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Abstract. Curvilinear-coordinate Monte Carlo phase space integration and a series of 
full-dimensional fitted potential energy surfaces are used to study the effectiveness of 
reduced-dimensional models for predicting rovibrational anharmonicity at high 
temperatures. Fully coupled and fully anharmonic, but classical, rovibrational partition 
functions Q are computed for fourteen species with two or three fluxional modes 
(inversions or torsions) and as many as thirty degrees of freedom. These results are 
converted to semiclassical anharmonicity correction factors f and are analyzed alongside 
results obtained previously for twenty-two species with up to two fluxional modes. As 
expected, fluxional species show considerable variation in f at high temperatures; f is as 
small as 0.2 for acetone and is as large as 9 for methylene glycol at 2500 K. This set of 
full-dimensional results is used to test the accuracy of reduced-dimensional models where 
fluxional modes are treated as coupled to one another but as separable from the remaining 
nonfluxional modes. For most systems, we find that such an approximation is accurate at 
high temperatures, with average errors in Q of just ~25%. For some systems, however, 
larger errors are found, and these are attributed to strong coupling of the fluxional modes 
to one or more nonfluxional modes. In particular, we identify strong coupling to low-
frequency bends for some systems, and we show that by comparing curvilinear and 
rectilinear harmonic frequencies for the fluxional modes we can estimate the effect of this 
coupling on rovibrational anharmonicity. We also quantify the accuracy of the more 
severe but common assumption of treating fluxional modes as separable from one 
another, i.e., as sets of uncoupled one-dimensional inversions and torsions. This approach 
can work well for methyl and alkyl rotors, but it is shown to have errors as large as a 
factor of seven at high temperatures for more complex systems. Finally, we note that 
while the present analysis focuses on the treatment of fluxional modes, the collective 
anharmonicity correction associated with the more numerous nonfluxional modes, while 
simpler to describe, comprises a significant fraction of the overall anharmonicity. 
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1. Introduction 

 The a priori accuracy of gas phase theoretical rate constants and thermochemistry 

continues to improve and, in many cases, now rivals that of the best measurements.1,2 

These improvements may largely be attributed to advances in electronic structure theory, 

which have reduced the errors associated with threshold energies, frequencies, and 

rotational constants. When high-level electronic structure theory methods are used, the 

leading remaining sources of error often include the treatment of rovibrational 

anharmonicity. 

 Rovibrational anharmonicity corrections include both changes to the zero point 

energy as well as deviations from uncoupled harmonic vibrational level progressions. The 

former effect alters the threshold energy (i.e., the barrier height or reaction energy) and 

thus introduces an error that is largest at low temperatures. Here we consider the error 

associated with the latter effect, which, in contrast, is exactly zero at the threshold energy 

and 0 K but increases with energy and can be quite large at high temperatures. 

 A variety of theoretical methods have been advanced for characterizing 

rovibrational anharmonicity, including diffusion Monte Carlo,3,4 variational approaches,5–

16  path integrals, 17 – 24  direct product diagonalization, 25 – 35  empirical methods, 36 , 37 

perturbation theories,38 – 47  specialized methods for torsions,48 – 58  and other separable 

approaches.59–62 Many of these methods are designed for spectroscopic applications and 

are most reliably applied to predict high-accuracy zero point energies and fundamental 

transition energies. There has been relatively less work done to characterize 

anharmonicity at high temperatures and energies. 

 Here we use Monte Carlo phase space integration63–71 (MCPSI) to compute fully 

anharmonic and fully coupled, but classical, rovibrational partition functions. These are 

used to determine rovibrational Pitzer–Gwinn48 anharmonicity corrections f, which is one 

of several semiclassical strategies72–78 that have been developed for improving MCPSI 

predictions. MCPSI is well-suited for studying rovibrational anharmonicity at high 

energies and temperatures, as it describes the classical limit without approximation. 

