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Whereas magnetic frustration is typically associated with local-moment magnets in special geo-
metric arrangements, here we show that SrCo2As2 is a candidate for frustrated itinerant magnetism.
Using inelastic neutron scattering (INS), we find that antiferromagnetic (AF) spin fluctuations de-
velop in the square Co layers of SrCo2As2 below T ≈ 100 K centered at the stripe-type AF propaga-
tion vector of ( 1

2
, 1

2
), and that their development is concomitant with a suppression of the uniform

magnetic susceptibility determined via magnetization measurements. We interpret this switch in
spectral weight as signaling a temperature-induced crossover from an instability towards FM order-
ing to an instability towards stripe-type AF ordering on cooling, and show results from Monte-Carlo
simulations for a J1-J2 Heisenberg model that illustrate how the crossover develops as a function of
the frustration ratio −J1/(2J2). By putting our INS data on an absolute scale, we quantitatively
compare them and our magnetization data to exact-diagonalization calculations for the J1-J2 model
[N. Shannon et al., Eur. Phys. J. B 38, 599 (2004)], and show that the calculations predict a lower
level of magnetic frustration than indicated by experiment. We trace this discrepancy to the large
energy scale of the fluctuations (Javg & 75 meV), which, in addition to the steep dispersion, is more
characteristic of itinerant magnetism.

I. INTRODUCTION

Itinerant magnetism originates from the properties of
band electrons near the Fermi surface, rather than local-
ized valence electrons associated with an atomic magnetic
moment. A common example is Stoner ferromagnetism
(FM), which is driven by the combination of high elec-
tronic density-of-states per magnetic atom at the Fermi
energy D(EF) and strong electronic-correlation energy I.
When the Stoner parameter is large, ID(EF)� 1, spon-
taneous itinerant FM order occurs, such as that found
in Co, Fe, and Ni at rather high Curie temperatures
(TC > 600 K).1–3 On the other hand, weak itinerant FM,
such as ZrZn2, have ID(EF) & 1, characteristically low
values for TC, and smaller saturated moments.4 Stoner
paramagnets (PM), such as Pd,5 with ID(EF) . 1, are
nearly FM and have an enhanced uniform magnetic sus-
ceptibility.6

Superconductivity exists in the midst of stripe-type an-
tiferromagnetic (AF) fluctuations in various iron-pnictide
superconductors;7–9 however, many structurally related
but nonsupercondcucting cobalt pnictides are considered
to be weak itinerant FM. For example, LaCo2P2

10 is a
metallic FM with a small saturation moment relative to
the Curie-Weiss effective moment (i.e. a large Rhodes-
Wohlfarth parameter11,12). Tetragonal CaCo2P2

13 and
CaCo2−yAs2

14–16 have long-range A-type AF order, with
an ordered magnetic moment of µ < 0.5 µB/Co, consist-
ing of two-dimensional (2D) FM square Co layers cou-
pled by much weaker AF interlayer interactions. Thus,
in these two compounds the strong intralayer FM is pre-
dominant.

On the other hand, the related compounds
BaCo2As2,18 SrCo2P2,19 and SrCo2As2

20 present

more of a mystery. These materials have large estimated
Stoner parameters that should be sufficient for FM
ordering, but long-range magnetic order does not occur.
An enhanced magnetic susceptibility in these materials
may be interpreted as evidence for Stoner PM, and
could explain the lack of magnetic order. However,
the discovery via inelastic neutron scattering (INS) of
relatively strong low-temperature AF spin fluctuations
in SrCo2As2 centered at reciprocal-lattice momenta
Q = Qstripe corresponding to an AF propagation vector
for the square-Co planes of τstripe = ( 1

2 ,
1
2 ) is very

surprising.21

An investigation of solid solutions of
(Ca,Sr)Co2As2

21–23 and (Ca,Sr)Co2P2
19 demonstrate

tunability from 2D-FM to stripe-type AF fluctuations,
but long-range stripe-type AF order is never observed in
either of these series.19,23 On the other hand, recent data
for Sr1−xLaxCo2As2 show that replacing as little as 2.5%
Sr by La induces FM order,24 suggesting that SrCo2As2

is close to an instability towards a FM phase. Recent
INS experiments have also found FM spin fluctuations
in SrCo2As2, but the reported results do not include a
detailed temperature dependence of the fluctuations.25

Figure 1(a) shows a schematic magnetic phase diagram
for (Ca,Sr)Co2As2, and Fig. 1(b) shows the I4/mmm
unit cell of the compounds. The area in the phase di-
agram labeled 2D-FM indicates a region encompassing
three AF order phases. Each AF phase has FM-aligned
square Co planes stacked AF, with the periodicity of the
stacking and the direction of the ordered magnetic mo-
ment distinguishing each phase.26

The competition between stripe-type AF and FM
phases within a single Co-As plane may be captured us-
ing a local-moment J1-J2 Heisenberg model for a square
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FIG. 1. (a) Schematic magnetic phase diagram showing the
evolution from stripe-type antiferromagnetic (AF) spin fluc-
tuations to two-dimensional ferromagnetic (2D-FM) order in
(CaSr)Co2As2. (b) The body-centered-tetragonal unit cell of
SrCo2As2 with each square-Co sublattice indicated. (c) Dia-
gram showing stripe-type AF order and the nearest-neighbor
(J1) and next-nearest-neighbor (J2) magnetic interactions in
the HK reciprocal-lattice plane. Red and blue symbols de-
note the two AF sublattices, and the transverse (TR) and
longitudinal (LO) directions referred to in the text are la-
beled. J1 is FM and J2 is AF, and the orange dashed line
illustrates a frustrated J1 exchange path. vesta17 was used
to generate (b).

magnetic lattice with a spin Si (Sj) at site i(j):

