Fascinating Reporting
with Postgres psq|l
and sendmalill

Presented by Christopher L. Augustus
https://orcid.org/0000-0001-7297-2325

PostgresOpen 2019, Orlando, Florida
2:30 PM, Thursday, September 12, 2019
Salons 13-15

https://www.ostl.gov/servlets/purl/1560062

https://orcid.org/0000-0001-7297-2325
https://www.osti.gov/servlets/purl/1560062

About the Speaker

Tennessee Blue Book 2017-2018, page 685

ARAY

A
Information F _.? B I:Iffjl;g of I:_'IF.‘i-:E.Df Sc_:iennﬁ-::_and Rk Free East Tennessee
International \4/ENERGY science Technical Information E(] PODCAST D]
Associates

https://www.iiaweb.com/ https://www.osti.gov e

22&sort=-publicdate

https://www.osti.gov/
https://www.iiaweb.com/
https://archive.org/search.php?query=subject%3A%22RFETN%22&sort=-publicdate
https://archive.org/search.php?query=subject%3A%22RFETN%22&sort=-publicdate
https://archive.org/search.php?query=subject%3A%22RFETN%22&sort=-publicdate

The Plan

@ Automated Reporting System

@ UNIX/Linux sendmaill

@ Postgres SQL

@® Postgres psal

Two Development Theories

Paul McCartney
John Lennon

Simple Doctor Who Database

* Simple schema "dw" of two tables "stories" (every classic Doctor Who story intended for
broadcast between 1963 and 1989) and "episodes" (every broadcast episode).

* A script to create the "dw" schema and the two tables can be found here:
* http://www.knology.net/~augustus/presentations/build_dw.txt

159 Records

stories
Column Type Nullable
st_id SMALLINT NOT NULL
st_code CHARACTER VARYING(3)
st_name CHARACTER VARYING(31)
doctor CHARACTER VARYING(21)
season SMALLINT
V‘Va_m
episodes
Column Type Nullable
st_id SMALLINT NOT NULL
ep_number SMALLINT NOT NULL
ep_name CHARACTER VARYING(31)
airdate DATE
episode_exists BOOLEAN

695 Records

http://www.knology.net/~augustus/presentations/build_dw.txt

What is psql?

 Official Webpage:
https://www.postgresqgl.org/docs/current/app-psql.html
* PostgreSQL interactive terminal (psql)
* A terminal-based front-end to Postgres.
* Type In queries interactively, issue them to Postgres, and see the
guery results.
 Alternatively, input can be from a file or from command line
arguments.
* Provides a number of meta-commands and various shell-like
features to facilitate writing scripts and automating a wide variety
of tasks.

https://www.postgresql.org/docs/current/app-psql.html

One Way to Connect to Postgres with psql

e Setup a ".pgpass" file.
* https://www.postgresqgl.org/docs/current/libpg-pgpass.html

e Set four environment variables:
export PGDATABASE=postgres

export PGHOST=localhost
export PGPORT=5432
export PGUSER=chris

https://www.postgresql.org/docs/current/libpq-pgpass.html

Default psql Settings

Example of a simple query with all default settings.

SELECT
FROM
WHERE
ORDER BY
st_id |

*

dw.stories

season = 1

st_id; —i———

st_code | st_name | doctor
_________ o o o e e m e e e m e e e e e e e e e e e et e e e e e e e e mmm - -
A | An Unearthly Child | William Hartnell
B | The Daleks | William Hartnell
C | The Edge of Destruction | William Hartnell
D | Marco Polo | William Hartnell
E | The Keys of Marinus | William Hartnell
F | The Aztecs | william Hartnell
G | The Sensorites | William Hartnell
H | The Reign of Terror | William Hartnell

RRRRRRRR

psgl Meta Commands

https://www.postgresql.org/docs/current/app-psgl.htmi#APP-PSQL-META-COMMANDS
* Always start with a backslash \.
* Postgres 11 has 56 major backslash commands.
e Quick overview of some meta commands:
* \q to cleanly exit psq|l.
* \n or \help for getting help on SQL commands.
* \d useful for showing details of database objects.
* \echo for outputting strings and variables.
 \copy IS an awesome way to get data into and out of Postgres!!!
* \if for conditional statements — new in Postgres 11.
* \set is useful for setting and viewing psql variables.
* \pset is useful for formatting query output.

https://www.postgresql.org/docs/current/app-psql.html#APP-PSQL-META-COMMANDS

\pset

* Sets the formatting of query output tables.
* In Postgres 11, typing \pset on a default configured psqgl returns:

border

columns 0
expanded off
fieldsep "1
fieldsep_zero off
footer on
format aligned
linestyle ascii
null n
numericlocale off
pager 1
pager_min_1lines 0]
recordsep "\n'
recordsep_zero off
tableattr

title

tuples_only off

unicode_border_linestyle single
unicode_column_linestyle single
unicode_header_linestyle single

\pset linestyle ascii < \pset border 0

Query with a border of zero.

\pset linestyle ascii
\pset border 0

SELECT *

FROM dw.stories
WHERE season = 1
ORDER BY st_id;

st_id st_code st_name doctor season
1A An Unearthly Child wWilliam Hartnell 1
2B The Daleks wWilliam Hartnell 1
3C The Edge of Destruction William Hartnell 1
4 D Marco Polo wWilliam Hartnell 1
5 E The Keys of Marinus wWilliam Hartnell 1
6 F The Aztecs wWilliam Hartnell 1
7 G The Sensorites wWilliam Hartnell 1
8 H The Reign of Terror William Hartnell 1

(8 rows)

\pset linestyle ascii

\pset border 1

Query with a border of one which is the default.

\pset linestyle ascii
\pset border 1

SELECT *

FROM dw.stories

WHERE season = 1

ORDER BY st_id;

st_id | st_code | st_name | doctor | season

------- dhe o comneotho oo ne cocomne oo comae oo m oo otho o e o —oe— e oo oo adho o o oo o0
1] A | An Unearthly Child | William Hartnell | 1
2 | B | The Daleks | william Hartnell | 1
3] C | The Edge of Destruction | William Hartnell | 1
4 | D | Marco Polo | wWilliam Hartnell | 1
5 | E | The Keys of Marinus | William Hartnell | 1
6 | F | The Aztecs | William Hartnell | 1
71 G | The Sensorites | William Hartnell | 1
8 | H | The Reign of Terror | William Hartnell | 1

)

\pset linestyle ascii

Query with a border of two.

