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Abstract

Thermodynamic quantities, such as pressure and internal energy, and their derivatives, are
used in many applications. Depending on application, a natural set of quantities related to
one of four thermodynamic potentials are typically used. For example, hydro-codes use in-
ternal energy derived quantities and Equation of State work often uses Helmholtz free energy
quantities. When performing work spanning over several fields, transformations between one
set of quantities and another set of quantities are often needed. A short, but comprehensive,
review of such transformations are given in this report.
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Nomenclature

EOS Equation of State. Relations providing, for example, pressure and internal energy as
a function of density and temperature.

SESAME A format for tabular EOS information.! At a minimum the internal energy and
the pressure are tabulated on a rectangular grid of density and temperature.

ALEGRA The Arbitrary-Lagrangian-Fulerian General Research Applications (ALEGRA)
code is a large-deformation shock physics code created by researchers at Sandia Na-
tional Laboratory.

CTH A multi-material, Eulerian, large-deformation, strong shock wave, solid mechanics
code developed at Sandia National Laboratories.

Internal energy, £ A thermodynamic potential appropriate for isolated systems. The
natural variables are entropy, S, and volume, V. If the entropy and volume are held
constant, the system will evolve to an equilibrium state (pressure, P, and temperature,
T) with minimum internal energy.

Helmholtz free energy, F' A thermodynamic potential appropriate for closed systems in
a reservoir (can keep temperature constant) but without exchange of mechanical work.
The natural variables are temperature, 7', and volume, V. If the temperature and
volume are held constant, the system will reach the equilibrium state (pressure, P,
and entropy, S) with the minimum Helmholtz free energy.

Gibbs free energy, G A thermodynamic potential appropriate for phase transitions. The
natural variables are temperature, 7', and pressure, P. If the temperature and pressure
are held constant, the system will reach its equilibrium state (volume, V', and entropy,
S) at the minimum Gibbs free energy.

Enthalpy, H A thermodynamic potential appropriate for constant pressure processes. The
natural variables are entropy, S, and pressure, P. If the entropy and pressure are held
constant, the system will reach its equilibrium state (volume, V| and temperature, T')
at the minimum enthalpy.

Extensive variable A variable dependent on the amount of material present, e.g., specific
volume, V', and entropy, S.

Intensive variable A variable independent of the amount of material present, e.g., pres-
sure, P, and temperature, 7.



Hugoniot The collection of points in thermodynamic phase space describing the final states
achievable by a shock from a specific initial state. The principal Hugoniot is the
Hugoniot from the ambient state. Secondary Hugoniots can be obtained from pre-
shocked states. Note that the Hugoniot is not a thermodynamic path. An experiment
cannot, follow the Hugoniot. Only the final state of a shock experiment is on the
Hugoniot.

Rayleigh line The line in thermodynamic P — V space that connects the initial and final
state of a shock, that is, the two points on the Hugoniot connected by a shock. The
states in the shock profile of an abrupt shock lay on the Rayleigh line. If the profile is
smeared out, the profile states for a normal material lay on a curve below the Rayleigh
line in P — V space, with the initial and final state on the Rayleigh line and the
Hugoniot.

Isotherm A thermodynamic path where the temperature is held constant.
Isobar A thermodynamic path where the pressure is held constant.
Isochore A thermodynamic path where the volume/density is held constant.

Isentrope A thermodynamic path where the entropy is held constant.



Chapter 1

Introduction and Motivation

Even a person well versed in the theory of Thermodynamics can become completely
overwhelmed when starting to use these quantities in a practical, hands-on, setting, such as
writing computer code to determine phase equilibrium. This tutorial is based on my own
struggles to find the correct combinations of thermodynamic quantities to use in specific
situations, in particular while programming new materials models into hydro-codes. I am
focusing on tools and strategies to use for deriving useful relations between thermodynamic
derivatives. Another, more general, but very practical, introduction to the topic is available
from Rebecca Brannon, University of Utah.?
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Chapter 2

Thermodynamic Potentials

The four thermodynamic potentials

The first and second laws of thermodynamics

The four thermodynamic potentials are derived from the first and second laws of ther-
modynamics:

dE = —PdV + TdS . (2.1)

In this equation E is the internal energy, P the pressure, V' the volume, T the absolute
temperature, and S the entropy. The pressure and temperature are independent of the
amount of material present, they are intensive variables. In contrast, the internal energy,
volume, and entropy, are extensive variables and depend on the amount of material present.
Extensive variables are often measured as per quantity of material, for example per kilogram
or per mole. This is indicated by adding a “specific” in front of the quantity, for example,
specific internal energy (J/kg) and specific volume (m?/kg). It is often helpful to keep in
mind if a variable is intensive or extensive. All four thermodynamic potentials are extensive
variables, as can be verified from the definitions below.

