
LLNL-TR-788954

MULTITAPER SPECTRAL ESTIMATION:
An Alternative to the Welch Periodogram
Approach

J. V. Candy

September 5, 2019



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 

 
 

 

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344. 
 



MULTITAPER SPECTRAL ESTIMATION:
An Alternative to the Welch Average Periodogram Approach

J. V. Candy

Dynamic structural systems either operational or under test require complex spectral
analysis in order to characterize their modal responses. In some applications constant vigi-
lance in terms of analysis or potential failures demand an accurate methodology to estimate
both modal frequencies as well as mode shapes. Typically, classical periodogram spectra are
windowed and averaged applying the well-known Welch periodogram methodology (WPM)
for spectral estimation [1]. In this report we discuss an alternative technique—the Multi-
taper Method (MTM) that can be applied to solve this challenging problem especially in
the case of noisy, uncertain accelerometer measurements [2]. This approach is based on the
development of a set of orthogonal tapers or windows enabling a superior statistical perfor-
mance alleviating the need to section/overlap the measured data. Therefore, the MTM is
capable of producing reliable and accurate spectral estimates enabling the extraction of the
structural modal vibration frequencies.

1 INTRODUCTION

Dynamic structural systems operating in noisy environments create a challenging analysis
and monitoring problem in order to estimate their signatures in real-time and predict poten-
tial anomalies that can lead to catastrophic failure. In order to estimate the condition of a
structure from noisy vibration measurements, it is necessary to identify features that make
it unique such as emitted resonant (modal) frequencies that offer a signature characterizing
its condition. The monitoring of structural modes to estimate the condition of a device
under investigation is essential, especially if it is a critical entity of an operational system.
Many simple algorithms like the fast-Fourier transform coupled with spectral peak-picking
offer a technique to extract modal frequencies of a structural object for both computational
speed and accuracy [3]-[7]. Here we investigate a classical spectral estimation technique that
enables an accurate extraction of modal frequencies from noisy uncertain measurements.

Spectral estimation is a necessary methodology to analyze the frequency content of
noisy data sets. Many techniques have evolved starting with the classical Fourier transform
methods based on the well-known Wiener-Khintchine relationship relating the covariance-to-
spectral density as a transform pair culminating with more elegant model-based, parametric
techniques that apply prior knowledge of the data to produce a high-resolution spectral
estimate [8], [9]. Perhaps, a far less popular, but powerful methodology that has emerged
is the Multitaper Method (MTM) developed by Thomson [10]. The MTM evolved from
the need to reduce spectral leakage that creates smearing in the frequency domain along
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with other undesirable properties such as local and broadband biases as well as uncertainty
increasing the overall error variance [11]. Windowing or equivalently tapering methods in
Fourier-based spectral estimation are well-known ([8],[9]) leading to improved statistical
performance. The popular correlation or so-called Blackman-Tukey method [8] that Fourier
transforms a windowed covariance satisfying the Wiener-Khintchine relationship directly
was developed with the advent of the fast Fourier transform (FFT). Currently for long data
records, the most popular approach is the Welch Periodogram Method (WPM) that is based
on averaging normalized periodograms estimated from windowed, overlapped sections of data
[1]. Here the usual trade-off between estimator bias/variance dominates the spectral design.
The MTM falls into this class of spectral estimators with the underlying difference that its
inherent windows are a set of orthogonal prolate spheroidal wave functions that lead to a
unique set of decomposed “eigen-spectra” that are averaged to reduce error variance, similar
to the WPM. It is this specific set of windows (tapers) that provide interesting statistical
properties leading to vastly improved spectral estimates [10].

In this Sec. 2, we briefly discuss the fundamental background material to comprehend
spectral estimation techniques. Classical spectral estimators are breifly discussed in Sec.
3 leading to the detailed development of the multitaper method along with its properties
and extensions. In Sec. 4 a simple sinusoidal simulation is developed to demonstrate the
performance of this MTM approach and compare its performance to that of WPM on both
deterministic and noisy (0dB SNR) data. We summarize our results and conclusions in the
final section.

2 BACKGROUND

We can apply a filter to a random signal, but since its output is still random, we must find
a way to eliminate or reduce this randomness in order to employ the powerful techniques
available from systems theory. In this section, we shall show that techniques from statistics
combined with linear systems theory can be applied to extract the desired signal information
and reject the disturbance or noise.

Techniques similar to linear deterministic systems theory hold when the random signal
is transformed to its covariance sequence and its Fourier spectrum is transformed to its
power spectrum. Once these transformations are accomplished, then the techniques of linear
systems theory can be applied to obtain results similar to deterministic signal processing.
In fact, we know that the covariance sequence and power spectrum are a discrete Fourier
transform pair, analogous to a deterministic signal and its corresponding spectrum, that is,
we have that

Fourier Transform : R(k)←→ Sxx(Ω)

and as in the deterministic case, we can analyze the spectral content of a random signal by
investigating its power spectrum.
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Figure 1: Random Signal Comparison: Random signal and spectrum and the deterministic
covariance and power spectrum.

The power spectral density (PSD) function for a discrete random process is defined as:

Sxx(Ω) = lim
N→∞

E

{
X(Ω)X∗(Ω)

2N + 1

}
(1)

where ∗ is the complex conjugate. The expected value operation, E{.}, that can be thought
of as “mitigating” the randomness. Similarly, the covariance1 of the process is defined by:

Rxx(k) := E {x(t)x(t + k)} − E2{x(t)} (2)

In a sense these relations replace the random signals, but play the same role as their de-
terministic counterparts. These concepts are illustrated in Fig. 1 where we see the random
signal and it random Fourier transform replaced by the deterministic covariance and its
deterministic power spectrum.

