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ABSTRACT

This work details an integrated investigation of liquid crystal (LC) oligomers that combines
experiments and molecular dynamics simulations for obtaining a detailed understanding of
the molecular structure of LC oligomers and the mechanism underlying their phase transition
temperatures. We synthesized and characterized a series of LC oligomers prepared from
different lengths of methylene spacers in the reactive LC monomers and n-alkylamine chain
extenders via aza-Michael addition reaction. In parallel, we performed isothermal-isobaric
(NPT) ensemble coarse-grained molecular dynamics (CG-MD) simulation of analogue
mesogens that are connected to flexible spacers and extenders at varying temperature, spacer
length and extender length. This approach allowed the effect of length in the flexible spacer
as well as in the chain extender on the nematic-isotropic transition temperature (T,;) to be
determined. The results showed that increasing the length of the extender decreases T,; for
LC oligomers and amplifies the decrease of T,; in LC oligomers when the spacer length is
short. We infer that the combination of spacer and extender changes the shape anisotropy of
LC oligomers, changing packing behavior of constituent mesogens, thus affecting their
ability to transition from the isotropic to the nematic phase. The detailed molecular structure-
property relationships formulated enable prescribing design rules for LC oligomers geared

towards molecularly-engineered shape changing materials.
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INTRODUCTION

Liquid crystal elastomers (LCEs) are mechanically responsive materials which can
undergo shape transformation in a programmed and reversible manner when exposed to
external stimuli.'* The ability to control LC orientation spatially and hierarchically with
various methods including surface, mechanical and magnetic alignments allows for creation
of 3D anisotropic shape changing materials.>’ Various types of soft actuators in macro-,%14
micro-13-24 microarray?>-33 and surface level’*4! have been reported by exploiting the shape
programmability, elastic property and stimuli-sensitivity of LCEs. While the importance of
alignment cannot be overemphasized, the materials chemistry to prepare LCEs also plays a
pivotal role that can determine intrinsic properties including phase behavior, thermal and
mechanical properties. Classically, the hydrosilylation chemistry in which a vinyl-
functionalized LC monomer and a multifunctional vinyl crosslinker are grafted on
polyhydrosiloxane main chain, producing a side-chain LCE, has been widely exploited.!!#?
This chemistry can be also applicable to prepare main-chain LCEs by reacting a divinyl LC
monomer with a disiloxane chain extender and a tetrasiloxane cross-linker.#3-*¢ More recent
studies on the LCE synthesis witness extensive use of the nematic diacrylate monomers (so-
called reactive mesogens) as a building block partly because they are not only commercially
available, but also can be easily aligned. Based on these versatile LC monomers, several
research groups have developed various synthetic methods to prepare LCEs including aza-
Michael addition,®194748 thiol-Michael addition,334°3% trans-esterification®! as well as

chain-transfer process.®?

For the LCEs prepared by step-growth reaction such as the Michael addition, the
characteristics and properties of LC oligomers (i.e., LCE precursors) is one of the crucial
factors in determining properties of resulting LCEs. For example, the crosslink density and
mechanical properties will be greatly affected by molecular weight of LC oligomers.*”#® The
actuation temperature of the LCEs is related to the nematic-isotropic temperature (T,;) of LC
oligomers.>>3 9 Very recently, LC oligomers have been utilized as LC inks for the direct ink
writing (DIW)-based 3D printing process. The subsequent photo-crosslinking of the patterned
LC ink structures produces 2D or 3D patterned LCEs which successfully demonstrate as a
new class of 4D printing materials.’>%4-6 Thus, a fundamental understanding of the impact of
the molecular structure of LC oligomers on its phase behaviors and thermal properties will be

crucial for proper design of LCEs and for tailoring their performance.
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In this study, the phase behavior and thermal properties of a series of LC oligomers
are investigated by combining experiments and coarse-grained molecular dynamics (CG-MD)
simulations to reveal the molecular structure-property relationships. As a model system,
poly(f-amino ester) types LC oligomers are synthesized by step-growth polymerization
through aza-Michael addition reaction between diacrylate LC monomers and primary amines.
In particular, the number of flexible methylene spacer in the LC monomers as well as the
number of methylene group in the primary alkylamine are varied which allows for a
systematic study on the phase behavior of LC oligomers. According to the CG-MD results,
the shape anisotropy of the LC oligomers is greatly altered depending on the molecular
structure of LC oligomers, and found to be a key parameter that changes the T,. To our
knowledge, this is the first investigation of poly(f-amino ester) types LC oligomers that
combines experiments and CG-MD simulations to obtain detailed understanding of the
molecular structure of LC oligomers and their phase transition temperatures. Our study
provides useful guidelines to rationally design and manipulate properties of LC oligomers

geared towards molecularly-engineered shape changing materials.