Internal energy E(V,S) :

Equation 2.1 directly gives

oF oF

——| =_p d | =T. 2.2
v | o a5 |, (22)
The cross second derivative gives one of Maxwell’s relations:
0*FE 0P oT T
=——| = —| =-=T, (2.3)
ovos os|, Vg %
where the last equality defines the Griineisen parameter, I'. The other two second derivatives,
oP Bg oT T
- == d — == 2.4
ovl,- v as|, ~ ¢y’ (24)

defines the isentropic bulk modulus, Bg, and the specific heat, C'/, respectively.
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Helmbholtz free energy F(V,T):

Helmholtz free energy is defined as
F=FE-TS. (2.5)

Reformulating the fundamental thermodynamic relation, Equation 2.1, in terms of the
Helmholtz free energy gives

dFF =dE - TdS — SdT'= —PdV — SdT . (2.6)

Equation 2.6 directly gives that

oF oF
—| =-P d — =-5. 2.7
ov |, o ar |, (2.7)
The cross second derivative gives one of Maxwell’s relations:
0’F opr 0S
=——| =——| =—-aB 2.8
ovor ~  oT|, ovl|, U (2:8)

where the last equality defines the thermal expansion coefficient,

1 oV
=27 2.9
0= | (2.9)
with Br defined next. The other two second derivatives,
oP BT oS CV
- == d —— =—-— 2.10
ovl.— v ™ ar|, ~ T (2.10)

defines the isothermal bulk modulus, By, and the specific heat at constant volume, Cy,
respectively. Note the congruence with the definition via the internal energy above.

Gibbs free energy G(T, P) :

Gibbs free energy is defined as
G=F+PV=FE-TS+PV. (2.11)

Reformulating the fundamental thermodynamic relation, Equation 2.1, in terms of the Gibbs
free energy gives

dG =dF + PdV +VdP = —SdT + VdP. (2.12)
Equation 2.12 directly gives that
oG oG
- _ d | =V. 2.1
T |, S an P |, V (2.13)
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The cross second derivative gives one of Maxwell’s relations:

0*G oS

_ 98] _ov
orop 0P

T aT

=Va, (2.14)
P

where the last equality defines the thermal expansion coefficient, conforming to the definition
via the Helmholtz free energy. The other two second derivatives,

)
ar

= (2.15)
- T P

defines the specific heat at constant pressure, Cp, and the isothermal bulk modulus, Br,
respectively. Note the congruence with the definition via the Helmholtz free energy above.

Enthalpy H(S, P) :

Enthalpy is defined as
H=E+PV. (2.16)

Reformulating the fundamental thermodynamic relation, Equation 2.1 gives
dH =dE + PdV +VdP =TdS +VdP. (2.17)

Equation 2.17 directly gives that

0OH oOH
| =7 d | =V. 2.18
25 |, o oP |, (2.18)
The cross second derivative gives one of Maxwell’s relations:
0?’H ar oV o r
= | =—| =VI—=T— 2.19
9SoP 0P|, 0S|p Cp Bs’ (2.19)

where the last equalities conforms to the definitions via the other thermodynamic potentials.
The other two second derivatives,

or
oS

oV
oP

v
= ——, 2.20
B (2.20)

T

— and
p Cp
defines the specific heat at constant pressure, Cp, and the isentropic bulk modulus, Bg,

respectively (note the congruence with the definitions via the Gibbs and internal energies
above).
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Third derivatives of the thermodynamic potentials

Most materials have a much stronger density dependence than temperature dependence.
For many applications, in particular in shock physics, third derivatives of the thermodynamic
potentials with respect to volume are used in Equations of State and other materials models.
Specifically we often use

9B F

V3

T ovzir
and
OB 2|
V:
B’S:a—PS =—1-V=5=26-1, (2.22)
S V2 |s

where the last equality defines the fundamental derivative, G, used in the analysis of shock
waves.