\pset border 2

\pset linestyle ascii
\pset border 2

SELECT *

FROM dw.stories

WHERE season = 1

ORDER BY st_id;

t-cmam-- S P -
| st_id | st_code | st_name

L P -
| 1] A | An Unearthly Child

| 2 | B | The Daleks

| 3| C | The Edge of Destruction
| 4 | D | Marco Polo

| 5| E | The Keys of Marinus

| 6 | F | The Aztecs

| 7 | G | The Sensorites

| 8 | H | The Reign of Terror

L P -

wWilliam
william
william
william
william
william
william
william

Hartnell
Hartnell
Hartnell
Hartnell

Hartnell
Hartnell
Hartnell

I
I
I
I
Hartnell |
I
I
I

\pset linestyle unicode

* \pset linestyle has three options:
e ascil — displays the borders with ASCII7 characters.
* old-ascii — for compatibility to 8.4 and earlier.
e unicode — displays the boarders with Unicode box drawing
characters.

\pset linestyle unicode

Query with a border of zero.

\pset border 0

\pset linestyle unicode
\pset border 0

SELECT *

FROM dw.stories

WHERE season = 1

ORDER BY st_id;

st_id st_code st_name doctor season
1A An Unearthly Child wWilliam Hartnell 1
2B The Daleks wWilliam Hartnell 1
3C The Edge of Destruction William Hartnell 1
4 D Marco Polo wWilliam Hartnell 1
5 E The Keys of Marinus wWilliam Hartnell 1
6 F The Aztecs wWilliam Hartnell 1
7 G The Sensorites wWilliam Hartnell 1
8 H The Reign of Terror William Hartnell 1

(8 rows)

\pset linestyle unicode

Query with a border of one.

\pset border 1

\pset linestyle unicode
\pset border 1

SELECT *

FROM dw.stories

WHERE season = 1

ORDER BY st_id;

st_id st_code st_name doctor season

1 A An Unearthly Child wWilliam Hartnell 1
2 B The Daleks wWilliam Hartnell 1
3 C The Edge of Destruction wWilliam Hartnell 1
4 D Marco Polo wWilliam Hartnell 1
5 E The Keys of Marinus wWilliam Hartnell 1
6 F The Aztecs wWilliam Hartnell 1
7 G The Sensorites wWilliam Hartnell 1
8 H The Reign of Terror wWilliam Hartnell 1

(8 rows)

\pset linestyle unicode

Query with a border of two.

\pset border 2

\pset linestyle unicode
\pset border 2

SELECT *

FROM dw.stories

WHERE season = 1

ORDER BY st_id;

st_id st_code st_name doctor season

1| A An Unearthly Child William Hartnell 1
2 B The Daleks wWilliam Hartnell 1
3 C The Edge of Destruction wWilliam Hartnell 1
4 D Marco Polo wWilliam Hartnell 1
5 E The Keys of Marinus wWilliam Hartnell 1
6 F The Aztecs wWilliam Hartnell 1
7 G The Sensorites wWilliam Hartnell 1
8 H The Reign of Terror wWilliam Hartnell 1

(8 rows)

\pset title - \pset footer - \pset tuples_only

* \pset title puts a title above the tables.
e |If title is more than one word, enclose the title with single quotes.
* To remove the title, do not pass any values.
* Once set, a title will show up on every table until changed or

removed!

* \C is a shortcut.

* \pset footer turns on or off the "(x rows)" display at the bottom of a
table.

* \pset tuples_only turns on viewing just the rows or rows and
headers.
* \t is a shortcut.

\pset title

Give the table a title.

\pset linestyle unicode

\pset border 2

\pset title 'Doctor Who Season One'
SELECT *

FROM dw.stories

WHERE season = 1

ORDER BY st_id;

Doctor Who Season One

st_id st_code st_name doctor season
1| A An Unearthly Child William Hartnell 1
2 B The Daleks wWilliam Hartnell 1
3 C The Edge of Destruction wWilliam Hartnell 1
4 D Marco Polo wWilliam Hartnell 1
5 E The Keys of Marinus wWilliam Hartnell 1
6 F The Aztecs wWilliam Hartnell 1
7 G The Sensorites wWilliam Hartnell 1
8 H The Reign of Terror wWilliam Hartnell 1

(8 rows)

\pset footer

Removes the footer.

\pset linestyle unicode
\pset border 2
\pset footer off

SELECT

FROM dw.stories

WHERE season = 1

ORDER BY st_id;

st_id st_code st_name doctor season

1 A An Unearthly Child wWilliam Hartnell 1
2 B The Daleks wWilliam Hartnell 1
3 C The Edge of Destruction wWilliam Hartnell 1
4 D Marco Polo wWilliam Hartnell 1
5 E The Keys of Marinus william Hartnell 1
6 F The Aztecs wWilliam Hartnell 1
7 G The Sensorites wWilliam Hartnell 1
8 H The Reign of Terror wWilliam Hartnell 1

\pset tuples_only

Show just the rows of the table. (Also set the boarder to zero.)

\pset
\pset

FROM
WHERE
ORDER

o~NOUThWNR
IOTMMOOm>

SELECT

border 0
tuples_only on
*
dw.stories
season = 1
BY st_id;
An Unearthly Child
The Daleks
The Edge of Destruction
Marco Polo
The Keys of Marinus
The Aztecs
The Sensorites
The Reign of Terror

wWilliam
william
william
wWilliam
william
william
william
william

Hartnell
Hartnell
Hartnell
Hartnell
Hartnell
Hartnell
Hartnell
Hartnell

RRRRRRRR

\pset format

* Formats the output in one of eight major formats. So far all
examples have been aligned. Possible values are:
* unaligned
e aligned
e wrapped
* html
e asciidoc
* |atex
* latex-longtable
e troff-ms

\pset format asciidoc
Added in Postgres 9.5.

\pset format asciidoc

\pset title 'Doctor Who Season One'

SELECT *

FROM dw.stories

WHERE season = 1

ORDER BY st_id;

.Doctor Who Season One
[options="header",cols=">1,<1,<1,<1,>1",frame="none"]

Al|st_id Al|st_code Al|st_name Al|doctor Al|season
|1 |A |An Unearthly Child |william Hartnell |1

|2 |B |The Daleks |William Hartnell |1

|3 |C |The Edge of Destruction |William Hartnell |1
|4 |D |Marco Polo |William Hartnell |1

|5 |E |The Keys of Marinus |William Hartnell |1

|6 |F |The Aztecs |[William Hartnell |1

|7 |G |The Sensorites |William Hartnell |1

|8 |H |The Reign of Terror |[William Hartnell |1

&él;ows)

\pset format unalignhed

By default, unaligned data is pipe delimited. Can be configured.

\pset format unaligned

\pset title 'Doctor Who Season One'

SELECT *

FROM dw.stories

WHERE season = 1

ORDER BY st_id;

Doctor Who Season One
st_id|st_code|st_name|doctor |season

1|A|An Unearthly Child|william Hartnell|1
2|B|The Daleks|William Hartnell|1

3|C|The Edge of Destruction|William Hartnell|1
4|D|Marco Polo|wWilliam Hartnell|1

5|E|The Keys of Marinus|William Hartnell|1
6|F|The Aztecs|William Hartnell|1

7|G|The Sensorites|William Hartnell|1l
8|H|The Reign of Terror|William Hartnell|1l
(8 rows)

\pset fieldsep (defaults to the pipe)
\pset recordsep (defaults to a newline)

\pset format html

Produces code for HTML table. Great format for e-mailed reports.