 We focus on the treatment of fluxional systems, i.e., systems with low-barrier 

inversions, torsions, or both. Fluxional systems are poorly described as collections of 

harmonic oscillators. They may have multiple minima, weakly hindered internal 
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rotations, squarer-than-quadratic inversions, etc., each of which can contribute large 

positive or negative anharmonicities. The overall anharmonicity is generally difficult to 

anticipate as it results from the partial cancellation of a variety of positive and negative 

effects. This is particularly true at high energies and temperatures where the 

anharmonicity of nonfluxional modes cannot be safely neglected, and the overall 

anharmonicity may therefore depend strongly on a large number of rovibrational modes 

and their coupling. 

 The looseness of fluxional modes presents a challenge to MCPSI sampling. We 

recently demonstrated the utility of a curvilinear coordinate implementation of MCPSI, 

and rovibrational anharmonicity corrections f were computed for twenty-two systems 

with zero, one, or two fluxional modes and as many as eight atoms. 79 Here we consider 

fourteen more systems with challenging vibrational structures, with two or three fluxional 

modes, and with as many as eleven atoms. The full set of thirty-six systems is used to 

study trends in rovibrational anharmonicity as a function of system size and for different 

types of fluxional modes. The full-dimensional semiclassical MCPSI results are also used 

as benchmarks to quantify the accuracy of simple reduced-dimensional descriptions of 

fluxional modes. 

 This paper is organized as follows. In Sec. 2.1, the full-dimensional rovibrational 

anharmonicity correction to the partition function, f, and its relationship to the per-mode 

anharmonicity correction G are defined. A reduced-dimensional approach for describing 

the impact of fluxional modes on f is described in Sec. 2.2, along with variations in its 

implementation that will be tested throughout Sec. 3. Sections 2.3 and 2.4 briefly provide 

details related to high performance computing and to the potential energy surfaces used 

here, respectively. Throughout Secs. 3.1, 3.2, and 3.3, per-mode anharmonicities G are 

presented for each of the thirty-six systems, and various reduced-dimensional models are 

tested for the thirty-one systems with fluxional modes. A summary of the results of these 

tests is collected in Table 1. Section 3.4 and Table 4 present an alternate summary of 

these same results focused on quantifying errors in the total rovibrational anharmonicity 

correction f, with the goal of providing useful error estimates for reduced-dimensional 

approaches for modeling rovibrational anharmonicity at elevated temperatures. 
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2. Theory 

2.1. Curvilinear coordinate Monte Carlo phase space integration 

Our implementation70 of curvilinear coordinate MCPSI was recently adapted for 

treating fluxional species.79 The result of an MCPSI calculation is the total classical 

rovibrational partition Q, which is the fully-coupled and fully-anharmonic partition 

function for all vibrations and rotations. This in turn may be used to define a rovibrational 

anharmonicity correction factor 

  , (1) 

where s is the number of classically distinguishable lowest-energy minima, and QHO and 

QRR are harmonic oscillator and rigid rotor partition functions, respectively. The partition 

functions in eq 1 are all evaluated classically, with QHO and QRR calculated analytically 

using harmonic frequencies and geometries for the lowest-energy local minimum. 

 The exact (fully-coupled, fully-anharmonic, and quantum mechanical) total 

rovibrational partition function  can be approximated using f and Pitzer and Gwinn’s48 

“useful approximation,” 

  , (2) 

where the tilde distinguishes quantum mechanical partition functions from classical ones. 

Although not motivated in this way by Pitzer and Gwinn in 1942, the above expression 

can be derived as an approximation to the path integral formulation of ,80,81 which is an 

exact quantum mechanical theory, by assuming that the forces governing the imaginary-

time paths are harmonic with geometry-independent frequencies corresponding to those 

used in the expression for . This idea is central to several semiclassical corrections 

that have been developed for improving Q.73–75 

 Anharmonicity corrections to the partition function arising from changes to the 

zero point energy (which can be significant3,4) are not accounted for in f. Instead, f ® 1 

as the temperature T ® 0 by construction, and f is therefore the finite-temperature 

anharmonicity correction or, equivalently, the semiclassical Pitzer–Gwinn approximation 

to the error in the RRHO partition function with its reference energy set to its zero point 

energy. 

