-
dependently and concurrently across all subdomains. This feature reveals their task-based
nature, and are therefore implemented in the form of tasks executed by the clients. As such,
they are vulnerable to the failures occurring on the clients. On the other hand, the fixed-
point solve of the boundary-to-boundary maps system and the updating of the subdomains
are safely executed by the servers, since they fully own the state information. The system
of equations built from the boundary maps is much smaller than original discretized PDE
system over the full domain grid, and so it fits on a small number of servers. Moreover,
the servers are assumed to be “sandboxed”, allowing us to circumvent any potential data
corruption during these operations. This design choice follows the concept of target reliabil-
ity [5], where some parts of the algorithm are assumed to be handled in a reliable manner.
This can be accomplished either by making the hardware more reliable or by incorporating
it within the algorithm itself.

14

Table 1: Scalability tests.

Weak Scaling Parameters

Subdomains 122, 182, 242, 302, 362, 422

Subdomain grid size 1802

Num. of Servers 16, 36, 64, 100, 144, 196
Num. of clients/server 64
Size of client 4 MPI ranks
Total Cores 12594, 9252, 16448, 25700, 37008, 50372

4 Results

All the results presented below are based on the following 2D linear elliptic PDE

∂

∂x1

(
k(x)

∂y(x)

∂x1

)
+

∂

∂x2

(
k(x)

∂y(x)

∂x2

)
= g(x), (5)

where x = {x1, x2}, the field variable is y(x1, x2), k(x1, x2) is the diffusivity, and g(x1, x2) is
the source term. This PDE is solved over a unit square (0, 1)2, with homogeneous Dirichlet
boundary conditions. The diffusivity and source fields are defined as

k(x1, x2) = 8.0 ∗ exp(−d(x1, x2)/0.025) + 2.0, (6)

g(x1, x2) = 2.0 ∗ exp(−d(x1, x2)/0.050)− 1.0, (7)

where d(x1, x2) = (x1−0.35)2+(x2−0.35)2. To solve the above PDE within each subdomain,
we employ a structured grid and second-order finite differences to discretize Eq. (5). The
resulting linear system stemming from the finite-difference discretization is solved using the
parallel solver AztecOO in Trilinos [16].

4.1 Nominal Scalability

We tested the scalability of our application on Edison (NERSC), a Cray XC30, with Peak
performance of 2.57 Petaflops, Cray Aries high-speed interconnect with Dragonfly topology
with approximately ∼ 8GB/sec MPI bandwidth (http://www.nersc.gov). Table 1 lists the
parameters used for the scalability runs. These runs use the Edison’s native Cray-MPICH.

The weak scaling is setup by fixing the number of clients per server and the amount of
data owned by each server, while increasing the problem size by adding increasingly more
clusters. This design imposes no constraint on the problem size, since larger problems can be
tackled by simply adding more clusters. This is the strategy adopted in this work, as shown
in Table 1. Figure 4 presents the results up to ∼ 51K, specifically highlighting the scaling
of the most important stages of the algorithm, as well as the scaling of the full application.
The results show an excellent behavior for each individual stage and for the full application,
with efficiency above 90%.

15

10k 20k 30k 40k 50k
of cores

0

10

20

30

40

50

60

70

80

90

100

M
e
a
n
 e

ff
ic

ie
n
cy

sampling

regression

mapSystemSolve

total

Figure 4: Nominal weak scaling results: the mean efficiency is defined as tref/t ∗ 100, where
tref is the execution time for the smallest case.

4.2 Resiliency

This section describes and demonstrates the resilience properties of our PDE solver, specifi-
cally focusing on resilience to SDC. We evaluate the resilience against SDC affecting numer-
ical data used in the algorithm, i.e. we exclude other types of faults e.g., in data structures
or control flow, since these issues represent a different problem [13]. We assume SDC to be
caused by bit-flips so the results below are based on random bit-flip model to inject the faults.
Contrary to the work by [12, 13], we do not characterize only the effect of the worst case
scenario, or very outrageous faults. We believe, in fact, that in many scientific applications,
the biggest problems might not come from the occurrence of an outrageous fault, but from a
small corruption in the data at some point during the simulation. One example is scientific
simulations that tie to chaos theory, like climate models and/or turbulence: in such cases,
the simulations are very sensitive to, e.g., initial conditions, where even small variations of
the initial data can yield large deviations in the model predictions. As will be shown below,
in fact, this is the case for the present algorithm. When an outrageous fault occurs, it is
easily filtered out. However, when a more subtle corruption occurs, the solver takes more
effort to converge towards the right solution. The variability of corruptions possible by using
a bit flip model is a useful resource allowing us to test and assess our applications under all
these various scenarios.