Techniques of linear systems theory for random signals are valid, just as in the deter-
ministic case where the covariance at the output of a system excited by a random signal
x(t), is given by the convolution relationship in the temporal or frequency domain as,

Convolution : Ryy(k) = h(t) ∗ h(−t) ∗Rxx(k)

1It is also common to use the so-called correlation function, which is merely the mean-squared function
and identical to the covariance function for a mean of zero.
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Multiplication : Syy(Ω) = H(Ω)H∗(Ω)Sxx(Ω) = |H(Ω)|2Sxx(Ω)

(3)

Analogously, the filtering operation is performed by an estimation filter, Ĥf , designed to
shape the output PSD, similar to the deterministic filtering operation

Filtering : Syy(Ω) =| Ĥf (Ω) |2 Sxx(Ω) (4)

2.1 Spectral Representation of Random Signals

In many engineering problems before the design of processing algorithms can proceed, it is
necessary to analyze the measured signal. Analogous to the deterministic case, the covariance
function transforms the random signal and the power spectrum (transforms) its Fourier
transform for analysis as illustrated in Fig. 1. In this section, we derive the relationship
between the covariance function and power spectrum and show how they can be used to
characterize fundamental random signals.2.

First we begin by defining the power spectrum of a discrete random signal. Recall that
the discrete-time Fourier transform (DtFT) pair is given by [13]

X(ejΩ) := DtFT [x(t)] =
∞∑

t=−∞
x(t)e−jΩt

x(t) = IDtFT [X(ejΩ)] =
1

2π

∫
2π

X(ejΩ)ejΩtdΩ (5)

If x(t) is random, then X(ejΩ) is also random because

x(t, ξi)⇐⇒ X(ejΩ, ξi) ∀ i

both are simply realizations of a random signal over the ensemble generated by i. Also, and
more important, X(ejΩ) for stationary processes almost never exists because any non-zero
realization x(t, ξi) is not absolutely summable in the ordinary sense (these integrals can be
modified (see [14] or [15] for details)).

Now let us develop the relationship between the PSD and its corresponding covariance.
We have

Sxx(e
jΩ) = lim

N→∞

1

2N + 1
E
{
XN(ejΩ)X∗

N(ejΩ)
}

(6)

Substituting for the DtFT, moving the expectation operation inside the summation and
introducing a change of variable gives the relation

2We shall return to more mathematically precise notation for this development, that is, X(Ω) = X(ejΩ)
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Sxx(e
jΩ) =

∞∑
k=−∞

ET{Rxx(m + k,m)}e−jΩk (7)

If we further assume that the process is wide-sense stationary, then Rxx(m+k,m)→ Rxx(k)
is no longer a function of time, but lag k and therefore,

Sxx(e
jΩ) =

∞∑
k=−∞

Rxx(k)e−jΩk (8)

evolves as the well-known Wiener-Khintchine relation with the corresponding covariance
given by IDtFT

Rxx(k) =
1

2π

∫
2π

Sxx(e
jΩ)ejΩkdΩ (9)

Recall that the DtFT is just the Z-transform of x(t) evaluated on the unit circle, that is,

Sxx(Ω) = Sxx(z)|z=ejΩ

and we obtain the equivalent pair in terms of the Z-transform as

Sxx(z) = Z[Rxx(k)] =
∞∑

k=−∞
Rxx(k)z−k

and

Rxx(k) =
1

2πj

∫
Sxx(z)zk−1dz (10)

In practice, the auto-covariance and power spectrum find most application in the anal-
ysis of random signals yielding information about spectral content, periodicities, etc., while
the cross-covariance and spectrum are used to estimate the properties of two distinct pro-
cesses (e.g. input and output of a system) to follow. Before we discuss these estimators, it
will be necessary to define some of the common terms embedded in spectral estimation.

Consider a finite duration realization defined by

xN(t) :=
{

xN(t, ξi) |t| ≤ N <∞
0 |t| > N

Note that xN(t) will be absolutely summable (N finite) if x(t) has a finite mean-squared value
and in fact xN(t) will also have finite energy, therefore, it will be Fourier transformable. The
average power of xN(t) over the interval (−N, N) is

Average power =
1

2N + 1

N∑
t=−N

x2(t) =
1

2N + 1

∞∑
t=−∞

x2
N(t)
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Table 1: Properties of Covariance and Spectral Functions.

Covariance Power Spectrum

1. Average Power:
Rxx(0) = E{x2(t)} Rxx(0) = 1

2π

∫
2π Sxx(z)z−1dz

2. Symmetry:
Rxx(k) = Rxx(−k) (even) Sxx(z) = Sxx(z

−1) (even)
Rxy(k) = Ryx(−k) Sxy(z) = S∗yx(z)

3. Maximum:
Rxx(0) ≥ |Rxx(k)| Sxx(e

jΩ) ≥ 0
1
2
Rxx(0) + 1

2
Ryy(0) ≥ |Rxy(k)|

Rxx(0)Ryy(0) ≥ |Rxy(k)|2

4. Real:
Sxx(z) = E{|X(z)|2} is real
Sxy(z) = E{X(z)Y ∗(z)} is complex

5. Sum Decomposition:
Sxx(z) = S+

xx(z) + S−xx(z)−Rxx(0)
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but by Parseval’s theorem for discrete signals, we obtain the spectral representation for
xN(t)→ XN(Ω)

∞∑
t=−∞

x2
N(t) =

1

2π

∫
2π
| XN(ejΩ) |2 dΩ

where |XN(ejΩ)|2 = XN(ejΩ)X∗
N(ejΩ), ∗ the conjugate and we have

Average power =
∫
2π

(
|XN(ejΩ)|2

2N + 1

)
dΩ

2π

The quantity in parentheses represents the average power per unit bandwidth and is the
power spectral density of xN(t). Since xN is a realization of a stochastic process, we must
average over the ensemble of realizations

SxNxN
(ejΩ) = E

{
|XN(ejΩ)|2

2N + 1

}
but since xN → x as N →∞ we obtain the power spectral density (PSD) of xN(t) as before