 It is useful to consider both the total anharmonicity correction factor f and the 

f ≡ 1
σ Q /QHOQRR

!Q

!Q ≈ f !QRR
!QHO

!Q

!QHO
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average anharmonicity correction per mode G. These quantities are related via 

  f = [1 + G(T)]a–3/2 (3) 

        » [1 + G' T/T']a–3/2 (4) 

where a is the number of rotational and vibrational degrees of freedom, and overall 

rotations (of which there are always three for the systems considered here) contribute 

fractional powers while vibrational modes contribute whole powers. In eq 3, the 

temperature dependence of G(T) is explicitly indicated, while in eq 4 just the linear-in-T 

term has been retained. The coefficient G' in eq 4 is independent of temperature, and T' is 

a reference temperature, which we set to 1000 K.  

 Equation 4 is a good approximation to eq 3 for nonfluxional species79 and often 

for nonfluxional modes in fluxional species, as demonstrated below. When eq 4 is an 

appropriate representation of eq 3 and with T' = 1000 K, G' has the useful interpretation 

as the average anharmonicity correction to the total partition function per vibrational 

mode and per 1000 K. The temperature-dependence of the anharmonicity correction 

associated with the three modes for overall rotational is more complex, but, notably, we 

typically find that both types of anharmonicity can be usefully characterized via a single 

shared parameter G when f and G are related as in eq 3. 

 Here we report f and G for fourteen species with up to three fluxional modes, and 

these new results are analyzed alongside values of f obtained previously79 for twenty-two 

species with zero, one, or two fluxional modes. These thirty-six species are considered in 

groups labeled (Nt,Ni) based on their numbers of torsions Nt and inversions Ni.  

 As reported in Ref. 79, very similar values of G are obtained for all of the 

members of the nonfluxional (Nt,Ni) = (0,0) group. This useful result allows us to 

empirically interpret the average value of G for the (0,0) group (which we label G(0,0) and 

quantify in Sec. 3.1) as representative of nonfluxional species generally. The anharmonic 

effects of fluxional modes on Q can be quantified by comparing this standard value for 

nonfluxional species, G(0,0), with G computed for the fluxional species comprising the 

(Nt,Ni) = (0,1), (1,0), (1,1), (2,0), (2,1), (1,2), and (3,0) groups. As expected and as 

detailed throughout Sec. 3, the average values of G for the fluxional groups differ 

significantly from G(0,0).  
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2.2. Reduced-dimensional models for fluxional modes 

 A major goal of this work is to test the accuracy of reduced-dimensional models 

for describing the anharmonic effects of fluxional torsions and inversions. The reduced-

dimensional approaches tested all involve the b-dimensional (bD) fluxional mode 

partition function 

  , (5) 

where b is the number of fluxional modes included in the correction, ji is the angular 

coordinate for fluxional mode i, Ai is its effective internal rotational/inversion constant, 

and Vβ is a partially-relaxed β-dimensional potential energy surface, where all of the 

modes not included in Vβ (i.e., all of the nonfluxional modes) have been optimized. The 

bD model in eq 5 includes full potential coupling between fluxional modes, while the 

potential coupling between the fluxional and nonfluxional modes is treated adiabatically 

via the partial optimizations in Vb. No kinetic coupling to or among the fluxional modes 

is included in eq 5 as the geometry dependence of Ai has been ignored. 

 For torsions, ji is the dihedral angle and Ai is evaluated as the reduced moment of 

inertia of the two rotating fragments at their equilibrium geometries about their 

connecting bond, as usual.48 For bends and inversions, an analogous approach is taken, 

where Ai is evaluated for infinitesimal changes to the angular coordinate with the rest of 

the internal coordinates fixed at their equilibrium geometries. For inversions, ji is 

defined as the trisector angle,82 i.e., the angle that any of the three participating bonds 

makes with respect to a vector through the central atom defined such that all three angles 

are equal. 

 Equation 5 is used to define a b-dimensional fluxional mode correction factor 

analogous to eq 1, 

  fβD = qβD/qHO*, (6) 

where qHO* is the product of b one-dimensional classical harmonic oscillator partition 

functions; these are evaluated using frequencies wi* obtained by diagonalizing the 

curvilinear-coordinate hessian of the reduced-dimensional potential Vβ and using the 

qβD = kBT
πAii=1

β

∏ dϕ1!dϕβ∫ exp[−Vβ (ϕ1,!,ϕβ ) / kBT ]



 

 

7 

effective masses defined by Ai. With this set of choices, the correction factor fβD in eq 6 is 

independent of Ai, and fβD ® 1 as T ® 0. 

