

Fascinating Reporting
with Postgres psql

and sendmail
Presented by Christopher L. Augustus

https://orcid.org/0000-0001-7297-2325

PostgresOpen 2019, Orlando, Florida
2:30 PM, Thursday, September 12, 2019

Salons 13-15

https://www.osti.gov/servlets/purl/1560062

https://orcid.org/0000-0001-7297-2325
https://www.osti.gov/servlets/purl/1560062

About the Speaker

Tennessee Blue Book 2017-2018, page 685

https://www.osti.govhttps://www.iiaweb.com/ https://archive.org/search.php?q
uery=subject%3A%22RFETN%
22&sort=-publicdate

https://www.osti.gov/
https://www.iiaweb.com/
https://archive.org/search.php?query=subject%3A%22RFETN%22&sort=-publicdate
https://archive.org/search.php?query=subject%3A%22RFETN%22&sort=-publicdate
https://archive.org/search.php?query=subject%3A%22RFETN%22&sort=-publicdate

The Plan

 ① Postgres psql

 ② Postgres SQL

 ③ UNIX/Linux sendmail

 ④ Automated Reporting System

Two Development Theories

Paul McCartney
– or –

John Lennon

Simple Doctor Who Database

stories
┌──────────┬───────────────────────┬──────────┐
│ Column │ Type │ Nullable │
├──────────┼───────────────────────┼──────────┤
│ st_id │ SMALLINT │ NOT NULL │
│ st_code │ CHARACTER VARYING(3) │ │
│ st_name │ CHARACTER VARYING(31) │ │
│ doctor │ CHARACTER VARYING(21) │ │
│ season │ SMALLINT │ │
└──────────┴───────────────────────┴──────────┘

episodes
┌────────────────┬───────────────────────┬──────────┐
│ Column │ Type │ Nullable │
├────────────────┼───────────────────────┼──────────┤
│ st_id │ SMALLINT │ NOT NULL │
│ ep_number │ SMALLINT │ NOT NULL │
│ ep_name │ CHARACTER VARYING(31) │ │
│ airdate │ DATE │ │
│ episode_exists │ BOOLEAN │ │
└────────────────┴───────────────────────┴──────────┘

st_id

● Simple schema "dw" of two tables "stories" (every classic Doctor Who story intended for
broadcast between 1963 and 1989) and "episodes" (every broadcast episode).

● A script to create the "dw" schema and the two tables can be found here:
● http://www.knology.net/~augustus/presentations/build_dw.txt

159 Records

695 Records

http://www.knology.net/~augustus/presentations/build_dw.txt

 ① Postgres psql

What is psql?
● Official Webpage:

https://www.postgresql.org/docs/current/app-psql.html
● PostgreSQL interactive terminal (psql)

● A terminal-based front-end to Postgres.
● Type in queries interactively, issue them to Postgres, and see the

query results.
● Alternatively, input can be from a file or from command line

arguments.
● Provides a number of meta-commands and various shell-like

features to facilitate writing scripts and automating a wide variety
of tasks.

https://www.postgresql.org/docs/current/app-psql.html

One Way to Connect to Postgres with psql
● Setup a ".pgpass" file.

● https://www.postgresql.org/docs/current/libpq-pgpass.html
● Set four environment variables:
export PGDATABASE=postgres
export PGHOST=localhost
export PGPORT=5432
export PGUSER=chris

https://www.postgresql.org/docs/current/libpq-pgpass.html

Default psql Settings
Example of a simple query with all default settings.

SELECT *
FROM dw.stories
WHERE season = 1
ORDER BY st_id;
 st_id | st_code | st_name | doctor | season
-------+---------+-------------------------+------------------+--------
 1 | A | An Unearthly Child | William Hartnell | 1
 2 | B | The Daleks | William Hartnell | 1
 3 | C | The Edge of Destruction | William Hartnell | 1
 4 | D | Marco Polo | William Hartnell | 1
 5 | E | The Keys of Marinus | William Hartnell | 1
 6 | F | The Aztecs | William Hartnell | 1
 7 | G | The Sensorites | William Hartnell | 1
 8 | H | The Reign of Terror | William Hartnell | 1
(8 rows)

psql Meta Commands
https://www.postgresql.org/docs/current/app-psql.html#APP-PSQL-META-COMMANDS
● Always start with a backslash \.
● Postgres 11 has 56 major backslash commands.
● Quick overview of some meta commands:

● \q to cleanly exit psql.
● \h or \help for getting help on SQL commands.
● \d useful for showing details of database objects.
● \echo for outputting strings and variables.
● \copy is an awesome way to get data into and out of Postgres!!!
● \if for conditional statements – new in Postgres 11.
● \set is useful for setting and viewing psql variables.
● \pset is useful for formatting query output.

https://www.postgresql.org/docs/current/app-psql.html#APP-PSQL-META-COMMANDS

\pset
● Sets the formatting of query output tables.
● In Postgres 11, typing \pset on a default configured psql returns:

border 1
columns 0
expanded off
fieldsep '|'
fieldsep_zero off
footer on
format aligned
linestyle ascii
null ''
numericlocale off
pager 1
pager_min_lines 0
recordsep '\n'
recordsep_zero off
tableattr
title
tuples_only off
unicode_border_linestyle single
unicode_column_linestyle single
unicode_header_linestyle single

\pset linestyle ascii & \pset border 0
Query with a border of zero.

\pset linestyle ascii
\pset border 0
SELECT *
FROM dw.stories
WHERE season = 1
ORDER BY st_id;
st_id st_code st_name doctor season
----- ------- ----------------------- ---------------- ------
 1 A An Unearthly Child William Hartnell 1
 2 B The Daleks William Hartnell 1
 3 C The Edge of Destruction William Hartnell 1
 4 D Marco Polo William Hartnell 1
 5 E The Keys of Marinus William Hartnell 1
 6 F The Aztecs William Hartnell 1
 7 G The Sensorites William Hartnell 1
 8 H The Reign of Terror William Hartnell 1
(8 rows)

\pset linestyle ascii & \pset border 1
Query with a border of one which is the default.

\pset linestyle ascii
\pset border 1
SELECT *
FROM dw.stories
WHERE season = 1
ORDER BY st_id;
 st_id | st_code | st_name | doctor | season
-------+---------+-------------------------+------------------+--------
 1 | A | An Unearthly Child | William Hartnell | 1
 2 | B | The Daleks | William Hartnell | 1
 3 | C | The Edge of Destruction | William Hartnell | 1
 4 | D | Marco Polo | William Hartnell | 1
 5 | E | The Keys of Marinus | William Hartnell | 1
 6 | F | The Aztecs | William Hartnell | 1
 7 | G | The Sensorites | William Hartnell | 1
 8 | H | The Reign of Terror | William Hartnell | 1
(8 rows)

\pset linestyle ascii & \pset border 2
Query with a border of two.