Sxx(e
jΩ) = lim

N→∞
E

{
|XN(ejΩ)|2

2N + 1

}
With this in mind, we define the (raw) periodogram spectrum by

P̂ (Ω) :=
1

N

∣∣∣X(Ω)
∣∣∣2 =

1

N

∣∣∣ N∑
t=0

x(t)e−jΩt
∣∣∣2 (11)

which is poor estimator asymptotically unbiased for large N , but with a very large variance
that is quadratic, that is,

Bias
(
P̂ (Ω)

)
= P̂ (Ω) and V ar

(
P̂ (Ω)

)
= P̂ 2(Ω) (12)

Next we consider a more direct approach to estimate the PSD. An improved method
of spectral estimation based on the periodogram defined by the Wiener-Khintchine relation
and the DFT

Pxx(Ωm) :=
1

N
|X(Ωm)|2 =

1

N

N−1∑
k=−(N−1)

Rxx(k)e−jkΩm

where the discrete frequency Ωm = ( 2π
2N+1

m and R̂xx the a biased correlation estimator such
that [9]

R̂xx(k) =
1

N

N−1∑
t=0

x(t)x(t + k)

with bias
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E{Pxx(Ωm)} =
1

N

N−1∑
k=−(N−1)

E{Rxx(k)}e−jkΩm =
1

N

N−1∑
k=−(N−1)

(
1− |k|

N

)
Rxx(k)e−jkΩm

which is biased not just because of |k|
N

, but also because of the finite limits on the summation.

If we identify the term (1− |k|
N

) as a triangular lag window function, W(k) = 1− |k|
N

, then

E{Pxx(Ωm)} = DFT [Rxx(k)W(k)] =W(Ωm) ∗ Sxx(Ωm) (13)

So we see that the expected value of the periodogram is the true spectrum Sxx(Ωm) observed
through the spectral window W(Ωm). Note that a rectangular data window results in a
triangular correlation or Bartlett window or the so-called discrete Dirichlet kernel (squared)
as

W(Ωm) =
1

N

sin
(
Ωm

N
2

)
sin

(
Ωm

2

)
2

for the spectral window.
Recall that most windows trade off main lobe width for side lobe height. For large N ,

the spectral window, W will have a narrow main lobe along with narrow side lobes. In this
case, we see that

E{Pxx(Ωm)} ≈ Sxx(Ωm)

and that the periodogram is asymptotically (N → ∞) unbiased. In order for the peri-
odogram estimate to be good, it must have a small variance as N increases. Unfortunately,
var{Pxx(Ωm)} is generally not small even for large N . For example, if x is a white Gaussian
process, then it can be shown (see [9]) that

lim
N→∞

var{Pxx(Ωm)} = S2
xx(Ωm)

that is, the variance of the periodogram approaches the square of the true spectrum at each
m. In fact, in general, it can be shown that

var{Pxx(Ωm)} = S2
xx(Ωm)

1 +

(
sin(NΩm)

N sin(Ωm)

)2


which implies that as N increases, the variance is proportional to S2
xx as before and therefore

Pxx is not consistent (N →∞ : V ar 6≈ 0). Similarly, it can be shown that the

cov{Pxx(Ωm)Pxx(Ωj)} ≈ Pxx(Ωm)Pxx(Ωj)


(

sin N/2(Ωm + Ωj)

N sin(Ωm + Ωj)/2

)2

+

(
sin N/2(Ωm − Ωj)

N sin(Ωm − Ωj)/2

)2

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Since this relation is evaluated at equally spaced frequency samples, we see that the samples
are uncorrelated giving the periodogram a wildly fluctuating appearance and χ2

2 distribution
[9]. Since the samples of Pxx are uncorrelated, this suggests that one way of reducing the
variance in Pxx is to individual periodograms, obtained by sectioning the original N point
data record into K, L-point sections, that is,

Ŝxx(Ωm) =
1

K

K∑
i=1

P̂xx(Ωm, i)

where P̂xx(Ωm, i) is the i− th, L− point periodogram. If x is stationary, then

E{Ŝxx(Ωm)} =
1

K

K∑
i=1

E{P̂xx(Ωm, i)} = E{P̂xx(Ωm, i)} = Sxx(Ωm)

that is unbiased. If we introduce a spectral smoothing window as before, then

E{Ŝxx(Ωm)} =
1

L
Sxx(Ωm) ∗W(Ωm) where L =

N

K

which for impulse window functions gives

E{Ŝxx(Ωm)} ∝ K

N
Sxx(Ωm)

Again assuming independence of the x, we have

var{Ŝxx(Ωm)} =
1

K
var{P̂xx(Ωm, i)} ≈ 1

K
S2

xx(Ωm)

[
1 +

(
sin KΩm

K sin Ωm

)2
]

So we see that this estimate is consistent, since the variance approaches zero as the number
of sections become infinite. We conclude that for the basic averaged periodogram estimator

var ∝ 1

K
and bias ∝ K

N

but that for K large, the variance becomes small, but the bias increases. Therefore for a
fixed record length N as the number of periodograms increases, variance decreases, but the
bias increases. This is the basic tradeoff between variance and bias (resolution) that can be
used to determine a priori the required record length N = LK for an acceptable variance.
If we use a lag window to obtain a smoothed spectral estimate, then the variance can be
approximated by

var{Ŝxx(Ωm)} ≈

 1

N4T

K−1∑
k=−(K−1)

W2(k)

S2
xx(Ωm)

assuming the window length is narrow relative to variations of Sxx(Ωm), yet wide compared
to the triangular lag window as discussed previously for the correlation estimate.
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So we see that the properties of covariance and spectra not only can be used to analyze
the information available in random signal data, but also to estimate various signal char-
acteristics. In the next section we will investigate the properties of linear systems excited
by random inputs and use the properties of covariance and spectra to analyze the results.
Therefore, we can define random signals in terms of their covariances and spectral densities.