\pset format html
\pset title 'Doctor Who Season One'
SELECT *
FROM dw.stories
WHERE season = 1
ORDER BY st_id;
<table border="1">
<caption>Doctor Who Season One</caption>
<tr>
<th align="center">st_id</th>
<th align="center">st_code</th>
<th align="center">st_name</th>
<th align="center">doctor</th>
<th align="center'">season</th>
</tr>
<tr valign="top">
<td align="right">1</td>
<td align="left">A</td>
<td align="left">An Unearthly Child</td>
<td align="1left">William Hartnell</td>
<td align="right">1</td>
</tr>
<tr valign="top">
<td align="right">2</td>
<td align="1left">B</td>
<td align="1left">The Daleks</td>
<td align="left">William Hartnell</td>
<td align="right">1</td>

<tr va
<td
<td
<td
<td
<td
</tr>
<tr va
<td
<td
<td
<td
<td
</tr>
<tr va
<td
<td
<td
<td
<td
</tr>
</table>

lign="top">

align="right">6</td>
align="left">F</td>
align="1left">The Aztecs</td>
align="left">wWilliam Hartnell</td>
align="right">1</td>

lign="top">

align="right">7</td>
align="1left">G6</td>
align="1left">The Sensorites</td>
align="1left">wWilliam Hartnell</td>
align="right">1</td>

lign="top">

align="right">8</td>
align="left">H</td>

align="1left">The Reign of Terror</td>
align="T1eft">William Hartnell</td>
align="right">1</td>

<p>(8 rows)

</p>

Example of the output as an HTML table.

\pset format html

Doctor Who Season One

st id st code st_name doctor season
1 A An Unearthly Child William Hartnell 1
2 B The Daleks William Hartnell 1
3 C The Edge of Destruction William Hartnell 1
4D Marco Polo William Hartnell 1
5 E The Keys of Marinus William Hartnell 1
6 F The Aztecs William Hartnell 1
71 G The Sensorites William Hartnell 1
8 H The Reign of Terror William Hartnell 1

(8 rows)

\pset format latex

Produces code in LaTeX format. How do you say LaTeX?

\pset format latex

\pset title 'Doctor Who Season One'
SELECT *

FROM dw.stories

WHERE season = 1

ORDER BY st_id;

\begin{center}

Doctor Who Season One

\end{center}

\begin{tabular}{r | T | 1L | 1 | r}

\textit{st_id} & \textit{st_code} & \textit{st_name} & \textit{doctor} & \textit{season} \\
\hline

18& An Unearthly Child & William Hartnell & 1 \\

The Daleks & William Hartnell & 1 \\

The Edge of Destruction & William Hartnell & 1 \\
Marco Polo & William Hartnell & 1 \\

The Keys of Marinus & William Hartnell & 1 \\

The Aztecs & William Hartnell & 1 \\

The Sensorites & William Hartnell & 1 \\

The Reign of Terror & William Hartnell & 1 \\
end{tabular}

TOTMOOm™>
R0 R0 R R0 RO RO RO Ro

2 &
3 &
4 &
5 &
6 &
7 &
8 &
\en

\noindent (8 rows) \\

\pset format troff-ms

An output format dating back to the 1960s!

\pset format troff-ms
\pset title 'Doctor Who Season One'
SELECT *

FROM dw.stories

WHERE season = 1

ORDER BY st_id;

.LP

.DS C

Doctor Who Season One

.DE

.LP

.TS

center;,

r| 1| 1| 1] r.
\fIst_id\fP \fIst_code\fP

1 A An Unearthly Child

2 B The Daleks william
3 C The Edge of Destruction
4 D Marco Polo william
5 E The Keys of Marinus

6 F The Aztecs william
7 G The Sensorites William
8 H The Reign of Terror

.TE

.DS L

(8 rows)

.DE

\fIst_name\fP

\fIdoctor\fP

William Hartnell

Hartnell 1
William Hartnell
Hartnell 1
William Hartnell
Hartnell 1
Hartnell 1

William Hartnell

\fIseason\fP
1

1

\pset expanded

* Expanded can be on or off.
* If on, expanded displays data in two columns.
* The first column contains the field names.
* The second column contains the field values.
* Expanded display is useful for displaying data from very wide
tables.
e Shortcut \x

\pset expanded off

\pset expanded

The Reign of Terror

SELECT st_id, st_name
FROM dw.stories
WHERE season = 1
ORDER BY st_id;
st_id | st_name
_______ oo e e e e e e e e e e e e e ==
1 | An Unearthly Child
2 | The Daleks
3 | The Edge of Destruction
4 | Marco Polo
5 | The Keys of Marinus
6 | The Aztecs
7 | The Sensorites
I
)

\pset expanded on

SELECT st_id, st_name

FROM dw.stories

WHERE season = 1

ORDER BY st_id;

-[RECORD 1]--------c-ccommcnu-
st_id | 1

st_name | An Unearthly Child

- RECERD 2 Je-occcooosnooeonomes
st_id | 2

st_name | The Daleks

[RECEHRD B Je-oeccooosoomconoces
st_id | 3

st_name | The Edge of Destruction
-[RECORD 4]--------ccmmmcmcam-
st_id | 4

st_name | Marco Polo

-[RECORD 5]---------c-cmcmma-
st_id | 5

st_name | The Keys of Marinus

T RECERD B Jecooccamasnnne on e e
st_id | 6

st_name | The Aztecs

-[RECORD 7]---------mmmcmeea-
st_id | 7

st_name | The Sensorites

-[RECORD 8]---------c-cccmmemu-
st_id | 8

st_name | The Reign of Terror

\copy

Very powerful meta-command! Example outputting a CSV file.

-- Output to the screen.

\copy (SELECT * FROM dw.stories WHERE season = 1 ORDER BY st_id) TO STDOUT CSV HEADER;
st_id, st_code, st_name, doctor, season

1,A,An Unearthly Child,william Hartnell, 1

2,B,The Daleks,William Hartnell, 1

3,C, The Edge of Destruction,William Hartnell, 1

4,D,Marco Polo,William Hartnell, 1

5,E,The Keys of Marinus,William Hartnell, 1

6,F, The Aztecs,William Hartnell, 1

7,G, The Sensorites,William Hartnell, 1

8,H, The Reign of Terror,William Hartnell, 1

-- Output to a file from the machine where psql is running.

\copy (SELECT * FROM dw.stories WHERE season = 1 ORDER BY st_id) TO 'dw.csv' CSV HEADER;
COPY 8

Can output in three formats: CSV, text, and binary.