\pset linestyle ascii
\pset border 2
SELECT *
FROM dw.stories
WHERE season = 1
ORDER BY st_id;
+-------+---------+-------------------------+------------------+--------+
| st_id | st_code | st_name | doctor | season |
+-------+---------+-------------------------+------------------+--------+
1	A	An Unearthly Child	William Hartnell	1
2	B	The Daleks	William Hartnell	1
3	C	The Edge of Destruction	William Hartnell	1
4	D	Marco Polo	William Hartnell	1
5	E	The Keys of Marinus	William Hartnell	1
6	F	The Aztecs	William Hartnell	1
7	G	The Sensorites	William Hartnell	1
8	H	The Reign of Terror	William Hartnell	1
+-------+---------+-------------------------+------------------+--------+
(8 rows)

\pset linestyle unicode
● \pset linestyle has three options:

● ascii – displays the borders with ASCII7 characters.
● old-ascii – for compatibility to 8.4 and earlier.
● unicode – displays the boarders with Unicode box drawing

characters.

\pset linestyle unicode & \pset border 0
Query with a border of zero.

\pset linestyle unicode
\pset border 0
SELECT *
FROM dw.stories
WHERE season = 1
ORDER BY st_id;
st_id st_code st_name doctor season
───── ─────── ─────────────────────── ──────────────── ──────
 1 A An Unearthly Child William Hartnell 1
 2 B The Daleks William Hartnell 1
 3 C The Edge of Destruction William Hartnell 1
 4 D Marco Polo William Hartnell 1
 5 E The Keys of Marinus William Hartnell 1
 6 F The Aztecs William Hartnell 1
 7 G The Sensorites William Hartnell 1
 8 H The Reign of Terror William Hartnell 1
(8 rows)

\pset linestyle unicode & \pset border 1
Query with a border of one.

\pset linestyle unicode
\pset border 1
SELECT *
FROM dw.stories
WHERE season = 1
ORDER BY st_id;
 st_id │ st_code │ st_name │ doctor │ season
───────┼─────────┼─────────────────────────┼──────────────────┼────────
 1 │ A │ An Unearthly Child │ William Hartnell │ 1
 2 │ B │ The Daleks │ William Hartnell │ 1
 3 │ C │ The Edge of Destruction │ William Hartnell │ 1
 4 │ D │ Marco Polo │ William Hartnell │ 1
 5 │ E │ The Keys of Marinus │ William Hartnell │ 1
 6 │ F │ The Aztecs │ William Hartnell │ 1
 7 │ G │ The Sensorites │ William Hartnell │ 1
 8 │ H │ The Reign of Terror │ William Hartnell │ 1
(8 rows)

\pset linestyle unicode & \pset border 2
Query with a border of two.

\pset linestyle unicode
\pset border 2
SELECT *
FROM dw.stories
WHERE season = 1
ORDER BY st_id;
┌───────┬─────────┬─────────────────────────┬──────────────────┬────────┐
│ st_id │ st_code │ st_name │ doctor │ season │
├───────┼─────────┼─────────────────────────┼──────────────────┼────────┤
│ 1 │ A │ An Unearthly Child │ William Hartnell │ 1 │
│ 2 │ B │ The Daleks │ William Hartnell │ 1 │
│ 3 │ C │ The Edge of Destruction │ William Hartnell │ 1 │
│ 4 │ D │ Marco Polo │ William Hartnell │ 1 │
│ 5 │ E │ The Keys of Marinus │ William Hartnell │ 1 │
│ 6 │ F │ The Aztecs │ William Hartnell │ 1 │
│ 7 │ G │ The Sensorites │ William Hartnell │ 1 │
│ 8 │ H │ The Reign of Terror │ William Hartnell │ 1 │
└───────┴─────────┴─────────────────────────┴──────────────────┴────────┘
(8 rows)

\pset title & \pset footer & \pset tuples_only
● \pset title puts a title above the tables.

● If title is more than one word, enclose the title with single quotes.
● To remove the title, do not pass any values.
● Once set, a title will show up on every table until changed or

removed!
● \C is a shortcut.

● \pset footer turns on or off the "(x rows)" display at the bottom of a
table.

● \pset tuples_only turns on viewing just the rows or rows and
headers.
● \t is a shortcut.

\pset title
Give the table a title.

\pset linestyle unicode
\pset border 2
\pset title 'Doctor Who Season One'
SELECT *
FROM dw.stories
WHERE season = 1
ORDER BY st_id;
 Doctor Who Season One
┌───────┬─────────┬─────────────────────────┬──────────────────┬────────┐
│ st_id │ st_code │ st_name │ doctor │ season │
├───────┼─────────┼─────────────────────────┼──────────────────┼────────┤
│ 1 │ A │ An Unearthly Child │ William Hartnell │ 1 │
│ 2 │ B │ The Daleks │ William Hartnell │ 1 │
│ 3 │ C │ The Edge of Destruction │ William Hartnell │ 1 │
│ 4 │ D │ Marco Polo │ William Hartnell │ 1 │
│ 5 │ E │ The Keys of Marinus │ William Hartnell │ 1 │
│ 6 │ F │ The Aztecs │ William Hartnell │ 1 │
│ 7 │ G │ The Sensorites │ William Hartnell │ 1 │
│ 8 │ H │ The Reign of Terror │ William Hartnell │ 1 │
└───────┴─────────┴─────────────────────────┴──────────────────┴────────┘
(8 rows)

Removes the footer.

\pset footer

\pset linestyle unicode
\pset border 2
\pset footer off
SELECT *
FROM dw.stories
WHERE season = 1
ORDER BY st_id;
┌───────┬─────────┬─────────────────────────┬──────────────────┬────────┐
│ st_id │ st_code │ st_name │ doctor │ season │
├───────┼─────────┼─────────────────────────┼──────────────────┼────────┤
│ 1 │ A │ An Unearthly Child │ William Hartnell │ 1 │
│ 2 │ B │ The Daleks │ William Hartnell │ 1 │
│ 3 │ C │ The Edge of Destruction │ William Hartnell │ 1 │
│ 4 │ D │ Marco Polo │ William Hartnell │ 1 │
│ 5 │ E │ The Keys of Marinus │ William Hartnell │ 1 │
│ 6 │ F │ The Aztecs │ William Hartnell │ 1 │
│ 7 │ G │ The Sensorites │ William Hartnell │ 1 │
│ 8 │ H │ The Reign of Terror │ William Hartnell │ 1 │
└───────┴─────────┴─────────────────────────┴──────────────────┴────────┘

\pset tuples_only
Show just the rows of the table. (Also set the boarder to zero.)

\pset border 0
\pset tuples_only on
SELECT *
FROM dw.stories
WHERE season = 1
ORDER BY st_id;
 1 A An Unearthly Child William Hartnell 1
 2 B The Daleks William Hartnell 1
 3 C The Edge of Destruction William Hartnell 1
 4 D Marco Polo William Hartnell 1
 5 E The Keys of Marinus William Hartnell 1
 6 F The Aztecs William Hartnell 1
 7 G The Sensorites William Hartnell 1
 8 H The Reign of Terror William Hartnell 1

\pset format
● Formats the output in one of eight major formats. So far all

examples have been aligned. Possible values are:
● unaligned
● aligned
● wrapped
● html
● asciidoc
● latex
● latex-longtable
● troff-ms

\pset format asciidoc
Added in Postgres 9.5.