A purely random or white noise sequence, e(t), is a sequence in which all the e(t) are
mutually independent, that is, knowing e(t) in no way can be used to predict e(t + 1). A
white sequence is called completely random or unpredictable or memoryless (no correlation).
Sequences of this type have historically been called white because of their analogy to white
light, which possesses all frequencies (constant power spectrum), that is, the power spectral
density of white noise is

See(Ω) = Ree (constant)

with the corresponding covariance is given by

Ree(k) = Reeδ(k)

where Ree is the variance of the noise.
In fact, the white noise characterization of random signals is analogous to the unit

impulse representation of deterministic signals, that is,

Reeδ(k)⇐⇒ Aδ(t)

and
See(Ω) = Ree ⇐⇒ H(Ω) = A

It is the random counterpart for random systems of the unit impulse excitation for the
analysis of linear time invariant (LTI) systems.

Some properties of the discrete covariance function for stationary processes along with
accompanying properties of the PSD are given (without proof see [13] for details) in Table
1 for reference.

It is important to recognize that these properties are essential to analyze the information
available in a discrete random signal. For instance, if we are trying to determine phase
information about a particular measured signal, we immediately recognize that it is lost in
both the auto-covariance and corresponding output power spectrum.

2.2 Discrete Systems with Random Inputs

When random inputs are applied to linear systems, then covariance and power spectrum
techniques must be applied transforming the signal and its Fourier spectrum in deterministic
signal theory (see Fig. 1). In this section, we develop the relationship between systems and
random signals. From linear systems theory, we have the convolution or equivalent frequency
relations
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y(t) = h(t) ∗ x(t) =
∞∑

k=0

h(k)x(t− k) (14)

or taking discrete-time Fourier transforms, we obtain

Y (Ω) = H(Ω)X(Ω) (15)

If we assume that x is a random signal then as we have seen in the previous section, we must
resort to spectral representations of random processes. Exciting a causal linear system with
a zero-mean random signal, we obtain the output power spectrum

Syy(Ω) = E{Y (Ω)Y ∗(Ω)} = E
{(

H(Ω)X(Ω)
)
X∗(Ω)H∗(Ω)

}
= |H(Ω)|2Sxx(Ω) (16)

or equivalently

Syy(Ω) = E {Y (Ω)Y ∗(Ω)} = E
{
Y (Ω)

(
X∗(Ω)H∗(Ω)

)}
= Syx(Ω)H∗(Ω) (17)

Perhaps one of the most important properties that has led to a variety of impulse response
identification techniques is

Syx(Ω) = E {Y (Ω)X∗(Ω)} = E
{
H(Ω)

(
X(Ω)X∗(Ω)

)}
= H(Ω)Sxx(Ω) (18)

solving for H provides the Wiener solution in the frequency domain.
Similar results can be obtained for auto and cross-covariances and corresponding spectra.
We summarize these linear system relations in Table 2.

3 SPECTRAL ESTIMATION

Spectral estimation techniques have been developed and improved over the years with one
major task in mind—the analysis of random data. Based on the previous discussion in this
chapter, a majority of the initial effort was focused on applying the Wiener-Khintchine the-
orem and transform theory, while modern parametric techniques evolved primarily from the
“speech” community [16], [17]. In this section, we discuss popular classical (nonparametric)
methods that are viable when long data records are available. We make no attempt to pro-
vide detailed derivations of the algorithms that are available in other texts [13], [16], [18],
[19], but just follow a brief outline of the approach and present the final results.

3.1 Classical (Nonparametric) Spectral Estimation

With the initial application of Fourier analysis techniques to raw sun-spot data over 200
years ago, the seeds of spectral estimation were sown by Schuster [20]. Fourier analysis
for random signals evolved rapidly after the discovery of the Wiener-Khintchine theorem
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Table 2: Linear System with Random Inputs: Covariance/Spectrum Relationships.

Covariance Spectrum

Ryy(k) = h(k) ∗ h(−k) ∗Rxx(k) Syy(z) = H(z)H(z−1)Sxx(z)

Ryy(k) = h(k) ∗Rxy(k) Syy(z) = H(z)Sxy(z)

Ryx(k) = h(k) ∗Rxx(k) Syx(z) = H(z)Sxx(z)

where

Ryy(k) = 1
2πj

∮
Syy(z)zk−1dz Syy(z) =

∑∞
k=−∞ Ryy(k)z−k

Rxy(k) = 1
2πj

∮
Sxy(z)zk−1dz Sxy(z) =

∑∞
k=−∞ Rxy(k)z−k

relating the covariance and power spectrum. Finally with the evolution of the fast Fourier
transform (see Cooley [8]) and digital computers, all of the essential ingredients were present
to establish the classical approach to nonparametric spectral estimation.

Classical spectral estimators typically fall into two categories: direct and indirect. The
direct methods operate directly on the raw data to transform it to the frequency domain
and produce the estimate. Indirect methods, first estimate the covariance sequence and then
transform to the frequency domain–an application of the Wiener-Khintchine theorem. We
develop two basic nonparametric spectral estimation techniques: the correlation method
(indirect) and the periodogram method (direct).

3.1.1 Correlation or Blackman-Tukey Method (BTM))

The correlation method or sometimes called the Blackman-Tukey method (BTM) is simply
an implementation of the Wiener-Khintchine theorem: the covariance is obtained using
a sample covariance estimator and then the PSD is estimated by calculating the discrete
Fourier transform (DFT). The DFT transform pair is defined by

X(Ωm) := DFT
[
x(t)

]
=

M−1∑
t=0

x(t)e−jΩmt
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x(t) = IDtFT
[
X(Ωm)

]
=

1

M

M−1∑
t=0

X(Ωm)ejΩmt (19)

for Ωm = 2π
M

m where it can be thought of as the DtFT with Ω → Ωm, that is, the DtFT
sampled uniformly around the unit circle [13].