EXPERIMENTAL
Materials

1,4-Bis-[4-(3-acryloyloxypropyloxy)benzoyloxy]-2-methylbenzene (LC monomer with
three methylene spacer), 1,4-bis-[4-(6-acryloyloxyhexyloxy)benzoyloxy]-2-methylbenzene
(LC  monomer  with  six  methylene  spacer), and 1,4-bis-[4-(11-
acryloyloxyundecyloxy)benzoyloxy]-2-methylbenzene (LC monomer with eleven methylene
spacer), were purchased from Synthon Chemicals. n-butylamine, n-hexylamine, n-
octylamine and n-decylamine were purchased from Acros. All materials were used without

purification.

Synthesis of liquid crystal oligomers

In a representative synthesis, 1,4-bis-[4-(3-acryloyloxypropyloxy)benzoyloxy]-2-
methylbenzene (LC monomer) and n-butyl amine with a molar ratio of diacrylate : primary
amine = 1.1 : 1, were added to a 6 mL vial. The LC mixture was heated by a heat gun and
vigorously vortexed for uniform mixing. Afterwards, the vial containing LC mixture was
placed in an oven at 90 °C about 24 h, during which aza-Michael addition reaction proceeds
between LC monomer and amine. A similar procedure was performed to synthesize other LC

oligomers.
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Methods and Characterizations

'"H NMR spectra was collected using 500 MHz Varian spectrophotometer using
deuterated chloroform as solvent. Size exclusion chromatography (SEC) was performed
using an Agilent 1100 pump, a refractive index detector, and PSS SDV (5 pum; 103, 103, and
102 A; 8.0 x 300.0 mm) columns. THF was used as eluent, and Agilent GPC-addon (Rev. B.
01. 01) software was used to construct a conventional calibration curve using polystyrene
standards. Polarizing optical microscope (POM, Nikon Eclipse LV100N POL) equipped with
a heating stage (Linkam LTS420) was used to determine phase transitions of the LC
oligomers using the Toupview software. T,; of the LC monomers and LC oligomers were
determined by cooling samples from the isotropic phase. Differential scanning calorimetry
(DSC) was performed on TA instruments Q20 under nitrogen flow. The samples were heated

to 150 °C, then cooled to -50 °C, and reheated to 150 °C at the rate of 10 °C/min.

SIMULATION METHOD

There are many ways to model liquid crystals, which includes both theoretical and
computational studies of liquid crystals and their phase transitions,®’-”” however we opted to
use coarse-grained bead-spring model of LC oligomers, since it is easier to incorporate both
rigid mesogens and flexible chain spacers and extenders in the model. In this approach, in
contrast to an all-atom model, the T,; can be determined within the time-scale of the
simulations, while preserving the particle-based nature of the simulation. Here, CG-MD
simulation of LC monomers, in the isothermal-isobaric ensemble (NPT), was performed to
determine the dependence of Ty; on the length of the mesogen spacer (N1 ) and the alkylamine
extender (Np). In the CG-MD, a mesogen is represented as five connected Lennard-Jones (LJ)
beads that are made rigid by the addition of a bending potential to two consecutive bonds,
while the spacers and extenders are represented as flexible chains of up to 3 connected LJ
beads. A monomer is represented as a set of one mesogen connected to two spacers that are
each connected at the ends of the mesogen (see Figure 1b and Figure S1). The length of the
alkyl spacer and the attached alkylamine extender are represented as N and Np, respectively.
The alignment of mesogens was monitored by examining the change of behavior and
oscillations of the orientational correlation function, gy(r),”® and the temperature at which the
system transitions from the nematic to isotropic phase was recorded. The procedure for
determining the T,; through g,(r) are described in the Supporting Information and illustrated

in Figure S2. We opted to use gy(r) to clearly see the onset of phase transition during the case
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when there are multiple domains with different nematic directors, for example as seen in