 With the b fluxional modes described by qbD, the average per-mode 

anharmonicity correction for the remaining nonfluxional modes is computed 

   (7) 

                    . (8) 

We find that for some systems  shows a linear dependence on T and has a magnitude 

very close to G(0,0). We interpret the deviation of  from G(0,0) as a measure of the per-

mode error in the reduced-dimensional model in eq 5. Implicit in this analysis is the 

assumption that G(0,0) represents not only the average per-mode anharmonicity correction 

in nonfluxional species, but that G(0,0) also represents the average per-mode 

anharmonicity correction of nonfluxional modes in fluxional species. As demonstrated 

throughout Sec. 3, this assumption appears, at least empirically, to be a useful one. For 

example, for several systems with relatively large deviations of  from G(0,0), we 

consider various improvements to the qbD model and show that these improvements 

generally lead to closer agreement of  and G(0,0). While more direct tests of these 

methods would certainly be desirable, high-accuracy calculations of partition functions 

for systems with complex rovibrational structures at high energies and temperatures are 

likely to remain difficult to obtain for some time. The present empirical approach thus 

provides some means of quantifying errors, or at least sensitivities, in reduced-

dimensional approaches, such as the simple ones considered here. 

Throughout the analyses presented in Sec. 3, several improvements to the 

reduced-dimensional model described by eqs 5 and 6 are tested. In one such test, the 

neglect of kinetic coupling and of coupling to external (overall) rotation in eq 5 is 

addressed via an implementation of eq 5 where the geometry dependence of Ai due to 

fluxional motion is incorporated. The analogous modification to QRR via the fluxional-

mode geometry dependence of the overall rotational constants, which we refer to 

collectively as Bi, is also tested. 

We also test a modification to the reduced-dimensional anharmonicity correction 

ΓβD

f / f βD = [1+ΓβD(T ) ]α−β−
3
2

= [1+ Γ́ βDT / ʹT ]α−β−
3
2

ΓβD

ΓβD

ΓβD

ΓβD
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factor fβD that approximately accounts for any missing coupling between fluxional and 

nonfluxional modes while retaining much of the simplicity of the approach. Specifically, 

we compute 

  f! = q"HO* / q"HO , (9) 

where q"HO* and  q"HO are the quantum mechanical harmonic oscillator partition functions 

for the b fluxional modes evaluated using reduced-dimensional curvilinear-coordinate 

frequencies wi* and the usual Cartesian normal mode frequencies wi, respectively. When 

wi* ≈ wi, the anharmonic character of the fluxional modes is localized to the motions 

included in the reduced-dimensional potential Vb, and the correction described by eq 9 is 

small (f! ≈ 1). In contrast, when wi* ¹ wi and f! deviates significantly from unity, the 

magnitude of this deviation is one measure of the coupling of the fluxional modes to one 

or more nonfluxional modes. 

 As demonstrated below, when this “fluxional mode projection” correction factor f! 

deviates from unity by less than ~10%, it is found to be useful as a quantitative correction 

to fbD. We test such a model where f!bD = f! fbD, and per-mode anharmonicity corrections 

for the nonfluxional modes, Γ#bD, are defined as in eqs 7 and 8. When f! deviates more 

significantly from unity, f! is no longer useful as a quantitative correction but is instead 

diagnostic of significant coupling to one or more nonfluxional modes, such as low-

frequency bending motions. When this is the case, improved reduced-dimensional 

descriptions may require that these modes be explicitly included in Vb, although such an 

approach is not tested here. 