H = J1

∑
NN

Si · Sj + J2

∑
NNN

Si · Sj , (1)

where J1 and J2 are the nearest-neighbor (NN) and next-
nearest-neighbor (NNN) exchange, respectively. Fig-
ure 1(c) shows a Co plane with the J1 and J2 exchange
paths labeled, and arrows indicate what stripe-type AF
order would look like if it existed in SrCo2As2. Since the
interlayer coupling is weak compared to J1 and J2,21,26

we can safely ignore it for our analysis.
The quotient −J1/(2J2) can be identified as the frus-

tration ratio, which quantifies the level of magnetic frus-

tration present. In particular, competing NN FM ex-
change (J1 < 0) and NNN AF exchange (J2 > 0) may
cause either FM [−J1/(2J2) > 1] or stripe-type AF or-
der [−J1/(2J2) < 1] in the T = 0 ground state. However,
extreme geometric frustration [−J1/(2J2) ≈ 1] can sup-
press long-range order and lead to spin-liquid behavior.27

For example, in the presence of FM J1 and AF J2,
the lack of long-range order may be a consequence of
the Co spin’s inability to simultaneously satisfy its NN
and NNN interactions. This is shown by the dashed
orange line in Fig. 1(c), which identifies a frustrated
J1 pathway. Importantly, for CaCo2−yAs2, which has
−J1/(2J2) ≈ 1, the frustration ratio manifests directly
in the spin-excitation spectrum, where ridges of scatter-
ing appear in INS data.28 The ridges are a signature of
the frustrated magnetism, and are observed instead of
the magnon spectrum expected for the A-type AF order.

The magnetism of Fe-pnictide superconductors, and,
more generally, of a frustrated square lattice has also
been approached using itinerant magnetic models.29–31

Interestingly, the calculated magnetic phase diagrams
agree with those determined using the J1-J2 local-
moment Heisenberg model, albeit within certain lim-
its. This dual character of the magnetism has been
explored in other Fe-pnictide materials.30–34 In partic-
ular, Ref. [31] reports results from first-principle density-
functional-theory calculations which show that the in-
plane magnetic interactions are short ranged and can be
effectively described in terms of NN and NNN exchange
constants.

In this paper, we reveal through INS data for
χ(Qstripe, E), where E is energy, that the stripe-type
AF fluctuations found in SrCo2As2 at T = 5 K weaken
but do not become broader in Q with increasing tem-
perature. This suggests that the associated fluctuating
magnetic moment becomes suppressed with increasing
temperature without a concurrent shrinking of the mag-
netic correlation length. As the fluctuations diminish,
we show that a peak in the dc magnetic susceptibility
χ(Q = 0, E = 0) ≡ M/H develops, where M is the
magnetization and H is the applied magnetic field.

Through comparison of our experimental data to re-
sults from our own classical Monte-Carlo (MC) sim-
ulations and exact-diagonalization calculations from
Ref. [27] using Eq. (1) with S = 1/2, we show that the
switch in spectral weight from Q = 0 to Qstripe upon
cooling signals a crossover from the compound being close
to an instability towards FM ordering to being close to
an instability towards stripe-type AF ordering. This im-
plies that the stripe-type AF and FM phases lie close in
total energy, and we find that the frustration ratio is al-
most twice as large as that expected from comparing the
anisotropy of the AF fluctuations observed via INS to
the dc magnetic susceptibility, Monte-Carlo, and exact-
diagonalization results. We interpret the enhanced level
of frustration as being due to the large energy scale of the
spin-fluctuations, which we associate with the itinerancy
of SrCo2As2’s magnetism.
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II. METHODS

A. Experiment

Single crystals of SrCo2As2 were grown from solution
using Sn flux and their compositions were verified as de-
scribed in Ref. [20]. Measurements of M were made on
a single-crystal sample between T = 1.8 and 300 K using
a Quantum Design, Inc., Magnetic Properties Measure-
ment System (MPMS). High-temperature magnetization
measurements between T = 300 and 900 K were per-
formed using the vibrating sample magnetometer (VSM)
option of a Quantum Design, Inc., Physical Properties
Measurement System (PPMS). The magnetization mea-
surements determined χ(0, 0).

INS measurements were made on the Wide Angular-
Range Chopper Spectromenter (ARCS)35 at the Spalla-
tion Neutron Source at Oak Ridge National Laboratory.
Eleven single crystals of SrCo2As2 with a total mass of
3.12 g were co-aligned with their (H,H,L) planes ly-
ing horizontal, where the momentum transfer is given as

Q = (2π/a)H î + (2π/a)K ĵ + (2π/c)Lk̂ and a = 3.95 Å
and c = 11.8 Å are the lattice parameters. Rocking
scans of the co-aligned assembly gave full-widths at half-
maximum of less than 2°. The c axis was kept fixed along
the direction of the incident neutron beam, and incident
neutron energies of Ei = 75 and 250 meV were used.
Data were recorded at T = 50, 100, 150, and 200 K.
Data at T = 5 K have been reported previously, but
in arbitrary units.21 INS data shown in this report are
normalized by the incoherent scattering of vanadium and
corrected for the sample temperature in order to obtain
the imaginary part of the dynamical magnetic suscepti-
bility, χ′′(Q, E), in absolute units of µ2

B/eV-fu, where fu
stands for formula unit.

Ultra-low temperature nuclear magnetic resonance
(NMR) measurements of 59Co (I = 7

2 , γN
2π =

10.03 MHz/T) and 75As (I = 3
2 , γN

2π = 7.2919 MHz/T)
were conducted down to T = 0.05 K on a single-crystal
sample of SrCo2As2 using a lab-built phase-coherent
spin-echo pulse spectrometer with an Oxford dilution re-
frigerator. The 75As-NMR and 59Co-NMR spectra were
obtained by sweeping a magnetic field applied perpen-
dicular to the c axis at a fixed frequency of 49.5 MHz.
The temperature dependence of the ac susceptibility
χac was effectively measured down to T = 0.05 K un-
der H = 0 T by measuring the NMR coil tank cir-
cuit resonance frequency f . f is associated to χac by
f = 1/2π

√
L0(1 + χac)C, where L0 is the inductance

without a sample present.