Test Problem and Execution

As a test problem for resilience, we adopt the PDE introduced in Eq. (5), solved over a
structured uniform grid with 2012 grid points over the unit square domain. We partition
the domain using n1 = n2 = 4 subdomains, with an overlapping of 4 grid cells between
neighboring subdomains. This setting yields a total of 16 subdomains, each with a local
grid of 542 grid points. Nominally, this problem involves N s

nom = 3408 sampling tasks, and
N r

nom = 2496 regression tasks. The SCM structure involves a single server holding the data,

16

i.e. subdomains, and uses 14 clients each with size 2.

Fault Injection

Our goal is to evaluate how the application behaves as we increase the number of faults.
To inject faults, rather than modeling how they occur and simulating them in situ, we
leverage the task-based nature of our algorithm by choosing the number of faults to inject
as a percentage of the nominal number of tasks to execute. Since we know in advance how
many tasks are needed by our test problem, we randomly select off-line the set of task IDs
that will be hit by a fault during the execution. One advantage of this method is that the
number of faults hitting the system is well-known, and it eliminates any dependency between
faults occurrence and the execution time, since the latter is machine-dependent. Moreover,
if needed, this setting still allows us to extract an average fault rate, given a total execution
time and the known number of faults. We explore various levels of corruption, namely 0.25%,
0.5%, 0.75%, and 1.0% of the nominal number of tasks. For each percentage of corruption,
we run 150 runs to have a statistically meaningful result.

Exploiting a selective reliability approach [5,12–14], which lets algorithm developers iso-
late faults to certain parts of the algorithm, in this paper we focus on the results obtained
by injecting the faults during the sampling stage only. The results obtained for the other
scenarios, e.g. involving faults hitting the regression are left for future extensions. Faults
are only injected in the clients. This choice is consistent with the SCM described previously,
where servers are assumed to be reliable, while no assumption is made on the reliability of
the clients.

Fault Model

In this work, we analyze two parallel cases: one involves corrupting all elements in the array
holding boundary conditions contained in the task, while the other involves corrupting only
a single array element. The reason behind this distinction is that when the whole data-set
is corrupted, provided the amount of data is sufficiently large, it is likely that at least one
large bit (e.g. exponent) is flipped, causing the value to become “outrageous”, e.g. an Inf or
a very large value. One the contrary, when a single data variable is corrupted, the likelihood
of flipping a bit in the exponent is lower. We believe that both scenarios are important to
examine, since they provide information on the algorithm’s sensitivity to different levels of
data corruption.

When a fault needs to be injected, we adopt the following procedure: we draw a value, u,
from a standard uniform distribution, and if u ≤ 0.5, the task data is corrupted before the
execution; if u > 0.5, the task data is corrupted after its execution. The reason behind this
model is that we want to mimic corruptions that occur when tasks are being transmitted to
and from a client, as well as those happening during execution. If a task is corrupted before
the execution, this translates into corrupting all or a single point in the boundary conditions

17

owned by that sampling task, since the boundary conditions are the only information needed
to run a solve of the elliptic PDE. If a task is corrupted after execution, this translates into
corrupting all or a single point in the solution, which means that even the inner points of a
subdomain can be affected.

Handling Faults

Given the fault model described above, several fault scenarios unfold. The mechanisms
that we incorporate in the algorithm to make it resilient are kept to a minimum in order
to reduce the overhead. To guarantee the resilience of the algorithm towards faults in the
sampling, the key condition to be satisfied is that out of the samples used in the regression,
the number of uncorrupted samples has to be greater than the minimum set needed to have a
mathematically well-posed regression problem. To this end, we mitigate the impact of faults
in the sampling by generating, within each subdomain, more samples than the minimum
set. This is accomplished by defining an oversampling factor, ρ > 1, such that the target
number of samples to generate is N = ρN s

nom. Moreover, during the sampling stage, we
apply a filter on the task data returned to the server to check that it is within the interval
(−100, 100) before the data is stored within the corresponding subdomain. This interval is
arbitrary, but can be estimated by either a domain expert or by known physical bounds on
the solution. This is the only active “filter” that is needed by the application. Any other
corruption during the sampling does not need to be actively detected, since it is seamlessly
filtered out thanks to the mathematical model used in the regression as shown in Figure 2.