T=0.99 in Figure S2(a), where the value of the nematic order parameter, (S,),’6 7 of the
simulation box would be low. However, we also used (S,) and the total number density (p)

as checks to confirm the T,; as shown in Figure S2(b-c). It is expected that (p) would
increase in the nematic phase as the mesogens are better packed than in the isotropic phase.
Note, the strength of the pair-wise interactions between all Lennard-Jones beads is equal to 1
kgT, signifying that all interactions are neutral, and the study focuses only on the entropic
effect of the length of spacers and extenders on T,;. Hence, the effects of these moieties to
enthalpic interactions of the system, such as n-m interactions found in the phenyl rings of the
mesogens were neglected. Furthermore, three mesogens are attached at their spacers through
a junction bead, where the junction bead is also attached to the extender chains, to form a
trimer. Similar to the simulation protocol used in simulating monomers, simulations were
performed to monintor T,; as a function N and Np for the trimer. Also, we observe that the
isotropic-nematic phase transition of the LC mesogens is first-order as indicated by the abrupt
change in the behavior of g,(r), and in the values of (S,), and (p) as shown in Figure S2.
All simulations were run using LAMMPS3%8! software package with three runs having
different initial configurations. More details describing the simulation protocol and

simulation system sizes (see Table S1) are provided in the Supporting Information.
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RESULTS AND DISCUSSION

(a)

0
0
LC monomer 'ﬁ)‘oﬂr{;@\“’c’@ol{@kﬂ nOJj\’J’

(o]
Qe (n=3,6,11) ’

Monomer

Heat, . . .
;‘i ’Q:NH; (m=3,5,7,9) Rigid Moiety + Flexible Spacer (N,)

Y Chain extender () l
o 0. ;% O Q.
LE olpies f/’\(n}’ ta jcl/\’ \/\g’ 1;03’ \g’r“\‘ @ ’
® - hno@‘g"“@’o*g’@oﬂr? ¢ ?

Trimer
3 Monomers + Junction

+ Flexible Extender (Np)

(b) Coarse-grained MD Simulation

Figure 1. (a) Reaction scheme of LC oligomers by chain extending the LC monomer via aza-
Michael addition reaction. (b) Coarse-grained representation of the monomer and the trimer
where the rigid moieties in the mesogens are represented as five linked orange beads. The
flexible spacers with different length (N ) are the blue beads. The junction beads that connect
the spacers are the red beads. And, the extender chain with different length (Np) that

represents the n-alkylamine moiety in the experiments, are the green beads.

To investigate the impact of spacer length in the LC monomers as well as the chain
extenders on the resulting phase transitions of LC oligomers, in particular with T,;, a series of
LC oligomers were prepared. Specifically, twelve LC oligomers were synthesized by aza-
Michael addition reaction between three LC monomers containing different length of
methylene spacer (n = 3, 6 and 11) and various types of alkylamine chain extenders (CHj3-
(CHy)-NH,, m = 3, 5, 7 and 9) as shown in Figure la. The synthetic protocol of the LC
oligomer is similar to a previously reported method.®!%47 Briefly, the LC monomer and
primary amine are homogeneously mixed in a vial and then oligomerized at 90 °C for 24 h.

During this period, the diacrylate functionalized LC monomer is chain extended by reacting
with a primary amine through step-growth polymerization, producing the poly(f—amino ester)

type LC oligomer. The molar ratio of diacrylate in the LC monomer to primary amine in the

feed is approximately 1.1:1. Throughout this article, we refer to the LC monomers consisting
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of different spacer length as LCM(n), and LC oligomers as LCO(n-m), where n and m
represent the number of methylene groups in the flexible spacer in the LC monomers and
amine chain extenders, respectively. Note that the values of » and m in the experiments are

analogous to N and Np in the CG-MD simulations, respectively in Figure 1b.