B. Simulation

We performed Monte-Carlo simulations of the classical
J1-J2 model on a L× L square lattice with a linear size
of L = 32 or 64 over a total of 2.048 × 108 MC steps.
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FIG. 2. Magnetic susceptibility χ(Q = 0, E = 0) ≡ M/H of
SrCo2As2 as a function of temperature for a magnetic field of
H = 3 T. Data for T ≤ 300 K are from MPMS measurements
and data for T ≥ 300 K are from VSM measurements. The
maximum in χ(T ) is indicated by χmax = 0.027 cm3/mol-fu
and Tmax = 110(5) K. The inset shows χ−1(T ). VSM data
were both offset (filled circles) and scaled (empty circles) to
join the MPMS data at T = 300 K, as described in the text.
The red and blue lines show fits to Eq. (2).

Each MC step consisted of a Metropolis update, a heat-
bath update,36 and a parallel-tempering step.37 The sys-
tems were simulated at 50 different temperatures using a
geometric spacing between 0.01 < kBT/|J1| < 3 in par-
allel, where kB is the Boltzmann constant. Errors were
computed using the Jackknife method over 1024 equally
spaced measurements (every 105 MC steps). Measure-
ments of the simulated systems were taken after an initial
thermalization period of 1.024× 108 MC steps.

III. RESULTS

A. Magnetic susceptibility at Q = 0

Figure 2 displays χ(Q = 0, E = 0) for T = 2 to 900 K
and H = 3 T, for which a maximum is visible at Tmax =
110(5) K with χmax = 0.027 cm3/mol-fu. Data between
T = 300 and 900 K allow for determination of the Curie-
Weiss (CW) parameters1 well above Tmax through fits
to

χ(Q = 0, E = 0) = χ0 +
C

T − θ , (2)

where C is the Curie constant, θ is the Weiss tempera-
ture, and χ0 is the temperature-independent susceptibil-
ity.

The MPMS (T ≤ 300 K) and VSM (T ≥ 300 K) data
do not join smoothly due to calibration issues with the
VSM thermometry, so we compared two methods for join-
ing the data: (1) adding a constant offset and (2) multi-
plying by a scale factor. The VSM data were fit by Eq. (2)
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TABLE I. Results from fits of Eq. (2) to the high-temperature
VSM data. Fitting errors for the parameters are given. For
the average of the scaled and offset fit parameters, the error
is obtained from the difference between the two.

scaled offset average

χ0 (10−4 cm3/mol-fu) 4.22(14) 6.89(11) 5.5(1.3)

C (cm3/K-mol-fu) 0.337(14) 0.263(11) 0.30(4)

θ (K) 27(9) 27(9) 27(9)

µeff =
√

8C/2 (µB/Co) 1.16(3) 1.03(2) 1.10(6)

for each method, with the results being given in Table I.
Figure 2 also shows that χ(0, 0) levels off to a large value
at high T , which gives a value for χ0 consistent with the
Pauli susceptibility estimated from the density of states
at the Fermi level of D(EF) = 11 states/eV-fu:20

χ0 ≈ χPauli = µ2
BD(EF)

= 3.5× 10−4 cm3/mol-fu.
(3)

Fits performed to our MPMS data over T = 200 to 300 K
yielded parameters similar to those reported in Ref. [20].

B. Magnetic susceptibility at Q = Qstripe

The imaginary part of the magnetic susceptibility is
calculated from the INS data according to

χ′′(Q, E) =

2π

(γr0)2

S(Q, E)− Sbkgd(Q, E)

f2(Q)
(1− e−E/kBT ),

(4)

where S(Q, E) is the scattering intensity, Sbkgd(Q, E)
is an isotropic nonmagnetic background, (γr0)2 =
290.6 mbarn/sr, and f(Q) is the magnetic form factor
of the Co2+ ion. The nonmagnetic background was esti-
mated by a procedure similar to the one used in Ref. [38].
To summarize, the magnetic scattering intensity near
Qstripe = (±0.5,±0.5) was masked. Then, data points

with the same values of
√
H2 +K2 (within a tolerance

of 0.025 rlu) and energy transfer E (within a tolerance
of the step size in E after reduction of the time-of-flight
data) were averaged to form Sbkgd(Q, E).

1. Weakening of the stripe-type spin fluctuations with
increasing temperature

Figure 3 gives an overview of the INS due to anisotropic
spin fluctuations centered at Qstripe = (1/2, 1/2, L) for
T = 5 K [Figs. 3(a) and 3(b)] and 50 K [Figs. 3(c) and
3(d)]. Since the INS measurements were made with the
sample’s c axis parallel to the incoming beam, the mea-
sured value of L depends on E. Thus, summing over a
range of E corresponds to summing over a range in L.
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T = 50 K T = 50 K

FIG. 3. The imaginary part of the magnetic susceptibility
χ′′ in absolute units from inelastic neutron scattering data
showing the presence of anisotropic stripe-type AF spin fluc-
tuations in SrCo2As2 at T = 5 K [(a),(b)] and 50 K[(c),(d)].
A background has been subtracted as described in the text.
[(a),(c)] Scattering in the (H, K)-plane averaged over a neu-
tron energy transfer range of E = 5 to 20 meV. (b) Data
as in (a), but averaged over symmetry-equivalent quadrants.
Anisotropy is clearly visible, with the scattering being more
extended along the longitudinal (LO) direction than along
the transverse (TR) direction. (d) The steeply dispersing be-
havior of the spin fluctuations as seen for the TR direction.
These data are averaged over ±0.1 rlu in the LO direction.
Data below E = 5 meV (dashed white line) are contaminated
by strong elastic scattering. All data are for an incident neu-
tron energy of Ei = 75 meV.

Previous data show that the spin fluctuations centered
at Qstripe only weakly disperse along L,21 making them
quasi-2D and predominately governed by the intralayer
NN and NNN exchange.