Use of thermodynamic potentials

Hydro-codes: Internal energy

The hydrodynamic equations are derived from mass, momentum, and energy conserva-
tion for isolated systems with no heat or work transferred between the environment and the
system that is modeled. This would naturally lead to using the internal energy as the thermo-
dynamic potential. However, the time update in a hydro-code updates volume and internal
energy, and the subsequent determination of the state thus needs T'(V, E) and P(V, E). The
natural thermodynamic potential would actually be S(V, E'), since

os| P os| 1
_r 9o _ 1 2.2
wv|,~7 ™ B, "7 (2.23)

However, this thermodynamic potential is not commonly used.

The speed of sound ¢, which is a variable heavily used in hydro-codes, is related to the
isentropic bulk modulus:

oP
>=VBg=-V?_—
¢ S v

P

= 2.24
=% (2:24)

s
where p = 1/V is the density.

Shock Physics: Internal energy or Enthalpy

Weak shocks are known to be nearly isentropic (see page 63 in Z&R*). In fact, one of the
third derivatives of a thermodynamic potential discussed above, G, is related to the weak
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entropy change in a weak shock:

2 3
AS = —ég% (A_Vv> . (2.25)

The natural framework for shock physics is thus a thermodynamic potential with entropy as
a natural variable. The close connection between shock physics and hydro-code simulations
makes internal energy the obvious choice. Since the enthalpy framework also have entropy as
a natural variable, this framework is sometimes used in shock physics work (see for example
Z&R* pages 50 and 64).

Shock physics data is often given as a linear relation between the shock velocity, Uy, and
the particle velocity, u,:

Us=co+su,, (2.26)

for some constants ¢y and s. Using the jump conditions (Rankin-Hugoniot equations, page
46 in Z&RY)

poUs = p(Us —up) (2.27)
Py = poUsu,, (2.28)

where Py is the pressure on the Hugoniot and py = 1/V} is the reference density (where
Py =0), we can derive

Vo —V)
(Vo —s(Vo = V))?
As the Hugoniot coincides with an isentrope to second order in volume near the reference
volume, the value at V{ of the first volume derivative of Py is

0Py
ov

Py =ci (2.29)

1
=—c—, (2.30)
S] Vo "y

and we identify the coefficient ¢ in the Uy — u,, relation as the sound speed at the reference
volume. The second derivative at the reference volume is

2
which leads to
02 Py 83EH‘
5= VeS| == Voot =0l = [Bs+1), . (232)
vls | vt gy,

The coefficient s in the Uy — u,, relation is thus related to the third volume derivative of the
internal energy:.
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Equation of State: Helmholtz free energy

Theoretical Equation of State work can be tied directly to statistical physics via the
partition function, Z, and the Helmholtz free energy, F(V,T) = —kpTInZ, where kg is
the Boltzmann constant. Many of the analytical models used in Equation of State work
are derived from statistical physics, and it is thus natural that Equation of State work is
performed in the Helmholtz free energy framework. However, for use in a hydro-code the
Helmholtz free energy framework is not optimal, since we lack a direct connection to the
internal energy. We see from Equation 2.5 that knowledge of the entropy, S(V,T'), via the
second relation in Equation 2.7, gives us the translation between the available Helmholtz
free energy and the needed internal energy. For use in a hydro-code, an Equation of State
usually gives out P(V,T) and E(V,T). If determined from the same Helmholtz free energy,
these two quantities will be thermodynamically consistent.

