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Abstract Machining is a severe plastic deformation process wherein the work-
piece material is subjected to high deformation rates and temperatures. During
metal machining the dynamic recrystallization mechanism causes grain refine-
ment into the sub-micron range. In this study we investigate the microstructure
evolution of OFHC copper subject to a machining process where the cutting
speed and rake angle are controlled to manipulate the process strain, strain
rate, and temperatures. Microstructures of the deformed chips are quantified
using orientation imaging microscopy and novel statistical descriptors that
capture the morphology and local lattice misorientations generated during the
several mechanistic stages of the dynamic recrystallization process. Mechan-
ical properties of the resulting chips are quantified using spherical nanoin-
dentation protocols. A multiple output Gaussian Process regression model is
used to simultaneously model the structure-property evolution, which differs
from more common approaches that establish such relationships sequentially.
This modeling strategy is particularly attractive since it can flexibly provide
both structure and property uncertainty estimates. In addition, the statistical
modeling framework allows for the inclusion of multi-fidelity data. The statis-
tical metrics utilized serve as efficient microstructure descriptors, which retain
the physics of the observed structures without having to introduce ad-hoc
microstructure feature definitions.
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1 Introduction

Machining is a high rate severe plastic deformation (SPD) manufacturing pro-
cess. The process can be described using the idealized model shown in Figure
1A. The imposed thermomechanical loading is fairly extreme with imposed
strains as large as γ ∼ 10, deformation rates up to 105 s−1, and cutting tem-
peratures as high as 0.6 θ (homologous temperature) [49]. These imposed de-
formation conditions result in microstructure refinement in both the deformed
chip and the component surface [47,8,4,60,61,61,23,35]. The corresponding
mechanical properties of both the chip and the workpiece surface are natu-
rally sensitive to the produced structures [37,8,55,35]. Therefore, identifying
the process-structure-property (PSP) relationships that characterize machin-
ing is critical for establishing a synergistic framework where designers, materi-
als scientists, and manufacturers can cooperate to engineer functional surfaces.
Furthermore, the SPD structures produced in machining bear a resemblance
to structures produced in other SPD processes such as equal channel angular
extrusion [59], high pressure torsion [65], and dynamic processes where shear
banding may occur [36,34,33]. Therefore, the merit in studying machining as
a high rate SPD process translates to other fields as well.

The predominant microstructure evolution mechanism in machining under
ambient conditions is either continuous or discontinuous dynamic recrystalliza-
tion (CDRX or DDRX) [8,37]. CDRX is driven by the formation of dislocation
cells that transform to low angle boundary (LAB) sub-grain structures, and
finally relative sub-grain rotations generate high angle boundary (HAB) re-
fined grains [37,18]. DDRX is more closely related to classic recrystallization
where new grains nucleate and grow, often near existing grain boundaries [26].
Since the mechanism driving CDRX is driven by lattice rotations, the struc-
ture evolution can be quantified by considering measures of crystallographic
misorientation [57,1,35,51,5]. Mechanical constitutive property measurements
are usually limited to hardness since the produced samples are small in scale
(machined chips and workpiece surface) [37,8,23,35,55].

Materials Informatics (MI) is an emerging field within the materials com-
munity which, like cheminformatics and bioinformatics, seeks to employ statis-
tics for addressing important domain science problems [30,29,28,38]. Materi-
als research is conducted utilizing statistical approaches for establishing data-
driven models, quantifying uncertainty, and the design and planning of exper-
iments. MI addresses the fundamental challenge in materials research, iden-
tifying PSP relationships, by building mathematically rigorous models. The
models, which may be data-driven or mixed data/physics models, may then
be exploited for the design of functional materials. Recent works have estab-
lished reduced-order structure-property (SP) models for single phase polycrys-
talline systems [43,44]. These authors utilized generalized spherical harmonics
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Fig. 1: (A) Machining process schematic. Controllable parameters include cut-
ting speed (V ), the uncut chip thickness (to), and rake angle (α). (B) Chips
and metallographic sample.

(GSH) to quantify bulk textures and used spatial statistics to quantify the
spatial structure describing various simulated microstructure realizations. An-
other recent work utilized a deep adversarial learning model coupled with a
Gaussian process (GP) Bayesian design criteria for computational materials
design [64].

In this work we study the evolution of pure copper subject to a high rate
SPD machining process. Microstructure is quantified using orientation imag-
ing microscopy (OIM). A microstructure statistic which quantifies the local
crystal spatial misorientation is derived. This is done by utilizing a GSH basis
to describe the crystallographic orientation and a unique spatial autocorrela-
tion function, which exploits the orthogonality of the GSH basis. Constitutive
mechanical properties are quantified using spherical nanoindentation tests. Fi-
nally, a Multiple Output Gaussian Process Regression (MOGPR) model is de-
veloped, which captures the full PSP relationships as well as their associated
uncertainties. The model is flexible and is well suited for handling multiple
kinds of data e.g. multi-fidelity modeling.



4 Patxi Fernandez-Zelaia, Shreyes N. Melkote

Fig. 2: Machining process-structure-property map [23].

2 Experimental Methods

Oxygen-free high conductivity copper (OFHC Cu) bars were obtained from
a supplier (McMaster Carr). The material was subjected to SPD via a ma-
chining process. Tube turning experiments were carried out to emulate the
idealized two-dimensional orthogonal cutting experiment shown in Figure 1A.
High speed steel cutting tools with nominal rake angles α = 5◦, 15◦, 25◦, 45◦

were used for all experiments. A constant feed (or undeformed chip thick-
ness) (to) of 300 µm was prescribed for all tests. The prescribed geometry
was chosen to impose large shear strains in the primary shear zone, which
the machining theory predicts to be γ ∼ 1 − 8 [49]. Four cutting speeds
V = 0.20, 0.33, 0.50, 1.00m · s−1 were studied, which generate strain rates
∼ 103− 104 s−1. Higher cutting speeds correspondingly yield increases in chip
temperatures as there is less time available for diffusion of heat away from the
chip. From the measured cutting forces, the chip temperatures were estimated
to reach ∼ 165◦C for the lowest rake angle (highest strain) and fastest cutting
speeds utilized [49]. Generated chips fell into a quench tank filled with water
to freeze the as-machined microstructure.

Collected chips were mounted in epoxy as shown in Figure 1B. Small
sample-to-sample deviations in the chip orientation within the casting will
affect the perceived two dimensional morphology of observed micrographs.
Furthermore, OIM results will be affected due to uncertainty in the reference
sample orientation. Therefore, special care was taken to mount samples such
that the observed cross section correspond as closely as possible to the ideal-
ized two dimensional orthogonal configuration. Grinding of the metallographic
samples was performed to reach the “mid chip” ( 1 mm) thickness which is far
from free boundaries and therefore minimally affected by side flow transverse
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to the direction of chip flow. Samples were subsequently mechanically pol-
ished with up to 1µm diamond suspension polish. Final surface preparation
was performed via vibratory polishing in a Buehler VibroMet 2. A Tescan Mira
XMH field emission scanning electron microscope (FE-SEM) was utilized to
image the generated microstructures. A backscatter emissions (BSE) detector
was utilized for all imaging as it was found to yield images with extremely
good contrast (see Figure 3). A EDAX Hikari EBSD detector with TSL OIM
analysis was utilized for orientation imaging.

Nanoindentation experiments were performed on a Agilent G200 nanoin-
denter with an XP head and continuous stiffness monitoring (CMS). A 100µm
diamond indenter was used for all experiments. Spherical indentation stress-
strain protocols were utilized to further process experimental data [41,42]. The
derived indentation stress-strain curves capture the mechanical response of the
material deformed beneath the indenter. The corresponding contact radius for
these experiments varied between 10−20µm. The microstructures considered
vary greatly in their degree of refinement. Under some conditions, very fine
structures (d < 1µm) were generated suggesting that the obtained indenta-
tion responses are likely well homogenized. Coarser structures however suggest
that the local material heterogeneity may introduce additional response vari-
ation. In our analysis we will account for this by attempting to establish mean
property quantities.

Microhardness measurements were performed using a Buehler series 1600
microhardness tester. A diamond tip Vickers indenter loaded to 500g was used
for all tests.

3 Methods

3.1 Microstructure quantification

BSE and EBSD micrographs for two different process conditions are shown
in Figure 3. Images at larger values of the rake angle α (or smaller values of
strain since γ ∝ α−1) produced correspondingly coarser microstructures and
therefore larger fields of view were required at these settings. The field of view
at each setting is illustrated in Figure 4. The total number of raster steps in
each image was maintained at 300× 300 to avoid unnecessarily long scans.