Explore SQL

« SQL Command Reference:

* https://www.postgresgl.org/docs/current/sqgl-commands.html
« SELECT Statement Reference:

* https://www.postgresqgl.org/docs/current/sql-select.html

https://www.postgresql.org/docs/current/sql-commands.html
https://www.postgresql.org/docs/current/sql-select.html

Change the Column Headings

Put friendly column headings inside double quotes.

SELECT st_id "#",

st_name "Story Name"
FROM dw.stories
WHERE season = 1

ORDER BY "#"; ’
| Story Name

e
| An Unearthly Child

| The Daleks

| The Edge of Destruction
| Marco Polo

| The Keys of Marinus

| The Aztecs

| The Sensorites

| The Reign of Terror
rows)

OO ~NO O WNPE

~

Subqueries in SELECT Clause

A subguery can be used to count the number of detall records.

SELECT st_id "#",

st_name "Story Name",

(SELECT COUNT(*) -

FROM dw.episodes e

WHERE e.st_id = s.st_id) "Episode Count"
FROM dw.stories s
WHERE season = 1
ORDER BY "#";

| Story Name |
o ccoc oo o= =
| An Unearthly Child |
| The Daleks |
| The Edge of Destruction |
| Marco Polo |
| The Keys of Marinus |
| The Aztecs |
| The Sensorites |
| The Reign of Terror |
e

OO ~NOOTDSWNPE
OO0 O NDNN B

—~

Groups
Group by ID and name and use the aggregate function COUNT.

SELECT s.st_id "#",
st_name "Story Name",
COUNT(*) "Episode Count"
FROM dw.stories s JOIN dw.episodes e ON (s.st_id = e.st_id)
WHERE season = 1
GROUP BY "#",'"Story Name"
ORDER BY "#";
| Story Name | Episode Count

| An Unearthly Child |
| The Daleks |
| The Edge of Destruction |
| Marco Polo |
| The Keys of Marinus |
| The Aztecs |
| The Sensorites |
| The Reign of Terror |
-

OO ~NO OIS WNBE
OO0 BOONNN D

~

USING

The USING (field) keyword cuts down on typing ON (field1 = field2).

SELECT st_id "#",
st_name "Story Name",
COUNT(*) "Episode Count"
FROM dw.stories JOIN dw.episodes USING (st_id)
WHERE season = 1
GROUP BY "#",'"Story Name"
ORDER BY "#";
| Story Name | Episode Count

| An Unearthly Child |
| The Daleks |
| The Edge of Destruction |
| Marco Polo |
| The Keys of Marinus |
| The Aztecs |
| The Sensorites |
| The Reign of Terror |
-

OO ~NO OIS WNBE
OO0 BOONNN D

—~

Know Your Data!

* It Is Important to know how clean or dirty your data is.
* But what if there was a story without any episodes?

Subqueries

There are no episode detail records for Shada. This is correct.

SELECT st_id "#",
st_name "Story Name",
(SELECT COUNT(*)
FROM dw.episodes e
WHERE e.st_id = s.st_id) "Episode Count"
FROM dw.stories s
WHERE season = 17
ORDER BY "#";

| Story Name | Episode Count
_____ e ccc—ccococccoooccoococcoocooocdlo s s cc oo s e oD = o o=
104 | Destiny of the Daleks | 4
105 | City of Death | 4
106 | The Creature from the Pit | 4
107 | Nightmare of Eden | 4
108 | Horns of Nimon | 4
109 | Shada | 0

(6 rows)

JOIN

A normal join leaves off Shada.

SELECT

FROM
WHERE

St_id ||#|| ,
st_name "Story Name",
COUNT(*) "Episode Count"

dw.stories JOIN dw.episodes USING (st_id)

season = 17

GROUP BY "#","Story Name"
ORDER BY "#";

| Story Name | Episode Count
_____ o
104 | Destiny of the Daleks | 4
105 | City of Death | 4
106 | The Creature from the Pit | 4
107 | Nightmare of Eden | g 4
108 | Horns of Nimon AT 4
(5 rows) / ngb/jy

OUTER JOIN

The outer join included Shada. But Shada shows one episode?

SELECT st_id "#",
st_name "Story Name",
COUNT(*) "Episode Count"
FROM dw.stories LEFT OUTER JOIN dw.episodes USING (st_id)
WHERE season = 17
GROUP BY "#",'"Story Name"
ORDER BY "#";

| Story Name | Episode Count
_____ o
104 | Destiny of the Daleks | 4
105 | City of Death | 4
106 | The Creature from the Pit | 4
107 | Nightmare of Eden | 4
108 | Horns of Nimon | 4
109 | Shada | 1 A~
(6 rows) / V$5 /;
> @Q

COUNT(field)

Counting the non NULL ep_number fields now returns zero.

SELECT st_id "#",
st_name "Story Name",
COUNT(ep_number) "Episode Count"
FROM dw.stories LEFT OUTER JOIN dw.episodes USING (st_id)
WHERE season = 17
GROUP BY "#",'"Story Name"
ORDER BY "#";

| Story Name | Episode Count
_____ o
104 | Destiny of the Daleks | 4
105 | City of Death | 4
106 | The Creature from the Pit | 4
107 | Nightmare of Eden | 4
108 | Horns of Nimon | 4
109 | Shada | 0

(6 rows)

Sorting Results

Join the season 17 stories to episodes and sort the results.

SELECT st_id "#",
st_name "Story Name",
ep_name "Episode Name"
FROM dw.stories LEFT OUTER JOIN dw.episodes USING (st_id)
WHERE season = 17
ORDER BY "#","Episode Name";
| Story Name | Episode Name
_____ e ccc—ccococccocococcocooccooccoooodlc oo cc oo o s o=
104 | Destiny of the Daleks | Part Four
104 | Destiny of the Daleks | Part One
104 | Destiny of the Daleks | Part Three
104 | Destiny of the Daleks | Part Two
105 | City of Death | Part Four
105 | City of Death | Part One
105 | City of Death | Part Three
105 | City of Death | Part Two
108 | Horns of Nimon | Part Four
108 | Horns of Nimon | Part One
108 | Horns of Nimon | Part Three
108 | Horns of Nimon | Part Two
109 | Shada |
(21 rows)

Sorting Results

Episodes are sorted correctly.

SELECT st_id "#",
st_name "Story Name",
ep_name "Episode Name"
FROM dw.stories LEFT OUTER
WHERE season = 17
ORDER BY "#",ep_number;
| Story Name
----- +
104 | Destiny of the Daleks
104 | Destiny of the Daleks
104 | Destiny of the Daleks
104 | Destiny of the Daleks
105 | City of Death
105 | City of Death
105 | City of Death
105 | City of Death
108 | Horns of Nimon
108 | Horns of Nimon
108 | Horns of Nimon
108 | Horns of Nimon
109 | Shada
(21 rows)

JOIN dw.episodes USING (st_id)

| Episode Name

Part
Part
Part
Part
Part
Part
Part
Part

Part
Part
Part
Part

Arrays

* Nine years ago, | wondered who on earth needed arrays in a
relational database.