Resilience Analysis

This section focuses on the resilience results obtained for the runs described above. Figure 5
summarizes the main statistics from the ensemble runs performed. Specifically, we show
four radar-plots, corresponding to the following four different combinations: first row shows
results when all data in a sampling task is corrupted, with ρ = 1.1 (a) and ρ = 1.07 (b);
second row shows results for single data point corruption in a sampling task, with ρ = 1.1 (c)
and ρ = 1.07 (d). Each radar-plot displays the average value over 150 replicas of six key
quantities in the following clock-wise order: the total overhead of the application runtime
compared to the no-fault runs, the regression and sampling overhead, the boolean value
identifying convergence, the number of tasks affected by a fault, and the percentage of tasks
corrupted. In all cases, regardless of the degree of data corruption, all the runs converged
to the correct answer. Convergence is verified by checking that the root-mean-square error
computed for the residual in Eq. (4) is below a specified threshold. This proves that the
application is resilient to faults occurring during sampling.

For a fixed value of ρ, the plots show that the overhead with respect to the no-fault case
is smaller when all the data in a sampling task is corrupted. As it was mentioned before, this
is explained by the fact that when all data is corrupted, it is more likely that it is filtered
by the server during the task post-processing check. On the contrary, when a single data

18

point is corrupted, the `1 regression has to work harder to obtain the correct boundary-
to-boundary map. For ρ = 1.1, the total overhead is ∼ 7% when all data is corrupted,
only slightly changing as the number of fault increases, see Figure 5a. For the single data
point corruption, the total overhead increases from ∼ 7.5% to 9% when the number of faults
increases from 9 to 35, see Figure 5c. A similar trend is observed for ρ = 1.07. In this case,
however, there is a wider discrepancy between the overhead obtained when all the data is
corrupted, and that of a single point corruption, see Figures 5b, 5d.

As expected, the plots confirm that as the oversampling is reduced from 10% to 7%, the
overhead incurred by the application decreases. A greater reduction is observed when all
data is corrupted, as shown by Figures 5a, 5b. The plots show also that the largest variability
is observed for the regression overhead. This is expected, because of the additional compu-
tations required to compute the correct boundary-to-boundary maps given the presence of
faulty samples.

19

 Sampling
Overhead

 Regression OverheadTotal Overhead

Corrupted
Tasks %

faults Converged

0.03 0.05 0.07 0.1 0.12

0.03

0.05

0.07

0.1

0.12

0.03

0.05

0.07

0.1

0.12

0.20.40.60.81.0

8.0

16.0

24.0

32.0

40.0 1.0

Corrupt All Data, 10% oversampling

(a)

 Sampling
Overhead

 Regression OverheadTotal Overhead

Corrupted
Tasks %

faults Converged

0.03 0.05 0.07 0.1 0.12

0.03

0.05

0.07

0.1

0.12

0.03

0.05

0.07

0.1

0.12

0.20.40.60.81.0

8.0

16.0

24.0

32.0

40.0 1.0

Corrupt All Data, 7% oversampling

(b)

 Sampling
Overhead

 Regression OverheadTotal Overhead

Corrupted
Tasks %

faults Converged

0.03 0.05 0.07 0.1 0.12

0.03

0.05

0.07

0.1

0.12

0.03

0.05

0.07

0.1

0.12

0.20.40.60.81.0

8.0

16.0

24.0

32.0

40.0 1.0

Corrupt Single Data, 10% oversampling

(c)

 Sampling
Overhead

 Regression OverheadTotal Overhead

Corrupted
Tasks %

faults Converged

0.03 0.05 0.07 0.1 0.12

0.03

0.05

0.07

0.1

0.12

0.03

0.05

0.07

0.1

0.12

0.20.40.60.81.0

8.0

16.0

24.0

32.0

40.0 1.0

Corrupt Single Data, 7% oversampling

(d)

Figure 5: Statistical results obtained from the ensemble runs performed for the resilience
analysis. The radar-plots correspond to the following four cases: first row shows results
when all data in a sampling task is corrupted, with ρ = 1.1 (a) and ρ = 1.07 (b); second
row shows results for single data point corruption in a sampling task, with ρ = 1.1 (c) and
ρ = 1.07 (d).