Figures 3(a) and 3(b) demonstrate the reciprocal-
space anisotropy of the spin fluctuations: they are broad
in the longitudinal (LO) direction (‖ Qstripe) and narrow
in the transverse (TR) direction (⊥ Qstripe). Figure 3(c)
shows that the fluctuations are still present at T = 50 K
but are weaker than at 5 K. The temperature dependence
of the anisotropy is quantified by making cuts across the
INS scattering peaks along the LO and TR directions,
examples of which are given in Fig. 5. (See also Fig. 12
in Appendix A). The peak widths κLO and κTR in the
cuts determine the anisotropy parameter η:

η =
κ2

TR − κ2
LO

κ2
TR + κ2

LO

. (5)

η is −0.5 at T = 5 K and −0.6 at 50 K. Within the
random-phase approximation (RPA) to the J1-J2 model,
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FIG. 4. (a) Transverse (TR) and (b) longitudinal (LO) slices
of background-subtracted inelastic neutron scattering data for
an incident neutron energy of Ei = 250 meV. The TR slice
is averaged over ±0.1 rlu in the LO direction, the LO slice is
averaged over ±0.1 rlu in the TR direction. The intensity is
given in arbitrary units.

it can be shown [see Appendix C, equation (C12)] that

−η = − J1

2J2
. (6)

Thus η serves as a measure of the frustration ratio.28

Figures 3(d), 4(a), and 5(a) show the steep disper-
sion of the spin fluctuations in the TR direction, whereas
Fig. 4(b) shows the weaker dispersion in the LO direc-
tion. Figure 4 further shows that the fluctuations extend
up to E = 100 meV, with no clear sign of broadening
in Q with increasing E. Rather, the dispersion is more
reminiscent of that seen for itinerant magnets.39

Given the steep dispersion, we can only obtain a lower
bound for the magnitude of the transverse velocity

vTR =
∆E

∆q

&
50 meV

0.2 Å
−1 = 250 meV Å,

(7)

where ∆q is the distance away from Qstripe. As shown in
Appendix B, this leads to a lower bound for the average
value of the exchange energy of

Javg =
√
J2

1 + J2
2

≈ 75 meV.
(8)

FIG. 5. (a) Color image of the dynamical susceptibil-
ity obtained from inelastic neutron scattering data through
( 1

2
, 1

2
, L) and E in absolute units of µ2

B/eV-fu for the TR
direction. Slices are averaged over ±0.1 rlu in LO direction.
L is tied to E due to the sample’s c axis being oriented along
the incoming beam. Data below E ≈ 5 meV (dashed white
line) are contaminated by large elastic scattering. (b) TR and
(c) LO cuts of the dynamical susceptibility through Qstripe

(dashed line) averaged over ±0.1 rlu and E = 10 to 15 meV
at different temperatures as listed. (d) Energy dependence
of the spin fluctuations at Qstripe for different temperatures.
The color scheme in (d) is the same as in (b) and (c). All
data are for an incident neutron energy of Ei = 75 meV.

Figure 5(a) shows the suppression of the spin fluctu-
ations with increasing temperature in more detail, and
Figs. 5(b) and 5(c) show TR and LO cuts averaged over
E = 10 to 15 meV for each temperature measured. The
peak in Fig. 5(c) located near (0.9, 0.9) rlu is due to
phonon contamination. Figure 5(d) demonstrates the
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suppression of χ′′(Qstripe±q, E) versus E with increasing
temperature.

A key observation is that the stripe-type AF spin fluc-
tuations weaken with increasing temperature, whereas
the peak widths are not strongly affected. This suggests
a suppression of the fluctuating AF moment rather than
the reduction of the spin-spin correlation length generally
expected for a local-moment magnet as T is increased
further away from the magnetic-ordering temperature.

To understand these temperature-dependent changes,
we fit χ′′(Qstripe, E) at each temperature to a diffu-
sive model for the spin fluctuations based on the local-
moment J1-J2 Heisenberg Hamiltonian given in Eq. (1).
We discuss this model below.

2. Fits to a diffusive model within a random-phase
approximation to the J1-J2 model

The diffusive model28,40,41 within a RPA to the J1-J2

model yields an imaginary susceptibility:

χ′′(Qstripe + q, E) =

χ′(Qstripe, 0)ΓTE

Γ2
T [1 + ξ2

T (q2 + 2ηqxqy)]2 + E2
,

(9)

where χ′(Qstripe, 0) is the staggered susceptibility at
Qstripe, ΓT is the relaxation rate, ξT is the correla-
tion length, and η = J1/(2J2) is the reciprocal-space
anisotropy of the spin fluctuations. The subscripts x and
y correspond to perpendicular directions connecting NN
Co.

TR and LO cuts through Qstripe for energy transfer
ranges of E = 5 to 10, 10 to 15, 30 to 40, and 40 to
50 meV, where the magnetic scattering largely avoids
phonon scattering, are shown in Fig. 12 in Appendix A.
Together with the energy dependence of χ′′(Qstripe, E)
shown in Fig. 5(d), the cuts were simultaneously fit by
Eq. (9). The temperature dependence of the fitted pa-
rameters are shown in Fig. 6.

Appendix C shows that χ′(Qstripe, E = 0) in Fig. 6(a)
may be fit to the form:

χ′(Qstripe, E = 0) = χs
|TN|

T − TN
, (10)

where TN is the Néel temperature. This gives a bare
staggered susceptibility of χs = 110(20) µ2

B/eV-fu, an

effective staggered moment of µeff =
√

3kB|TN|χs =
0.85 µB/Co, and TN = −51(7) K. Since long-range AF
order does not occur, TN is negative.

Figure 6(b) shows that ξT is weakly dependent on tem-
perature and does not conform to the expected scaling
behavior for our RPA-based diffusive model (see Ap-
pendix C) of

ξ2
T ∼ ξ2

0

|TN|
T − TN

, (11)
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FIG. 6. Temperature dependencies of parameters determined
from fits of inelastic neutron scattering data to the diffusive
model imaginary susceptibility given in Eq. (9). Red lines in-
dicate expectations from critical behavior for the J1-J2 model
in a random-phase approximation (see Appendix C), and
black dashed lines are guides to the eye. (a) The staggered
susceptibility at Qstripe. The red line shows a Curie-Weiss
fit. (b)–(f) The AF correlation length ξT /a (b), relaxation
rate ΓT (c), reciprocal space anisotropy η (d), scaling rela-
tion χ′(Qstripe, 0)(ξT /a)−2 (e), and fluctuating AF moment
〈m2〉 (f). Parameters in the shaded area (below Tmax) show
reasonable scaling for incipient stripe-type AF order.

as for T > 100 K the correlation length remains constant.
Figure 6(c) also shows that the expected critical behavior
for the relaxation rate:

ΓT ∼
γ(T − TN)

|TN|
, (12)

where γ is the Landau damping, arising from the itin-
erancy of the material, fits poorly above T = 100 K.
The overall breakdown of critical behavior is best illus-
trated by Fig. 6(e), which demonstrates that the scaling
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quantity χ′(Qstripe, 0)(ξT /a)−2 varies with temperature.
Equation (C17) shows that this quantity should be con-
stant in T for our diffusive model.