Experiments: Helmholtz and Gibbs free energies

One of the most straightforward types of experiments is changing temperature at stan-
dard, or other constant, pressure and measure volume change or heat capacity. Equally
straightforward is to change pressure while keeping the temperature constant. Such isobaric
and isothermal experiments are performed in the Gibbs free energy framework. Another
type of experiments is using pressure to change volume at room, or other constant, tem-
perature (for example, in a diamond anvil cell) or changing the temperature of a material
and measuring pressure change at constant volume (especially for gases). These two type
of experiments, isothermal and isochoric (constant volume), naturally fall into a Helmholtz
free energy framework since P(V,T') is measured while keeping one of the variables con-
stant. The Helmholtz free energy also connects the experimentally determined P(V,T) to
the internal energy, E(V,T), the two quantities usually tabulated in an EOS for use in a
hydro-code. If the formulas for the pressure and internal energy are both determined from
an Helmholtz free energy via Equations 2.7 and 2.5, they are thermodynamically consistent,
and parameters fitted to the experimentally determined P(V,T') curves would automatically
yield a correct internal energy, up to a constant.

Phase transitions: Gibbs free energy

Another type of straightforward experiment is to observe phase transitions, either by
changing the pressure at constant temperature or changing the temperature at constant (for
example, ambient) pressure. These experiments fall naturally into the framework of Gibbs
free energy since phase boundaries are most naturally given in a P — T' phase space. This
is, of course, due to the fact that a material in a mixed phase, with several different phases
present at the same time, still has a well defined pressure and temperature, due to the
intensive nature of these two variables.

16



Chapter 3

Thermodynamic derivative relations

From the definitions of the four thermodynamic potentials in the previous chapter, every
possible relation between thermodynamic derivatives can be derived. Consider that we have
four thermodynamic potentials, F, F',G, H and four variables, V, TS, P, that each can be
in three positions, X,Y, Z: g—if > and disregarding slight over counting, we have 8 = 512
first and second order derivatives of the thermodynamic potentials. Finding the needed
relationships between these derivatives can be daunting. This can often feel like a blind trial
and error and easily leads to circular argumentation. The key to success is to keep track of
what you need and what you have access to. Intermediate steps in the following derivations

are the ones that came naturally to me.

Hydro-codes and Equations of State: Internal energy vs
Helmholtz free energy

Equation of State work usually is performed within the Helmholtz free energy framework,
with V' and T as natural variables. However, to determine the state in an hydro-code, where
V and E are the variables that are updated in every time step, T(V, E) and P(V, E) are
needed. In order to translate between what is needed in an hydro-code and what is available,
the EOS usually gives values for E(V,T) and P(V,T), and an inversion procedure is used
between the given internal energy and volume and the sought temperature. For an EOS that
will be used in hydro-codes, it is thus natural to also provide values for the four derivatives

op
y OT

oF
ov

OE
y OT

oP

s (3.1)
v oV

v
Due to the Maxwell relations these four derivatives are not independent, in fact, only three

of four are. We can derive the isothermal volume derivative of the internal energy using the
Helmholtz framework, or directly from the first and second law in Equation 2.1:

a3
+T ==
OV

P
- py7
. Thar

oE
ov

_or
s OV

, (3.2)
1%
and, indeed, we see that two of the four derivatives are directly related. This equation is often
used to investigate the thermodynamic consistency of tables listing E(V,T') and P(V,T).
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For the isochoric (constant volume) thermal derivative of the internal energy we again
use Helmholtz free energy. The Helmholtz free energy gives

oS
T —
V+S+ o7

oE
or

_or

= = CV ) (33)
L ar

v oT
the usual relation we use for definition of constant volume specific heat.

The remaining two derivatives are already within the Helmholtz free energy framework
and are usually not further reduced. They are related to the isothermal bulk modulus and
the thermal expansion coefficient.

As discussed above, an important quantity in a hydro-code is the sound speed. Any EOS
module must be able to provide values for the sound speed for use by the hydro-code. Thus,
the definition in Equation 2.24 is used to derive a formula relating the speed of sound to the
four thermodynamic derivatives usually available in an EOS module, listed in Equation 3.1.

The sound speed is related to the second derivative of a thermodynamic potential, and
in the derivation we will need to make diligent use of the chain rule. For the derivative, we
need P(V,S), but from the Helmholtz framework we have P(V,T). We use

P(V,T) = P(V.T(V,S)), (3.4)
which gives
op| _op|  or| oT .
oVls OV|, oT|, V|’ '

The last derivative needs to be further reduced, using the Maxwell relation in Equation 2.3,
the chain rule, and the equation for Cy, derived in Equation 3.3:

_or| _op| _op| or| _ 5l 5l (3.6)
8VS aSV 8TV(?SV %V g_?‘v

Putting it all together gives the sound speed written in terms of quantities available from an
EOS package:

OP (2] )
A=V _| 4TV2 oV (3.7)
o)
oV |y a_ﬂv

Note that this equation also gives a connection between the isothermal and isentropic bulk
moduli.