Molecular characterizations of LC oligomers are performed using 'H NMR and the
representative 'H NMR spectrum of LCO(3-5) with its peak assignment is shown in Figure 2.
For reference, '"H NMR spectra of the starting materials (LCM(3) and n-hexyl amine) are also
shown in Figure S3. The appearance of two peaks, 1 (2.77 ppm, O(C=0)-CH,-CH,-NR;-) and
n (2.39 ppm, -CsH;;CH,-NR;-), next to tertiary amine as well as the peak, m (2.45 ppm,

O(C=0)-CH,-CH,-NR5-) next to ester suggest the successful formation of f—amino ester

linkage in the LC oligomers. The degree of polymerization (DP) and the number average
molecular weight (M,) are determined by the end-group analysis. Specifically, the ratio
between six protons in the diacrylate end-groups (b, ¢ and d) and four aromatic protons in the
repeating mesogen (a) are used to calculate DP and M, of each LC oligomer, and the values
are summarized in Table 1. More calculation details are described in the Supporting
Information, and the rest of "H NMR spectra of LC oligomers are also shown in Figure S4.
We note that LC oligomers having comparable DP are prepared so that the phase behavior
dependence on the molecular structure of LC oligomers rather than molecular weight of LC

oligomers can be investigated.3? 83

The number and weight average molecular weights (M, and My,) of LC oligomers and
their molecular weight distributions are further determined by SEC, and the values are listed
in Table 1. In general, the SEC traces are broad, and multiple peaks appear especially in the
high retention time, suggesting the presence of shorter LC oligomers probably due to
incomplete reaction (Figure 3). As a result, broad molecular weight distributions (P ~ 1.5-2.7)
are found because of the characteristics of step-growth polymerization as well as the
inefficient mixing during the melt polymerization. The values of M,, determined by 'H NMR

and SEC tend to increase with increasing the length of spacer and chain extender.
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Figure 2. '"H NMR spectrum of LCO(3-5) in CDCl;.
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Figure 3. SEC traces collected from RI detector of LC oligomers. (a) LCO(3-m) series, (b)
LCO(6-m) series and (¢) LCO(11-m) series.
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TABLE 1. Summary of molecular characterization of LC oligomers

'"H NMR SEC

oNOYTULT D WN =

o sample Ope M., NMR M sEc My sec Pb

10 (g/mol)? (g/mol)® (g/mol)®

12 LCO(3-3) 6.4 4,800 4,600 12,500 2.7
14 LCO(3-5) 8.4 6,400 3,300 4,900 1.5
16 LCO(3-7) 6.9 5,500 5,000 11,800 24
18 LCO(3-9) 6.9 5,700 5,600 9,300 1.7
20 LCO(6-3) 8.4 6,900 5,800 10,000 1.7
22 LCO(6-5) 7.1 6,200 7,000 16,800 24
24 LCO(6-7) 7.7 6,800 8,500 17,400 2.0
26 LCO(6-9) 8.1 7,400 10,000 21,500 2.1
28 LCO(11-3) 9.8 9,500 9,000 20,600 23
30 LCO(11-5) 8.1 8,200 12,100 24,400 2.0
32 LCO(11-7) 8.6 8,900 12,100 25,700 2.1
34 LCO(11-9) 7.0 7,600 10,800 20,900 1.9

35 aDetermined by 'H NMR end-group analyses. YDetermined by refractive index detector with
PS standards in THF.
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Figure 4. DSC traces of LC oligomers prepared by different types of spacer and chain-
extender during (A) first cooling curves and (B) second heating curves. (a) LCO(3-3), (b)
LCO(3-5), (c) LCO(3-7), (d) LCO(3-9), (e) LCO(6-3), (f) LCO(6-5), (g) LCO(6-7), (h)
LCO(6-9), (i) LCO(11-3), (j) LCO(11-5), (k) LCO(11-7) and (1) LCO(11-9).