\pset format asciidoc
\pset title 'Doctor Who Season One'
SELECT *
FROM dw.stories
WHERE season = 1
ORDER BY st_id;
.Doctor Who Season One
[options="header",cols=">l,<l,<l,<l,>l",frame="none"]
|====
^l|st_id ^l|st_code ^l|st_name ^l|doctor ^l|season
|1 |A |An Unearthly Child |William Hartnell |1
|2 |B |The Daleks |William Hartnell |1
|3 |C |The Edge of Destruction |William Hartnell |1
|4 |D |Marco Polo |William Hartnell |1
|5 |E |The Keys of Marinus |William Hartnell |1
|6 |F |The Aztecs |William Hartnell |1
|7 |G |The Sensorites |William Hartnell |1
|8 |H |The Reign of Terror |William Hartnell |1
|====

....
(8 rows)
....

\pset format unaligned
By default, unaligned data is pipe delimited. Can be configured.

\pset format unaligned
\pset title 'Doctor Who Season One'
SELECT *
FROM dw.stories
WHERE season = 1
ORDER BY st_id;
Doctor Who Season One
st_id|st_code|st_name|doctor|season
1|A|An Unearthly Child|William Hartnell|1
2|B|The Daleks|William Hartnell|1
3|C|The Edge of Destruction|William Hartnell|1
4|D|Marco Polo|William Hartnell|1
5|E|The Keys of Marinus|William Hartnell|1
6|F|The Aztecs|William Hartnell|1
7|G|The Sensorites|William Hartnell|1
8|H|The Reign of Terror|William Hartnell|1
(8 rows)

\pset fieldsep (defaults to the pipe)
\pset recordsep (defaults to a newline)

\pset format html
Produces code for HTML table. Great format for e-mailed reports.

\pset format html
\pset title 'Doctor Who Season One'
SELECT *
FROM dw.stories
WHERE season = 1
ORDER BY st_id;
<table border="1">
 <caption>Doctor Who Season One</caption>
 <tr>
 <th align="center">st_id</th>
 <th align="center">st_code</th>
 <th align="center">st_name</th>
 <th align="center">doctor</th>
 <th align="center">season</th>
 </tr>
 <tr valign="top">
 <td align="right">1</td>
 <td align="left">A</td>
 <td align="left">An Unearthly Child</td>
 <td align="left">William Hartnell</td>
 <td align="right">1</td>
 </tr>
 <tr valign="top">
 <td align="right">2</td>
 <td align="left">B</td>
 <td align="left">The Daleks</td>
 <td align="left">William Hartnell</td>
 <td align="right">1</td>

...
 <tr valign="top">
 <td align="right">6</td>
 <td align="left">F</td>
 <td align="left">The Aztecs</td>
 <td align="left">William Hartnell</td>
 <td align="right">1</td>
 </tr>
 <tr valign="top">
 <td align="right">7</td>
 <td align="left">G</td>
 <td align="left">The Sensorites</td>
 <td align="left">William Hartnell</td>
 <td align="right">1</td>
 </tr>
 <tr valign="top">
 <td align="right">8</td>
 <td align="left">H</td>
 <td align="left">The Reign of Terror</td>
 <td align="left">William Hartnell</td>
 <td align="right">1</td>
 </tr>
</table>
<p>(8 rows)

</p>

\pset format html

st_id st_code st_name doctor season

1 A An Unearthly Child William Hartnell 1

2 B The Daleks William Hartnell 1

3 C The Edge of Destruction William Hartnell 1

4 D Marco Polo William Hartnell 1

5 E The Keys of Marinus William Hartnell 1

6 F The Aztecs William Hartnell 1

7 G The Sensorites William Hartnell 1

8 H The Reign of Terror William Hartnell 1

Doctor Who Season One

(8 rows)

Example of the output as an HTML table.

\pset format latex
Produces code in LaTeX format. How do you say LaTeX?

\pset format latex
\pset title 'Doctor Who Season One'
SELECT *
FROM dw.stories
WHERE season = 1
ORDER BY st_id;
\begin{center}
Doctor Who Season One
\end{center}

\begin{tabular}{r | l | l | l | r}
\textit{st_id} & \textit{st_code} & \textit{st_name} & \textit{doctor} & \textit{season} \\
\hline
1 & A & An Unearthly Child & William Hartnell & 1 \\
2 & B & The Daleks & William Hartnell & 1 \\
3 & C & The Edge of Destruction & William Hartnell & 1 \\
4 & D & Marco Polo & William Hartnell & 1 \\
5 & E & The Keys of Marinus & William Hartnell & 1 \\
6 & F & The Aztecs & William Hartnell & 1 \\
7 & G & The Sensorites & William Hartnell & 1 \\
8 & H & The Reign of Terror & William Hartnell & 1 \\
\end{tabular}

\noindent (8 rows) \\

\pset format troff-ms
An output format dating back to the 1960s!

\pset format troff-ms
\pset title 'Doctor Who Season One'
SELECT *
FROM dw.stories
WHERE season = 1
ORDER BY st_id;
.LP
.DS C
Doctor Who Season One
.DE
.LP
.TS
center;
r | l | l | l | r.
\fIst_id\fP \fIst_code\fP \fIst_name\fP \fIdoctor\fP \fIseason\fP
_
1 A An Unearthly Child William Hartnell 1
2 B The Daleks William Hartnell 1
3 C The Edge of Destruction William Hartnell 1
4 D Marco Polo William Hartnell 1
5 E The Keys of Marinus William Hartnell 1
6 F The Aztecs William Hartnell 1
7 G The Sensorites William Hartnell 1
8 H The Reign of Terror William Hartnell 1
.TE
.DS L
(8 rows)
.DE

\pset expanded
● Expanded can be on or off.

● If on, expanded displays data in two columns.
● The first column contains the field names.
● The second column contains the field values.

● Expanded display is useful for displaying data from very wide
tables.
● Shortcut \x

\pset expanded
\pset expanded off
SELECT st_id,st_name
FROM dw.stories
WHERE season = 1
ORDER BY st_id;
 st_id | st_name
-------+-------------------------
 1 | An Unearthly Child
 2 | The Daleks
 3 | The Edge of Destruction
 4 | Marco Polo
 5 | The Keys of Marinus
 6 | The Aztecs
 7 | The Sensorites
 8 | The Reign of Terror
(8 rows)

\pset expanded on
SELECT st_id,st_name
FROM dw.stories
WHERE season = 1
ORDER BY st_id;
-[RECORD 1]--------------------
st_id | 1
st_name | An Unearthly Child
-[RECORD 2]--------------------
st_id | 2
st_name | The Daleks
-[RECORD 3]--------------------
st_id | 3
st_name | The Edge of Destruction
-[RECORD 4]--------------------
st_id | 4
st_name | Marco Polo
-[RECORD 5]--------------------
st_id | 5
st_name | The Keys of Marinus
-[RECORD 6]--------------------
st_id | 6
st_name | The Aztecs
-[RECORD 7]--------------------
st_id | 7
st_name | The Sensorites
-[RECORD 8]--------------------
st_id | 8
st_name | The Reign of Terror

\copy
Very powerful meta-command! Example outputting a CSV file.

-- Output to the screen.