In Figure 3, it is clear from both the BSE and EBSD scans that the mi-
crostructures are morphologically different. In the α = 25◦ BSE image however
it is difficult to discern which features are grain boundaries; the BSE image
is sensitive to defect structures besides grain boundaries. An even clearer pat-
tern is visible in Figure 4 particularly at low rake angles of 5◦ and 15◦; with
increasing cutting speed it appears as if the structure becomes smeared. Statis-
tically, it can be stated that crystal orientations are more spatially correlated
at higher cutting speeds than at lower cutting speeds. Furthermore, this pat-
tern is also present with increasing rake angle. Consider an experiment where
a point is chosen randomly in the micrograph for (5◦, 1.00m · s−1) and we
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Fig. 3: BSE-SEM and EBSD images of the generated microstructures. Top
images correspond to process conditions that impose less strain relative to the
bottom images. BSE and EBSD images are not coincident.

note the crystal orientation at the chosen pixel and at a location 5 µm to
its right. Subsequently, the same experiment is performed on the micrograph
for (5◦, 0.20m · s−1). On average, over many repetitions, the two pixels from
(5◦, 1.00m · s−1) would yield more “similar” orientations than in the micro-
graph for (5◦, 0.20m · s−1). It is this feature that we wish to quantify and
exploit for assessing microstructural anisotropy.

Recent advances in the MI community have established statistically rigor-
ous methods for quantifying stochastic material systems [28]. In this work we
quantify microstructure via crystallographic orientation which can be quan-
tified using the Bunge-Euler angles g = (φ1, Φ, φ2), which are continuously
defined over the fundamental zone (FZ) [9]. The probability of finding orien-
tation g at spatial location x is fx (g) [63,43]. Note that in the MI literature
this quantity is referred to as the microstructure function [2].

Spatial correlations between microstructure states can be quantified through
the use of spatial statistics [56,28]. The simplest of the n-point spatial statistics
is two-point statistics. These quantities capture spatial correlations by consid-
ering the vector distance between two points. The example posed earlier in
this section used two-point statistics to qualitatively describe the “spread” of
crystals. Formally, the two-point statistics can be described by a conditional
probability,
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Fig. 4: EBSD images of the various microstructures produced via machining.

p (g, g′|t) =
1

|X |

∫
X
fx (g) fx+t (g′) dX , (1)

where t is the vector that separates two points in the microstructure, g is the
microstructure state at the tail of the vector, and g′ is the microstructure state
at the head of the vector. Note that if g′ = g then this quantity describes au-
tocorrelation. Also note that this quantity is solely a function of the difference
in spatial location between two points (t) and therefore this definition assumes
stationarity of the microstructure.

Consider now that we wish to obtain a compact representation of fx(g).
There have been several works that have adopted the use of generalized spher-
ical harmonics (GSH) for describing this quantity in polycrystalline systems
[63,43,44]. Using a GSH basis fx(g) can be rewritten as,

fx (g) =
∑
µ,n,l

Fµnlx
˙̇Tµnl (g) , (2)

where µ, n, l represent multiple indices for multiple sums, and Fµnlx is the
complex-valued GSH coefficient at x which corresponds to the complex val-

ued GSH basis ˙̇Tµnl . Note that the ˙̇Tµnl preserve crystal symmetries and are

orthogonal to their complex conjugate ˙̇Tµn∗l . The coefficients Fµnlx can be ob-
tained in the analogous way to how Fourier coefficients are determined (i.e.
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Fig. 5: Confidence index maps corresponding to each EBSD scan.

by exploiting orthogonality) Fµnlx = (2l + 1)
∫
fx (g) ˙̇Tµn∗l (g) dg. In the case

where spatial bin x is occupied by a single orientation go (an individual pixel

in an indexed EBSD scan) then Fµnlx = (2l + 1) ˙̇Tµn∗l (go).

Naturally, the next step is to redefine the two-point statistics using the GSH
basis representation. One practical consideration is that there are an infinite
number of g to chose from since it is a continuous function. In recent works, this
problem is overcome by computing spatial statistics over the complex valued
GSH coefficients themselves [43,44]. The interpretation is that the different
microstructure states are described by the different GSH coefficients indexed
over µ, n, l. However, in this work we will introduce one additional definition
which produces a different interpretation of the spatial statistics. Here we
define an averaged quantity for the spatial autocorrelation, which averages over
all g. In doing so, information about texture is lost, but this new definition is
well suited for capturing the local misorientation or local morphological spatial
behavior. Therefore, we define,

p̄t =
1

VFZ

∫
FZ

p (g, g|t) dg, (3)
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where VFZ is the fundamental zone volume. Again, this quantity describes the
spatial autocorrelation of crystallographic orientation averaged over all possi-
ble crystal orientations. Some information (texture) is lost but the structural
morphological information is retained. The advantage of adopting this strategy
is that often very large scans are needed to capture texture, which is inherently
a volume-averaged quantity. Therefore, texture requires a large representative
volume element (RVE) to be statistically representative of the material as a
whole. Conversely, local morphological features may be representative at much
smaller RVE length scales.

Combining the GSH representation of Eqn. 2, definition in Eqn. 3, and two
point statistics in Eqn. 1 the following expressions may be derived:

p̄t =
1

|X |
1

VFZ

∫
X

∫
FZ

fx (g) f∗x+t (g) dgdX

=
1

|X |
1

VFZ

∫
X

∫
FZ

∑
µ,n,l

Fµnlx
˙̇Tµnl (g)

∑
µ,n,l

Fµn∗lx+t
˙̇Tµn∗l (g) dgdX

=
1

|X |
1

VFZ

1

2l + 1

∫
X

∑
µ,n,l

Fµnlx F
µn∗
lx+tdX

=
1

|S|
1

VFZ

1

2l + 1

S∑
s=1

∑
µ,n,l

Fµnls F
µn∗
ls+t

(4)

where f∗x+t (g) is the complex conjugate. Since f is a real valued function
then f = f∗. This trick enables significant simplification when computing
the product of the two large sums since we are using an orthogonal basis;∫
FZ

˙̇Tµnl
˙̇Tµ

′n′∗
l′ dg = (2l + 1)

−1
if all the indices “match” else 0. A similar

manipulation was found in [63] but in their case it was for computing local-
ization relationships and not spatial autocorrelations. In fact, the definition
introduced in Eqn. 3 was purposefully introduced to exploit the orthogonality
found in the GSH basis similar to what was done in [63]. This simplification
only works for the case of autocorrelation; the orthogonality cannot be ex-
ploited when considering cross correlations. The final expression obtained is a
function (mean) of the autocorrelation statistics derived in [43,44]. However,
our derivation can be justified with some novel physical interpretation (mean
autocorrelation over all g).

Note that although fx(g) is described using a truncated GSH expansion
each of the GSH coefficients themselves is a complex-valued continuous vari-
able. This treatment allows for gradations of similarity between pixels. For
instance, pixels misoriented by only a few degrees will yield higher autocorre-
lation than pixels with large misorientation. If instead the continuous-valued
microstructure state (orientation g) was discritized using a “binning” strategy
[17], then pixels with similar orientations that happen to fall into different bins
would erroneously suggest a lack of autocorrelation. Furthermore, binning of
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the three dimensional orientation space would be cumbersome and inefficient
[63].

The final line of Eqn. 4 discretizes the spatial domain over X into a two-
dimensional binned spatial domain over S which corresponds to the EBSD scan
pixels. The final expression is a convolution over S, which can be efficiently
computed using discrete Fourier transforms (DFTs) [28]. The quantity |S| is
the total number of spatial bins considered e.g. total number of pixels in a
image. Note for partial scans, scans where a portion of the image contains
unreliable or “bad” measurements, recent algorithms have been established
that account for this complication by modification of Eqn. 4 [11].

The proposed microstructure descriptor is sensitive to the degree of GSH
discretization introduced in Eqn. 2. If too few terms are used in the sum then it
may be possible that fx(g) will be unable to accurately describe certain orien-
tations present in the observed micrographs. Consequently, the morphologies
associated with those inadequately resolved orientations will be neglected in
the mean autocorrelation function (Eqn. 4). There are two recent works which
address the question of GSH truncation when quantifying spatial microstruc-
ture data. Paulson et al. published a work on the homogenization of elastic
and inelastic properties of polycrystalline HCP systems using a similar MI
approach [43]. For HCP systems l = (0, 2) yields 6 terms and l = (0, 2, 4)
yields 15 terms in Eqn. 2. In their study they considered various crystallo-
graphic textures and found that truncation at 15 terms yielded marginally
better results than at 6 terms. Yabansu, Patel, and Kalidindi found that trun-
cation with l = (0, 4), yielding a total of 10 terms, was suitable for building
reduced order elastic localization relationships in polycrystalline FCC systems
[63]. Therefore, since there is evidence that both localization and homoge-
nization relationships can be captured with minimal terms, we argue that a
ten term GSH truncation should be sufficient for adequately describing the
microstructures studied in this work.