The phase transitions and thermal properties of LC monomers and LC oligomers were
investigated by DSC as well as POM with temperature control. DSC traces of LC monomers
and LC oligomers are shown in Figure S5 and Figure 4, and the transition temperatures and
associated enthalpy changes are listed in Table S2. LC monomers show Ty, and Ty;, and their
values are close with literature.®% The T, of LC monomers gradually decreases with
increasing the length of the flexible methylene spacer.®* A similar behavior is observed in the
CG-MD simulations where T,; in LC monomers decreases as Ny increases (See Table 2 and

Figure S7b).
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LC oligomers exhibit considerably different phase behaviors depending on the length
of spacer in LC monomers. On one hand, LC oligomers prepared from LCM(3) and LCM(6)
show a glass transition (T,) and a LC clearing temperature. The Schlieren textures are
observed for both LCO(3) and LCO(6) series, when cooling from the isotropic phase,
indicating the nematic phase in these samples (Figure 5). We note that weakly noticeable
peaks for LCO(6) series are detected around 31-34 °C in DSC traces which may imply the
existence of another mesophase. However, no significant change in texture of mesophase is
observed when monitored by POM even after fine temperature control. Interestingly, both T,
and T,; of LCO(3) and LCO(6) series gradually decrease with increasing the length of
methylene group in the amine chain extender. The reduction in T, is associated with increase
in free volume in the LC oligomers, and the suppression in T,; is attributed to the
destabilization of nematic phase by the longer alkyl group, which is the non-mesogenic
segment.'? It is worth noting that the LCO(3) series showed substantially lower T,; than the
LCO(6) series when prepared by the same type of amine chain extender, although the T,; of
LC monomer is higher for the LCM(3) compared to the LCM(6). Such difference between
LCO(3) and LCO(6) series will be discussed in more detail later.

On the other hand, more complex phase behaviors are observed for LCO(11) series,
including multiple mesophases and melting/crystallization temperature. When cooling from
the isotropic phase, LCO(11) series first undergo phase transition to nematic phase, then to
smectic phase and lastly to crystalline phase. The representative LC textures observed for
LCO(11) series by POM at nematic phase are shown in Figure 5, and smectic and crystalline
phases are shown in Figure S6. The emergence of smectic phase is probably caused by the
long methylene spacer which enhance the ordering between mesogens.>8* During
subsequent heating, the crystals of LCO(11) melt at two discrete temperature ranges of which
temperature distance and associated enthalpy changes vary depending on types of chain
extender employed. Both mesophase transitions (i.e., nematic-isotropic and smectic-nematic)
show a gradual decrease with increasing the length of methylene group in the chain extender,

similar to LCO(3) and LCO(6) series.
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Figure 5. POM images of representative nematic textures of LC oligomers consisting of
different lengths of spacer and chain-extender. Images were taken under cross polarizers and

scale bars represent 100 pm.

The aim of our study is to reveal the relationship between the molecular structure of
LC oligomer and the corresponding nematic-isotropic transition where the order parameter
changes the most dramatically. Therefore, we mainly focus on how the T,; is altered with
variation in molecular structure of LC oligomers, in spite of observing multiple phase
transitions in some LC oligomers. In this regard, the T, as well as the ratio of
Thi otigomer’ Tnimonomer 0f LC monomers and LC oligomers determined by simulation and
experiment are summarized in Table 2 and Table 3, respectively. These results show several
trends regarding T, change. First, LC oligomers always show lower T, than their
corresponding LC monomers. Second, T,; of LC oligomers gradually decreases with
increasing the length of methylene group in chain extender. Similar trends of T, when
considering monomers versus trimers, and dependence of Np are seen in simulations as well.
However, the experimental and simulation results show a discrepancy with respect to T,; of
LC oligomers at varying spacer length as shown in Figure S7. Specifically, when the same
type of chain extender is employed, the LCO(3) series (i.e., the shortest spacer length) show
the lowest T,; in the experimental results. In contrast, the trimers with Ny =3 show the lowest

T, in the simulation under the same Np. Such difference between experimental and
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simulation results may be due to following reasons: (1) the trimers in the simulation are
monodisperse, while the LC oligomers in the experiment are polydisperse, (2) the degree of
flexibility of the spacer between simulation and experiment is not the same, and (3) mainly
because only entropic effects are considered in the simulations (i.e., absence of m-m
interactions and crystallinity). We attempted to add interactions between different
components by changing the g; value of eq. S1 between mesogen, linker and extender
beads, and favoring mesogen-to-mesogen attractions over the other interactions. However,
we observed that it is a challenge to determine the T,; when there is phase-separation (hence,
confinement), occurring simultaneously. Both effects are beyond the scope of this study and
to model this system would require systematic coarse-graining approaches,® like for
example, using atomistic MD simulations as a reference to obtain a coarse-grained force-

field.