20

5 Trade-off between Energy and Resilience

In this section, we discuss how the resilience properties of our application allow us to draw
conclusions about potential savings in the energy consumption. Resilience and energy con-
sumption are tightly linked [21, 22]. It has been shown that voltage decrease is linked to
higher faults rates, see [22] and references therein. We demonstrate below how lowering the
energy consumption during the sampling stage by means of voltage scaling allows us to save
energy and still run the application successfully despite being affected by more frequent sys-
tem faults. This framework can be enabled because of the SCM, which allows us to separate
state from computation. Decreasing the energy consumption is possible via variable-voltage
CPUs, which can reduce power consumption quadratically at the expense of linearly reduced
speed [22]. The reason for this is that circuit delay is almost linearly related to 1/V , where V
is the voltage, so for systems to function correctly, the operating frequency needs to decrease
linearly when supply voltage decreases.

We compare two scenarios: (A) involves running the application assuming that all ma-
chine components run at full operational capacity/speed; (B) is based on decreasing the en-
ergy consumption of the clients only during the sampling stage by reducing the operational
efficiency of the corresponding processing units. Moreover, to compare the two scenarios,
they tackle the same problem, have the same number of servers and clients, are run on the
same machine. The servers always run at full capacity to keep the state safe. We remark
that the only difference between the two cases lies in how the sampling stage is run. The
other stages of the algorithm are equivalent.

To lay the ground of the analysis, we define how to estimate the energy consumption
following the work in [21, 22]. In embedded systems, the power is consumed mainly by
the processor, memory, clock and underlying circuits. The power consumption, P , during
activity can be modeled as [22]:

P = P̂ + CV 2f (8)

where P̂ is the frequency independent active power (independent of frequency and voltage),
C is the switch capacitance, V is the voltage, and f is the frequency. Note that as in [22],
we have neglected the contribution of the sleep power since it does not have any effect on
the energy savings and we assume the system to be always on. The energy consumed by an
operation running over the time interval T = t2 − t1 is then

E = (P̂ + CV 2f)T. (9)

We now proceed by estimating the energy consumption of our application in both sce-
narios. The nominal (or full energy) scenario involves clients operating at maximum voltage,
Vm, and frequency, fm, and includes N1 sampling tasks, with each task execution taking a
time T1. For this reference scenario, the total energy consumed by the clients to execute N1

samples is

Es
1 = N1

(
P̂ T1 + CV 2

mfmT1

)
. (10)

21

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Normalized Frequency

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

E
s 2
/
E

s 1

0.1

0.2

0.4

P̂ Energy Saving Region

ρ=1.01

ρ=1.05

ρ=1.1

ρ=1.2

Figure 6: Energy ratio Es
2/E

s
1 between the reduced, E2, and full, E1, case as a function

of the normalized frequency. We show the curves obtained for P̂ = {0.1, 0.2, 0.4}, and
varying oversampling factor ρ = {1.01, 1.05, 1.1, 1.2}. (Frequencies below 0.25 are not shown
assuming 0.25 to be a reasonable value for the lowest operational frequency of a processor.)

For the reduced energy case, as mentioned above, both voltage and frequency are lowered
to V2 < Vm, and f2 < fm, such that fm/f2 = Vm/V2. This implies that the execution time
of a task is T2 = T1

fm
f2

, as it depends linearly on the frequency. Due to the interplay
between voltage and reliability, we expect for this low-energy scenario a higher probability
of faults occurring during the sampling. We mitigate the effect of these faults by generating
more samples, i.e. we assume N2 = ρN1, where ρ > 1 is the oversampling factor. This
oversampling is needed for the algorithm, as shown in the resilience results from the previous
section, to guard against potential data corruption. The total energy consumed by the clients
to execute N2 samples in the reduced energy case is

Es
2 = N2

(
P̂ T2 + CV 2

2 f2T2

)
= N2

(
P̂ T1

fm
f2

+ CV 2
mfmT1

f2

fm

)
, (11)

where Eq. (11) has been obtained by making some substitutions and rearranging terms
to explicitly highlight the relationship with the nominal case. It is easy to see that the
energy function has a minimum at f ∗2 = (0.5P̂ /C)1/3. Below, we assume that voltages and
frequencies are normalized, i.e. we set Vm = 1 and fm = 1, such that any other voltage or
frequency is in the interval (0, 1).