3.2 Feature selection and bootstrapping

The previous section describes a rigorous method for quantifying the mi-
crostructure. The mean two point statistics, p̄t, derived however is of the
same dimensionality as t. Correspondingly, t is a vector that can be placed
into the microstructure and hence in this case it is bounded by the size of the
EBSD scans/images. Therefore, p̄t ∈ RN×M where N and M are the height
and width of the images measured in pixels. All EBSD scans in this work are
square hence the dimensionality of each statistic derived from the images isN2.
Therefore, it is clear that for interpretability of the results some dimensional-
ity reduction will be necessary. In this work we utilize unsupervised Principal
Component Analysis (PCA), which computes a statistically optimal basis for
describing the full feature space. PCA has been employed successfully in many
MI works for compact representation of microstructure statistics [14,28,12,27,
44,43,32,53,54]. Dimensionality reduction is achieved by suitably truncating
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the basis expansion and using the basis weights (PC weights) to describe the
data. This is analogous to Fourier representation of a one dimensional signal
where the Fourier coefficients can compactly describe the signal.

Another consideration when constructing the microstructure feature space
is the need to ensure rotational invariance of the images. Consider that small
deviations in how the samples are mounted in the microscope may result in an-
gular rotation of the images, which therefore affects the microstructure statis-
tics. Looking ahead at Figure 9, careful inspection reveals that the statistics
are slightly rotationally misoriented relative to one another. Failure to capture
this experimental artifact could result in falsely discriminating two otherwise
statistically identical microstructures. Rotational invariance is introduced by
utilizing the methods found in [14]. Full details of this method are found in
the referenced work and are not reproduced here.

Finally, a strategy is needed to obtain measurements of the dispersion of
the PC weights. A naive and experimentally costly strategy would require
that multiple EBSD scans be taken. From the dispersion (variance, covari-
ance) measures, hypothesis testing could be performed or data-driven models
could be built. This approach would be extremely expensive as each single
scan is costly to obtain. An alternative strategy is to use the single observa-
tions and obtain dispersion estimates from bootstrapping of the images [16].
A similar strategy was utilized in [62,13] for generating computationally effi-
cient statistical volume elements (SVEs). Niezgoda, Yabansu, and Kalidindi
utilized bootstrapping to obtain estimates of the structural variance of three
dimensional simulated microstructures [39].

Bootstrapping seeks to establish dispersion estimates for mean quantities
by a resampling of the data [16]. It is appealing because no distributional
assumptions are needed (e.g. normality). Furthermore, it can be used to obtain
dispersion estimates for complicated functions of the observed data. Consider
that we make N observations of a normally distributed quantity X but we
want the mean and mean-variance of some complicated function f(X).

In our setting, the data are the EBSD scans and the transformation is the
pipeline that transforms the EBSD scans to p̄t and then to the truncated PC
weights. Special care is also needed to preserve the spatial correlation structure
present in our data. Therefore, we used a strategy that is analogous to boot-
strapping time-series data [16]: 7.5µm× 7.5µm images were sub-sampled four
times and used to reconstruct a tiled 15µm×15µm image. The 7.5µm×7.5µm
tiles were obtained by randomly selecting pixels from the image and then ob-
taining 3.75µm worth of pixels left, right, above, and below the selected point.
In the case where the randomly selected pixel was within 3.75µm of a bound-
ary the sub-sampled image was obtained by “wrapping” around the original
image. For computing spatial statistics this is acceptable since the convolu-
tion in Eqn. 4 assumes periodic boundary conditions, which is equivalent to
assuming that the image “wraps” around itself. This is shown schematically in
7. Each resampled 15µm× 15µm image corresponds to a single bootstrapped
sample. For each setting, 100 bootstrapped samples were generated. The en-
tire ensemble was then utilized to establish a PC basis and the corresponding
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Fig. 6: Rotationally invariant mean spatial crystallographic autocorrelation
basis and accumulated variance explained statistics.

PC weights for each bootstrapped sample were determined. The mean and
variance of these bootstrapped PC weights were utilized to establish the mean
and mean-dispersion at each unique process setting.

3.3 Multiple output Gaussian process regression

A data-driven model is needed to efficiently map the controllable process pa-
rameters to the material quantities of interest. In this setting, the structure
behaves as an intermediate variable that fundamentally controls the physics
and is responsible for the exhibited properties. A statistical interpretation is
that the structure variable is a latent variable; it is critically important but is
either not possible to observe or perhaps can only be observed with great effort.
This is an important consideration when identifying the relevant length scales
and corresponding salient microstructural features. For instance, consider that
TEM micrographs are rich with information at the lowest length scales but
are costly to obtain. Conversely, optical micrographs are relatively easy to ob-
tain but may have limited utility for certain problems, for instance properties
that are dependent on the lower length scale physics. Process-property models
can sometimes capture the underlying relationships [15], however, inclusion
of structure into the modeling pipeline is preferred [28]. The justification is
that structure physically governs the underlying property behavior and inclu-
sion of such information may alleviate potential ambiguities associated with
non-unique process-property mappings.
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Fig. 7: Bootstrapping schematic for estimating confidence bounds on mean
feature statistics. (A) original EBSD scan and corresponding random samples
(B) reconstruction from random sampling and associated bootstrapped mean
spatial crystallographic autocorrelation p̄t sample.

Modeling of PSP relationships traditionally follows a sequential strategy
where the process-structure (P-S) and structure-property (S-P) relationships
are established independently of one another and combined in sequence [32].
This is illustrated in the top of Figure 8. A difficultly associated with such a
framework is that it is not straightforward to quantify uncertainty propaga-
tion between P-S and S-P models. The P-S model accepts process parameters
as inputs, which are considered to be deterministic. The output microstruc-
ture estimates are naturally stochastic since the microstructure observations
are stochastic. Computing confidence bounds for the output microstructure
estimates is trivial in most statistical frameworks. Additional care however is
needed in the subsequent S-P modeling step when transferring forward stochas-
tic structure estimates. As was just argued, the P-S outputs are stochastic and
hence the S-P inputs are stochastic. However, most data-driven models assume
the model inputs to be deterministic.

Another limitation of the sequential PSP modeling strategy is that infor-
mation is not shared across the P-S and S-P models. Consider that the model
of interest is actually the full PSP model. This model is of course built using
the two P-S and S-P sub-models, which are usually established independently.
A better PSP model could perhaps be established if the P-S and S-P models
were built concurrently or perhaps with iteration; the best P-S and S-P models
established independently may not produce the best PSP model.
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Fig. 8: Schematic of two modeling strategies for establishing PSP-linkages.
Note that italicized P refers to the process and normal font P represents
properties. (A) A sequential strategy where process-structure and structure-
property models are built independently and predictions flow sequentially, (B)
jointly developed model using multiple output GP structure, which captures
possible cross-correlations in the structure-property structure.

Gaussian process regression (GPR) is a non-parametric curve fitting tech-
nique [46,48]. Unlike traditional linear and nonlinear regression, non-parametric
methods do not require a priori knowledge of the trends’ functional form. In-
stead, the data is assumed to come from a Gaussian data generating process
where observations, yi and yj , may be correlated based on their proximity to
each other, xi − xj . Future predictions, y(x), can be shown to be a weighted
average of all the [y1, . . . , yN ] where the weights depend on the proximity of x
relative to all observations in the dataset [x1, . . . ,xN ]. The final form of the
GPR statistical model is closely related to kernel regression and smoothing
methods [6,46].

In classical regression, the statistical inference or learning is performed by
optimally estimating the unknown regression coefficients. In the GPR setting
the inference is performed by estimating the unknown statistical hyperparam-
eters. These quantities define the correlation structure, which is embedded in
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the collected observations. For instance, correlation length scales are used to
precisely quantify the relative measures of “proximity” mentioned above. In
some problems xi − xj = 1 may be an insignificant difference yet in other
instances this may be large.

