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Abstract

Computational simulations of a sudden viscous dissipative mechanism relevant to inertial confinement
fusion are carried out for a two-component fluid mixture under compression. The sudden viscous
dissipation of turbulent kinetic energy into heat is still observed for this new case. The evolution of the
mass-fraction variance as the fluid is compressed at various rates is also computed, and a decay of the
mass-fraction fluctuations due to the viscous dissipative mechanism is demonstrated.

I. Introduction

Turbulence can have a substantial effect in high-energy-density experiments (see, for example
[1, 2]). In particular, a transition to turbulent mixing in inertial confinement fusion (ICF) has the
potential to increase unwanted mix between hot and cold materials, thus deteriorating the efficacy
of an ICF implosion. However, previous work [3] has suggested that an unexpected dissipative
mechanism of turbulence could be exploited to enhance conditions for ignition during an ICF
implosion. Through computational simulations that used a plasma scaling for viscosity (µ ∼ T5/2)
rather than a fluid scaling (µ ∼ T3/4), Davidovits & Fisch [3] demonstrated that, as a turbulent
flow is compressed, the effect of viscosity eventually dominates and a sudden and rapid viscous
dissipation eliminates the turbulent kinetic energy (TKE) in the system. This dissipated TKE
would thus lead to increased internal energies and temperatures, which would improve conditions
for ignition.

Numerous additional studies have further investigated the sudden dissipative mechanism
[4, 5, 6, 7]. In particular, [8] extended previous work that had so far been confined to the
zero-Mach-limit by instead solving compressible Navier-Stokes equations for turbulence in the
finite-Mach-number regime. This approach allows for the explicit representation of the self-
consistent transfer of energy between the TKE and the internal energy, and the subsequent effect
that the altered viscosity has on the original TKE viscous dissipation. In an effort to further increase
the fidelity and complexity of simulated physical phenomena relevant to ICF, the simulations
of [8] have now been extended to account for two-component fluids. Results from these new
computations are detailed in this paper. This work was motivated by the future need to explore
the effect of complex viscosity models for dense plasma mixtures and thermonuclear burn present
in ICF capsules, for which a multi-component formulation is required.

The paper proceeds with section II, where a description of the governing equations used to
simulate the sudden viscous dissipation of a deuterium-tritium fluid mixture is provided. In
section III details of the numerical simulation, such as the initialization scheme, are described. The
results are shown in section IV, and the paper wraps up with conclusions in section V.
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II. Governing Equations

The starting point are the Navier-Stokes equations for a non-reacting multicomponent fluid, which
are given below

∂ρ

∂t
+

∂ρui
∂xi

= 0, (1)

∂ρui
∂t

+
∂ρuiuj

∂xj
=

∂σij

∂xj
, (2)

∂ρE
∂t

+
∂ρEui

∂xi
=

∂uiσij

∂xj
− ∂qi

∂xi
, (3)

∂ρYα

∂t
+

∂ρYαui
∂xi

= −∂Jα,i

∂xi
. (4)

In the above, ρ is the density, ui the velocity, σij the stress tensor, E the total energy, qi the heat
flux, Yα the mass fraction for species α, and Jα,i the diffusive species flux.

The velocity field can be decomposed into Favre-averaged and Favre-fluctuating velocities ũi
and u′′i , respectively, so that ui = ũi + u′′i . As done in [3], the compression of the turbulent flow is
achieved by enforcing a predetermined mean flow of the form ũi = Gijxj, where the deformation
tensor Gij is given by

Gij =
L̇
L

δij. (5)

In the above, L is the time-dependent characteristic length of the domain that gets compressed,
and L̇ is the constant rate of change of L.

As stated in [8], the direct solution of equations (1), (2), (3), (4) is not pursued and instead a
modified set of equations is solved to easily account for the effect of the mean flow compression.
From (1), (2), (3), (4), an alternate set of equations are derived for the fluctuating variables, which
are then transformed to a reference frame that moves with the mean flow [9]. A rescaling of the
equations similar to that in [3] is then used to improve stability. Details of this derivation for the
case of single-species compressible turbulence are provided in [8]. For the work detailed in this
paper, the derivation has been extended to account for the mass-fraction transport equation. The
overall set of governing equations solved are thus

∂ρ

∂t
+

∂ρu′′i
∂xi

= f (ρ), (6)

∂ρu′′i
∂t

+
∂ρu′′i u′′j

∂xj
=

∂φij

∂xj
+ f (u)i , (7)

∂ρEt

∂t
+

∂ρEtu′′i
∂xi

=
∂u′′i φij

∂xj
+

∂qi
∂xi

+ f (e), (8)

∂ρYα

∂t
+

∂ρYαu′′i
∂xi

= −∂Jα,i

∂xi
+ f (y). (9)

The viscous, conductive, and diffusive fluxes are

φij = −pδij + 2µ

[
1
2

(
∂u′′i
∂xj

+
∂u′′j
∂xi

)
− 1

3
∂u′′k
∂xk

δij

]
, (10)
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qi = −κ
∂T
∂xi

, (11)

Jα,i = −ρ

(
Dα

∂Yα

∂xi
−Yα ∑

β

Dβ

∂Yβ

∂xi

)
. (12)

For the above, p is the pressure, T the temperature, Et = e + Kt the total energy, e = CvT the
internal energy, Kt = 1