Figure 6 shows the ratio Es
2/E

s
1 as a function of the frequency f2. We show the results ob-

tained for P̂ = {0.1, 0.2, 0.4}, and also vary the oversampling factor ρ = {1.01, 1.05, 1.1, 1.2}.
This figure allows us to make conclusion about how much energy we are able to save by lever-
aging the reduced-energy scenario as opposed to the full one. We can draw the following
observations. First, the lower the value of P̂ , the more energy we are able to save. This
is clear from Eq.11, since the contribution from P̂ is proportional to the execution time.
Second, the results show that as P̂ decreases, the minimum of the energy curves is obtained

22

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Normalized Frequency

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

λ
 (

#
 f

a
u
lt

s/
se

c)

P̂=0.1

P̂=0.2

P̂=0.4

Figure 7: Fault rate, λ, as a function of the frequency, for three different values of P̂ , see
Eq.(12). For clarity, the y-axis is plotted in log-scale.

for smaller and smaller frequencies. For the three cases shown, the optimal frequencies are
f ∗2 = {0.369, 0.464, 0.585} for P̂ = {0.1, 0.2, 0.4}. Third, we see that for a given value of P̂ ,
the energy curves shift upward as the oversampling ratio ρ increases. Intuitively, increasing
ρ increases the number of tasks to execute, and therefore we are able to save less and less
energy. The results show, e.g., that if we assume P̂ = 0.4, and run at the optimal frequency
f ∗2 = 0.585, the energy saving ranges from ∼ 30% when ρ = 1.01, to ∼ 15% when ρ = 1.2.
It is important to remark that operating at the optimal frequency is not always possible if
this optimal frequency is smaller than the minimum operational frequency, flow, allowed by
the processor, i.e. f ∗2 < flow. To the best of our knowledge, 1 we think that a reasonable
assumption would be 0.2 < flow < 0.4. The operational minimum energy efficient frequency
that is feasible for a processor is max{flow, f ∗2}. Hence, the energy saved might be slightly
smaller, but the plot shows that it is still considerable.

Beside increasing the execution time, voltage scaling also causes fault rates in the pro-
cessors (including logic core and cache) to increase exponentially [8, 21, 22]. Assuming a
Poisson process for the faults [22], the relationship between the fault rate, λ (# faults/sec),
the voltage V and frequency f can be expressed as:

λ = λ010

(
d 1−f
1−max{flow,f∗2 }

)
, (12)

where λ0 is the fault rate corresponding to Vm and fm, and d is a constant such that the
larger its value, the more sensitive the fault rate is to scaling. Similarly to [22], in this work
we assume λ0 = 10−6 (# faults/sec), and d = 4. Figure 7 shows how the fault rate varies
as a function of the frequency for the three different values of P̂ selected before. For clarity,
the y-axis is plotted in log-scale. The first observation is that as the frequency decreases,
the fault rate increases. From the figure, we can see that if the operating frequency is
f ∗2 = {0.369, 0.464, 0.585}, the corresponding expected fault rate is λ = 0.01, namely about
one fault every 100 seconds. The key question arising is: what is the trade-off between the

1https://www.pugetsystems.com/labs/articles/Is-CPU-Base-Frequency-Still-a-Relevant-Spec-512/

23

energy saved due to voltage scaling and the energy spent to recover from the more frequent
faults occurring due to lower operation power? This is where the resilience plays a key role,
especially if the algorithm is inherently resilient to faults. If an application had a small
overhead associated with recovering from faults, then most of the energy saved by running
at reduced speed would be gained. On the other hand, if the overhead of the application
to recover from a fault is substantial, then some of the energy saved by running at reduced
speed would be offset, potentially eliminating any energy savings.