The Ty oligomer/ Tni,monomer 0f LC oligomers is greatly influenced when the spacer of LC
monomer is short. In other words, the rate of T,; change is much greater when shorter
methylene spacers are introduced in the LC monomer (See Figure 6a). We also observed a
similar tendency in the simulations (See Figure 6b). The simulations showed a sudden drop
of the value of T,; relative to the monomer for the system with Ny =1 and Np=1. We
hypothesize that the extender connected on the junction point serves as a defect on the LC
ordering, and we observed that its effect on the value of T,; is amplified if N is short. The
effect of the extender on T,; decreases as the length of the spacer increases. We attribute this

behavior to the decrease in anisotropy of the LC oligomers as either N or N increases.

To verify our claim that the spacer and chain extender disrupt the ordering of
mesogens and changes the shape anisotropy of the LC oligomers, we therefore obtain the
shape anisotropy, (kx?), which is calculated from the principal moments of the gyration tensor
of the position vectors of the beads of a LC monomer or trimer. 8 In Figure 7, (k?) is
calculated for the LC monomer (Figure 7a) and trimers (Figure 7b-d) at various temperatures
near the vicinity of T,;. The x-axis in Figure 7 is plotted in terms of T-T,; to facilitate
comparison among different combinations of Ni and Np. The brackets in (k?) refer to
ensemble average in time and in number of LC oligomers. Note that (x?) is always greater
when the temperature of the system is lower than T,;. For the monomers (Figure 7a), the

value of (x?) is high (indicating that the monomers are nearly rod-like where (x?)=1 for a
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line), and similar to the behavior of Ty;, where (r?) decreases as Ny increases. For trimers,
an increase in Np at constant N, or an increase in N, at constant Np decreases (KZ) which

correlates with the decrease in T;.

Table 2. Summary of nematic-isortropic temperature of coarse-grained models of monomers

and trimers from CG-MD simulations.

Trimers
Np Monomers
ND:O ND: 1 ND:2 ND:3
0 1.35+£0.01 -- -- -- --
0.98 £0.01 0.92 £0.01 0.90 £0.01 0.86 £0.01
1 0.99 £0.01
(0.99) (0.93) (0.91) (0.87)
0.83 £0.01 0.82£0.01 0.80+£0.01 0.76 £0.01
2 0.86 £ 0.01
(0.96) (0.95) (0.93) (0.88)
0.75£0.01 0.74 £ 0.01 0.73 £0.01 0.72 £0.01
3 0.77 £0.01
(0.97) (0.96) (0.95) (0.94)

®The values in the parenthesis indicate the ratio of Ty; ligomer/ Tnimonomer-

Table 3. Summary of nematic-isotropic temperatures of LC monomers and LC oligomers.

Spacer length (n) Thi of LC Ty of LC oligomer (°C)*
of LC monomer  Monomer (°C)? m=3 m=5 m=7 m=9
80 68 60 52
3 128
(0.62)° (0.53) (0.47) (0.40)
103 99 88 84
6 120
(0.86) (0.83) (0.73) (0.70)
100 93 88 85
11 105
(0.96) (0.89) (0.85) (0.82)

aT,; 1s determined by POM while cooling from the isotropic phase.

bThe values in the parenthesis indicate the ratio of Thi oligomer’ Tnimonomer-
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Figure 7. Shape anisotropy (x?) of LC monomers and LC oligomers at different

temperature. (a) LC monomer, (b) LC oligomers with N =1, (¢) LC oligomers with Ny =2 and