The fluctuating AF moment,

〈
m2
〉

=
1

2

3

π

∫
χ′′(Q, E)(1− e−E/kBT )−1dQdE∫

dQ
, (13)

was determined by integration of Eq. (9) up to a cut-
off energy of E = 100 meV after substituting the fitted
parameters. The factor of 1

2 in Eq. (13) takes into consid-
eration that there are two Co atoms per fu, and the range
of integration over Q is (0 ≤ Qx ≤ 2π

a , 0 ≤ Qy ≤ 2π
a ).

The temperature dependence of
〈
m2
〉

is plotted in
Fig. 6(f), which shows that it decreases above T ≈ 100 K.
Overall, Fig. 6 demonstrates that the stripe-type AF
spin fluctuations in SrCo2As2 follow the critical behav-
ior expected for the diffusive model reasonably well for
T . 100 K, even though the compound never attains
long-range stripe-type AF order.

C. Nuclear magnetic resonance

Previously reported data for SrCo2As2 have demon-
strated that no magnetic or superconducting phase tran-
sitions occur down to T = 1.8 K.20,43 To examine if a
phase transition occurring below T = 1.8 K is related to
the decrease in χ(T ) below Tmax, we made ac suscepti-
bility and NMR measurements down to 0.05 K.

The inset to Fig. 7(a) shows the temperature depen-
dence of the shift in resonance frequency of the NMR
tank circuit −∆f(T ) for either SrCo2As2 or the super-
conductor KFe2As2 placed within the pickup coils. It
demonstrates that −∆f(T ) for KFe2As2 shows a sharp
change at its superconducting transition temperature of
T c = 3.3 K,42 which is due to diamagnetic shielding,
whereas the data for SrCo2As2 show no such feature for T
down to 0.05 K. Upon taking into consideration previous
results for T ≥ 1.8 K,20,43 these data exclude a supercon-
ducting transition occurring for SrCo2As2 at T ≥ 0.05 K.

Figures 7(a) and 7(b) show 59Co- and 75As-NMR spin-
echo data, respectively, for SrCo2As2 at various temper-
atures. No changes with temperature to the shapes of
the spectra are seen, which indicates that no magnetic
phase transitions are detected down to T = 0.05 K. Fur-
ther, Fig. 7(b) shows no abrupt temperature-dependent
changes to the spacing between quadruploar-split 75As-
NMR lines. This likely excludes a structural phase tran-
sition as well.

D. Classical Monte-Carlo simulations

To rationalize and interpret the competition between
stripe-type AF and FM in the Co-As planes, we have per-
formed large-scale parallel-tempering Monte-Carlo sim-
ulations of the J1-J2 model in the classical limit. We
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FIG. 7. (a) 59Co-NMR spin-echo data for SrCo2As2 versus
magnetic field for various temperatures. (inset) Temperature
dependence of the change in the NMR coil tank circuit reso-
nance frequency −∆f for SrCo2As2 (red curve). The blue
curve is from Ref. [42] and shows −∆f(T ) for the super-
conductor KFe2As2, for which there is a clear anomaly at
Tc = 3.3 K. (b) 75As-NMR spin-echo data for SrCo2As2 ver-
sus magnetic field for various temperatures. The spin-echo
intensities are given in arbitrary units.

set J1 < 0 to be FM and J2 > 0 to be AF, and vary
their ratio 0.5 < −J1/(2J2) < 0.98. Thus, the ratio
goes from the stripe-type AF side of the phase diagram
[−J1/(2J2) < 1] towards extreme geometric frustration
[−J1/(2J2) ≈ 1].

Figure 8(a) presents the uniform susceptibility
χ′(0, 0) and Fig. 8(b) gives the staggered susceptibil-
ity χ′(τstripe, 0) versus kBT/Javg calculated for a square
lattice with a linear size of L = 64. A maximum is
evident in χ′(0, 0) which shifts to lower kBT/Javg as
−J1/(2J2) → 1. This is a signature of the frustration.
On the other hand, χ′(τstripe, 0) shows a sharp increase
for values of kBT/Javg below the value for which χ′(0, 0)
has a maximum, and χ′(τstripe, 0) grows exponentially
below this point due to the divergence of the correlation
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FIG. 8. Classical Monte-Carlo simulation results for the J1-
J2 model on a 64 × 64 square lattice showing (a) the uni-
form susceptibility χ′(0, 0) and (b) the staggered susceptibil-
ity χ′(τstripe, 0). Data are for various values of −J1/(2J2)
and are plotted versus an effective temperature kBT/Javg,

where Javg =
√
J2

1 + J2
2 . Note the logarithmic scales. The

inset shows similar classical Monte-Carlo simulation results
for −J1/(2J2) = 0.98 for both Q = 0 and Q = τstripe in
linear scale.

length as T → 0.

Figure 9 presents similar data for a square lattice with
L = 32. The positions of the maxima and the values of
χ′(0, 0) in Figs. 8(a) and 9(a) show little dependence on
L. On the other hand, the values of χ′(τstripe, 0) show
an obvious L dependence as kBT/Javg → 0 in Figs. 8(b)
and 9(b). This clear dependence of χ′(τstripe, 0) on the
system-size signals a true divergence in the thermody-
namic limit as T → 0, whereas χ′(0, 0) is size indepen-
dent, which implies that the FM fluctuations are not
critical. Rather, they are only enhanced at finite tem-
perature due to the proximity of the nearby FM phase
at −J1/(2J2) & 1.