* This was before discovering the rich set of functions in Postgres to
handle arrays.

* The use of array fields in tables at OSTI are rare.

e Using arrays in reports has become quite common.

* For reference, see aggregate functions documentation:
* https://www.postgresql.org/docs/current/functions-aggregate.html

https://www.postgresql.org/docs/current/functions-aggregate.html

ARRAY_AGG

Episodes are accurately shown as an array. Can it be prettied up?

SELECT st_id "#",

st_name "Story Name",

ARRAY_AGG (ep_name ORDER BY ep_number) "Episode Names"
FROM dw.stories LEFT OUTER JOIN dw.episodes USING (st_id)
WHERE season = 17
GROUP BY "#",'"Story Name"
ORDER BY "#";

| Story Name | Episode Names

_____ e
104 | Destiny of the Daleks | {"Part One","Part Two","Part Three","Part Four"}
105 | City of Death | {"Part One","Part Two","Part Three", "Part Four"}
106 | The Creature from the Pit | {"Part One",'"Part Two", "Part Three", "Part Four"}
107 | Nightmare of Eden | {"Part One","Part Two","Part Three","Part Four"}
108 | Horns of Nimon | {"Part One","Part Two","Part Three", "Part Four"}
109 | Shada | {NULL}

(6 rows)

ARRAY_TO_STRING

Episodes are now shown delimited by a semicolon and a space.

SELECT st_id "#",
st_name "Story Name",
ARRAY_TO_STRING (ARRAY_AGG (ep_name ORDER BY ep_number),'; ') "Episode Names"
FROM dw.stories LEFT OUTER JOIN dw.episodes USING (st_id)
WHERE season = 17
GROUP BY "#","Story Name"
ORDER BY "#";
| Story Name | Episode Names

| Destiny of the Daleks |

| City of Death |

106 | The Creature from the Pit | Part One; Part Two; Part Three; Part Four
| Nightmare of Eden | Part One; Part Two; Part Three; Part Four
| Horns of Nimon | Part One; Part Two; Part Three; Part Four

109 | Shada |

(6 rows)

Temporary Table

Select the ID, story name, and an array of episode names.

SELECT

FROM

st_id |

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

(159 rows)

1 | An Unearthly Child
2 | The Daleks
3 | The Edge of Destruction

Revelation of the Daleks

The Mysterious Planet

Mindwarp |
Terror of the Vervoids

The Ultimate Foe

Time and the Rani

Paradise Towers

Delta and the Bannermen
Dragonfire | {"Part One","Part Two","Part Three"}
Remembrance of the Daleks |
The Happiness Patrol

Silver Nemesis

The Greatest Show in the Galaxy |
Battlefield |
Ghost Light |
The Curse of Fenric

159 | Survival

st_id,

st_name,

ARRAY_AGG (ep_name ORDER BY ep_number) ep_names
dw.stories LEFT OUTER JOIN dw.episodes USING (st_id)

GROUP BY st_id, st_name
ORDER BY st_id;

st_name ep_names
{"An Unearthly Child","The Cave of Skulls","The Forest of Fear","The Firemaker"}

{"The Dead Planet","The Survivors","The Escape","The Ambush","The Expedition","The Ordeal", "The Rescue"}
{"The Edge of Destruction","The Brink of Disaster"}

{"Part One","Part Two"}

{"Part One","Part Two","Part Three","Part Four"}
{"Part Five", "Part Six", "Part Seven","Part Eight"}
{"Part Nine",6 "Part Ten", "Part Eleven", "Part Twelve"}
{"Part Thirteen","Part Fourteen"}

{"Part One","Part Two","Part Three","Part Four"}
{"Part One","Part Two","Part Three","Part Four"}
{"Part One","Part Two","Part Three"}

{"Part One","Part Two","Part Three","Part Four"}
{"Part One","Part Two","Part Three"}
{"Part One","Part Two","Part Three"}
{"Part One","Part Two","Part Three","Part Four"}
{"Part One","Part Two","Part Three","Part Four"}
{"Part One","Part Two","Part Three"}
{"Part One","Part Two","Part Three","Part Four"}
{"Part One","Part Two","Part Three"}

CREATE TEMPORARY TABLE

Creates a temporary table that only lasts as long as the session.

CREATE TEMPORARY TABLE stories_episodes AS

SELECT st_id,
st_name,
ARRAY_AGG (ep_name ORDER BY ep_number) ep_names
FROM dw.stories LEFT OUTER JOIN dw.episodes USING (st_id)

GROUP BY st_id, st_name
ORDER BY st_id;

SELECT *

FROM stories_episodes

ORDER BY st_id;

st_id | st_name | ep_names

_______ e e

1 | An Unearthly Child | {"An Unearthly Child","The Cave of Skulls","The Forest of Fear","The Firemaker"}

159 | Survival
(159 rows)

| {"Part One","Part Two","Part Three"}

\d stories_episodes
Table "pg_temp_3.stories_episodes"”

ep_names

character varying[]

Column | Type | Collation | Nullable | Default
---------- feccococoocooocoocoocoocooocoifcococcoc-ocooffoocoocooocooifscocsooooo
st_id | smallint | | |
st_name | character varying(31) | | | ’
| I |

UNNEST

Takes an array and makes separate rows for each element.

SELECT st_id "#",
st_name "Story",
UNNEST (ep_names) "Episodes"

FROM stories_episodes
WHERE st_id IN (1,2,3)

ORDER BY st_id;

| Story | Episodes
—ccodbcccccccocccococoococoocooo oo o oo cococ—cccccocco s ===
1 | An Unearthly Child | An Unearthly Child

1 | An Unearthly Child | The Cave of Skulls

1 | An Unearthly Child | The Forest of Fear

1 | An Unearthly Child | The Firemaker

2 | The Daleks | The Dead Planet

2 | The Daleks | The Survivors

2 | The Daleks | The Escape

2 | The Daleks | The Ambush

2 | The Daleks | The Expedition

2 | The Daleks | The Ordeal

2 | The Daleks | The Rescue

3 | The Edge of Destruction | The Edge of Destruction
3 | The Edge of Destruction | The Brink of Disaster
(13 rows) mm—_

UNNEST

See what happens with an empty array.

SELECT st_id "#",
st_name "Story",
UNNEST (ep_names) "Episodes"

FROM stories_episodes
WHERE st_id IN (108,109,110)
ORDER BY st_id;
| Story | Episodes
_____ e ccccccoccoococccoodcccoccco oo o=
108 | Horns of Nimon | Part One
108 | Horns of Nimon | Part Two
108 | Horns of Nimon | Part Three
108 | Horns of Nimon | Part Four
109 | Shada |
110 | The Leisure Hive | Part One
110 | The Leisure Hive | Part Two
110 | The Leisure Hive | Part Three
110 | The Leisure Hive | Part Four

Create a New Temporary Table

This time the episode names column is semicolon delimited.