To calibrate a particular run, a user will have to choose a lower frequency f2 to run
the sampling stage, then use Figure 6 to determine the energy savings for a corresponding
oversampling factor ρ. The expected fault rate can be computed using Eq. (12). The user
must determine if the oversampling factor chosen is large enough to compensate for the
expected number of faults and adjust the oversampling factor accordingly. If it is allowed
by the machine, the target low-energy frequency f2 should be chosen as close as possible to
the optimal frequency f ∗2 to ensure that the energy saved during the sampling stage is not
offset by the overhead of the regression stage.

24

6 Conclusion

We discussed algorithm-based resilience to silent data corruption (SDC) in a task-based
domain-decomposition preconditioner for partial differential equations (PDEs).

The algorithm involves the following main steps: first, the domain of the PDE is split into
overlapping subdomains; second, the PDE is solved on each subdomain for sampled values
of the local current boundary conditions; third, the resulting subdomain solution samples
are fed into a regression step to build boundary-to-boundary maps; finally, the intersection
of these maps yields the updated state at the subdomain boundaries.

The implementation is based on a server-client model where all state information is held
by the servers, while clients are designed solely as computational units. We tested weak
scaling up to ∼ 51K cores, showing an efficiency greater than 90%.

We used a 2D elliptic PDE, a fault model based on random single bit-flip and target
reliability assumption to show that the application is resilient to SDC injected during the
sampling stage. The resilience to SDC was shown to be feasible thanks to the `1 model
adopted in the regression stage. We discussed how the overhead in the regression due to the
presence of faults is larger when a single data point is corrupted in a sampling task than
the case where all data is corrupted. We explained this result in terms of the likelihood of
having an outrageous corruption, which would simply be filtered/discarded by the server,
versus having small corruptions passing the filter test, but causing the regression to work
harder to obtain the `1 result.

Finally, we showed how the inherent resilience to SDC in the sampling and the small
associated overhead can be leveraged to achieved potential energy savings via dynamics
voltage/frequency scaling during the sampling. We are currently planning further studies to
complement the presented energy estimates with experimental data.

25

References

[1] J. A. Ang, R. F. Barrett, R. E. Benner, D. Burke, C. Chan, J. Cook, D. Donofrio,
S. D. Hammond, K. S. Hemmert, S. M. Kelly, H. Le, V. J. Leung, D. R. Resnick, A. F.
Rodrigues, J. Shalf, D. Stark, D. Unat, and N. J. Wright. Abstract machine models
and proxy architectures for exascale computing. In Proceedings of the 1st International
Workshop on Hardware-Software Co-Design for High Performance Computing, Co-HPC
’14, pages 25–32, Piscataway, NJ, USA, 2014. IEEE Press.

[2] Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William Dally,
Monty Denneau, Paul Franzon, William Harrod, Jon Hiller, Sherman Karp, Stephen
Keckler, Dean Klein, Robert Lucas, Mark Richards, Al Scarpelli, Steven Scott, Al-
lan Snavely, Thomas Sterling, R. Stanley Williams, Katherine Yelick, Keren Bergman,
Shekhar Borkar, Dan Campbell, William Carlson, William Dally, Monty Denneau,
Paul Franzon, William Harrod, Jon Hiller, Stephen Keckler, Dean Klein, Peter Kogge,
R. Stanley Williams, and Katherine Yelick. Exascale computing study: Technology
challenges in achieving exascale systems peter kogge, editor & study lead, 2008.

[3] Wesley Bland, Aurelien Bouteiller, Thomas Herault, George Bosilca, and Jack Don-
garra. Post-failure recovery of mpi communication capability: Design and rationale.
Int. J. High Perform. Comput. Appl., 27(3):244–254, August 2013.

[4] P. G. Bridges, K. B. Ferreira, M. A. Heroux, and M. Hoemmen. Fault-tolerant linear
solvers via selective reliability. ArXiv e-prints, June 2012.

[5] P. G. Bridges, K. B. Ferreira, M. A. Heroux, and M. Hoemmen. Fault-tolerant linear
solvers via selective reliability. ArXiv e-prints, June 2012.

[6] F Cappello, A Geist, B Gropp, L Kale, B Kramer, and M Snir. Toward Exascale Re-
silience. International Journal of High Performance Computing Applications, 23(4):374–
388, oct 2009.

[7] Franck Cappello, Al Geist, William Gropp, Sanjay Kale, Bill Kramer, and Marc Snir.
Toward exascale resilience: 2014 update. Supercomputing frontiers and innovations,
1(1), 2014.