From our data in Fig. 2 and our estimated lower bound
for Javg of 75 meV from the INS data, we estimate that
kBTmax/Javg < 0.13. This value is approximately repro-
duced by our MC simulations for −J1/(2J2) = 0.98, data
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FIG. 9. Classical Monte-Carlo simulation results for the J1-
J2 model on a 32 × 32 square lattice showing (a) the uni-
form susceptibility χ′(0, 0) and (b) the staggered susceptibil-
ity χ′(τstripe, 0). Data are for various values of −J1/(2J2) and
are plotted versus an effective temperature kBT/Javg, where

Javg =
√
J2

1 + J2
2 . Note the logarithmic scales.

from which are shown in the inset to Fig. 8(b) for L = 64.
Good qualitative agreement with the experimental data
plotted in Fig. 10 is seen: χ′(τstripe, 0) steeply increases
below the value of kBT/Javg for which χ′(0, 0) reaches a
maximum at kBT/Javg ≈ 0.125. Nevertheless, the value
of −J1/(2J2) determined from the INS data is −η = 0.5
to 0.6, which is much lower than the value of 0.98 for the
corresponding MC simulations. Thus, SrCo2As2 appears
to be more frustrated than expected from the measured
reciprocal-space anisotropy of the spin fluctuations.

IV. DISCUSSION

We begin this section by making quantitative compar-
isons of the measured χ(0, 0) and INS data to results from
exact-diagonalization calculations using the J1-J2 model
described by Eq. (1) with S = 1/2. In particular, Shan-
non et al.27 report the variations of θ/Tmax, kBTmax/Javg,
and χmaxJavg/(g

2µ2
B) as functions of −J1/(2J2). We
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FIG. 10. Fits to the uniform susceptibility χ′(Q = 0, E = 0)
of SrCo2As2 (black line) obtained from Ref. [20] and the stag-
gered spin susceptibility χ′(Qstripe, 0) obtained from inelastic
neutron scattering data (blue symbols). The dashed blue line
is a guide to the eye. Top scale is the effective temperature
in units of kBT/Javg.

have digitized these data and plotted them in Fig. 11(a),
11(b), and 11(c), respectively. The red curves are polyno-
mial fits to the digitized data. The red curve in Fig. 11(d)
is the product of the fitted red curves in Figs. 11(b) and
11(c). Results from our Monte-Carlo simulations are also
included as black circles with green fill in Figs. 11(b),
11(c) and 11(d). Notice that all red curves are dimen-
sionless quantities which can be calculated by theory.

Blue rectangles in Fig. 11 are parameter ranges de-
termined from INS and/or magnetization measurements.
Their horizontal ranges show that −J1/(2J2) = 0.5 to
0.75, as determined from the spatial anisotropy in INS
data. As we can only estimate the lower bound of Javg,
the blue rectangles in Figs. 11(b), 11(c) and 11(d) only
give bounds for the corresponding parameters. θ, Tmax,
and χmax are determined from the magnetization mea-
surement. g = 1.7 is given in Ref. [20]. It can be seen
that quantities involving values derived from only the
magnetization measurement are in good agreement with
the exact-diagonalization results, while those involving
the value of Javg, determined by INS, are not. This dis-
crepancy can be associated to the large value of Javg.

Table II summarizes the quantities determined from
experimental data and exact-diagonalization results.
Within these exact-diagonalization results, key indica-
tors of a high degree of frustration are a small value for
kBTmax/Javg and a large value for χmaxJavg/(g

2µ2
B). In

this sense, our experimental measures of the key frus-
tration indicators appear “more frustrated” than the J1-
J2 model predicts. In particular, kBTmax/Javg is much
smaller and χmaxJavg/(g

2µ2
B) is much larger than the val-

ues expected from the local-moment model. This conclu-
sion is supported by the MC results given in Figs. 8 and
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FIG. 11. Plots of (a) θ/Tmax, (b) kBTmax/Javg, (c)
χmaxJavg/(g

2µ2
B) and (d) kBTmaxχmax/(g

2µ2
B) versus the frus-

tration ratio −J1/(2J2). Black circles are results from exact-
diagonalization calculations given by Shannon et al. in
Ref. [27], and red lines are polynomial fits to the exact-
diagonalization results. Black circles with green fill are results
from our classical Monte-Carlo simulations. Blue rectangles
are parameter ranges determined from experiments.

9, which show that a value of −J1/(2J2) closer to 1 is
more consistent with the measured temperature depen-
dence of the magnetic susceptibility at Q = 0 and Qstripe.
SrCo2As2 is therefore more frustrated than predicted by
the value of η = −J1/(2J2) determined by INS, and the
maximum in χ′(0, 0) occurs at a much lower temperature
than expected. This discrepancy is traced to the steep
dispersion of the spin fluctuations, and the associated
large magnetic energy scale of Javg & 75 meV, which is
more characteristic of an itinerant magnet.
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TABLE II. Comparison of experimental results from in-
elastic neutron scattering (INS) and dc magnetic suscepti-
bility [χ(0, 0)] measurements with predictions from exact-
diagonalization calculations reported in Ref. [27] for the J1-J2

model. Results from the calculations are shown for frustration
ratios of −J1/(2J2) = 0.5 and 0.75. η and the lower bound
for Javg are obtained from INS data and kBTmax, χmax, and
θ are obtained from χ(0, 0)(T ) data. g = 1.7 is used, which
comes from analysis of χ(0, 0) data given in Ref. [20], which
uses a value for the spin of S = 1/2.