(d) LC oligomers with Ny =3. (Lines are guide to the eye.)
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To gain further insight into the effect of N; and N on the packing of mesogens in
trimers, we investigated the systems at an isotropic temperature (T=1.10). Here we gauged
the probability of how mesogens would pack, e.g., whether it would be more of an intra-chain
or an inter-chain packing. In Figure 8, we explored the probability of a mesogen to be in
contact with another mesogen belonging to the same trimer through g;..(r), which represents
the intra-chain contribution to the LC center-to-center radial distribution function, g(r), or
contacts of an LC subunit within the trimer. Figure 8 shows that the lower value of N, g(r)
has a higher proportion to intra-chain contacts (decreasing peak as you move from (a) to (c)
in Figure 8). However, at constant Ny, the peak in g.(r) is lower for lower Np. These
observations suggest that Np promotes more intra-chain contacts, while N frustrates intra-
chain contacts. The magnitude of change of gj,u.(r) 1s greater for N;=1 as Np is changed as
opposed to N =3 (see blue arrows in Figure 8), suggesting that intra-chain packing in N =1 is
more affected when Np is changed. This is consistent with the observation that T,; of the
oligomer with Ny =1 decreases more relative to T,; of the monomer than that of the oligomer
with Np =3, and is consistent with the trends for T,/ Tpi,monomer Shown in Figure 6. Furthermore
in Figure S8, we calculated the intra-chain correlation function at the T,; and 0.5 below the
T, and we observe similar trends in gi,(r) to the high temperature systems but the
correlation peaks at the lower temperatures have higher intensities reflecting the better
packing of mesogens in the nematic phase. The qualitatively similar behavior of gj.(r) in the
isotropic and nematic phases is expected since all the simulations were pre-equilibrated at a

temperature of T=1.0, which is above the T,;.
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Figure 9 summarizes the relationship between molecular structure of LC oligomers
and the change in shape anisotropy based on the results from experiment and CG-MD
simulation. First, the extension of a LC monomer to trimer (or a LC oligomer) by the
introduction of chain extenders decreases the aspect ratio (as measured by its shape
anisotropy, (x?)) and results in a decrease in T,; (Figure 9a). Second, an increase in the chain
extender length of the trimer (or the LC oligomer) decreases the aspect ratio and results in a
decrease in Ty; (Figure 9b). Lastly, if the trimer (or the LC oligomer) is prepared by a LC
monomer having shorter flexible spacer, the change (delta) of the aspect ratio is more
significant, resulting in a considerable drop of T,;, when comparing to the LC monomer
having longer spacer (Figure 9c). According to the CG-MD results, these relationships
between T,; and the molecular structure of LC oligomers are mainly due to the difference in

shape anisotropy of the LC oligomers upon change in their molecular parameters.

I e

LC monomer LC ollgomer
(N.=2) (NL=2, Np=2
— §
LC oligomer LC oligomer
(NL=1! ND=1) (NL=1v ND=3)

(c) Q. —_—

LC monomer LC monomer
(N.=1) (N.=1, Np=3)

Ry —
Lc rrI:lor_lgmer LC monomer i
(N.=3) (N_=3, N,=3) LC monomer LC oligomer

Figure 9. Proposed mechanism of change in shape anisotropy of LC oligomers. (a) Effect of
chain extender, (b) effect of chain extender length, and (c) effect of spacer length in the LC

monomer.

ACS Paragon Plus Environment

Page 18 of 28



Page 19 of 28

oNOYTULT D WN =

Submitted to Macromolecules

CONCLUSIONS

Our investigation in the synthesis, characterization and CG-MD simulation of model LC
oligomers provides molecular insight into the effect of chain spacers and chain extenders on
the ordering of LC oligomers. Specifically, we examined the effects of the length of the
flexible spacer and alkyl chain extender on T,; at which most dramatic change in the order
parameter occurs. The results on the molecular-structure property relationships reveal that T;
of LC oligomers gradually decreases with increasing the length of chain extender which is the
non-mesogenic moiety. Interestingly, the decrease of T,; in LC oligomers accelerates when
the spacer length of LC oligomers is short. Based on the CG-MD results, we infer that such
changes in T,; is primarily resulted from the change in shape anisotropy of LC oligomers and
is dependent on the molecular structure, which affects the packing behavior of constituent
mesogens. Since the length of the flexible spacer and chain-extenders can bring a
considerable impact on the resulting phase behaviors,?’-° microstructures,”’->3 and even shape
memory and actuation properties®’-** of LC polymers and elastomers, our findings on the
molecular-structure property relationships may offer useful guidelines to design LC
oligomers and tailor their properties targeting molecularly-engineered shape changing

materials.
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