CREATE TEMPORARY TABLE new_stories_episodes AS

SELECT st_id,

st_name,

ARRAY_TO_STRING (ARRAY_AGG (ep_name ORDER BY ep_number),'; ') ep_names
FROM dw.stories LEFT OUTER JOIN dw.episodes USING (st_id)

GROUP BY st_id, st_name
ORDER BY st_id;

SELECT *

FROM new_stories_episodes
ORDER BY st_id;

st_id | st_name ep_names

_______ e mcmmmcmccmmcc e e, e e, e e e —— -
1 | An Unearthly Child

158 | The Curse of Fenric
159 | Survival
(159 rows)

An Unearthly Child; The Cave of Skulls; The Forest of Fear; The Firemaker

| Part One; Part Two; Part Three; Part Four
| Part One; Part Two; Part Three

STRING_TO_ARRAY

Convert the semicolon delimited string into an array.

SELECT st_id "#",
st_name "Story",
ep_names "Episodes",
STRING_TO_ARRAY (ep_names,'; ') "Episodes Array"
FROM new_stories_episodes
WHERE st_id IN (108,109,110)
ORDER BY st_id;

| Story | Episodes | Episodes Array
----- ffooococoooooooooocoffooSoSooCoSooSoCCoSooCoCooSOCCoSooSoCooSoOCooiFooSoSooSoSSoSoSSoSooSoSooSoSooSoSooSoocooooooooood
108 | Horns of Nimon | Part One; Part Two; Part Three; Part Four | {"Part One","Part Two", "Part Three", "Part Four"}
109 | Shada | | {3}

110 | The Leisure Hive | Part One; Part Two; Part Three; Part Four | {"Part One","Part Two","Part Three", "Part Four"}
(3 rows)

DISTINCT and DISTINCT ON

* For reference:
* https://www.postgresqgl.org/docs/current/queries-select-lists.html#QUERIES-DISTINCT
* https://www.postgresqgl.org/docs/current/sql-select.ntml

* DISTINCT is part of the SQL standard.

* Very useful to show unigue or distinct values only in a query.
* DISTINCT ON () is not part of the SQL standard.

* Can be used as a shortcut of very basic windowing functions.

https://www.postgresql.org/docs/current/queries-select-lists.html#QUERIES-DISTINCT
https://www.postgresql.org/docs/current/sql-select.html

DISTINCT

Shows one record for each unique or distinct episode name.

SELECT DISTINCT
ep_name "Distinct Episode Names"

FROM dw.stories LEFT OUTER JOIN dw.episodes USING (st_id)
WHERE season = 17

ORDER BY "Distinct Episode Names";

Distinct Episode Names

Part Four

Part One

Part Three

Part Two

(5 rows)\

COALESCE

Coalesce turns NULL values into a displayable value.

SELECT DISTINCT
COALESCE (ep_name, "'None') "Distinct Episode Names"
FROM dw.stories LEFT OUTER JOIN dw.episodes USING (st_id)
WHERE season = 17
ORDER BY "Distinct Episode Names";
Distinct Episode Names

DISTINCT ON ()

What is the first episode name of each story?

Funny story!

(8 rows)

SELECT DISTINCT ON (st_id)
st_name "Story",
ep_number "Episode Number",
ep_name "First Episode Name"
FROM dw.stories LEFT OUTER JOIN dw.episodes USING (st_id)
WHERE season = 1
ORDER BY st_id, ep_number;

Story | Episode Number | First Episode Name
_________________________ o
An Unearthly Child | 1 | An Unearthly Child
The Daleks | 1 | The Dead Planet
The Edge of Destruction | 1 | The Edge of Destruction
Marco Polo | 1 | The Roof of the World
The Keys of Marinus | 1 | The Sea of Death
The Aztecs | 1 | The Temple of Evil
The Sensorites | 1 | Strangers in Space
The Reign of Terror | 1 | A Land of Fear

DISTINCT ON ()

What is the last episode name of each story?

st_name "Story",

WHERE season = 1

Story
An Unearthly Child
The Daleks
The Edge of Destruction
Marco Polo
The Keys of Marinus
The Aztecs
The Sensorites
The Reign of Terror
(8 rows)

SELECT DISTINCT ON (st_id)
ep_number "Episode Number",
ep_name "Last Episode Name"

FROM dw.stories LEFT OUTER JOIN dw.episodes USING (st_id)

ORDER BY st_id, ep_number DESC;

Episode Number

OO0 PO NNN D

Last Episode Name
The Firemaker
The Rescue
The Brink of Disaster
Assassin at Peking
The Keys of Marinus
The Day of Darkness
Kidnap
Prisoners of Conciergerie

® UNIX/Linux sendmaill

sendmail

* Sendmail is an electronic mail transport agent.

* Sendmail sends a message to one or more recipients, routing the
message over whatever networks are necessary. Sendmail does
Internetwork forwarding as necessary to deliver the message to the
correct place.

e Dates back to 1983!

« sendmall -t reads the message for recipients.

Hello World

Very simple "Hello world." e-mail message from sendmail.

cat >tmp.txt

To: chris@localhost

Subject: Test One

Hello world. This is test one.
[Control-D]

$ cat tmp.txt | sendmail -t

From: chris@localhost

Sent: Sunday, September 1, 2019 3:14 PM
To: chris@localhost

Subject: Test One

Hello world. This is test one.

More Complex Example

Send the same e-mail to multiple recipients and provide a from.

cat >tmp.txt

To: apple@localhost

To: bag@localhost

Cc: cat@localhost

Cc: dog@localhost

Bcc: ear@localhost

Bcc: farm@localhost

From: goat@localhost
Subject: Test Two

This test shows how multiple recipients are specified.
[Control-D]

$ cat tmp.txt | sendmail -t

From: goat@localhost

Sent: Sunday, September 1, 2019 3:15 PM
To: apple@localhost, bag@localhost

Cc: cat@localhost, dog@localhost
Subject: Test Two

This test shows how multiple recipients are specified.

Send Text UTF-8

Send a simple plain character based UTF-8 e-mail.

cat >tmp.txt

To: chris@localhost

Subject: Test Three

MIME-Version: 1.0

Content-Type: text/plain; charset=UTF-8
Content-Disposition: inline

Just wanted to send you this note .b

[Control-D]
$ cat tmp.txt | sendmail -t

From: chris@localhost

Sent: Sunday, September 1, 2019 3:16 PM
To: chris@localhost

Subject: Test Three

Just wanted to send you this note .b

Send HTML

cat >tmp.txt

To: chris@localhost

Subject: Test Four
MIME-Version: 1.0
Content-Type: text/html; charset=UTF-8
Content-Disposition: inline
<htm1>

<body>

Bold

<i>Just testing out HTML.</1i>

End of the page.

</body>

</htm1>

[Control-D]

$ cat tmp.txt | sendmail -t

From: chris@localhost

Sent: Sunday, September 1, 2019 3:17 PM
To: chris@localhost

Subject: Test Four

Bold
Just testing out HTML.
End of the page.