In this work we attempt to address both these considerations by utilizing a
multiple output Gaussian process regression (MOGPR) model for simultane-
ously identifying the full PSP model (Figure 8B). Multiple output implies that
y need not be a scalar. This model choice offers several promising features not
available using a sequential strategy. Firstly, structure and properties are mod-
eled together as a function of process inputs using a multivariate normal struc-
ture to quantify structure-property correlations. In this way process-property
is possible however the model will also infer possible structure-property cor-
relations when present. The structure-property cross-correlation jointly con-
siders the full PSP linkage rather than independent sub-models. Secondly,
quantifying the S-P variables simultaneously in a multiple output setting al-
lows for easy uncertainty quantification of all relevant quantities including
their cross-correlation structure. Finally, the MOGPR framework is flexible in
its treatment of data and enables the inclusion of partial datasets with miss-
ing data. For instance consider a study where there are two microstructure
descriptors. One is obtained using efficient experiments such as optical mi-
croscopy. The other descriptor is obtained using TEM and is therefore costly
to acquire. The dataset may therefore contain many times more optical images
than TEM images. However, in establishing the S-P linkages standard regres-
sion models require both covariates for each individual property measurement.
Clearly, such a framework cannot pair the two descriptors since one is much
more numerous! The state of the art in this setting is to implement a transfer
learning model which enables sharing of information between the two kinds
of structure data [40]. The MOGPR model can automatically accommodate
this setup. Additional details on the GPR framework, estimation of hyperpa-
rameters, prediction estimates, and details on the implementation used in this
work are found in A.

3.4 Multi-fidelity property modeling

In this work, structural descriptors come from the PC-weights of the mean
crystallographic autocorrelation function (p̂t). Property measurements are ob-
tained using spherical nanoindentation. The indentation stress-strain yield
strength is used to quantify material strength [41]. The fraction explained
variance (Figure 6) illustrates that two PC components capture 97% of the
observed variance. Therefore, in this study M = 3 where j = 1, 2 are the first
two PC-weights and j = 3 is the indentation yield e.g. the MOGPR model
represents the vector (PC1, PC2, Yind). Yind has some physically meaningful
interpretation but is a somewhat noisy observation (see Figure 17). This vari-
ation is inherited from various sources including microstructure and surface
characteristics. In Figures 3 and 4 it is clear that the indenter could possibly
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engage different crystallographic orientations from test to test. Furthermore,
there is also morphological heterogeneity across microstructures as seen in
Figure 5. Although the final contact radius using a 100µm indenter is on the
order of 10-20 µm, the contact radius is at the yield point roughly 1-2µm.
Even using a larger 500µm indenter would not produce RVEs of crystallo-
graphic orientation and larger indenters (the next available indenter is 1500
µm) are not feasible due to the load-limits of the machine and the size of our
samples (the smallest is 500 µm in thickness). A brute-force strategy would
require EBSD imaging of every SVE indentation site, which is experimentally
costly. Finally, the response is sensitive to nano-scale asperities on the prepared
surfaces, which introduces variation in the form of noise.

Therefore, in this work our strategy is to simply homogenize over these
effects and therefore we have conducted many repeated indentation experi-
ments for each unique process setting. However, a complimentary strategy is
available that allows the combination of nanoindentation data with cheaper
lower-fidelity property data. In the statistics community this is referred to as
multi-fidelity modeling [24,58,31]. For this work we consider the Vickers mi-
crohardness (HV) as a cheap property measure. The justification is that the
spherical indentation stress-strain protocols enable granular interpretation of
both elastic and post-elastic behavior of the indented material whereas hard-
ness does not. Nevertheless, microhardness is easy to obtain and therefore may
aid in bolstering confidence in our inferences. Additionally, the hardness data is
less noisy because it is less sensitive to the previously described heterogeneities
since the volume of material probed is much larger; diagonals produced during
indentation at 500g load were on the order of 80-100 µm. A key assumption
here is that Yind and HV follow the same trends. We will introduce some flex-
ibility, however, in case they do not follow the same trends or if they do not
follow the same trends under certain process settings. The necessary statistical
framework for incorporation of multi-fidelity property data may be found in
B.

4 Results

The mean crystallographic autocorrelation for each micrograph is shown in
Figure 9. Note that these autocorrelation statistics are empirical quantities as
they are computed directly from the data using Eqn. 4, which is free from any
parametric assumptions. It is important to acknowledge this as subsequent
modeling is performed by directly comparing these statistics and therefore the
same field of view (FOV) must always be used. All the statistics shown in Fig-
ure 9 have a field of view of 15 µm. Therefore, images obtained at α = 25◦, 45◦,
which have FOV of 45 and 105 µm, were sub-sampled. The analysis therefore
does not consider autocorrelation information available at larger correlation
lengths in these images. However, this “clipping” is necessary to maintain
identical scales across all the empirically computed autocorrelations.
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Fig. 9: Mean spatial crystallographic autocorrelation p̄t for each process set-
ting. Note that for direct comparison of these statistics must be over the same
length scale therefore larger image statistics cropped down to 15 µm.

Bootstrapped samples of the rotationally invariant mean crystallographic
autocorrelation are shown in Figure 10. Recall that 97% of the variance can
be captured with a truncated PCA expansion using only two principal com-
ponents, see Figure 6. Also shown in Figure 10 is the predicted MOGPR path
in PC-space. The bootstrapped samples visually appear to generate scatter
close to a bivariate normal distribution. Both the degree of scatter and the
correlation in the scatter varies for each unique process setting. Therefore,
the components of the observation error covariance matrix, Σ, which corre-
spond to these structural variables were prescribed using frequentist estimates
for each unique process setting. This simplification is justified since the scope
of our work is to quantify and model mean quantities. Additionally, boot-
strapping is an effective method for estimating the dispersion of statistics and
therefore the hyperparameter inference in Eqn. A.8 can be simplified. Further-
more, since the repetitions themselves only capture dispersion information of
the data, and the observation error is specified, it is only necessary to utilize
the mean value structure variables, ¯PCi, when building the MOGPR model.
This final point saves a great deal of computational burden associated with
inverting C +Σ. This simplification requires only 16 two-dimensional mean
values rather than the full data set.
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Fig. 10: Mean PC1 and PC2 evolution over process settings and GP model
path prediction. Shown data are the 100 bootstrap samples at each process
setting and each corresponding mean (⊕).

In Figures 11 and 12 the structure-property relations are shown. Note that
structure-property data are not paired; there is not a “corresponding” prop-
erty measure for each micrograph. Visualization however requires pairing and
therefore the mean values and the associated confidence intervals are shown
for experimental data. The mean MOGPR path and the confidence region
are also shown. Note that there is a clear distinction between the confidence
region of the mean and confidence region of future observations. Future ob-
servations will also contain some observation errors and would therefore have
a correspondingly larger confidence region. At V = 1.00 m · s−1 the trends
appear to change despite the behavior being fairly consistent across cutting
speeds V < 1.00 m · s−1. This experimental setting corresponds to the largest
imposed temperatures since ∆t ∼ 1/V and hence there is less time available
for conduction of heat away from the generated chips [50].

Process-structure relationships are shown in Figures 13-16. It is clear that
the rake angle, α, has the greatest influence on the generated structures. This
agrees with intuition as α controls the geometric configuration of the exper-
iment and therefore has the greatest impact on the imposed shear strains
γ. Deformation conversely drives structural refinement and evolution via the
DRX mechanism [8].
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Fig. 11: Mean PC1 and Yind evolution over process settings and GP model
path prediction and 95% confidence region. Error bars correspond to mean
variation for Yind and the bootstrapped variation for PC1.

Finally, the process-property maps are shown in Figure 17. Note that
process-property implicitly considers structural relationships via the MOGPR
model. The Vickers hardness data generally follows trends similar to the in-
dentation yield. At the highest cutting speed, V = 1.00 m · s−1, there is a
significant decrease in hardness/strength going from α = 15◦ to α = 5◦.
This is only observed at the highest speed, which suggests that physically this
anomalous behavior is driven by thermal effects.

5 Discussion

The proposed mean crystallographic autocorrelation spatial statistic is an ef-
fective measure of microstructural morphology. The power of this metric is
that it quantifies morphology without the need to explicitly define microstruc-
tural features. A common assumption when analyzing EBSD data is to de-
fine a threshold misorientation value for defining high angle boundaries. At
other times, the misorientation distribution function (ODF) itself is utilized
as a metric but this necessitates identification of grain boundaries, which is
again based on assumed threshold values [60]. Since our statistic only captures
morphological features it may be well suited in settings where the scan size
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Fig. 12: Mean PC2 and Yind evolution over process settings and GP model
path prediction and 95% confidence region. Error bars correspond to mean
variation for Yind and the bootstrapped variation for PC2.

is smaller than what is required for accurately quantifying texture. Crystal-
lographic texture is a homogenized quantity and therefore larger scans are
typically necessary to accurately capture the representative crystallographic
texture. The 15µm× 15µm images in Figure 4 are certainly not sufficient for
identifying texture but can still be used for quantifying morphological features.