The last quantity used in the internal energy framework that might need to be translated
to a Helmholtz picture is the Griineisen parameter, I', defined in Equation 2.3. Note that
the specific heat at constant volume, Cy, is directly defined in both frameworks. With
straightforward use of the chain rule, or directly from Equation 3.6, we have:

vV OP o
r=— —| =vZY, (3.8)
T 0S|, g—E\V



Rearranging and using definitions, we have

o B
Tp= 3.9
p CV ’ ( )

which relates two very common approximations made in analytical EOS models, that of con-
stant I'p and Cy (Mie-Griineisen EOS model) to that of constant aBr and Cy (temperature
amended Vinet EOS, see Equation (4.4) in Reference 3).

Phase transitions in hydro-codes: Internal energy vs
Gibbs and Helmholtz free energies

Phase transition models, using the Gibbs free energy framework, implemented in hydro-
codes, using the internal energy framework, need temperature derivatives along isobars and
pressure derivatives along isotherms of various quantities (such as the volume and internal
energy). In addition we still need to have information from the EOS package for determining
explicit values for these quantities. For each phase we need

oF
oP

OE
; OT

oV
, oP

ov

pad (3.10)
o OT

P
Note that in phase transitions only derivatives with respect to intensive variables are well

defined. This is the reason we replace the pressure with the volume among the two principal
quantities compared to the derivatives in Equation 3.1.

Using £ =G — PV + TS we get

OE
oP

ov
—_V_p==
T oP

S
+T 2
s 0P

ov
= —P P —
T oP

ov
T
. oT

e

- = (3.11)
s OP

P

Again, we note that we only have three independent derivatives in Equation 3.10. In the
same way we get

oE
orT

08
L oT

_p

(3.12)
» T

P
We now need to relate the three Gibbs free energy framework derivatives

[
oT

ov
. 0P

ov
- 0T

(3.13)

P
to Helmholtz free energy quantities, or rather, to the derivatives in Equation 3.1.

By inverting we have
oV

P

1
P

= (3.14)
T ov |T
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Maxwell relations (or the cyclic rule for derivatives) and the chain rule give

av
T

__ 9
, P

__ 95
;v

oV oF
a5| = __gg‘V, (3.15)
T P T W‘T

The last derivative is slightly more complicated and, again, we use S(T', P) = S(T,V(P,T))
to get

951 _ 98 +8_S ovy _1oE _op g_PlV (3.16)
or\, or|, ov|,oT|, T oT|, aTvg—\le’ '

where we have also used a Maxwell relation and previously derived relations. The final
results for the remaining hydro-code derivatives for phase transitions are

E E o8
oE| 9B OV| _ g;‘T (3.17)
oP |, oV |, 0P|, 9B
OF as oV ( as ) OF L\, oF
oby o _ op 9ol OV (p 0ol p) 9B bl (3.18)
oT |, or|, = aT|,\" V|, or|, 22| oV,

where we have used the easier path of the chain rule, instead of Equation 3.11, for the first
equation

Thermodynamic derivatives for mixed phases

While the individual EOS models give values for the Helmholtz free energy derivatives and
the sound speed for the individual phases, we have to derive the corresponding derivatives for
a volume element in the continuum simulation with several phases present simultaneously.
The internal energy and volume in an element with N phases, each with mole fraction
0< )\ <1, are

N N
E=Y NE and V=> \Vi, (3.19)
=1 =1
where

Z)\i =1. (3.20)

From this definition of internal energy and volume for the mixed phase, it is straightfor-
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ward to obtain the derivatives in Equation 3.10:

N

g_f’T — ;Ai%T (3.21)
N .

g—gp = ;Ai%p (3.22)
N .

g—gT = ;Ai%T (3.23)
N

g—gp = ;Ai%}j. (3.24)