Therefore, we have that

Ŝxx(Ωm) = DFT
[
R̂xx(k)

]

R̂xx(k) = IDFT
[
Ŝxx(Ωm)

]
This technique tends to produce a noisy spectral estimate; however, a smoothed estimate can
be obtained by multiplying Rxx by a window function, W usually called a lag window. The
window primarily reduces spectral leakage and therefore improves the estimate. It is also
interesting to note that a sample covariance estimator does not guarantee the positivity of the
PSD (auto) when estimated directly from the Wiener-Khintchine theorem [13]. However,
if the estimator is implemented directly in the Fourier domain, then it will preserve this
property, since it is the square of the Fourier spectrum.

We summarize the correlation method (Blackman-Tukey) of spectral estimation by:3

Correlation (Blackman-Tukey) Method (BTM) Spectral Estimation:

1. Calculate the DFT of x(t), that is, X(Ωm)

2. Multiply X(Ωm) by its conjugate to obtain, X(Ωm)X∗(Ωm)

3. Estimate the covariance from the IDFT, R̂xx(k) = IDFT
[
|X(Ωm)|2

]
4. Multiply the covariance by the lag window W(k), and

5. Estimate the PSD from the DFT of the windowed covariance, Ŝxx(Ωm) = DFT
[
R̂xx(k)W(k)

]
These correlation spectral estimates are statistically improved by using a lag or equiva-

lently spectral window.4 With practical window selection and long data records, the corre-
lation method can be effectively utilized to estimate the PSD (see [13] for more details).

3Note also if we replace X∗ by Y ∗ we can estimate the cross correlation R̂xy(k) and corresponding cross
spectrum Ŝxy(Ωm) using this method.

4The window function is called a lag window in the time or lag domain W(k) and a spectral window in
the frequency domainW(Ωm) with its maximum at the origin to match that property of the autocorrelation
function; therefore, it is sometimes called a “half” window.
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3.1.2 Welch Average Periodogram Method (WPM)

Next we consider a more direct approach to estimate the PSD. We introduce the concept
of a periodogram estimator with statistical properties equivalent to the correlation method,
then we show how to improve these estimates by statistical averaging and window smoothing
leading to Welch’s method of spectral estimation, that is, the Welch Periodogram Method
(WPM) [1]. The periodogram was devised by statisticians to detect periodicities in noisy data
records [20]. The improved method of spectral estimation based on the so-called periodogram
defined by

Pxx(Ωm) :=
1

N
(X(Ωm) X∗(Ωm)) =

1

N

∣∣∣X(Ωm)
∣∣∣2

The samples of Pxx are uncorrelated, suggesting that one way of reducing the variance
in Pxx is to average individual periodograms obtained by sectioning the original N point
data record into K, L-point sections, that is,

Ŝxx(Ωm) =
1

K

K∑
i=1

P̂xx(Ωm, i)

where P̂xx(Ωm, i) is the i-th, L-point periodogram. If x is stationary, then it can be shown
that this estimate is consistent, since the variance approaches zero as the number of sections
become infinite [13]. For the periodogram estimator, we have

var ∝ 1

K
and bias ∝ K

N

So we see that for K large, the variance is inversely proportional to K, while the bias is
directly proportional. Therefore for a fixed record length N as the number of periodograms
increases, variance decreases, but the bias increases. This is the basic tradeoff between
variance and resolution (bias) which can be used to determine a priori the required record
length N = LK for an acceptable variance. A full window, W(t), can also be applied to
obtain a smoothed spectral estimate.

Welch [1] introduced a modification of the original procedure. The data is sectioned
into K records of length L; however, the window is applied directly to the segmented records
before periodogram computation. The modified periodograms are then

P̂ (Ωm, i) =
1

U

∣∣∣DFT
[
xi(t)W(t)

]∣∣∣2 i = 1, . . . , K

where

U =
1

L

L−1∑
t=0

W2(t)

and

Ŝxx(Ωm) =
1

K

K∑
i=1

P̂ (Ωm, i)
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We summarize the average periodogram method (Welch’s procedure) by:

Average Periodogram (Welch) Method (WPM) Spectral Estimation:

1. Section the data, {x(t)}, t = 1, . . . , N into K sections each of length L, where K = N
L

,
that is,

xi(t) = x(t + L(i− 1)), i = 1, . . . , K, t = 0, . . . , L− 1

2. Window the data to obtain, xi(t)×Wi(t)

3. Estimate K periodograms using the DFT as

P̂ (Ωm, i) =
1

U

∣∣∣DFT
[
xi(t)W(t)

]∣∣∣2 i = 1, . . . , K

with U = 1
L

∑L−1
t=0 W2(t)

4. Estimate the average spectrum using

Ŝxx(Ωm) =
1

K

K∑
i=1

P̂ (Ωm, i)

with var{Ŝxx(Ωm)} ∝ 1
K

and bias{Ŝxx(Ωm)} ∝ K
N

adjusted for particular windows.

3.2 Multitaper Method (MTM)

There are two primary performance metrics of high interest in a spectral estimators: bias
and variance. Bias can be decomposed into two types: local and broadband. Local bias
evolves from the underlying bandwidth of the main lobe of a spectral window (intentional
or not) employed during the processing, while broadband bias is a direct function of its side
lobes. Detrimental effects are a result of both either smearing frequency peaks (local bias)
or creating bogus peaks in the estimate (broadband bias). Spectral estimators are designed
to be “asymptotically unbiased” (N → ∞ : bias → 0) and “asymptotically consistent” as
well as (N → ∞ : var → 0). Spectral uncertainties evolve from the leakage effects created
by high side lobes and can be mitigated by averaging periodograms as in WPM.

With these metrics in mind, local bias can be decreased by decreasing the spectral
window main lobe bandwidth making it narrower increasing frequency resolution leading to
an asymptotically unbiased estimate. Broadband bias evolving from spectral leakage created
by the underlying side lobes leaks the broad spectral components into the estimate at a
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given frequency. Knowledge of these window-based detriments lead to an effective method
to design spectral estimators, since

Sxx(Ω) = |W(Ω)︸ ︷︷ ︸
Spectral Window

∗ X(Ω)|2 (20)

Therefore, ifW(Ω) is designed with small side lobes, then leakage is minimized reducing
broadband bias, but of course the tradeoff is that decreased side lobes lead to wider main
lobe bandwidth decreasing spectral resolution.