Attach a Binary File

Complex example of sending a message and attachment part 1.

cat >tmp.txt

To: chris@localhost

Subject: Test Six

MIME-Version: 1.0

Content-Type: multipart/mixed; boundary="-glw2e3r4t5" -

---glw2e3r4ts—

Content-Type: text/html; charset=UTF-8
Content-Disposition: inline

<htm1>

<body>

Please see the attached PDF.

</body>

</html>

- -qlw2e3r4t5
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename="document.pdf"
[Control-D]

Attach a Binary File

Complex example of sending a message and attachment part 2.

cat document.pdf | uuencode --base64 document.pdf >>tmp.txt
cat >>tmp.txt

---qlw2e3r4ts5--

[Control-D] ‘

$ cat tmp.txt | sendmail -t

document.pdf

From: chris@Ilocalhost

Sent: Sunday, September 1, 2019 3:19 PM
To: chris@localhost

Subject: Test Six

Please see the attached PDF.

@ Automated Reporting System

A Complex Automated Reporting System

 Earlier this decade, a developer wanted to create a complex
reporting system.
* He wanted to store these things in database tables:
* Recipients
* Titles
* Schedule
e Queries
* Parameters
* No one had time to design it nor implement it.
* Would have only handled the simplest reports.
 Complex reports would still have to be custom written.
e Ultimately never progressed beyond wishes and talk.

A Simple Automated Reporting System

* | had a pain a few summers ago:
| maintained handful of shell script and psqgl reports sent on a cron
schedule via e-mail.
* To change recipients, | had to edit the shell scripts.
* It was sometimes hard to match the e-mail to the shell script.
* There was not a lot of time to create a simple automated reporting
system, so baby steps were taken.

Phase 1

* The requirements for phase 1:
 Come up with database tables to store recipients.
 Come up with a function to get recipients out of database tables
Into sendmail format.
e Assign each report a unique ID.
* Then to test phase 1, create or retrofit an existing low profile report
to prove the idea works.

Phase 1 Database Tables

CREATE TABLE dw.reports

(
report_id INTEGER NOT NULL,
report_title CHARACTER VARYING(200) NOT NULL,
report_description TEXT,
CONSTRAINT reports_pk PRIMARY KEY (report_id)

CREATE TABLE dw.reports_email
(

report_id INTEGER NOT NULL,
fields CHARACTER VARYING(4) NOT NULL,
email_address CHARACTER VARYING(64) NOT NULL,
active_flag BOOLEAN NOT NULL DEFAULT TRUE,

CONSTRAINT reports_email_pk PRIMARY KEY (report_id,fields,email_address),
CONSTRAINT "'fields' can only equal TO, CC, BCC, or FROM"
CHECK (fields IN ('TO','CC','BCC', 'FROM'))

),

Phase 1 Database Function

CREATE OR REPLACE FUNCTION dw.report_sendmail_recipients (INTEGER)
RETURNS SETOF text AS —=i |
$report_sendmail_recipients$
SELECT CASE fields - |
WHEN 'FROM' THEN 'From: '
WHEN 'TO' THEN 'To: '
WHEN 'CC' THEN 'Cc: '
WHEN 'BCC' THEN 'Bcc: '
END || email_address
FROM dw.reports_email
WHERE report_id = $1 AND
active_flag = TRUE
ORDER BY CASE fields —
WHEN 'FROM' THEN
WHEN 'TO' THEN
WHEN 'CC' THEN
WHEN 'BCC' THEN
END,
email_address;
$report_sendmail_recipients$
LANGUAGE SQL VOLATILE; =i

A WNPE

Phase 1 Populate the Tables

INSERT INTO dw.reports
(report_id, report_title, report_description)

VALUES
(1, 'Doctor Who Season Report','A report of a Doctor Who season based on passed in parameter.');

INSERT INTO dw.reports_email
(report_id, fields, email_address)
VALUES
(1, 'TO", 'chris@localhost"'),
(1, '"FROM', '"thedoctor@localhost');

Phase 1 Shell Script (1 of 4)

#

Get the season from parameter 1.
#

export DW_SEASON=%$1

#

Set environment variables for connection. Password is in ".pgpass".
#

export PGDATABASE=postgres

export PGHOST=localhost

export PGPORT=5432

export PGUSER=chris

#

Set the report ID to be the "Doctor Who Season" report.

#

export REPORT_ID=1

Phase 1 Shell Script (2 of 4)

Begin the e-mail.
#

(y y'
psql --quiet <<Endofsql | awk 'NF'

-- Output only tuples, set thte border to zero, and turn off the footer.
\pset tuples_only on

\pset border 0

\pset footer off

-- Output the sendmail recipients from the report e-mails database table.

SELECT dw.report_sendmail_recipients (${REPORT_ID});

-- Output the subject line from the report database table.
SELECT 'Subject: ' || report_title

FROM dw.reports

WHERE report_id = ${REPORT_ID};

-- Start an HTML e-mail.

\echo 'MIME-Version: 1.0'

\echo 'Content-Type: text/html; charset=UTF-8'
\echo 'Content-Disposition: inline'

Phase 1 Shell Script (3 of 4)

\echo '<head><style>'

\echo 'th { background-color: silver; }'

\echo 'caption { background-color: silver; font-size: 120%; font-weight: bolder }'
\echo '</style></head>'

\echo '<body>'

-- Turn off tuples only, set the output format to HTML, set the HTML boarder to 1,
-- set several table attributes, and set the title.

\pset tuples_only off

\pset format html

\pset border 1

\pset tableattr 'cellspacing="0" cellpadding="2""

\pset title 'Season ${DW_SEASON} Report'

-- Run the query
SELECT st_id "#",
st_name "Story Name",
ARRAY_TO_STRING (ARRAY_AGG (ep_name ORDER BY ep_number),'; ') "Episode List"
FROM dw.stories LEFT OUTER JOIN dw.episodes USING (st_id)
WHERE season = ${DW_SEASON}
GROUP BY st_id, st_name
ORDER BY st_id;

Phase 1 Shell Script (4 of 4)

Output the report ID for easy identification of the report.

\echo '
Report ID ${REPORT_ID}'
\echo '</body></html>'

EndOfSql

#

E-Mail the info.