 Finally, we consider a simpler model than eq 5 where fluxional modes are treated 

as uncoupled from one another. To do so we use eqs 5–8 but with eq 5 evaluated for a 

separable fluxional potential. For b = 3, for example, such a separable potential is 

  V3
β×1D(φ1,φ2,φ3)	≡	V1,1(φ1)	+	V1,2(φ2)	+	V1,3(φ3), (10) 

where the zeroes of energy are defined so that that V1(φi
eq) = 0, and V1,i is a one-

dimensional cut through V3 along fluxional mode i where all coordinates other than ji 

have been optimized. This is equivalent to describing the set of b fluxional modes via 

multiple independent 1D corrections, one for each fluxional mode, via b successive one-

dimensional applications of eq 6. We label this strategy “b x 1D” to distinguish it from 
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the coupled bD method, and we note that for a system with one fluxional mode (b = 1) 

the two methods are equivalent. 

 The separable b x 1D model is not always easy to apply. For example, the path 

obtained via a constrained optimization along a torsional scan may involve an inversion, 

such that the resulting one-dimensional potentials V1,i computed for the inversion and the 

torsion are identical. More generally, 1D constrained optimizations can result in identical 

minima being over or under counted, the results of the scans can depend on starting 

location and other details of the optimization, and species-specific constraints may need 

to be implemented. These complications, of course, are a consequence of the nature of 

fluxional modes and their typically strong coupling to one another, which motivates the 

bD approach in the first place. It is nonetheless of practical interest to test the b x 1D 

approach when possible, as this strategy is a common one used in thermochemistry and 

kinetics. Furthermore, comparing the b x1D and bD results allows us to quantify the 

physical effect of fluxional mode coupling on anharmonicity. 

 

2.3. Sampling error estimates and high-performance computing scalability 

 The Monte Carlo sampling procedures used here were described previously.70,79 

Briefly, sampling of the nonfluxional modes was biased toward the bottom of the well, 

whereas unbiased sampling was used for the fluxional modes in order to fully explore 

these low-energy motions. In Ref. 79, sample sizes of, typically, Nsamp = 106 to 107 were 

shown to converge Q to better than 1%. Here we consider larger species with up to three 

fluxional modes and use sample sizes of Nsamp = 108, 109, or 1010. We confirmed that Q 

calculated using Nsamp differed by less than 3% from Q calculated using Nsamp/10 for 

temperatures larger than 500 K for all of the systems studied here. Assuming the usual 

error scaling with Nsamp, this suggests errors of less than 1% in the present results. 

 Due to their more complex structures, some of the systems considered here 

required large fitting bases such that the resulting analytic potential energy surfaces 

(PESs) were up to five times more expensive to evaluate than those considered 

previously.79 This increase, along with larger values of Nsamp required here, results in 

calculations that are up to ~103 times more computationally demanding than those from 

Ref. 79. This challenge was addressed in part using Argonne’s petascale computer, Theta, 
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where a weak scaling parallel efficiency of 82% was achieved on 4,096 nodes (262,144 

cores). Typical calculations for this work involved 100–300 nodes and ran for less than 

two hours. 

 

2.4. Potential energy surfaces 

 Some of the analytic PESs used here were published previously,4 with the rest 

constructed for this work using similar procedures. Briefly, a Metropolis sampling 

algorithm was employed to generate a set of ab initio energies for each system. These 

were least-squares-fit using permutationally invariant polynomials 83  constructed as 

polynomials of Morse variables84 for all atom–atom distances. Fits of this type are 

increasingly difficult to accurately parametrize as the size of system increases. The 

present strategy was found to be suitably efficient for the systems considered here (with 

as many as 11 atoms) by fully exploiting permutational symmetry. Typically, the 

CCSD(T)/cc-pVTZ method was used, energies of up to 50 kcal/mol (~17500 cm–1) above 

the classical minimum were included in the fits, and weights were used to emphasize 

lower-energy regions.  

 Fitted critical points reproduced calculated ones to better than a few cm–1 for low-

lying wells and saddle points. For example, CH3CHOH has a low-lying secondary local 

minimum with CCSD(T)/cc-pVTZ and fitted energies of 82.0 and 81.9 cm–1, 

respectively, relative to the global minimum. Fitting errors were just ~5 cm–1 for 

CH3CHOH’s two inversion saddle points (with CCSD(T)/cc-pVTZ energies of 346.2 and 

431.1 cm–1) and just ~3 cm–1 for its two lower-energy torsional saddle points (with 

CCSD(T)/cc-pVTZ energies of 558.0 and 761.8 cm–1). A somewhat larger fitting error 

(24 cm–1) was found for the higher-energy torsional saddle point at 1493.4 cm–1. 