Physical interpretation of the obtained microstructure evolution results is
possible by considering the PCA bases shown in Figure 6. Recall that p̄t mea-
sures the degree of spatial crystallographic autocorrelation (similarity). The
first principal basis corresponding to PC1 is highly localized with large neg-
ative values towards the center of the basis, some positive asymmetric values
away from θ = 0◦, and slightly positive in the remainder of the region. The
peaked negative region corresponds to a length of about 10 pixels which is
500nm (50nm/pixel). Note that this corresponds to the refined crystallite
size observed at the largest strains. Conversely, PC2 has an even sharper, but
faint, negative peak in the center, positive values in the 0.5 − 2µm range,
and negative values at large distances. Therefore, one contribution of the PC1

basis is to control a high autocorrelation region concentrated within a 500nm
region. PC2 captures competing autocorrelation trends in the 0.5− 2µm and
> 3µm range. Therefore, it is reasonable that PC1 is observed to displays the
greatest sensitivity to the applied rake angle (Figures 13 & 14). As the rake
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Fig. 13: Mean PC1 evolution versus α and the corresponding GP model predic-
tion and 95% confidence bounds. Error bars correspond to the bootstrapped
variation for PC1.

angle is decreased, strains are increased, DRX drives refinement, and there-
fore pixels only retain autocorrelation with very close neighbor points (roughly
within a crystal). However, PC1 does not appear to significantly change with
cutting speed (Figure 15). This is because cutting speed does not influence
spatial similarity at these small scales. PC2 however does appear to be sensi-
tive to cutting speed (Figure 16) and this sensitivity decreases with increasing
rake angle (decreasing strain). This implies that at large imposed strains, as
the cutting speed is increased, similarity of crystal orientation extends to in-
clude larger neighborhoods in the 0.5 − 2µm region. This observation agrees
with the process physics where it is known that cutting temperatures increase
with both increasing speeds and strains. Additional straining drives heat gen-
eration via plastic dissipation and increased cutting speeds limit the efficacy
of conduction to remove heat away from the process zone. At higher tempera-
tures DRX is less impactful [8] and thus there is less misorientation and hence
crystal similarity extends over larger spatial distances (less misorientation).
Therefore, PC2 is sensitive to thermal effects, which are implicitly tied to the
cutting speeds. With respect to the rake angle, PC2 has a significant quadratic
interaction and this complex behavior may be explained as follows. At high
rake angles (low strains) the similarity extends over large distances (> 3µm)
and PC2 is negative, which yields large positive autocorrelation values at large
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Fig. 14: Mean PC2 evolution versus α and the corresponding GP model predic-
tion and 95% confidence bounds. Error bars correspond to the bootstrapped
variation for PC2.

distances. With increasing strain (decreasing rake angle), there is less auto-
correlation at large length scales but correlations in the intermediate values
(0.5 − 2µm) persist and hence PC2 increases. However, this trend reverses
at the lowest rake angles (highest strains) when the autocorrelation becomes
extremely localized (< 500nm) and thus less similarity is observed in the
0.5− 2µm range. These interactions are complex because each basis captures
several coupled physical features (e.g. PC2 captures negative long range and
positive medium range autocorrelation). Furthermore, the bases must interact
and balance their respective contributions in order to describe the changing
physics at different machining process settings.

Figure 17 illustrates that the Vickers hardness and indentation yield pro-
duce similar trends with respect to the rake angle. For reference the mean vir-
gin material hardness is HV = 87.5± 5.0 (95% confidence interval). At large
rake angles (low strains) the generated chips have higher hardness than the
virgin material but produce lower range properties relative to measurements at
small rake angles (larger strains). This observation is in accordance with defor-
mation induced strain hardening. For cutting speeds V = 0.20, 0.33, 0.50m ·
s−1, the hardness appears to saturate with decreasing rake angle, which in-
dicates that additional straining does not drive an increase in hardness. At
the lowest cutting speed, however, indentation yield produces a fairly linear
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Fig. 15: Mean PC1 evolution versus V and the corresponding GP model pre-
diction and 95% confidence bounds. Error bars correspond to the bootstrapped
variation for PC1.

trend which decreased with increasing speed. Therefore, hardness and yield do
not always share a one-to-one correspondence but nevertheless the inclusion
of hardness is informative. At the highest speed and lowest rake angle (high-
est strain) there is a significant decrease in both hardness and strength. This
is likely driven by recovery processes, which occur due to the higher cutting
temperatures experienced under these conditions.

In this study we only consider structural morphology and therefore neglect
crystallographic effects. This is one potential source of the scatter observed
in Figure 17. The local crystallographic orientation of the indented site will
likely influence the indentation response. However, for simplicity we adopt a
strategy where this was neglected and instead homogenized over many obser-
vations. When crystallographic information is desirable, the stand alone GSH
representation (which quantifies the ODF) may be augmented as additional
features to p̄t. Another possibility is to use the strategy established in [43,44]
and use the paired two point statistics between each of the GSH coefficients.
Recall that the GSH representation is a sum over multiple indices (µ, n, l) and
in this work we truncate to 10 terms. Each of these 10 terms can be used
as a measure of microstructural state. Therefore, these state descriptors may
be used to compute two point spatial correlations [43]. Including constraints
and symmetry considerations, it may be shown that there are 2 · 10− 1 = 19
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Fig. 16: Mean PC2 evolution versus V and the corresponding GP model pre-
diction and 95% confidence bounds. Error bars correspond to the bootstrapped
variation for PC2.

unique correlation pairs [43]. The derived expression in Eqn. 4 happens to be
the mean over all auto-correlation pairs considered in [43]. The derivation in
this work is fairly compact and proves that this mean quantity has a physi-
cal interpretation and is a descriptor of morphological spatial crystallographic
“spread”, which includes misorientation.

Bootstrapping methodology appears to be an effective method for quanti-
fying the dispersion of microstructure in reduced order PC space, as shown in
Figure 10. In our regression model bootstrapping is useful as it eliminates the
need to estimate the measurement error variances when training the MOGPR
model – instead they can be estimated directly from bootstrapping. Note how-
ever that bootstrapping of correlated data requires that the original sample be
sufficiently large such that it “contains” the relevant correlation length scales.
In our setting, the correlation length scales, particularly at large rake angles
(low strain), are larger than the image field of view. Nevertheless, the boot-
strapped variance estimates will reflect this artifact; inadequately sized images
will yield more variance. Additionally, the disparity in autocorrelation at the
lower spatial length scales is sufficiently significant that trends are still clear
despite “missing” information at very large length scales.

The MOGPR model is effective at quantifying PSP relationships and pro-
vides estimates for coupled structure-property uncertainties. A natural con-
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Fig. 17: Mean Yind and HV evolution versus α and the corresponding GP
model prediction and 95% confidence bounds.

cern however is that perhaps the obtained hyperparameters, Φ̂ in Eqn. A.8,
neglect structure-property relationships. In Eqn. A.6 the structure-property
linkage is captured through the cross-correlation matrix S, which must be
inferred from the observed data. This matrix quantifies the covariance (or cor-
relation) between all the outputs considered (PC1, PC2, Yind). The case where
structure-property linkages are neglected the covariance matrix would take a
block form,

C =


C11 +Σ11 C21 +Σ21 · · · 0
C12 +Σ12 C22 +Σ22 · · · 0

...
...

. . .
...

0 · · · 0 CM +ΣM

 , (5)

which suggests no correlation between the PC’s and Yind. This degenerate
case corresponds to two independent Gaussian process models; one for the
process-structure and another for process-properties. Yet another degenerate
case corresponds to a diagonal covariance structure where no correlation exists
between any of the considered variables and thus the result is M independent
GP models. However, consider that this model is data-driven and therefore
it is possible that perhaps a process-property relationship does exist. In fact,
there is some recent evidence in the literature that suggests that these map-
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pings are plausible in some settings [3]. The inclusion of structural informa-
tion is physically motivated and is expected to yield better performance as
the data is much richer if structure information is included. The merit of the
MOGPR model is that all possibilities may be considered at once; if a direct
process-property linkage exists then the model will identify it. Note that it may
seem inappropriate to assume structure-structure cross-correlations between
the PC weights as PCA theory generates PC weights which are independent
e.g. Cov (PC1, PC2) = 0. However, this is only true in the unsupervised set-
ting; PC weights are independent when nothing is known about the process
settings. The PC basis and weights are computed from the unlabeled pt en-
semble of observations. In the MOGPR model correlation between PC1 and
PC2 is possible because the correlation is conditional on also knowing the pro-
cess settings. Two uncorrelated random variables may become correlated when
conditioned on a third random variable related to the first two. Clearly, in the
second case the two otherwise independent experiments become correlated due
to the extra information.