\copy (SELECT * FROM dw.stories WHERE season = 1 ORDER BY st_id) TO STDOUT CSV HEADER;
st_id,st_code,st_name,doctor,season
1,A,An Unearthly Child,William Hartnell,1
2,B,The Daleks,William Hartnell,1
3,C,The Edge of Destruction,William Hartnell,1
4,D,Marco Polo,William Hartnell,1
5,E,The Keys of Marinus,William Hartnell,1
6,F,The Aztecs,William Hartnell,1
7,G,The Sensorites,William Hartnell,1
8,H,The Reign of Terror,William Hartnell,1

-- Output to a file from the machine where psql is running.

\copy (SELECT * FROM dw.stories WHERE season = 1 ORDER BY st_id) TO 'dw.csv' CSV HEADER;
COPY 8

Can output in three formats: CSV, text, and binary.

 ② Postgres SQL

Explore SQL
● SQL Command Reference:

● https://www.postgresql.org/docs/current/sql-commands.html
● SELECT Statement Reference:

● https://www.postgresql.org/docs/current/sql-select.html

https://www.postgresql.org/docs/current/sql-commands.html
https://www.postgresql.org/docs/current/sql-select.html

Change the Column Headings
Put friendly column headings inside double quotes.

SELECT st_id "#",
 st_name "Story Name"
FROM dw.stories
WHERE season = 1
ORDER BY "#";
 # | Story Name
---+-------------------------
 1 | An Unearthly Child
 2 | The Daleks
 3 | The Edge of Destruction
 4 | Marco Polo
 5 | The Keys of Marinus
 6 | The Aztecs
 7 | The Sensorites
 8 | The Reign of Terror
(8 rows)

Subqueries in SELECT Clause
A subquery can be used to count the number of detail records.

SELECT st_id "#",
 st_name "Story Name",
 (SELECT COUNT(*)
 FROM dw.episodes e
 WHERE e.st_id = s.st_id) "Episode Count"
FROM dw.stories s
WHERE season = 1
ORDER BY "#";
 # | Story Name | Episode Count
---+-------------------------+---------------
 1 | An Unearthly Child | 4
 2 | The Daleks | 7
 3 | The Edge of Destruction | 2
 4 | Marco Polo | 7
 5 | The Keys of Marinus | 6
 6 | The Aztecs | 4
 7 | The Sensorites | 6
 8 | The Reign of Terror | 6
(8 rows)

Groups
Group by ID and name and use the aggregate function COUNT.

SELECT s.st_id "#",
 st_name "Story Name",
 COUNT(*) "Episode Count"
FROM dw.stories s JOIN dw.episodes e ON (s.st_id = e.st_id)
WHERE season = 1
GROUP BY "#","Story Name"
ORDER BY "#";
 # | Story Name | Episode Count
---+-------------------------+---------------
 1 | An Unearthly Child | 4
 2 | The Daleks | 7
 3 | The Edge of Destruction | 2
 4 | Marco Polo | 7
 5 | The Keys of Marinus | 6
 6 | The Aztecs | 4
 7 | The Sensorites | 6
 8 | The Reign of Terror | 6
(8 rows)

USING
The USING (field) keyword cuts down on typing ON (field1 = field2).

SELECT st_id "#",
 st_name "Story Name",
 COUNT(*) "Episode Count"
FROM dw.stories JOIN dw.episodes USING (st_id)
WHERE season = 1
GROUP BY "#","Story Name"
ORDER BY "#";
 # | Story Name | Episode Count
---+-------------------------+---------------
 1 | An Unearthly Child | 4
 2 | The Daleks | 7
 3 | The Edge of Destruction | 2
 4 | Marco Polo | 7
 5 | The Keys of Marinus | 6
 6 | The Aztecs | 4
 7 | The Sensorites | 6
 8 | The Reign of Terror | 6
(8 rows)

Know Your Data!
● It is important to know how clean or dirty your data is.
● But what if there was a story without any episodes?

Subqueries
There are no episode detail records for Shada. This is correct.

SELECT st_id "#",
 st_name "Story Name",
 (SELECT COUNT(*)
 FROM dw.episodes e
 WHERE e.st_id = s.st_id) "Episode Count"
FROM dw.stories s
WHERE season = 17
ORDER BY "#";
 # | Story Name | Episode Count
-----+---------------------------+---------------
 104 | Destiny of the Daleks | 4
 105 | City of Death | 4
 106 | The Creature from the Pit | 4
 107 | Nightmare of Eden | 4
 108 | Horns of Nimon | 4
 109 | Shada | 0
(6 rows)

JOIN
A normal join leaves off Shada.

SELECT st_id "#",
 st_name "Story Name",
 COUNT(*) "Episode Count"
FROM dw.stories JOIN dw.episodes USING (st_id)
WHERE season = 17
GROUP BY "#","Story Name"
ORDER BY "#";
 # | Story Name | Episode Count
-----+---------------------------+---------------
 104 | Destiny of the Daleks | 4
 105 | City of Death | 4
 106 | The Creature from the Pit | 4
 107 | Nightmare of Eden | 4
 108 | Horns of Nimon | 4
(5 rows)

WRONG

OUTER JOIN
The outer join included Shada. But Shada shows one episode?

SELECT st_id "#",
 st_name "Story Name",
 COUNT(*) "Episode Count"
FROM dw.stories LEFT OUTER JOIN dw.episodes USING (st_id)
WHERE season = 17
GROUP BY "#","Story Name"
ORDER BY "#";
 # | Story Name | Episode Count
-----+---------------------------+---------------
 104 | Destiny of the Daleks | 4
 105 | City of Death | 4
 106 | The Creature from the Pit | 4
 107 | Nightmare of Eden | 4
 108 | Horns of Nimon | 4
 109 | Shada | 1
(6 rows)

WRONG

COUNT(field)
Counting the non NULL ep_number fields now returns zero.

SELECT st_id "#",
 st_name "Story Name",
 COUNT(ep_number) "Episode Count"
FROM dw.stories LEFT OUTER JOIN dw.episodes USING (st_id)
WHERE season = 17
GROUP BY "#","Story Name"
ORDER BY "#";
 # | Story Name | Episode Count
-----+---------------------------+---------------
 104 | Destiny of the Daleks | 4
 105 | City of Death | 4
 106 | The Creature from the Pit | 4
 107 | Nightmare of Eden | 4
 108 | Horns of Nimon | 4
 109 | Shada | 0
(6 rows)

✓

Sorting Results
Join the season 17 stories to episodes and sort the results.

SELECT st_id "#",
 st_name "Story Name",
 ep_name "Episode Name"
FROM dw.stories LEFT OUTER JOIN dw.episodes USING (st_id)
WHERE season = 17
ORDER BY "#","Episode Name";
 # | Story Name | Episode Name
-----+---------------------------+--------------
 104 | Destiny of the Daleks | Part Four
 104 | Destiny of the Daleks | Part One
 104 | Destiny of the Daleks | Part Three
 104 | Destiny of the Daleks | Part Two
 105 | City of Death | Part Four
 105 | City of Death | Part One
 105 | City of Death | Part Three
 105 | City of Death | Part Two
...
 108 | Horns of Nimon | Part Four
 108 | Horns of Nimon | Part One
 108 | Horns of Nimon | Part Three
 108 | Horns of Nimon | Part Two
 109 | Shada |
(21 rows)

Sorting Results
Episodes are sorted correctly.