 

3. Results and Discussion 

3.1. Previously computed anharmonicities for systems with zero or one fluxional 

mode 

 Rovibrational anharmonicity corrections f for five (0,0) systems, four (0,1) 

systems, and nine (1,0) systems were calculated in our previous study.79 These results are 

re-analyzed here to quantify G and G' and to test the reduced-dimensional models 
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described in Sec. 2. Results for these relatively simple systems serve as useful 

comparisons for the more challenging systems considered in Secs. 3.2 and 3.3. 

 Nonfluxional species. In Fig. 1, average per-mode anharmonicities G are shown 

for the (0,0) group consisting of H2O, HO2, CH2O, CH4, and CH2CH2, where it can be 

seen that G varies nearly linearly with T and is similar in magnitude for all five species. 

Using T' = 1000 K to define G' via eq 4, we find that, averaged over this set of 

nonfluxional species, G'(0,0) = 0.0126 ± 0.0013, where 0.0013 is one standard deviation of 

the five results. Expressed as a percentage, we interpret G'(0,0) to indicate that, on average, 

each vibrational mode in a nonfluxional species increases the total rovibrational partition 

function by 1.26% per 1000 K. The three rotational modes, which carry fractional powers 

in eqs 3 and 4 and therefore show a more complex temperature dependence, together 

increase the rovibrational partition function by a factor of 1.90% = (1.01263/2 – 1) x 100% 

at 1000 K. 

 The narrow distribution of G'(0,0) for the (0,0) group is perhaps surprising, as G'(0,0) 

includes the positive Morse-type anharmonicities typically associated with stretches and 

often associated with bends as well as anharmonic mode-mode coupling and coupling to 

overall rotation, which may contribute positively or negatively to the overall 

anharmonicity. Although the current set of five species is admittedly small, it does 

feature some variation, including different relative numbers of stretches and bends, atom 

types, and bond energies. This consistency in G' for the (0,0) group allows us to 

empirically interpret G'(0,0) = 1.26 ± 0.13% as a standard per-mode per-1000 K 

rovibrational anharmonicity correction for nonfluxional species. This value is 

summarized in Table 1, where it will be compared with G' and  computed for groups 

of species with fluxional modes, with and without various reduced-dimensional models 

applied. 

 We note that the linear dependence shown in Fig. 1 down to low temperatures 

simplifies our quantification of G' and clarifies the present analyses. Despite its 

usefulness, this behavior is qualitatively incorrect at low temperatures and is in fact an 

artifact of the present semiclassical approach that effectively allows for fractional 

(classical) quantum numbers and, in turn, artificial partial excitation of high-frequency 

Γ́ βD
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modes at low temperatures. The semiclassical anharmonicity corrections f therefore 

increase from 1 earlier (i.e., at lower temperatures) than would be observed in more 

accurate and properly quantized models. Quantitatively, these errors at low temperatures 

have small absolute magnitudes, which for many applications may be small enough to 

neglect. At higher temperatures (>1000 K), where the anharmonicity corrections are 

largest and where the present approaches are most usefully applied, we expect small 

absolute and small relative errors in f.55,70,85–87 

 Species with one inversion and no torsions. Average per-mode anharmonicities G 

for four (0,1) systems (CH2, CH3, NH3, and CH2CH) are shown in Fig. 2(a), along with 

the reference nonfluxional value G(0,0) quantified above. There is more variation in G for 

the (0,1) group than for the (0,0) group, and CH3 can be seen as a clear outlier due to the 

large negative anharmonicity associated with its unhindered umbrella motion. Results for 

the other three systems are closer in magnitude to the (0,0) reference but show a clear 

less-than-linear dependence on T. Despite this deviation from linearity, we again quantify 

these observations using eq 4 and compute G'(0,1) = 1.03 ± 1.50%, as summarized in Table 

1. The large standard deviation for this group reflects the fact that, as may be expected, 

the overall anharmonicity correction for a (0,1) species is strongly determined by its 

fluxional inversion, such that, unlike for the nonfluxional (0,0) group, no useful standard 

per-mode anharmonicity correction can be derived. 