Cross validation results using a leave-one-unique-process-setting-out strat-
egy are displayed in Figure 18. The cross validation results may be exactly
computed from the fully trained model by employing a short-cut formula; see
Appendix C. Four different results are shown to illustrate a few key points:
(a) cross validation using Yind property data not including output cross-
correlations (the case of M independent GP models), (b) cross validation using
Yind property data with structure-property cross correlations, (c) cross valida-
tion using Yind andHV as coupled properties with no structure-property cross-
correlations, and finally (d) cross validation considering all available property
data (Yind and HV ) and including output cross-correlations. Notice that strat-
egy (d), which considers all property data and all correlations, yields the best
cross validation error (25% improvement in Yind prediction relative to model
(a)). Therefore inclusion of the hardness data did improve the overall model
performance. Furthermore, each increase in model complexity provides slight
improvements over the previous model. In general, however, this may not al-
ways be the case. GPR models are also prone to over-fitting when there is
an imbalance between model complexity and data. For this reason some re-
searchers prefer to use cross validation strategies for model training [45].
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(a) Model only considering Yind as a property measure with
no cross correlations (e.g. direct process-property and process-
structure models)

(b) Model only considering Yind as a property measure with
cross correlations

(c) Multi-fidelity model including Yind and HV with no cross
correlations (e.g. direct process-property and process-structure
models)

(d) Multi-fidelity model including Yind and HV as well as
structure-property cross correlations

Fig. 18: Cross validation results removing one unique process setting at a time.
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6 Conclusions

In this work we studied a severe plastic deformation machining process which
drives microstructure evolution via continuous dynamic recrystallization. Var-
ious stages of microstructure evolution were captured by considering a wide
range of rake angles, which induce a wide range of shear strains. Rate and
temperature effects were considered by varying the cutting speed. Large strain
conditions produced sub-micron crystal structures whereas low strain exper-
iments yielded highly deformed structures, which still resembled the coarse
parent material. At the largest strains a dependence on the cutting speed
was observed with higher cutting speeds producing structures with lower crys-
tallographic misorientations. Generalized spherical harmonics were used to
efficiently quantify the local orientation state and a novel autocorrelation spa-
tial statistic was derived that captures orientation “spread” or misorientation.
The novel descriptor is physically intuitive and targets morphological informa-
tion present in the orientation imaging data. A data driven multiple output
Gaussian process regression model was established for quantifying process-
structure-property linkages. The model is flexible, enables inclusion of various
kinds of structure and property data, does not necessitate fully paired input
data, captures the full process-structure-property pipeline, and produces cou-
pled uncertainty estimates associated with future predictions.

7 Acknowledgements

The authors are grateful to the Woodruff School machine shop for their assis-
tance in manufacturing of the custom cutting tool used in this work. Financial
support of the work by the Morris M. Bryan, Jr. Professorship is acknowledged.

8 Conflicts of Interest

On behalf of all authors, the corresponding author states that there is no
conflict of interest.

References

1. Abolghasem, S., Basu, S., Shekhar, S., Cai, J., Shankar, M.: Mapping subgrain sizes
resulting from severe simple shear deformation. Acta Materialia 60(1), 376–386 (2012)

2. Adams, B.L., Gao, X.C., Kalidindi, S.R.: Finite approximations to the second-order
properties closure in single phase polycrystals. Acta Materialia 53(13), 3563–3577 (2005)

3. Agrawal, A., Deshpande, P.D., Cecen, A., Basavarsu, G.P., Choudhary, A.N., Kalidindi,
S.R.: Exploration of data science techniques to predict fatigue strength of steel from
composition and processing parameters. Integrating Materials and Manufacturing In-
novation 3(1), 8 (2014)

4. Basu, S., Shankar, M.R.: Crystallographic textures resulting from severe shear deforma-
tion in machining. Metallurgical and Materials Transactions A 46(2), 801–812 (2015)



Title Suppressed Due to Excessive Length 29

5. Basu, S., Wang, Z., Liu, R., Saldana, C.: Enhanced subsurface grain refinement during
transient shear-based surface generation. Acta Materialia 116, 114–123 (2016)

6. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer-Verlag, Berlin, Heidelberg (2006)

7. Boyle, P., Frean, M.: Dependent gaussian processes. In: Advances in neural information
processing systems, pp. 217–224 (2005)

8. Brown, T.L., Saldana, C., Murthy, T.G., Mann, J.B., Guo, Y., Allard, L.F., King, A.H.,
Compton, W.D., Trumble, K.P., Chandrasekar, S.: A study of the interactive effects
of strain, strain rate and temperature in severe plastic deformation of copper. Acta
Materialia 57(18), 5491–5500 (2009)

9. Bunge, H.J.: Texture analysis in materials science: mathematical methods. Elsevier
(2013)

10. Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., Betancourt, M.,
Brubaker, M., Guo, J., Li, P., Riddell, A.: Stan: A probabilistic programming language.
Journal of statistical software 76(1) (2017)

11. Cecen, A., Fast, T., Kalidindi, S.R.: Versatile algorithms for the computation of 2-
point spatial correlations in quantifying material structure. Integrating Materials and
Manufacturing Innovation 5(1), 1 (2016)

12. Cecen, A., Fast, T., Kumbur, E., Kalidindi, S.: A data-driven approach to establishing
microstructure–property relationships in porous transport layers of polymer electrolyte
fuel cells. Journal of Power Sources 245, 144–153 (2014)

13. Cecen, A., Wargo, E., Hanna, A., Turner, D., Kalidindi, S., Kumbur, E.: 3-d microstruc-
ture analysis of fuel cell materials: spatial distributions of tortuosity, void size and dif-
fusivity. Journal of The Electrochemical Society 159(3), B299–B307 (2012)

14. Cecen, A., Yabansu, Y.C., Kalidindi, S.R.: A new framework for rotationally invariant
two-point spatial correlations in microstructure datasets. Acta Materialia (2018)

15. Deshpande, P., Gautham, B., Cecen, A., Kalidindi, S., Agrawal, A., Choudhary, A.:
Application of statistical and machine learning techniques for correlating properties to
composition and manufacturing processes of steels. In: Proceedings of the 2nd World
Congress on Integrated Computational Materials Engineering (ICME), pp. 155–160.
Springer (2013)

16. Efron, B., Tibshirani, R.J.: An introduction to the bootstrap. CRC press (1994)
17. Fast, T., Niezgoda, S.R., Kalidindi, S.R.: A new framework for computationally efficient

structure–structure evolution linkages to facilitate high-fidelity scale bridging in multi-
scale materials models. Acta Materialia 59(2), 699–707 (2011)

18. Fatemi-Varzaneh, S., Zarei-Hanzaki, A., Beladi, H.: Dynamic recrystallization in az31
magnesium alloy. Materials Science and Engineering: A 456(1-2), 52–57 (2007)

19. Fernandez-Zelaia, P.: Machining psp. https://github.com/pfz3 (2019)
20. Fernandez-Zelaia, P., Joseph, V.R., Kalidindi, S.R., Melkote, S.N.: Estimating mechani-

cal properties from spherical indentation using bayesian approaches. Materials & Design
147, 92–105 (2018)

21. Fernandez-Zelaia, P., Melkote, S.N.: Statistical calibration and uncertainty quantifica-
tion of complex machining computer models. International Journal of Machine Tools
and Manufacture (2018)

22. Fuentes, M.: A high frequency kriging approach for non-stationary environmental pro-
cesses. Environmetrics: The official journal of the International Environmetrics Society
12(5), 469–483 (2001)

23. Guo, Y., Saldana, C., Compton, W.D., Chandrasekar, S.: Controlling deformation and
microstructure on machined surfaces. Acta materialia 59(11), 4538–4547 (2011)

24. Haaland, B., Qian, P.Z.: An approach to constructing nested space-filling designs for
multi-fidelity computer experiments. Statistica Sinica 20(3), 1063 (2010)

25. Hoff, P.D.: A first course in Bayesian statistical methods. Springer Science & Business
Media (2009)

26. Ion, S., Humphreys, F., White, S.: Dynamic recrystallisation and the development of mi-
crostructure during the high temperature deformation of magnesium. Acta Metallurgica
30(10), 1909–1919 (1982)

27. Iskakov, A., Yabansu, Y.C., Rajagopalan, S., Kapustina, A., Kalidindi, S.R.: Appli-
cation of spherical indentation and the materials knowledge system framework to es-
tablishing microstructure-yield strength linkages from carbon steel scoops excised from
high-temperature exposed components. Acta Materialia 144, 758–767 (2018)