SELECT st_id "#",
 st_name "Story Name",
 ep_name "Episode Name"
FROM dw.stories LEFT OUTER JOIN dw.episodes USING (st_id)
WHERE season = 17
ORDER BY "#",ep_number;
 # | Story Name | Episode Name
-----+---------------------------+--------------
 104 | Destiny of the Daleks | Part One
 104 | Destiny of the Daleks | Part Two
 104 | Destiny of the Daleks | Part Three
 104 | Destiny of the Daleks | Part Four
 105 | City of Death | Part One
 105 | City of Death | Part Two
 105 | City of Death | Part Three
 105 | City of Death | Part Four
...
 108 | Horns of Nimon | Part One
 108 | Horns of Nimon | Part Two
 108 | Horns of Nimon | Part Three
 108 | Horns of Nimon | Part Four
 109 | Shada |
(21 rows)

Arrays
● Nine years ago, I wondered who on earth needed arrays in a

relational database.
● This was before discovering the rich set of functions in Postgres to

handle arrays.
● The use of array fields in tables at OSTI are rare.
● Using arrays in reports has become quite common.
● For reference, see aggregate functions documentation:

● https://www.postgresql.org/docs/current/functions-aggregate.html

https://www.postgresql.org/docs/current/functions-aggregate.html

ARRAY_AGG
Episodes are accurately shown as an array. Can it be prettied up?

SELECT st_id "#",
 st_name "Story Name",
 ARRAY_AGG (ep_name ORDER BY ep_number) "Episode Names"
FROM dw.stories LEFT OUTER JOIN dw.episodes USING (st_id)
WHERE season = 17
GROUP BY "#","Story Name"
ORDER BY "#";
 # | Story Name | Episode Names
-----+---------------------------+--
 104 | Destiny of the Daleks | {"Part One","Part Two","Part Three","Part Four"}
 105 | City of Death | {"Part One","Part Two","Part Three","Part Four"}
 106 | The Creature from the Pit | {"Part One","Part Two","Part Three","Part Four"}
 107 | Nightmare of Eden | {"Part One","Part Two","Part Three","Part Four"}
 108 | Horns of Nimon | {"Part One","Part Two","Part Three","Part Four"}
 109 | Shada | {NULL}
(6 rows)

ARRAY_TO_STRING
Episodes are now shown delimited by a semicolon and a space.

SELECT st_id "#",
 st_name "Story Name",
 ARRAY_TO_STRING (ARRAY_AGG (ep_name ORDER BY ep_number),'; ') "Episode Names"
FROM dw.stories LEFT OUTER JOIN dw.episodes USING (st_id)
WHERE season = 17
GROUP BY "#","Story Name"
ORDER BY "#";
 # | Story Name | Episode Names
-----+---------------------------+---
 104 | Destiny of the Daleks | Part One; Part Two; Part Three; Part Four
 105 | City of Death | Part One; Part Two; Part Three; Part Four
 106 | The Creature from the Pit | Part One; Part Two; Part Three; Part Four
 107 | Nightmare of Eden | Part One; Part Two; Part Three; Part Four
 108 | Horns of Nimon | Part One; Part Two; Part Three; Part Four
 109 | Shada |
(6 rows)

Temporary Table
Select the ID, story name, and an array of episode names.

SELECT st_id,
 st_name,
 ARRAY_AGG (ep_name ORDER BY ep_number) ep_names
FROM dw.stories LEFT OUTER JOIN dw.episodes USING (st_id)
GROUP BY st_id,st_name
ORDER BY st_id;
 st_id | st_name | ep_names
-------+---------------------------------+---
 1 | An Unearthly Child | {"An Unearthly Child","The Cave of Skulls","The Forest of Fear","The Firemaker"}
 2 | The Daleks | {"The Dead Planet","The Survivors","The Escape","The Ambush","The Expedition","The Ordeal","The Rescue"}
 3 | The Edge of Destruction | {"The Edge of Destruction","The Brink of Disaster"}
...
 143 | Revelation of the Daleks | {"Part One","Part Two"}
 144 | The Mysterious Planet | {"Part One","Part Two","Part Three","Part Four"}
 145 | Mindwarp | {"Part Five","Part Six","Part Seven","Part Eight"}
 146 | Terror of the Vervoids | {"Part Nine","Part Ten","Part Eleven","Part Twelve"}
 147 | The Ultimate Foe | {"Part Thirteen","Part Fourteen"}
 148 | Time and the Rani | {"Part One","Part Two","Part Three","Part Four"}
 149 | Paradise Towers | {"Part One","Part Two","Part Three","Part Four"}
 150 | Delta and the Bannermen | {"Part One","Part Two","Part Three"}
 151 | Dragonfire | {"Part One","Part Two","Part Three"}
 152 | Remembrance of the Daleks | {"Part One","Part Two","Part Three","Part Four"}
 153 | The Happiness Patrol | {"Part One","Part Two","Part Three"}
 154 | Silver Nemesis | {"Part One","Part Two","Part Three"}
 155 | The Greatest Show in the Galaxy | {"Part One","Part Two","Part Three","Part Four"}
 156 | Battlefield | {"Part One","Part Two","Part Three","Part Four"}
 157 | Ghost Light | {"Part One","Part Two","Part Three"}
 158 | The Curse of Fenric | {"Part One","Part Two","Part Three","Part Four"}
 159 | Survival | {"Part One","Part Two","Part Three"}
(159 rows)

CREATE TEMPORARY TABLE
Creates a temporary table that only lasts as long as the session.

CREATE TEMPORARY TABLE stories_episodes AS
SELECT st_id,
 st_name,
 ARRAY_AGG (ep_name ORDER BY ep_number) ep_names
FROM dw.stories LEFT OUTER JOIN dw.episodes USING (st_id)
GROUP BY st_id,st_name
ORDER BY st_id;

SELECT *
FROM stories_episodes
ORDER BY st_id;
 st_id | st_name | ep_names
-------+---------------------------------+--
 1 | An Unearthly Child | {"An Unearthly Child","The Cave of Skulls","The Forest of Fear","The Firemaker"}
...
 159 | Survival | {"Part One","Part Two","Part Three"}
(159 rows)

\d stories_episodes
 Table "pg_temp_3.stories_episodes"
 Column | Type | Collation | Nullable | Default
----------+-----------------------+-----------+----------+---------
 st_id | smallint | | |
 st_name | character varying(31) | | |
 ep_names | character varying[] | | | Stay in session.

UNNEST
Takes an array and makes separate rows for each element.

SELECT st_id "#",
 st_name "Story",
 UNNEST (ep_names) "Episodes"
FROM stories_episodes
WHERE st_id IN (1,2,3)
ORDER BY st_id;
 # | Story | Episodes
---+-------------------------+-------------------------
 1 | An Unearthly Child | An Unearthly Child
 1 | An Unearthly Child | The Cave of Skulls
 1 | An Unearthly Child | The Forest of Fear
 1 | An Unearthly Child | The Firemaker
 2 | The Daleks | The Dead Planet
 2 | The Daleks | The Survivors
 2 | The Daleks | The Escape
 2 | The Daleks | The Ambush
 2 | The Daleks | The Expedition
 2 | The Daleks | The Ordeal
 2 | The Daleks | The Rescue
 3 | The Edge of Destruction | The Edge of Destruction
 3 | The Edge of Destruction | The Brink of Disaster
(13 rows)

Stay in session.