Theory for −J1/(2J2) =
Experiment

0.5 0.75

η — — −0.63(12)

Javg (meV) — — & 75

Tmax (K) — — 110(5)

χmax(µ2
B/meV-Co) — — 0.043(1)

θ (K) — — 27(9)

θ/Tmax 0 0.61 0.25(9)

kBTmaxχmax/(g
2µ2

B) 0.13 0.15 0.14(1)

kBTmax/Javg 0.69 0.43 . 0.13

χmaxJavg/(g
2µ2

B) 0.19 0.34 & 1.1

We interpret the suppression of χ(0, 0) and rise in
χ(Qstripe, 0) below Tmax as signaling a crossover from
predominantly FM to predominately stripe-type AF fluc-
tuations. These fluctuations are presumably associated
with corresponding FM and AF phases that lie close in
energy. This is supported by the following facts. First,
the magnitude of χ(0, 0) at high-temperature, the posi-
tive Weiss temperature, and the large Stoner parameter
of ID(EF) = 2.2 found in Ref. [20] are all consistent
with a Stoner FM instability. Second, NMR and INS
results both show evidence for FM fluctuations being
present.25,42 Third, Fig. 10 clearly shows that the lead-
ing magnetic instability, determined by the maximum in
χ′(Q, 0), crosses over from Q = 0 to Qstripe with decreas-
ing temperature.

This scenario of competing FM and stripe-type AF
phases is consistent with band structure calculations that
find maxima in the generalized electronic susceptibility at
both Q = 0 and Qstripe.21 Remarkably, even though fluc-
tuations associated with each phase are present at finite
temperature and a crossover in the magnetic susceptibil-
ity occurs between Q = 0 and Qstripe, it is apparently
more energetically favorable for the compound to remain
paramagnetic.

Interestingly, Figs. 8 and 9 indicate that close to
−J1/(2J2) . 1 FM fluctuations seem to be dominant
for a large range of finite T even though the T = 0
ground state corresponds to stripe-type AF. Previous
theory work has shown a similar behavior for AF J1

(J1 > 0) close to J1/(2J2) = 1 both in the classical
spin limit at T > 044 as well as in the quantum limit
at T = 0.45 These works noted that thermal and quan-
tum fluctuations both favor Néel-type AF fluctuations for

J1/(2J2) . 1 even though the classical ground state at
T = 0 is stripe-type AF. This leads to a crossover from a
high-temperature Néel-type phase to a low-temperature
stripe-type phase This crossover is similar to our obser-
vation for FM J1 of dominant FM fluctuations at large T
and a crossing to prevalent stripe-type AF fluctuations
at low T .

Remarkably, a suppression of χ(0, 0) such as that seen
for SrCo2As2 at T below 110 K20 is a phenomenon
seen in some frustrated local-moment square-lattice sys-
tems compounds, such as BaCdVO(PO4)2.46 The un-
usual behavior of SrCo2As2 also closely parallels that
of a broad class of weak itinerant FMs displaying un-
usual responses to magnetic fields and temperature which
can be characterized as being both itinerant and frus-
trated. For example, YCo2 consists of a geometrically-
frustrated corner-shared tetrahedral network of Co ions.
Similar to SrCo2As2, its high-temperature behavior is
consistent with Stoner PM, and upon cooling its Q =
0 susceptibility reaches a maximum. Below the tem-
perature of the maximum, the low-energy spin fluctu-
ations become suppressed.47 Also, similar to the case
of (Ca,Sr)Co2−yAs2, whereas YCo2 is PM, weak itin-
erant FM order can be induced in Y(Co1−xAlx)2 for
x > 0.11.48

The application of a magnetic field in the PM state of
Y(Co1−xAlx)2 for x < 0.11 triggers a first-order meta-
magnetic transition to a FM state that cannot be ex-
plained by the alignment of local magnetic moments.49,50

This itinerant-electron metamagnetism is proposed to
arise from the competition between nearly degener-
ate PM ground states, one of which is close to a
Stoner instability.51–53 Similar observations of high-field
metamagnetism, unconventional temperature-dependent
uniform magnetic susceptibility, and the evolution of
these phenomena upon approach to 2D-FM order in
(Ca,Sr)Co2P2

54 suggest a close connection between
itinerant-electron metamagnetism and itinerant mag-
netic frustration.

V. CONCLUSION

In summary, we have made temperature dependent
INS and magnetization measurements on SrCo2As2 that
have determined χ(Q, E) between T = 5 and 200 K. By
fitting INS data for χ′′(Q, E) to a diffusive model for
the J1-J2 Heisenberg Hamiltonian on the square lattice
[Eq. (9)], we have compared the temperature dependence
of χ(Q, E = 0) at Q = 0, determined via magnetiza-
tion, to that at Qstripe. A decrease in χ(0, 0) occurs
below Tmax = 110(5) K that is accompanied by a rise
in χ(Qstripe, 0), which signals a shift in magnetic spec-
tral weight from Q = 0 to Qstripe. This occurs despite
our NMR data showing that neither FM nor AF order is
realized down to T = 0.05 K. We interpret the shift as
being due to competition between closely lying in-plane
FM and stripe-type AF states, which manifests in the ob-
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servation of steep and anisotropic spin fluctuations cen-
tered at Q corresponding to τstripe. Further, within the
diffusive model, the anisotropy of the spin fluctuations
at Qstripe gives a measurement of the level of magnetic
frustration: η = J1/(2J2).

To further understand our data, we have performed
classical Monte-Carlo simulations for the J1-J2 model
and found that they capture the suppression of χ(0, 0)
and rise in χ(τstripe, 0) with decreasing temperature.
However, the simulation results show that a frustration
parameter of −J1/(2J2) ≈ 0.98, which is much larger
than the range of −η = 0.5 to 0.75 found by INS, is
needed to explain the experimentally determined value
for kBTmax/Javg. Upon comparison with previous exact-
diagonalization calculations for the J1-J2 model with
S = 1/2,27 we find that inconsistencies between the ex-
perimental data and theory arise due to the large energy
scale of the spin fluctuations (Javg & 75 meV), which,
in addition to the steep dispersion observed via INS, is
more characteristic of itinerant magnetism.