The Multitaper Method (MTM) reduces bias by obtaining statistically independent es-
timates that can effectively be averaged to reduce uncertainty much like the Welch WPM.
Each window of MTM is pairwise orthogonal to all other windows providing the statistically
independent set of spectral estimates that are averaged (weighted) to provide the final spec-
trum. The orthogonal windows are Slepian discrete prolate spheroidal sequences (DPSS)
that possess the required properties such as minimizing spectral leakage while concentrating
the power in tight bands [12].

Recall that frequency resolution is specified by the number of samples, N , and the
corresponding sampling interval 4t determined by the highest frequency supported by the
data, that is, the sampling frequency fs = 1

4t
with corresponding Nyquist frequency, fNY Q.

Therefore, the frequency resolution, 4f is

4f :=
fs

N
=

1

N4t
and fNY Q =

fs

2
(21)

yielding the minimal frequency band that distinct sinusoids can be resolved [11].
MTM estimation, in its simplest form, is given by

ŜMTM(Ω) =
1

K

K−1∑
k=0

ŜMTM(Ω, k) (22)

and

ŜMTM(Ω, k) =
4t

K

K−1∑
k=0

=
∣∣∣Wk(t)︸ ︷︷ ︸

DPSS

x(t)e−jΩt
∣∣∣2 (23)

with Wk(t) the k-th discrete prolate spheroidal sequence (DPSS) of length N or window
associated with the corresponding eigen-spectrum ŜMTM(Ω, k) [10], [11], [12]
and the spectral window

Wk(Ω) = 4t
N−1∑
t=0

Wk(t)e
−jΩt (24)

such that the expectation is given by
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ŜMTM(Ω) = E
{
ŜMTM(Ω)

}
=

1

K

∫ fNY Q

−fNY Q

Wk(Ω− Ω′)ŜMTM(Ω′)dΩ′ (25)

for

Wk(Ω) =
1

K

K−1∑
k=0

Wk(Ω)

For MTM, the windows are the orthogonal set of DPSS {Wk(t)}, k = 0, 1, · · · , K−1; t =
0, 1, · · · , N − 1 that are solutions of the so-called concentration problem.5 Here lies the key
to the MTM — design of spectral windows that solve the concentration problem. More
specifically, we define

Among ALL window sequences {Wk} for a given duration N4t and pre-specified band-
width [ − fBW , fBW ], FIND the sequence that maximizes the spectral concentration within
this band or equivalently obtain the optimal sequence that minimizes the side lobe energy
outside the band.

That is, find a sequence such that the spectral concentration defined by λ(N4t, fBW )
on the interval [− fBW , fBW ] is maximum where

λ(N4t, fBW ) :=

∫ fBW
−fBW

|W(Ω)|2dΩ∫ fNY Q

−fNY Q
|W(Ω)|2dΩ

(26)

then FIND {Wk(t)}, k = 0, 1, · · · , K − 1; t = 0, 1, · · · , N − 1 such that λ(N4t, fBW ) is a
maximum.

The solution to this constrained optimization problem is available in [10]-[12] and be-
comes an eigenvalue problem defined by:

N−1∑
t′=0

sin 2πfBW (t− t′)

π(t− t′)
×W(t′) = λ(N4t, fBW )×W(t); t = 0, 1, · · · , N − 1

or expanding we obtain a vector-matrix form as

D(fBW )×W(t′) = λ(N4t, fBW )︸ ︷︷ ︸
eigenvalues

× W(t)︸ ︷︷ ︸
eigenvectors

(27)

where the matrix components areDt,t′ = sin 2πfBW (t−t′)
π(t−t′)

∈ RN×K .
Since this matrix D is positive definite, then the largest eigenvalue corresponds to the

largest spectral concentration and therefore the corresponding eigenvector sequence, W0(t)

5The spectral concentration problem consists of finding a finite length window sequence whose spectrum
is most localized in a given frequency interval specified by ±fBW .
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Figure 2: Discrete Prolate Spheroidal (Slepian) Sequences fo 8-mode, 3-channel structure.
(a) DPSS. (b) DPSS spectra with fBW bandwidth annotated. (c) Eigenvalues associated
with each DPSS (5-dominant).

is termed the 0-th order DPSS (Slepian). The number of dominant eigenvalues of D are all
close to unity and correspond to

S := 2fBW ×N4t [Shannon Number] (28)

with S defined as the Shannon number [11] with λ0 > λ1, · · · , λK−1 where the K − th-
order window offers the best side lobe suppression. In fact, the first S − 1 eigenvalues
are close to unity indicating relatively low side lobe energy (leakage). We illustrate the
calculation of the DPSS-windows in Fig. 2a where the first 5 functions are shown along
with their corresponding spectra and functional bandwidth in (b). An application to a
synthesized 8-mode mechanical system developed in Sec. 4 demonstrates the corresponding
DPSS-eigenvalues in descending order in Fig. 2c. By imposing a unity threshold it is clear
that the “optimal” number of DPSSs or equivalently order is 5, since their values are either
at or above 1. This represents a convenient method for selection.

In the MTM, the length N -DPSS windows of orders k = 0, 1, · · · , (K − 1) are usually
applied in practice with K ≤ S − 1. Fixed N and fBW , then lead to smaller values of K

generally reduce leakage with larger values reducing variance. Leakage can be approximated
by
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L =
1

K

K−1∑
k=0

(1− λk(N4t, fBW )) [Leakage] (29)

and the corresponding variance is inversely proportional to the number of windows employed

var =
1

K
[Variance] (30)

with frequency resolution specified by the design bandwidth, that is,

res = 4f = fBW [Resolution] (31)

Also, the time-bandwidth product is given by

TBW :=
S
2

:= fBW ×N4t (32)

It is this expression coupled with the number of windows that define the variance of
MTM estimates. Choosing TBW and K provide a tradeoff of spectral resolution, bias and
variance. Bias is primarily controlled by the largest eigenvalue, λ0(N4t, fBW ) since

λ0(N4t, fBW ) ≈ 1− 4π
√
TBW e−2πTBW [Total Side Lobe Energy] (33)

the leakage outside [−fBW , fBW ] that decreases rapidly with increasing TBW [21]-[24]. We
summarize these properties below in Table 3.