30 Patxi Fernandez-Zelaia, Shreyes N. Melkote

28. Kalidindi, S.R.: Hierarchical materials informatics: novel analytics for materials data.
Elsevier (2015)

29. Kalidindi, S.R., Brough, D.B., Li, S., Cecen, A., Blekh, A.L., Congo, F.Y.P., Campbell,
C.: Role of materials data science and informatics in accelerated materials innovation.
Mrs Bulletin 41(8), 596–602 (2016)

30. Kalidindi, S.R., Medford, A.J., McDowell, D.L.: Vision for data and informatics in the
future materials innovation ecosystem. JOM 68(8), 2126–2137 (2016)

31. Kennedy, M.C., O’Hagan, A.: Bayesian calibration of computer models. Journal of the
Royal Statistical Society: Series B (Statistical Methodology) 63(3), 425–464 (2001)

32. Khosravani, A., Cecen, A., Kalidindi, S.R.: Development of high throughput assays for
establishing process-structure-property linkages in multiphase polycrystalline metals:
Application to dual-phase steels. Acta Materialia 123, 55–69 (2017)

33. Me-Bar, Y., Shechtman, D.: On the adiabatic shear of ti 6al 4v ballistic targets. Mate-
rials Science and Engineering 58(2), 181–188 (1983)

34. Minnaar, K., Zhou, M.: An analysis of the dynamic shear failure resistance of structural
metals. Journal of the Mechanics and Physics of Solids 46(10), 2155–2170 (1998)

35. M’Saoubi, R., Larsson, T., Outeiro, J., Guo, Y., Suslov, S., Saldana, C., Chandrasekar,
S.: Surface integrity analysis of machined inconel 718 over multiple length scales. CIRP
Annals-Manufacturing Technology 61(1), 99–102 (2012)

36. Murr, L., Ramirez, A., Gaytan, S., Lopez, M., Martinez, E., Hernandez, D., Martinez, E.:
Microstructure evolution associated with adiabatic shear bands and shear band failure
in ballistic plug formation in ti–6al–4v targets. Materials Science and Engineering: A
516(1-2), 205–216 (2009)

37. Ni, H., Elmadagli, M., Alpas, A.: Mechanical properties and microstructures of 1100
aluminum subjected to dry machining. Materials Science and Engineering: A 385(1-2),
267–278 (2004)

38. Niezgoda, S.R.: Stochastic representation of microstructure via higher-order statistics:
theory and application (2010)

39. Niezgoda, S.R., Yabansu, Y.C., Kalidindi, S.R.: Understanding and visualizing mi-
crostructure and microstructure variance as a stochastic process. Acta Materialia
59(16), 6387–6400 (2011)

40. Pan, S.J., Yang, Q., et al.: A survey on transfer learning. IEEE Transactions on knowl-
edge and data engineering 22(10), 1345–1359 (2010)

41. Pathak, S., Shaffer, J., Kalidindi, S.R.: Determination of an effective zero-point and
extraction of indentation stress–strain curves without the continuous stiffness measure-
ment signal. Scripta Materialia 60(6), 439–442 (2009)

42. Pathak, S., Stojakovic, D., Doherty, R., Kalidindi, S.R.: Importance of surface prepa-
ration on the nano-indentation stress-strain curves measured in metals. Journal of
Materials Research 24(3), 1142–1155 (2009)

43. Paulson, N.H., Priddy, M.W., McDowell, D.L., Kalidindi, S.R.: Reduced-order structure-
property linkages for polycrystalline microstructures based on 2-point statistics. Acta
Materialia 129, 428–438 (2017)

44. Paulson, N.H., Priddy, M.W., McDowell, D.L., Kalidindi, S.R.: Data-driven reduced-
order models for rank-ordering the high cycle fatigue performance of polycrystalline
microstructures. Materials & Design (2018)

45. Pilania, G., Mannodi-Kanakkithodi, A., Uberuaga, B., Ramprasad, R., Gubernatis, J.,
Lookman, T.: Machine learning bandgaps of double perovskites. Scientific reports 6,
19375 (2016)

46. Rasmussen, C.E.: Gaussian processes in machine learning. In: Advanced lectures on
machine learning, pp. 63–71. Springer (2004)

47. Sagapuram, D., Yeung, H., Guo, Y., Mahato, A., M’Saoubi, R., Compton, W.D., Trum-
ble, K.P., Chandrasekar, S.: On control of flow instabilities in cutting of metals. CIRP
Annals 64(1), 49–52 (2015)

48. Santner, T.J., Williams, B.J., Notz, W.I.: The design and analysis of computer experi-
ments. Springer Science & Business Media (2013)

49. Shaw, M.C., Cookson, J.: Metal cutting principles. Clarendon press Oxford (1984)
50. Shaw, M.C., Cookson, J.: Metal cutting principles, vol. 2. Oxford university press New

York (2005)



Title Suppressed Due to Excessive Length 31

51. Shekhar, S., Abolghasem, S., Basu, S., Cai, J., Shankar, M.: Effect of severe plastic
deformation in machining elucidated via rate-strain-microstructure mappings. Journal
of Manufacturing Science and Engineering 134(3), 031008 (2012)

52. Stan Development Team: RStan: the R interface to Stan (2018). URL http://mc-
stan.org/. R package version 2.17.3

53. Sundararaghavan, V., Zabaras, N.: A dynamic material library for the representation
of single-phase polyhedral microstructures. Acta Materialia 52(14), 4111–4119 (2004)

54. Sundararaghavan, V., Zabaras, N.: Classification and reconstruction of three-
dimensional microstructures using support vector machines. Computational Materials
Science 32(2), 223–239 (2005)

55. Swaminathan, S., Shankar, M.R., Lee, S., Hwang, J., King, A.H., Kezar, R.F., Rao,
B.C., Brown, T.L., Chandrasekar, S., Compton, W.D., et al.: Large strain deformation
and ultra-fine grained materials by machining. Materials Science and Engineering: A
410, 358–363 (2005)

56. Torquato, S.: Random heterogeneous materials: microstructure and macroscopic prop-
erties, vol. 16. Springer Science & Business Media (2013)
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A MOGPR implementation

Consider a process who’s input are x and that has multiple outputs [Y1, Y2, . . . , YK ] which
are observed with some measurement error ε. This process can be modeled using a multi-
variate GP model, 

Y1 (x)
Y2 (x)

...
YM (x)

 ∼ N (µ (x) ,S + Covε)

Sij = Cov (Yi, Yj) ,

(A.6)

where the mean behavior of the outputs varies according to a mean function µ (x), cross-
correlation of outputs are captured through S, and the observation errors are in general
allowed to be correlated and perhaps have different scales for each outputs e.g. Covε is
purposefully generic. The mean function may be described using a parametric regression
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strategy e.g. µ(x) = f(x)β where β are regression coefficients and f(x) a vector of re-
gressors. In this work we utilized linear and cross-linear terms (4 terms including constant)
for each output Yi. Note that we implicitly assume that the cross-correlations are spatially
invariant and therefore stationary. Strategies exist for introducing non-stationarity [22,7]
and we have successfully utilized these for developing FE surrogates however in this work
we will utilize the simpler stationary cross-correlation structure [21]. The codes provided
online however include additional non-stationary complexity [19].

Now consider that observations of each output Yi are made at xij where j = 1, . . . , Ni.
This notation is flexible enough to allow each Yi output to have Ni unique observations xij

with a total number of N =
∑K

i=1Ni. Again this is valuable if the Yi have different costs
associated with obtaining them (optical vs TEM). The accumulated dataset therefore can
be expressed as another multivariate normal,

Y1 (x11)
...

Y1
(
x1N1

)
Y2 (x21)

...
Y2
(
x2N2

)
...

YM
(
xM1

)
...

YM
(
xMNM

)



∼ N (µ,C +Σ)

Cov
[
Yi (xik) , Yj

(
xjl

)]
= SijR

(
xik − xjl

)
+ σijδijδkl + σijδkl

R(h) = exp

(
−

d∑
i=1

φih
2
i

)
,

(A.7)

where R is the Gaussian correlation function, Σ is the total error covariance matrix, and φi

are the correlation length scales for each of the d dimensions of x. Note that Σ is comprised
of σij and contains some flexibility for different kinds of experiments. Observations have
some measurement variance σij when outputs are identical (i = j) and are observed at the
same x (k = l) however if there are paired observations (Yi, Yj) at each observation (k = l)
then there may also be correlations in the errors. One example where this may be relevant is
when considering the PC-weights as microstructure descriptors which will generate pairs (or
tuples in higher dimensions) of data for each micrograph. If observations are not measured in
pairs then they should be independent and share no correlation. Note that if all experiments
are performed at the same x then the above covariance structure has a Kronecker structure
which can be exploited for computational efficiency [20]. The covariance structure imposes
that there is a distance-based criteria for quantifying correlations (R), that there are cross-
correlations across outputs (Σ), and that there is a random component associated with
measurement uncertainty (Σ).