UNNEST
See what happens with an empty array.

SELECT st_id "#",
 st_name "Story",
 UNNEST (ep_names) "Episodes"
FROM stories_episodes
WHERE st_id IN (108,109,110)
ORDER BY st_id;
 # | Story | Episodes
-----+------------------+------------
 108 | Horns of Nimon | Part One
 108 | Horns of Nimon | Part Two
 108 | Horns of Nimon | Part Three
 108 | Horns of Nimon | Part Four
 109 | Shada |
 110 | The Leisure Hive | Part One
 110 | The Leisure Hive | Part Two
 110 | The Leisure Hive | Part Three
 110 | The Leisure Hive | Part Four
(9 rows)

End session.

Create a New Temporary Table
This time the episode names column is semicolon delimited.

CREATE TEMPORARY TABLE new_stories_episodes AS
SELECT st_id,
 st_name,
 ARRAY_TO_STRING (ARRAY_AGG (ep_name ORDER BY ep_number),'; ') ep_names
FROM dw.stories LEFT OUTER JOIN dw.episodes USING (st_id)
GROUP BY st_id,st_name
ORDER BY st_id;

SELECT *
FROM new_stories_episodes
ORDER BY st_id;
 st_id | st_name | ep_names
-------+---------------------------------+--
 1 | An Unearthly Child | An Unearthly Child; The Cave of Skulls; The Forest of Fear; The Firemaker
...
 158 | The Curse of Fenric | Part One; Part Two; Part Three; Part Four
 159 | Survival | Part One; Part Two; Part Three
(159 rows)

Stay in session.

STRING_TO_ARRAY
Convert the semicolon delimited string into an array.

SELECT st_id "#",
 st_name "Story",
 ep_names "Episodes",
 STRING_TO_ARRAY (ep_names,'; ') "Episodes Array"
FROM new_stories_episodes
WHERE st_id IN (108,109,110)
ORDER BY st_id;
 # | Story | Episodes | Episodes Array
-----+------------------+---+--
 108 | Horns of Nimon | Part One; Part Two; Part Three; Part Four | {"Part One","Part Two","Part Three","Part Four"}
 109 | Shada | | {}
 110 | The Leisure Hive | Part One; Part Two; Part Three; Part Four | {"Part One","Part Two","Part Three","Part Four"}
(3 rows)

End session.

DISTINCT and DISTINCT ON
● For reference:

● https://www.postgresql.org/docs/current/queries-select-lists.html#QUERIES-DISTINCT
● https://www.postgresql.org/docs/current/sql-select.html

● DISTINCT is part of the SQL standard.
● Very useful to show unique or distinct values only in a query.

● DISTINCT ON () is not part of the SQL standard.
● Can be used as a shortcut of very basic windowing functions.

https://www.postgresql.org/docs/current/queries-select-lists.html#QUERIES-DISTINCT
https://www.postgresql.org/docs/current/sql-select.html

DISTINCT
Shows one record for each unique or distinct episode name.

SELECT DISTINCT
 ep_name "Distinct Episode Names"
FROM dw.stories LEFT OUTER JOIN dw.episodes USING (st_id)
WHERE season = 17
ORDER BY "Distinct Episode Names";
 Distinct Episode Names

 Part Four
 Part One
 Part Three
 Part Two

(5 rows)

COALESCE
Coalesce turns NULL values into a displayable value.

SELECT DISTINCT
 COALESCE (ep_name,'None') "Distinct Episode Names"
FROM dw.stories LEFT OUTER JOIN dw.episodes USING (st_id)
WHERE season = 17
ORDER BY "Distinct Episode Names";
 Distinct Episode Names

 None
 Part Four
 Part One
 Part Three
 Part Two
(5 rows)

DISTINCT ON ()
What is the first episode name of each story? Funny story!

SELECT DISTINCT ON (st_id)
 st_name "Story",
 ep_number "Episode Number",
 ep_name "First Episode Name"
FROM dw.stories LEFT OUTER JOIN dw.episodes USING (st_id)
WHERE season = 1
ORDER BY st_id,ep_number;
 Story | Episode Number | First Episode Name
-------------------------+----------------+-------------------------
 An Unearthly Child | 1 | An Unearthly Child
 The Daleks | 1 | The Dead Planet
 The Edge of Destruction | 1 | The Edge of Destruction
 Marco Polo | 1 | The Roof of the World
 The Keys of Marinus | 1 | The Sea of Death
 The Aztecs | 1 | The Temple of Evil
 The Sensorites | 1 | Strangers in Space
 The Reign of Terror | 1 | A Land of Fear
(8 rows)

DISTINCT ON ()
What is the last episode name of each story?

SELECT DISTINCT ON (st_id)
 st_name "Story",
 ep_number "Episode Number",
 ep_name "Last Episode Name"
FROM dw.stories LEFT OUTER JOIN dw.episodes USING (st_id)
WHERE season = 1
ORDER BY st_id,ep_number DESC;
 Story | Episode Number | Last Episode Name
-------------------------+----------------+---------------------------
 An Unearthly Child | 4 | The Firemaker
 The Daleks | 7 | The Rescue
 The Edge of Destruction | 2 | The Brink of Disaster
 Marco Polo | 7 | Assassin at Peking
 The Keys of Marinus | 6 | The Keys of Marinus
 The Aztecs | 4 | The Day of Darkness
 The Sensorites | 6 | Kidnap
 The Reign of Terror | 6 | Prisoners of Conciergerie
(8 rows)

 ③ UNIX/Linux sendmail

sendmail
● Sendmail is an electronic mail transport agent.
● Sendmail sends a message to one or more recipients, routing the

message over whatever networks are necessary. Sendmail does
internetwork forwarding as necessary to deliver the message to the
correct place.

● Dates back to 1983!
● sendmail -t reads the message for recipients.

Hello World
Very simple "Hello world." e-mail message from sendmail.

cat >tmp.txt
To: chris@localhost
Subject: Test One
Hello world. This is test one.
[Control-D]
$ cat tmp.txt | sendmail -t

From: chris@localhost
Sent: Sunday, September 1, 2019 3:14 PM
To: chris@localhost
Subject: Test One

Hello world. This is test one.

More Complex Example
Send the same e-mail to multiple recipients and provide a from.

cat >tmp.txt
To: apple@localhost
To: bag@localhost
Cc: cat@localhost
Cc: dog@localhost
Bcc: ear@localhost
Bcc: farm@localhost
From: goat@localhost
Subject: Test Two
This test shows how multiple recipients are specified.
[Control-D]
$ cat tmp.txt | sendmail -t

From: goat@localhost
Sent: Sunday, September 1, 2019 3:15 PM
To: apple@localhost, bag@localhost
Cc: cat@localhost, dog@localhost
Subject: Test Two

This test shows how multiple recipients are specified.