Table 3.0 MTM LEAKAGE (Window) Properties [23]

MTM DPSS-Window (Slepian) Leakage Properties
Time-Bandwidth (TBW ) Asymptotic Leakage (1− λ0) Leakage (dB)

4 3.05× 10−10 -95
6 1.31× 10−15 -149
8 5.26× 10−21 -203
10 2.05× 10−26 -257

So we see that it is in fact the optimal window design employing the DPSSs that enable
the solution to the spectral concentration problem.

The MTM can be summarized as:

Multitaper Method (MTM) Spectral Estimation:

1. Select the frequency resolution: fBW < fNY Q Res = 2× fBW ;

2. Calculate the time-bandwidth product (Shannon number): S = 2fBW ×N4t;
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3. Calculate the number of DPSS-functions (eigenvectors): K ≤ S − 1;

4. Calculate the DPSS-weights: Wk(t), k = 0, 1, · · · , (K − 1); t = 0, 1, · · · , (N − 1);

5. Calculate the individual eigen-spectra: ŜMTM(Ω, k) =
∑N−1

t=0 Wk(t)x(t)e−jΩt;

6. Estimate the final MTM spectrum (averaging): ŜMTM(Ω) =
∑K−1

k=0 ŜMTM(Ω, k);

Next we investigate extensions of the MTM spectral estimator using these Slepian se-
quences.

3.3 MTM Extensions

3.3.1 Eigenvalue Weighting

A reasonable unbiased MTM spectral estimate (eigenvalue weighting method) can be scaled
by the associated eigenvalues such that

ŜMTM(Ω) =

∑K−1
k=1 λk(N4t, fBW )× |Xk(Ω)|2∑K−1

k=1 λk(N4t, fBW )
(34)

the denominator ensures an unbiased estimate, while the individual eigenvalues (< 1) de-
crease the weighting of the larger spectra in the final estimate, since λ0 > λ1 > · · · > λK < 1.
That is, as the number of windows increase (K ↑; λ ↓), the corresponding eignenvalues de-
crease, mitigating more spectral leakage.

3.3.2 Adaptive Weighting

Another extension to the MTM proposed by Thomson is the adaptive MTM where a set of
adaptive weights {αk(Ω)} are employed to downweight the higher order spectra using an
iterative approach [11]. Here a weighted average of the eigen-spectra from individual DPSSs
is performed leading to an iterative technique that adapts (adjusts) the weights for each
band to provide a balance between broadband bias (Lk) and the variance of the estimates.
The following set of relations provide the iterations (over i):

ŜMTM(Ω, i + 1) =

∑K−1
k=0 |αk(Ω, i)|2 × ŜMTM(Ω, k; i)∑K−1

k=0 |αk(Ω, i)|2

αk(Ω, i) =

√
λk(N4t, fBW )× S(Ω, i)

λk(N4t, fBW )S(Ω, i) + Lk

(35)

where S(Ω, 0) is the initial estimate of the power spectrum and Lk is the leakage that the
k-th DPSS bank has at frequency Ω. The technique iterates over i converging to the desired
solution completing the spectral estimation.
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We summarize the major properties of the Multitaper Method (MTM):

• Bias is local characterized by the window main lobe width (resolution) and broadband
characterized by the side lobes (leakage);

• Local Bias is small if the spectral window for ŜMTM(Ω) closely approximates 1
2×fBW

;

• Broadband Bias is bounded (1− 1
K

∑K−1
k=0 λk(N4t, fBW )) for K DPSS-windows;

• Variance is controlled by the number of DPSS-windows given by var ≈ 1
K

;

• Resolution is specified (a-priori) by twice the design bandwidth of 2× fBW ;

• Mean-Squared Error is negligible, if k ≤ S − 1 and {λk)(N4t, fBW ) ≈ 1;

• MTM is a direct method of spectral estimation; and

• MTM can be applied to problems with missing or irregularly-spaced data sets.

This completes the discussion of the classical or nonparametric methods of spectral
estimation. Even though they are considered classical techniques with limited resolution
capability, they still can provide reasonable analytical information, if we have “long” data
records with good signal levels. Next we consider an example that demonstrates this ap-
proach.
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4 SPECTRAL ESTIMATION OF SIMULATED VI-

BRATION RESPONSE

In this section we study the application of MTM to estimate modal frequencies of a vibrating
structure represented by a LTI, MIMO, mass-spring-damper mechanical system consisting
of 8-modes or 16-states (see [26] for details) measured by 3-output accelerometers. The
structure is excited by a random input. Structurally, the system mass (M) is characterized
by an identity matrix while the coupled spring constants in (N/m) are given by the tri-
diagonal matrix

K =



2400 −1600 0 0 0 0 0 0
−1600 4000 −2400 0 0 0 0 0

0 −2400 5600 −3200 0 0 0 0
0 0 −3200 7200 −4000 0 0 0
0 0 0 −4000 8800 −4800 0 0
0 0 0 0 −4800 10400 −5600 0
0 0 0 0 0 −5600 12000 −6400
0 0 0 0 0 0 −6400 13600


the damping matrix is constructed using the relation (Raleigh damping)

Cd = 0.680M+ 1.743× 10−4K
(

N s

m

)
The measurement system consisted of three (3) accelerometers placed to measure the

modes at the 1, 4 and 8 locations on the structure. The accelerometer data is acquired and
digitized at a sampling frequency of 50Hz (4t = 0.02sec). The input signal from a randomly
excited stinger rod is applied at a specified spatial location such that