The relations in Equations 3.14, 3.15, 3.17 and 3.18 can be used for the Helmholtz free
energy related quantities in Equation 3.1, since, for example, using Equation 3.23, we have

ov

R

T N 6V|T 1=1 V.

so that
oP 1
— == 3.26
oV T 21111 /\i3+ ( )
WVilr
The remaining relations give:
oV 5l _ -, oty
_ — = \—— 2
ol = T 0
T =1 av; T
IE;
OE Bl N
| = =) \—ZL 2
op|, = w2 N (329
T =1 av; T
oP| OE N or|  9L;
- oP i ’ .
oT |, oT |, <, — aT |, g_‘zz .




so that the three remaining Helmholtz free energy related quantities in Equation 3.1 are

N

oP oP

_ oF oTlv;
ar), = ovl, 2N (330
= av; T
OE op| & %
aV;
R — R . ‘1T
av|, avjjnglma (3:31)
= v, T
opr op| 95
oE| 8TV8V|T ZA (?E _ o Oy (3.32)
oT opP ' ’
14 8V Vi v .

Note, in particular, that highly nontrivial relation for the constant volume specific heat for
a mixture of phases given in the last equation.

By using the previously derived relation between the sound speed and the EOS quantities,
Equation 3.7, we can get the sound speed for the mixed phase. However, it is illustrative to
derive a relation between the sound speed of the separate phases and the total sound speed.

As seen in Equation 2.24, the sound speed is related to the volume derivative of the
pressure along an isentrope, but only derivatives along isotherms and isobars are well defined
in a mixed phase. We will need to find a relation between the sound speed and derivatives
with respect to temperature along isobars, and/or derivatives with respect to pressure along
isotherms.

The Maxwell’s relation derived from enthalpy, Equation 2.19, gives a translation from
derivatives along isentropes to derivatives along isobars. By inverting this relation,

oP oS

and noting that we need a derivative with respect to temperature to go with the isobar on
the right hand side in order to have a well defined quantity in a mixed phase, we get

oS os| ov orP| oV orP| ov| oV

or|, = av|, of|, = o |, oT|, ~ av|, oT |, oT|, (3:34)

Since entropy is an extensive variable we have a similar relation for it in a mixed phase as
we have for the internal energy and volume:

N
S=>"\Si, (3.35)
i=1
which we can now use to get
S Y 0S,
—| = N — 3.36
| =g Ee

22



The two last terms in Equation 3.34 need to be written as derivatives with respect to
volume along isotherms and/or derivatives with respect to temperature along isochores,
quantities that we can get from our EOS. We proceed by using the already derived relations
in Equations 3.6 (inverted) and 3.15 to obtain

as|  op| %
o5 _ 9P| v (3.37)
T 4 S BV’T
This results in
8E
2
C V2 8P ZAZ ¢ QT (338)
= w\T
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Chapter 4

Summary

Each of four different thermodynamic potentials contain all necessary quantities for de-
scribing the thermodynamic state of a system. However, depending on the situation, one or
the other of the thermodynamic potentials can be more convenient to use, since each has its
own specific set of natural variables:

The internal energy has entropy and volume as natural variables, E(S,V).

The Helmholtz free energy, F' = E — T'S, has volume and temperature as natural
variables, F'(V,T).

The Gibbs free energy, G = F+ PV, has temperature and pressure as natural variables,
G(T,P).

The enthalpy, H = G — T'S has pressure and entropy as natural variables, H(P,S5).

Complications arise, however, when a situation requires connections between two, or
more, different frameworks. An example is when a hydro-code, with a natural framework
of internal energy, needs an equation of state, with a natural framework of Helmholtz free
energy. In those situations relations between thermodynamic derivatives within different
frameworks need to be derived. The key to successful derivations is to use

o Mazwell relations (Equs 2.3, 2.8, 2.14, and 2.19), derived from that the second order
derivative of a thermodynamic potential with respect to both its natural variables is
independent of the order that the derivatives are taken, and

e diligent use of the chain rule (see, for example, Eqns 3.5 and 3.16).

Several useful relations are derived in Chapter 3. If other relations are needed, they
can be derived according to the same methodology, or they can be looked up in Rebecca
Brannon’s excellent write-up in Reference 2.
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