Send Text UTF-8
Send a simple plain character based UTF-8 e-mail.

cat >tmp.txt
To: chris@localhost
Subject: Test Three
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Disposition: inline

Just wanted to send you this note ♪
[Control-D]
$ cat tmp.txt | sendmail -t

From: chris@localhost
Sent: Sunday, September 1, 2019 3:16 PM
To: chris@localhost
Subject: Test Three

Just wanted to send you this note ♪

Send HTML
cat >tmp.txt
To: chris@localhost
Subject: Test Four
MIME-Version: 1.0
Content-Type: text/html; charset=UTF-8
Content-Disposition: inline
<html>
<body>
Bold

<i>Just testing out HTML.</i>

End of the page.
</body>
</html>
[Control-D]
$ cat tmp.txt | sendmail -t

From: chris@localhost
Sent: Sunday, September 1, 2019 3:17 PM
To: chris@localhost
Subject: Test Four

Bold
Just testing out HTML.
End of the page.

Attach a Binary File
Complex example of sending a message and attachment part 1.

cat >tmp.txt
To: chris@localhost
Subject: Test Six
MIME-Version: 1.0
Content-Type: multipart/mixed; boundary="-q1w2e3r4t5"

---q1w2e3r4t5
Content-Type: text/html; charset=UTF-8
Content-Disposition: inline
<html>
<body>
Please see the attached PDF.
</body>
</html>

---q1w2e3r4t5
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename="document.pdf"
[Control-D]

Attach a Binary File
Complex example of sending a message and attachment part 2.

cat document.pdf | uuencode --base64 document.pdf >>tmp.txt

cat >>tmp.txt
---q1w2e3r4t5--
[Control-D]

$ cat tmp.txt | sendmail -t

 document.pdf (28 kb)

From: chris@localhost
Sent: Sunday, September 1, 2019 3:19 PM
To: chris@localhost
Subject: Test Six

Please see the attached PDF.

 ④ Automated Reporting System

A Complex Automated Reporting System
● Earlier this decade, a developer wanted to create a complex

reporting system.
● He wanted to store these things in database tables:

● Recipients
● Titles
● Schedule
● Queries
● Parameters

● No one had time to design it nor implement it.
● Would have only handled the simplest reports.
● Complex reports would still have to be custom written.
● Ultimately never progressed beyond wishes and talk.

A Simple Automated Reporting System
● I had a pain a few summers ago:

● I maintained handful of shell script and psql reports sent on a cron
schedule via e-mail.

● To change recipients, I had to edit the shell scripts.
● It was sometimes hard to match the e-mail to the shell script.

● There was not a lot of time to create a simple automated reporting
system, so baby steps were taken.

Phase 1
● The requirements for phase 1:

● Come up with database tables to store recipients.
● Come up with a function to get recipients out of database tables

into sendmail format.
● Assign each report a unique ID.

● Then to test phase 1, create or retrofit an existing low profile report
to prove the idea works.

Phase 1 Database Tables

CREATE TABLE dw.reports
(
 report_id INTEGER NOT NULL,
 report_title CHARACTER VARYING(200) NOT NULL,
 report_description TEXT,
 CONSTRAINT reports_pk PRIMARY KEY (report_id)
);

CREATE TABLE dw.reports_email
(
 report_id INTEGER NOT NULL,
 fields CHARACTER VARYING(4) NOT NULL,
 email_address CHARACTER VARYING(64) NOT NULL,
 active_flag BOOLEAN NOT NULL DEFAULT TRUE,
 CONSTRAINT reports_email_pk PRIMARY KEY (report_id,fields,email_address),
 CONSTRAINT "'fields' can only equal TO, CC, BCC, or FROM"
 CHECK (fields IN ('TO','CC','BCC','FROM'))
);

Phase 1 Database Function

CREATE OR REPLACE FUNCTION dw.report_sendmail_recipients (INTEGER)
 RETURNS SETOF text AS
$report_sendmail_recipients$
 SELECT CASE fields
 WHEN 'FROM' THEN 'From: '
 WHEN 'TO' THEN 'To: '
 WHEN 'CC' THEN 'Cc: '
 WHEN 'BCC' THEN 'Bcc: '
 END || email_address
 FROM dw.reports_email
 WHERE report_id = $1 AND
 active_flag = TRUE
 ORDER BY CASE fields
 WHEN 'FROM' THEN 1
 WHEN 'TO' THEN 2
 WHEN 'CC' THEN 3
 WHEN 'BCC' THEN 4
 END,
 email_address;
$report_sendmail_recipients$
 LANGUAGE SQL VOLATILE;

Phase 1 Populate the Tables
INSERT INTO dw.reports
 (report_id,report_title,report_description)
VALUES
 (1,'Doctor Who Season Report','A report of a Doctor Who season based on passed in parameter.');

INSERT INTO dw.reports_email
 (report_id,fields,email_address)
VALUES
 (1,'TO','chris@localhost'),
 (1,'FROM','thedoctor@localhost');

Phase 1 Shell Script (1 of 4)
#
Get the season from parameter 1.
#
export DW_SEASON=$1
#
Set environment variables for connection. Password is in ".pgpass".
#
export PGDATABASE=postgres
export PGHOST=localhost
export PGPORT=5432
export PGUSER=chris
#
Set the report ID to be the "Doctor Who Season" report.
#
export REPORT_ID=1

Phase 1 Shell Script (2 of 4)
#
Begin the e-mail.
#
(
psql --quiet <<EndOfSql | awk 'NF'
--
-- Output only tuples, set thte border to zero, and turn off the footer.
--
\pset tuples_only on
\pset border 0
\pset footer off
--
-- Output the sendmail recipients from the report e-mails database table.
--
SELECT dw.report_sendmail_recipients (${REPORT_ID});
--
-- Output the subject line from the report database table.
--
SELECT 'Subject: ' || report_title
FROM dw.reports
WHERE report_id = ${REPORT_ID};
--
-- Start an HTML e-mail.
--
\echo 'MIME-Version: 1.0'
\echo 'Content-Type: text/html; charset=UTF-8'
\echo 'Content-Disposition: inline'

Phase 1 Shell Script (3 of 4)
\echo '<html>'
\echo '<head><style>'
\echo 'th { background-color: silver; }'
\echo 'caption { background-color: silver; font-size: 120%; font-weight: bolder }'
\echo '</style></head>'
\echo '<body>'
--
-- Turn off tuples only, set the output format to HTML, set the HTML boarder to 1,
-- set several table attributes, and set the title.
--
\pset tuples_only off
\pset format html
\pset border 1
\pset tableattr 'cellspacing="0" cellpadding="2"'
\pset title 'Season ${DW_SEASON} Report'
--
-- Run the query
--
SELECT st_id "#",
 st_name "Story Name",
 ARRAY_TO_STRING (ARRAY_AGG (ep_name ORDER BY ep_number),'; ') "Episode List"
FROM dw.stories LEFT OUTER JOIN dw.episodes USING (st_id)
WHERE season = ${DW_SEASON}
GROUP BY st_id,st_name
ORDER BY st_id;

Phase 1 Shell Script (4 of 4)
--
-- Output the report ID for easy identification of the report.
--
\echo '
Report ID ${REPORT_ID}'
\echo '</body></html>'

EndOfSql
#
E-Mail the info.
#
) | /usr/sbin/sendmail -t

Phase 1 Tests
./doctor_who_season 1

From: chris@localhost
Sent: Sunday, September 1, 2019 3:20 PM
To: chris@localhost
Subject: Doctor Who Season Report