2 u′′i u′′i the kinetic energy of the fluctuations, and Cv the specific heat
at constant volume. The viscosity, thermal conductivity, and species diffusivity are given by
µ = µ0(T/T0)

n, κ = µCp/Pr, and Dα = µ/ρScα, where µ0 and T0 represent a reference viscosity
and temperature, n = 5/2 is the power-law exponent, Cp the specific heat at constant pressure, Pr
the Prandtl number, and Scα the Schmidt number for species α. Each species behaves as an ideal
gas, and thus p = ρRT is used, where R = Ru/Mavg is the ideal gas constant, Ru = 8.314472× 107

[g-cm2 / mol-s2-K] the universal gas constant, and Mavg the average molar mass. The forcing

functions that account for the compressive effect of the mean flow are f (ρ) = −2ρL̇, f (u)i = −3ρu′′i L̇,
f (e) = −

[
2ρEt + ρu′′i u′′i + 3P

]
L̇, and f (y) = −2ρYα L̇.

III. Numerical Details

Equations (6), (7), (8), and (9) are solved using the high-order code Miranda. Spatial derivatives
are discretized using a tenth-order Padé scheme, whereas temporal integration is performed with
a fourth-order five-stage Runge-Kutta integrator. The Miranda solver employs an artificial fluid
approach, for which artificial transport terms are added to the bulk viscosity, thermal conductivity,
and molecular diffusivity [10, 11].

The computational domain is a box with 1283 evenly-spaced grid points. Periodic boundary
conditions are applied to the six faces of the domain. Only two mass fractions are present in the
system, namely that of deuterium YD and tritium YT . The molar masses used for deuterium and
tritium are 2.01355 [g/mol] and 3.0155 [g/mol], respectively. The ratio of specific heats is γ = 5/3
and the Prandtl number is Pr = 1. The Schmidt number for deuterium is ScD = 0.1, and that for
tritium is ScT = 10.0.

The initial flow field was extracted from a simulation of forced compressible turbulence
[12, 13]. Whereas the linear functions of [12] are used to separately force the solenoidal and
dilatational components of velocity so as to achieve target solenoidal and dilatational dissipations,
an additional linear forcing function is used in the mass-fraction transport equation to achieve
predetermined values of mass-fraction-variance dissipation. The temporal evolutions of the TKE
k = 1

2 ũ′′i u′′i and mass-fraction variance V = Ỹ′′DY′′D = Ỹ′′T Y′′T are both shown in figure 1. The
flow field at the last available time from the linearly-forced simulation is used to initialize the
subsequent computations that focus on the effects of the mean-flow compression.

IV. Results

Figure 2 shows the evolution of the TKE as the domain is compressed, and compares these time
histories for different compression speeds. The various compression speeds are denoted by the
different values of the initial shear parameter S∗0 = S0k0/ε0, where S0 = L̇0/L0. These results are
also compared against rapid distortion theory [14], which provides exact analytical predictions for
infinitely rapid deformations. As the figure shows, the compression of a two-species fluid with a
plasma-like viscosity still leads to the sudden viscous dissipation originally demonstrated in [3].
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Figure 1: Time history of TKE and mass-fraction variance for linearly-forced compressible turbulence.

This TKE evolution is qualitatively similar to cases belonging to both turbulence in the zero-Mach
limit [3] and turbulence in the finite-Mach regime [8].

The evolution of V = Ỹ′′DY′′D = Ỹ′′T Y′′T as the compression takes place is shown in figure 3.
Unlike for the TKE evolution, the production of mass-fraction variance

ρP(V)
α = 2ρỸ′′α u′′i

∂Ỹα

∂xi
(13)

is equal to zero due to the assumption of uniform Ỹα, and the only relevant mechanism is that of
viscous dissipation, which is given by

ρε
(V)
α = 2ρDα

∂Y′′α
∂xi

∂Y′′α
∂xi

. (14)

Thus, V can only remain constant or decay. For the slowest compression rate S∗ = 0.5, an
exponential decay occurs immediately following the start of the compression, whereas, for the
fastest compression speed, the mass-fraction variance decays little throughout the initial phase of
the compression. Nonetheless, once L has reached sufficiently small values, all simulations show
that the flow has fully re-laminarized, both in terms of velocity and mass-fraction fluctuations. We
also note that if the evolution of V is shown in a log-scale, as done for the TKE in figure 2, then
the decay of the variance appears sudden and rapid.

V. Conclusions

Simulations of the sudden viscous dissipation have been extended to account for the presence of
two species, namely deuterium and tritium. It has been shown that the sudden viscous dissipation
of TKE still occurs for this two-component fluid. However, more relevant to the current study is
that the simulations demonstrate that the mass-fraction variances dissipate as the compression
proceeds, and that this decay occurs at markedly different rates for the different compression
speeds. The decay of the mass-fraction variance is quite rapid if visualized on a log scale, as is the
case for the sudden viscous dissipation of TKE.

This work paves the way for further studies that increase the fidelity and complexity of
simulations of the sudden viscous dissipation relevant to ICF. Future efforts are to conduct
simulations with a larger number of components with material properties that differ significantly
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Figure 2: Evolution of the turbulent kinetic energy k, normalized by its initial value k0, as the size L of the domain
is decreased. The various lines correspond to different values of the initial shear parameter S∗0 = S0k0/ε0,
where S0 = L̇0/L0.

from each other. This would then allow for a rigorous testing of complex viscosity models for
multi-component mixtures, as well as the study of effects of nuclear reactions on the internal
energy of the system.
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