The prior placed on the data is that observations can be explained by interpreting them
as coming from some multivariate normal generating process. As such the unknown hyper-
parameters Φ = [β,φ,S,Σ] can be obtained from a maximum likelihood estimate (MLE)
or a maximum a posteriori (MAP) estimate if priors are placed on some hyperparameters.
The negative log-likelihood (or in a Bayesian setting the posterior) may be minimized to
obtain estimates,

Φ̂ = arg min
Φ

(
log |C +Σ|+ (Y − µ)T (C +Σ)−1 (Y − µ)

)
(A.8)

The statistical model was built in Stan [10], a statistical programming language, and
evaluated using RStan [52] the R-language interface for Stan. The Stan optimizer was used

to identify the MAP estimates of the hyperparameters Φ̂. Note that in the inference there
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are two matrix quantities that need to be estimated. To improve efficiency of the estimation
and maintain that these matrices remain positive definite inverse-Wishart priors were placed
on the matrix quantities and the inference was reparameterized. A review of this strategy
can be found in [25].

Note that in Section 3.2 a methodology for bootstrapping confidence bounds on the
mean PC-weights is presented. Therefore for each unique process setting we can establish
the mean and variance measures of the mean PC-weights. The mean estimates should be
used in constructing the data-vector, Y , and the bootstrapped variance estimates can be
prescribed to build the structure-portion of the error covariance matrix Σ. This method-
ology also allows for inclusion of heteroskedastic variance estimates, which according to
Figure 10, are appropriate. Furthermore, this rearrangement alleviates some computational
burden associated with estimating some hyperparameters and enables use of bootstrapped
quantities.

Predictions using a tuned MOGPR model can be easily obtained by again considering
that the desired quantities, (Y1(x), . . . , YM (x))T , are jointly distributed with the observed
data 

Y1

...
YM

Y1(x)
...

YM (x)


∼ N

((
µ
µ(x)

)[
C +Σ r
rT S

])

rij = Σij

[
R (x− xi1) , . . . , R

(
x− xiNj

)]T
,

(A.9)

where r captures the spatial and cross-correlations of each output Yi(x) with all previously

observed data j = 1, . . . ,M . The expectation of (Y1(x), . . . , YM (x))T conditional on all

previous observations (Y1, . . . ,YM )T is Y1(x)
...

YM (x)

 = µ(x)− rT (C +Σ)−1 (µ− Y ) , (A.10)

and the covariance associated with this prediction is,

Ŝ = S − rT (C +Σ)−1 r. (A.11)

From these two expressions it is clear that the MOGPR provides estimates for the PSP
linkages as well as uncertainty predictions through the prediction covariance Ŝ.

B Multifidelity implementation

Statistically we can build a simple model that allows for sharing of information between the
physically informative quantities (Yind) and the cheaper less informative quantities (HV )

Yind = Z + τ

HV = ρZ +W + γ,
(B.12)

where Z is the underlying mean function we seek described as a Gaussian process (GP), τ is
error associated with Yind, ρ is a scaling quantity, W is an independent zero-mean GP which
allows HV to vary from ρZ systematically (e.g. bias function) and γ is the measurement
error in HV . This form is identical to the form introduced in the seminal Kennedy and
O’Hagan paper [31]. Note that Z is part of the multivariate GP previously introduced but
we simply denote it here as Z for simplicity. The model states that HV scales with Z (and



34 Patxi Fernandez-Zelaia, Shreyes N. Melkote

hence the mean of Yind) except when the simple scaling fails in which case W “captures”
or “soaks up” this deviation.

The covariance of HV with the other MOGPR quantities can be easily derived. First
assume that Yind = YM−1 in the model e.g. the indentation yield is ordered as the second
to last output, and HV is the last YM = HV . Therefore,

Cov[Yind

(
xM−1,k

)
, HV (xMl)] = Cov[Z

(
xM−1,k

)
+ τ,

ρZ (xMl) +W (xMl) + γ]

= ρSM−1,M−1R
(
xM−1,k − xMl

)
,

(B.13)

where σ2
b and Rb are the bias variance and correlation function. The bias correlation function

contains additional hyperparameters φb. Note there is no error term since there are no
off-diagonal terms in the error covariance structure. This is because indentation-hardness
experiments are not ”paired” experimentally; observations are made independently of one
another. All other correlations can be easily obtained simply by following the above “plug-in”
strategy. The bias function “kicks in” only for HV −HV covariances,

Cov[HV (xMk) , HV (xMl)] = ρ2SM−1,M−1R (xMk − xMl)

+ σ2
bRb (xMk − xMl) +

γδkl,

(B.14)

C Cross-validation shortcut formulas

The cross validation error associated with removing a subset of data of size Ni, represented
by multi-index i, can be expressed as

cvi = yi − f̂(i)(xi), (C.15)

where yi are the responses corresponding to i and f̂(i)(xi) is the corresponding estimate
for a model which is trained by withholding data belonging to i. Note that cvi is a vector
with multiple observations of a potentially multivariate output (e.g. PC1, PC2, Yind). The
model estimate is given by

f̂(i)(xi) = µ(xi) + r̃T(i)C
−1
(i)

(
y(i) − µ(i)

)
(C.16)

where quantities containing subscript (i) represent quantities computed with data from i
missing.

Now consider the complete covariance matrix where the ordering of the data is rear-
ranged such that the block corresponding to i is shifted to the final rows/columns,

C =

[
C(i) r̃(i)
r̃T
(i)

Σ̃i

]
, (C.17)

To compute C−1 the Sherman-Morrison-Woodbury formula can be applied,

C−1 = C−1
(i)

+Br̃T
(i)
C−1

(i)
−B

−BT
(
Σ̃i − r̃T(i)C

−1
(i)
r̃(i)

)−1

 , (C.18)

where B = C−1
(i)
r̃(i)

(
Σ̃i − r̃T(i)C

−1
(i)
r̃(i)

)−1
. Note that this manipulation enables the inter-

pretation of quantity(
Σ̃i − r̃T(i)C

−1
(i)
r̃(i)

)−1
as the ith ”block-diagonal” entry of C−1. Here we are referring
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to the Ni × Ni entry corresponding to indices i which will be noted as C−1
ii . Similarly

−
(
Σ̃i − r̃T(i)C

−1
(i)
r̃(i)

)−1
r̃T
(i)
C−1

(i)
is the ith ”block-row” of C−1. Note this is really a Ni ×

(Ntot − Ni) matrix, where Ntot is the total number of data points, but we refer to it as a
”block-row” because of its association with the ith rows of the correlation matrix. This quan-
tity will be noted C−1

i,(i)
e.g. the ith block-row of C−1 not including the ith block-diagonal

portion. Therefore

C−1
i,(i)

= −
(
Σ̃i − r̃T(i)C

−1
(i)
r̃(i)

)−1
r̃T(i)C

−1
(i)

= −C−1
ii r̃

T
(i)C

−1
(i)

r̃T(i)C
−1
(i)

= −
(
C−1

ii

)−1
C−1

i,(i)
.

(C.19)

The advantage of these manipulations will become clear when returning to equations
C.15 and C.16

cvi = yi − µ(xi)− r̃T(i)C
−1
(i)

(
y(i) − µ(i)

)
= yi − µ(xi) +

(
C−1

ii

)−1
C−1

i,(i)

(
y(i) − µ(i)

)
= yi − µ(xi)+(

C−1
ii

)−1 [
C−1

i,(i)
C−1

ii

]([y(i)
yi

]
−
[
µ(i)

µi

])
−
(
C−1

ii

)−1
C−1

ii yi +
(
C−1

ii

)−1
C−1

ii µi

cvi =
(
C−1

ii

)−1
C−1

i (y − µ)

cv = blockdiag
(
C−1

)−1
C−1 (y − µ) .

(C.20)

In the above manipulations µ(xi) = µi,[
C−1

i,(i)
C−1

ii

]
= C−1

i e.g. the ith block-row, and(
C−1

ii

)−1
C−1

ii = I where I is the identity matrix. These manipulations enable the direct

computation of the leave-i-out cross validation. Computationally this is a much more favor-
able estimate over the alternative which would require retraining many times for however
many i there are. This methodology can easily be applied towards k-folds cross-validation
where the previously introduced i would correspond indices in the matrix belonging to each
of the k-folds.

An expression for the leave-one-out prediction variance can be obtained using the same
matrix manipulations. For ith hold out case the prediction covariance for f̂(i)(xi) can be
obtained from,

Si =
(
C−1

ii

)−1
C−1

i CT
i , (C.21)

the diagonal of which contains the prediction variance estimates.