Report ID 1

Season 1 Report

Story Name Episode List

1 An Unearthly Child An Unearthly Child; The Cave of Skulls; The Forest of Fear; The Firemaker

2 The Daleks The Dead Planet; The Survivors; The Escape; The Ambush; The Expedition; The Ordeal; The Rescue

3 The Edge of
Destruction

The Edge of Destruction; The Brink of Disaster

4 Marco Polo The Roof of the World; The Singing Sands; Five Hundred Eyes; The Wall of Lies; Rider From Shang-Tu; Mighty Kublai Khan;
Assassin at Peking

5 The Keys of Marinus The Sea of Death; The Velvet Web; The Screaming Jungle; The Snows of Terror; Sentence of Death; The Keys of Marinus

6 The Aztecs The Temple of Evil; The Warriors of Death; The Bride of Sacrifice; The Day of Darkness

7 The Sensorites Strangers in Space; The Unwilling Warriors; Hidden Danger; A Desperate Venture; A Race Against Death; Kidnap

8 The Reign of Terror A Land of Fear; Guests of Madame Guillotine; A Change of Identity; The Tyrant of France; A Bargain of Necessity; Prisoners of
Conciergerie

Phase 1 Tests
./doctor_who_season 17

From: chris@localhost
Sent: Sunday, September 1, 2019 3:21 PM
To: chris@localhost
Subject: Doctor Who Season Report

Report ID 1

Season 17 Report

Story Name Episode List

104 Destiny of the Daleks Part One; Part Two; Part Three; Part Four

105 City of Death Part One; Part Two; Part Three; Part Four

106 The Creature from the Pit Part One; Part Two; Part Three; Part Four

107 Nightmare of Eden Part One; Part Two; Part Three; Part Four

108 Horns of Nimon Part One; Part Two; Part Three; Part Four

109 Shada

Send E-Mail with CSV Attachment
● Send a report just like the phase 1 report.
● Attached a CSV file that can be opened with Microsoft Excel or

LibreOffice Calc.
● The CSV file will be all the details kept in the database.
● The shell script pieces will be identical to phase 1 report.
● Will utilize the powerful \copy meta-command!
● Blue text will be unchanged lines.
● Red text will be new or changed lines.

CSV Attachment (1 of 4)
#
Begin the e-mail.
#
(
psql --quiet <<EndOfSql | awk 'NF'
--
-- Output only tuples, set thte border to zero, and turn off the footer.
--
\pset tuples_only on
\pset border 0
\pset footer off
--
-- Output the sendmail recipients from the report e-mails database table.
--
SELECT dw.report_sendmail_recipients (${REPORT_ID});
--
-- Output the subject line from the report database table.
--
SELECT 'Subject: ' || report_title
FROM dw.reports
WHERE report_id = ${REPORT_ID};

CSV Attachment (2 of 4)
--
-- Start a multipart e-mail.
--
\echo 'MIME-Version: 1.0'
\echo 'Content-Type: multipart/mixed; boundary="-q1w2e3r4t5"'
\echo
\echo '---q1w2e3r4t5'
--
-- The HTML half of the e-mail.
--
\echo 'Content-Type: text/html; charset=UTF-8'
\echo 'Content-Disposition: inline'
\echo '<html>'
\echo '<head><style>'
\echo 'th { background-color: silver; }'
\echo 'caption { background-color: silver; font-size: 120%; font-weight: bolder }'
\echo '</style></head>'
\echo '<body>'
--
-- Turn off tuples only, set the output format to HTML, set the HTML boarder to 1,
-- set several table attributes, and set the title.
--
\pset tuples_only off
\pset format html
\pset border 1
\pset tableattr 'cellspacing="0" cellpadding="2"'
\pset title 'Season ${DW_SEASON} Report'

CSV Attachment (3 of 4)
--
-- Run the query
--
SELECT st_id "#",
 st_name "Story Name",
 ARRAY_TO_STRING (ARRAY_AGG (ep_name ORDER BY ep_number),'; ') "Episode List"
FROM dw.stories LEFT OUTER JOIN dw.episodes USING (st_id)
WHERE season = ${DW_SEASON}
GROUP BY st_id,st_name
ORDER BY st_id;
--
-- Output the report ID for easy identification of the report.
--
\echo '
Report ID ${REPORT_ID}'
\echo '</body></html>'
\echo '---q1w2e3r4t5'

CSV Attachment (4 of 4)
--
-- The CSV attachment half of the e-mail.
--
\echo 'Content-Type: text/plain; charset=UTF-8'
\echo 'Content-Transfer-Encoding: base64'
\echo 'Content-Disposition: attachment; filename="season_detail.csv"'
--
-- Create a temporary table of all story and episode records for a season.
--
CREATE TEMPORARY TABLE temp_season_table AS
SELECT *
FROM dw.stories LEFT OUTER JOIN dw.episodes USING (st_id)
WHERE season = ${DW_SEASON}
ORDER BY st_id,ep_number;
--
-- Output the temporary table to uuencode
--
\COPY temp_season_table TO PROGRAM 'uuencode --base64 season_detail.csv' CSV HEADER
\echo '---q1w2e3r4t5--'

EndOfSql
#
E-Mail the info.
#
) | /usr/sbin/sendmail -t

CSV Attachment Test
./doctor_who_season 1

 season_detail.csv (4 kB)

From: chris@localhost
Sent: Sunday, September 1, 2019 3:20 PM
To: chris@localhost
Subject: Doctor Who Season Report

Report ID 1

Season 1 Report

Story Name Episode List

1 An Unearthly Child An Unearthly Child; The Cave of Skulls; The Forest of Fear; The Firemaker

2 The Daleks The Dead Planet; The Survivors; The Escape; The Ambush; The Expedition; The Ordeal; The Rescue

3 The Edge of
Destruction

The Edge of Destruction; The Brink of Disaster

4 Marco Polo The Roof of the World; The Singing Sands; Five Hundred Eyes; The Wall of Lies; Rider From Shang-Tu; Mighty Kublai Khan;
Assassin at Peking

5 The Keys of Marinus The Sea of Death; The Velvet Web; The Screaming Jungle; The Snows of Terror; Sentence of Death; The Keys of Marinus

6 The Aztecs The Temple of Evil; The Warriors of Death; The Bride of Sacrifice; The Day of Darkness

7 The Sensorites Strangers in Space; The Unwilling Warriors; Hidden Danger; A Desperate Venture; A Race Against Death; Kidnap

8 The Reign of Terror A Land of Fear; Guests of Madame Guillotine; A Change of Identity; The Tyrant of France; A Bargain of Necessity; Prisoners of
Conciergerie

Phase 2
● A Java web application was written to allow end users to maintain

the recipients.
● Recipients can be pulled from other tables.
● More than just shell script + psql reports use the tables.
● Just assigned report ID 79!

● Automate some more pieces of the shell script.
● Set database connection information from common environment

file.
● Directly call a certain version of psql from common environment

file.
● Still no plans to create the complex system.

Future Phases?

Fascinating Reporting
with Postgres psql

and sendmail

Thank You!
https://www.osti.gov/servlets/purl/1560062

Download this presentation from OSTI.GOV:

https://www.osti.gov/servlets/purl/1560062

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88