Md̈(t) + Cdḋ(t) +Kd(t) = Bpp(t)

Three accelerometer outputs of the synthesized vibrating structure was recorded for
200 sec with the vibrational responses shown in Fig. 3 along with their corresponding power
spectra where we see a persistently excited system ideal for spectral estimation. The set of
“true” modal frequencies corresponding to the spectral peaks are:

fTRUE = {2.94, 5.87, 8.60, 11.19, 13.78, 16.52, 19.54, 23.12 Hz}

The 3-accelerometer channels were processed by the classical spectral estimators: BTM,
WPM, and MTM with the channel results and median estimates shown in the figure. Phys-
ically, some of the modes were not strongly excited at a given accelerometer location and
therefore may not appear in the corresponding channel spectrum. This implies that a mul-
tichannel processor would provide superior performance in this case, since weak modes over
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Figure 3: Structural vibrations of 8-mode mechanical system: (a) Accelerometer responses
of 3-output system. (b) Fourier power spectra of channel responses.

measurement channels accumulate their response and improve the signal levels. In any case
the spectral estimates are shown in Fig. 4a-c for each technique. It is clear in (a) that the
BTM has a much higher variance and the peaks are difficult to extract even though the power
is present at the correct modal frequencies. Both the WPM and MTM (adaptive) estimates
are much smoother than BTM (as expected), but their peak resolution has been smeared
decreasing the resolution. Six (6) of the 8 modal frequency peaks are clearly discernible, with
a 7-th (23.12Hz) possible and that at 11.19Hz not observable. These results are expected
based on the previous discussion and bias/variance tradeoff metrics.

Next we applied the three MTM weighting techniques to the noisy data sets: unity,
eigenvalue and adaptive with the results shown in Fig. 5a-c. Here we see that each of
the MTM-approaches perform almost identically for this data set when observing the me-
dian estimates. Individual channel spectral estimates are also very close with slightly more
smoothing by the adaptive method at the higher frequencies. More significant changes can
be observed by varying the order of the DPSSs. This completes the case study, next we
investigate the resolution capability of MTM.
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Correlation (Blackman-Tukey Method (BTM)

Average Periodogram (Welch) Method (WPM) 

Multitaper Method (MTM)

Figure 4: Ensemble Power Spectral Density Estimates for 8-mode, 3-channel structure. (a)
Correlation (Blackman-Tukey) method. (b) Welch periodogram method. (c) Multitaper
method.

MTM Spectrum: TBW=5   Unity Weights

MTM Spectrum: TBW=5   Eigenvalue Weights

MTM Spectrum: TBW=5   Adaptive Weights

(a)
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Figure 5: MTM Power Spectral Density Estimates for 8-mode, 3-channel structure. (a)
MTM estimates: TBW = 5; UNITY weights. (b) MTM estimates: TBW = 5; EIGENVALUE
weights. (c) MTM estimates: TBW = 5; ADAPTIVE weights.
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Frequencies: 14.005 Hz
Frequencies: 20 Hz
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Figure 6: Simulated Sinusoids in Noise (SNR: −3dB). (a) Time series. (b) Raw Fourier
spectra (FFT).

5 TEST CASE: RESOLUTION OF SINUSOIDS IN

NOISE

In this section we synthesize a set of sinusoids in a noisy environment to evaluate the res-
olution capability of the MTM. We developed the algorithms (available in MATLAB) for
sinusoidal frequencies at: {2, 5, 5±0.005, 10, 10±0.005, 14, 14±0.005, 20, 22Hz} at an signal-
to-noise ratio (SNR)6 of −3 dB SNR.

The synthesized sinusoidal signal is shown in Fig. 6 where we see the noisy time series
and its corresponding Fourier spectrum. Next we applied the classical spectral methods and
observe the results in the subsequent figure. In Fig. 7a we see the results of the BTM and
its ability to extract the primary frequencies as well as one of the embedded spectral lines
at 5 Hz. The WPM results are in (b) where just the primary frequencies are extracted—
this is expected since the resolution ability is limited by the limited number of sections and
50% window (Blackman) overlap. The results of the MTM are shown in Fig. 7c where we
observe its ability to extract all of the sinusoids as well as resolve the close proximity spectral
lines at: 5.005Hz, 10.005Hz, and14.005Hz demonstrating its capability. Here we applied the
adaptive-MTM.

This completes the section, next we summarize the results of this study.

6The SNR=signal energy/noise energy: SNR(dB) = 20log10SNR.
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Figure 7: Power Spectral Density Estimates for Sinusoids in Noise (SNR: −3dB). (a) Corre-
lation (Blackman-Tukey) method. (b) Welch periodogram method. (c) Multitaper method.

6 SUMMARY

In this report we have investigated the performance of “classical” spectral estimation tech-
niques for single input/single output channel data. We chose the two most popular and
well-known techniques: Blackman-Tukey method (BTM) and Welch Periodogram (average)
method (WPM). We introduced the lesser known Multitaper method (MTM) and analyzed
its properties and performance.

After providing the necessary background material each of these spectral techniques
were discussed with the primary emphasis on the MTM. Multiple tapering (windowing)
enables a direct solution to the so-called concentration problem of providing a set of “optimal”
windows that maximize the energy is a certain design bandwidth. From this solution evolves
a set of orthonormal discrete prolate spheroidal sequences (DPSS) or equivalently Slepian
sequences that can be used to determine the: (1) number of DPSS-windows required (order
estimation); and (2) bias/variance tradeoff. The performance metrics and properties of the
MTM approach were developed and examined.

A test case evolving from a synthesized 8-mode structural system was developed and
investigated to demonstrate the performance of each method indicating there various advan-
tages/disadvantages. However, it became clear that both WPM and MTM techniques were
superior to BTM (already known a-priori), but showed the potential advantages of the MTM
approach. Resolution issues were not discussed in detail, but it is also known that MTM
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is superior to both alternative methods in this regard [11]—an important aspect in modal
frequency estimation.
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