#
)

| /usr/sbin/sendmail -t

Phase 1 Tests

./doctor_who_season 1

From: chris@localhost

Sent: Sunday, September 1, 2019 3:20 PM

To: chris@localhost

Subject: Doctor Who Season Report

Season 1 Report

Story Name

Episode List

1 | An Unearthly Child

An Unearthly Child; The Cave of Skulls; The Forest of Fear; The Firemaker

2 | The Daleks

The Dead Planet; The Survivors; The Escape; The Ambush; The Expedition; The Ordeal; The Rescue

3 | The Edge of
Destruction

The Edge of Destruction; The Brink of Disaster

4 | Marco Polo

The Roof of the World; The Singing Sands; Five Hundred Eyes; The Wall of Lies; Rider From Shang-Tu; Mighty Kublai Khan;
Assassin at Peking

The Keys of Marinus

The Sea of Death; The Velvet Web; The Screaming Jungle; The Snows of Terror; Sentence of Death; The Keys of Marinus

The Aztecs

The Temple of Evil; The Warriors of Death; The Bride of Sacrifice; The Day of Darkness

The Sensorites

Strangers in Space; The Unwilling Warriors; Hidden Danger; A Desperate Venture; A Race Against Death; Kidnap

0 N O o

The Reign of Terror

A Land of Fear; Guests of Madame Guillotine; A Change of Identity; The Tyrant of France; A Bargain of Necessity; Prisoners of
Conciergerie

Report ID 1

Phase 1 Tests

./doctor_who_season 17

From: chris@localhost

Sent: Sunday, September 1, 2019 3:21 PM
To: chris@localhost

Subject: Doctor Who Season Report

Season 17 Report

Story Name Episode List
104 | Destiny of the Daleks Part One; Part Two; Part Three; Part Four
105 | City of Death Part One; Part Two; Part Three; Part Four
106 | The Creature from the Pit Part One; Part Two; Part Three; Part Four
107 | Nightmare of Eden Part One; Part Two; Part Three; Part Four
108 | Horns of Nimon Part One; Part Two; Part Three; Part Four
109 | Shada

Report ID 1

Send E-Malil with CSV Attachment

e Send a report just like the phase 1 report.

e Attached a CSV file that can be opened with Microsoft Excel or
LibreOffice Calc.

 The CSV file will be all the details kept in the database.

* The shell script pieces will be identical to phase 1 report.

* Will utilize the powerful \copy meta-command!

 Blue text will be unchanged lines.

* Red text will be new or changed lines.

CSV Attachment (1 of 4)

#

Begin the e-mail.

#

(

psgql --quiet <<EndOfSql | awk 'NF'

-- Output only tuples, set thte border to zero, and turn off the footer.
\pset tuples_only on

\pset border 0

\pset footer off

-- Output the sendmail recipients from the report e-mails database table.

SELECT dw.report_sendmail_recipients (${REPORT_ID});

-- Output the subject line from the report database table.
SELECT 'Subject: ' || report_title

FROM dw.reports

WHERE report_id = ${REPORT_ID};

CSV Attachment (2 of 4)

-- Start a multipart e-mail.

\echo 'MIME-Version: 1.0'

\echo 'Content-Type: multipart/mixed; boundary="-qlw2e3r4t5"'
\echo

\echo '---gqlw2e3r4t5'

-- The HTML half of the e-mail.

\echo 'Content-Type: text/html; charset=UTF-8'

\echo 'Content-Disposition: inline'

\echo '<html>'

\echo '<head><style>'

\echo 'th { background-color: silver; }'

\echo 'caption { background-color: silver; font-size: 120%; font-weight: bolder }'
\echo '</style></head>'

\echo '<body>'

-- Turn off tuples only, set the output format to HTML, set the HTML boarder to 1,
-- set several table attributes, and set the title.

\pset tuples_only off

\pset format html

\pset border 1

\pset tableattr 'cellspacing="0" cellpadding="2""

\pset title 'Season ${DW_SEASON} Report'

CSV Attachment (3 of 4)

-- Run the query
SELECT st_id "#",
st_name "Story Name",
ARRAY_TO_STRING (ARRAY_AGG (ep_name ORDER BY ep_number),'; ') "Episode List"
FROM dw.stories LEFT OUTER JOIN dw.episodes USING (st_id)
WHERE season = ${DW_SEASON}
GROUP BY st_id, st_name
ORDER BY st_id;

-- Output the report ID for easy identification of the report.
\echo '
Report ID ${REPORT_ID}'

\echo '</body></htm1>'

\echo '---gqlw2e3r4t5"'

CSV Attachment (4 of 4)

-- The CSV attachment half of the e-mail.

\echo 'Content-Type: text/plain; charset=UTF-8'

\echo 'Content-Transfer-Encoding: base64'

\echo 'Content-Disposition: attachment; filename="season_detail.csv"'

-- Create a temporary table of all story and episode records for a season.
CREATE TEMPORARY TABLE temp_season_table AS

SELECT *

FROM dw.stories LEFT OUTER JOIN dw.episodes USING (st_id)

WHERE season = ${DW_SEASON}

ORDER BY st_id, ep_number;

-- Output the temporary table to uuencode

\COPY temp_season_table TO PROGRAM 'uuencode --base64 season_detail.csv' CSV HEADER
\echo '---glw2e3r4t5--"'

EndOfSqgl

#

E-Mail the info.

#

) | /usr/sbin/sendmail -t

CSV Attachment Test

./doctor_who_season 1

[E=] season_detail.csv (4 kB)

From: chris@Ilocalhost

Sent: Sunday, September 1, 2019 3:20 PM

To: chris@localhost

Subject: Doctor Who Season Report

Season 1 Report

Story Name

Episode List

1 | An Unearthly Child

An Unearthly Child; The Cave of Skulls; The Forest of Fear; The Firemaker

2 | The Daleks The Dead Planet; The Survivors; The Escape; The Ambush; The Expedition; The Ordeal; The Rescue
3 | The Edge of The Edge of Destruction; The Brink of Disaster
Destruction

4 | Marco Polo

The Roof of the World; The Singing Sands; Five Hundred Eyes; The Wall of Lies; Rider From Shang-Tu; Mighty Kublai Khan;
Assassin at Peking

The Keys of Marinus

The Sea of Death; The Velvet Web; The Screaming Jungle; The Snows of Terror; Sentence of Death; The Keys of Marinus

The Aztecs

The Temple of Evil; The Warriors of Death; The Bride of Sacrifice; The Day of Darkness

The Sensorites

Strangers in Space; The Unwilling Warriors; Hidden Danger; A Desperate Venture; A Race Against Death; Kidnap

0N O O

The Reign of Terror

A Land of Fear; Guests of Madame Guillotine; A Change of Identity; The Tyrant of France; A Bargain of Necessity; Prisoners of
Conciergerie

Report ID 1

Phase 2

* A Java web application was written to allow end users to maintain
the recipients.

* Recipients can be pulled from other tables.

* More than just shell script + psql reports use the tables.

 Just assigned report ID 79!

Future Phases?

* Automate some more pieces of the shell script.
* Set database connection information from common environment
file.
* Directly call a certain version of psqgl from common environment
file.
 Still no plans to create the complex system.

Fascinating Reporting
with Postgres psq|l
and sendmalill

Thank You!

Download this presentation from OSTI.GOV:
https://www.ostl.gov/servlets/purl/1560062

https://www.osti.gov/servlets/purl/1560062

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88