Thus, we argue that SrCo2As2 is therefore more frus-
trated than predicted by the local-moment J1-J2 model
due to itinerancy. Remarkably, previous theory re-
sults point to similar competition between Néel- and
stripe-type AF states for −J1/(2J2) = −1.44,45 In ad-
dition, the anomalous temperature and magnetic-field
responses of other itinerant-electron metamagnetic com-
pounds such as Y(Co1−xAlx)2

47–53 and (Ca,Sr)Co2P2
54

suggest a close connection between itinerant-electron
metamagnetism and itinerant magnetic frustration.
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Appendix A: Analysis of INS data with the diffusive
model

Transverse (TR) and longitudinal (LO) cuts through
Qstripe for energy transfer ranges of E = 5 to 10, 10
to 15, 30 to 40, and 40 to 50 meV, where the magnetic
scattering largely avoids phonon scattering, are shown in
Fig. 12. These cuts and the cuts in Fig. 5(d) were simul-
taneously fit to Eq. (9) to determine the fitted parameters
plotted in Fig. 6.

Appendix B: Estimation of Javg from inelastic
neutron scattering data

Equation (7) is used to estimate Javg from the steep
spin-wave velocity in the direction transverse to Qstripe

shown, for example, in Fig. 5(a). Within linear spin-wave
theory,

vTR =
√

2aS
√

4J2
2 − J2

1

= 2
√

2aSJ2

√
1− η2,

(B1)

where a is the lattice parameter of the I4/mmm crystal-
lographic unit cell and η is defined in Eq. (6). Thus,

J2 =
vTR

2
√

2aS
√

1− η2
. (B2)

Given that J2
avg = J2

1 + J2
2 , we can write

J2 =
Javg√
1 + 4η2

, (B3)

and obtain

Javg =
vTR

2
√

2aS

√
1 + 4η2

1− η2
. (B4)

Using this relation, η = −0.63 (Table II), and vTR =
250 meVÅ [Eq. (7)]; we find a lower bound for the mag-
netic energy scale of Javg ≈ 75 meV.

Appendix C: Random-phase approximation to the
J1-J2 Heisenberg model and scaling relations

The magnetic susceptibility χ(Q, E = 0) in a random-
phase approximation (RPA) at Q corresponding to the
magnetic ordering propagation vector τ for a local-
moment system is55

χ(τ , 0) =
C

T − TN
, (C1)

where C is the Curie constant given by

C = g2µ2
BS(S + 1)/3kB, (C2)

g is the spectroscopic splitting factor, S is the spin of the
magnetic ion, and

TN = S(S + 1)J(τ )/3kB (C3)

is the Néel temperature. Note that TN is distinct from
the Weiss temperature θ for the uniform (Q = 0) suscep-
tibility:

θ = S(S + 1)J(Q = 0)/3kB. (C4)

Substituting for TN, Eq. (C1) may be written as:

χ(Q, 0) = C

[
T − S(S + 1)

3kB
J(Q)

]−1

. (C5)
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FIG. 12. (a-d) Transverse (TR) and (e-h) longitudinal (LO) cuts for E = 5 to 10, 10 to 15, 30 to 40 and 40 to 50 meV. The
TR cuts are averaged over ±0.1 rlu in the LO direction, the LO cuts are averaged over ±0.1 rlu in the TR direction. Data are
for an incident neutron energy of Ei = 75 meV.

For the J1-J2 model appropriate for the square-Co sub-
lattice in the I4/mmm unit cell of the ThCr2Si2 struc-
ture with lattice parameter a, the Q-dependent exchange
interaction is

J(Q) = −2J1{cos [a2 (Qx +Qy)]

+ cos [a2 (Qx −Qy)]}
−2J2[cos (Qxa) + cos (Qya)],

(C6)

where the subscripts x and y correspond to perpendicu-
lar directions connecting NN Co, and J > 0 corresponds
to AF interactions. For this model, the uniform suscep-
tibility is

χ(0, 0) =
C

T − θ , (C7)

with a Weiss temperature given by

θ = −4(J1 + J2)S(S + 1)

3kB
. (C8)

To study the critical behavior near Qstripe = 2π
a ( 1

2 ,
1
2 ),

we expand around Qstripe:

J(Qstripe + q) = −2J1{− cos [a2 (qx + qy)]

+ cos [a2 (qx − qy)]}
+2J2[cos (qxa) + cos (qya)],

≈ −2J1[ 1
2 (a2 )2(qx + qy)2

− 1
2 (a2 )2(qx − qy)2]

+2J2[2− 1
2 (qxa)2 − 1

2 (qya)2],

which gives

J(Qstripe + q) ≈ 4J2 − J2a
2q2 − J1a

2qxqy. (C9)

We then obtain the static susceptibility near Qstripe:

χ(Qstripe + q, 0) =

C

[
T − S(S + 1)

3kB
(4J2 − J2q

2a2 − J1a
2qxqy)

]−1

. (C10)

We identify

TN =
4S(S + 1)J2

3kB
, (C11)

and write

χ(Qstripe + q, 0) =

χ(Qstripe, 0)

[
1 +

J2a
2S(S + 1)

3kB(T − TN)
(q2 + 2ηqxqy)

]−1

,

(C12)

where η = J1/(2J2), as given by Eq. (6).
To connect to the E = 0 diffusive susceptibility, we

realize that χ(Qstripe, 0) = χ′(Qstripe, 0) and define the
temperature-dependent correlation length

ξ2
T =

J2a
2S(S + 1)

3kB(T − TN)

= ξ2
0

TN

T − TN
,

(C13)

where ξ0 = a/2.
The susceptibility can now be written in the E = 0

diffusive form as

χ′(Qstripe + q, 0) =
χ′(Qstripe, 0)

1 + ξ2
T (q2 + 2ηqxqy)

, (C14)
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and we define a scaling relation between the static sus-
ceptibility and the correlation length within the RPA:

χ′(Qstripe, 0)

(ξT /a)2
=
g2µ2

B

J2
. (C15)

We next write

χ′(Qstripe + q, 0) =
χs

(ξ0/ξT )2 + ξ2
0(q2 + 2ηqxqy)

, (C16)

where the bare staggered susceptibility, χs, is

χs =
χ′(Qstripe, 0)

(ξT /ξ0)2

=
g2µ2

B

4J2
. (C17)

With this definition, we now recast the Curie-Weiss sus-
ceptibility in terms of the bare staggered susceptibility
as

χ′(Qstripe, 0) = χs
TN

T − TN
, (C18)

which gives Eq. (10).
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