[8] V. Chandra and R. Aitken. Impact of technology and voltage scaling on the soft error
susceptibility in nanoscale cmos. In Defect and Fault Tolerance of VLSI Systems, 2008.
DFTVS ’08. IEEE International Symposium on, pages 114–122, Oct 2008.

[9] Ingrid Daubechies, Ronald DeVore, Massimo Fornasier, and C. Sinan Güntürk. Itera-
tively reweighted least squares minimization for sparse recovery. Communications on
Pure and Applied Mathematics, 63(1):1–38, 2010.

[10] DOE-ASCR. Exascale programming challenges. Technical report, July 2011.

[11] DOE-ASCR. Top ten exascale research challenges. Technical report, February 2014.

26

[12] J. Elliott, M. Hoemmen, and F. Mueller. A numerical soft fault model for iterative
linear solvers. In Proceedings of the 24th International Symposium on High-Performance
Parallel and Distributed Computing, HPDC ’15, pages 271–274, New York, NY, USA,
2015. ACM.

[13] James Elliott, Mark Hoemmen, and Frank Mueller. Evaluating the impact of sdc on
the gmres iterative solver. In Proceedings of the 2014 IEEE 28th International Parallel
and Distributed Processing Symposium, IPDPS ’14, pages 1193–1202, Washington, DC,
USA, 2014. IEEE Computer Society.

[14] James John Elliott, Mark Frederick Hoemmen, and Frank Mueller. Tolerating Silent
Data Corruption in Opaque Preconditioners. Apr 2014.

[15] C. Engelmann and T. Naughton. Toward a performance/resilience tool for hard-
ware/software co-design of high-performance computing systems. In Parallel Processing
(ICPP), 2013 42nd International Conference on, pages 960–969, Oct 2013.

[16] Michael Heroux, Roscoe Bartlett, Vicki Howle Robert Hoekstra, Jonathan Hu, Tamara
Kolda, Richard Lehoucq, Kevin Long, Roger Pawlowski, Eric Phipps, Andrew Salinger,
Heidi Thornquist, Ray Tuminaro, James Willenbring, and Alan Williams. An Overview
of Trilinos. Technical Report SAND2003-2927, Sandia National Laboratories, 2003.

[17] Jungseob Lee, V. Sathisha, M. Schulte, K. Compton, and Nam Sung Kim. Improving
throughput of power-constrained gpus using dynamic voltage/frequency and core scal-
ing. In Parallel Architectures and Compilation Techniques (PACT), 2011 International
Conference on, pages 111–120, Oct 2011.

[18] Man-Lap Li, Pradeep Ramachandran, Swarup Kumar Sahoo, Sarita V. Adve, Vikram S.
Adve, and Yuanyuan Zhou. Understanding the propagation of hard errors to software
and implications for resilient system design. SIGOPS Oper. Syst. Rev., 42(2):265–276,
March 2008.

[19] T.N. Miller, Xiang Pan, R. Thomas, N. Sedaghati, and R. Teodorescu. Booster: Re-
active core acceleration for mitigating the effects of process variation and application
imbalance in low-voltage chips. In High Performance Computer Architecture (HPCA),
2012 IEEE 18th International Symposium on, pages 1–12, Feb 2012.

[20] Khachik Sargsyan, Francesco Rizzi, Paul Mycek, Cosmin Safta, Karla Morris, Habib
Najm, Olivier Le Matre, Omar Knio, and Bert Debusschere. Fault resilient do-
main decomposition preconditioner for pdes. SIAM Journal on Scientific Computing,
37(5):A2317–A2345, 2015.

[21] D. Zhu, R. Melhem, D. Mosse, and E. Elnozahy. Analysis of an energy efficient optimistic
tmr scheme. In Parallel and Distributed Systems, 2004. ICPADS 2004. Proceedings.
Tenth International Conference on, pages 559–568, July 2004.

[22] D. Zhu, R. Melhem, and D. Mosse. The effects of energy management on reliabil-
ity in real-time embedded systems. In Computer Aided Design, 2004. ICCAD-2004.
IEEE/ACM International Conference on, pages 35–40, Nov 2004.

27

This page intentionally left blank.

v1.38