 Next, we apply the 1D correction defined by eqs 5 and 6 (b = 1), and compute the 

average anharmonicity correction for the remaining nonfluxional modes, , using eq 7. 

The results are shown in Fig. 2(b). With the inversion described by f1D,  for the 

remaining modes is found to be in excellent agreement with the nonfluxional reference 

curve G(0,0) for three (CH3, NH3, and CH2CH) of the four cases. For these three species, 

Γ′(0,1)
1D  = 1.13 ± 0.20%, on average, which is in close agreement with G'(0,0) = 1.26 ± 0.13% 

quantified for the (0,0) group. If we assume that G'(0,0) is representative not only of 

nonfluxional modes in nonfluxional species but also of nonfluxional modes in fluxional 

species, we can interpret the close agreement of Γ′(0,1)
1D   and G'(0,0) as indicating that the 

simple 1D model in eq 5 accurately describes the effect of the inversion on the partition 

function for three of the four (0,1) systems. 

Γ1D

Γ1D
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 CH2 is a special case due to the strong coupling of its bending motion with overall 

rotation. We commented on this in Ref. 78, where we considered the vibrational partition 

function Qvib along with the rovibrational partition function Q. Typically, the 

anharmonicity correction factor associated with overall rotational (which can be 

computed as Q/QvibQRR) is positive and contributes a factor of ~(1 + G(T))3/2 to the total 

rovibrational anharmonicity correction, as built into our definition of G in eq 3. For CH2, 

however, this factor is less than one, presumably due to strong coupling of the bending 

mode to overall rotation (e.g., at linear geometries, one of the rotational modes becomes a 

bending mode). To support this explanation for CH2, we recomputed G'1D using Qvib 

instead of Q, i.e., with the effect of anharmonic coupling to rotations removed, and again 

using the 1D model for the CH2 bend. With this effect removed and as shown in Fig. 

2(b), the leftover anharmonicity for the two remaining nonfluxional modes (two C–H 

stretches) is found to be in quantitative agreement with G(0,0) and with G for the other 

(0,1) species. 

 In summary, we interpret these results to indicate that for three of the four species 

in the (0,1) group, the use of the very simple 1D model for the inversion in eq 5 

accurately describes the anharmonicity associated with this fluxional mode. This is 

demonstrated by the close agreement of G1D, the per-mode anharmonicity factor for the 

remaining nonfluxional modes, with G(0,0), our reference value for nonfluxional modes. 

For CH2, the bend is strongly coupled to overall rotation, and a separable 1D model for 

the bend is not accurate. 

 Species with one torsion and no inversions. Six systems with a methyl rotor 

(CH3CH, CH3CO, CH3OH, CH3OO, CH3CHO, and CH3CH3) and three other (1,0) 

systems with a single torsion (H2O2, CH2CHO, and HC(O)OH) were considered in Ref. 

79. The rovibrational anharmonicity correction factors f previously computed for these 

species have been converted to per-mode anharmonicity corrections G via eq 3, and these 

are shown in Fig. 3(a). 

 There is significant scatter in G for the (1,0) systems. Large positive 

anharmonicities are found for HC(O)OH and CH2CHOH; these species both feature low-

lying secondary minima (higher-energy conformers) that increase their partition functions 

relative to the single-conformer references used here to define f. In contrast, significant 
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negative anharmonicities are found for CH3CO and CH3CH, both of which feature low 

torsional barriers and nearly free rotation. The anharmonicity correction factor f is close 

to zero for the remaining five systems. If, as above, we assume that each nonfluxional 

mode in these species contributes, on average, G'(0,0) = 1.26% of positive anharmonicity 

per 1000 K, values of f near zero at elevated temperatures indicate significant 

cancellation of the positive anharmonicities associated with all of the nonfluxional modes 

(as many as 20 for C2H6) with the negative anharmonicity associated with the single 

torsional mode.  

 The average per-mode per-1000 K anharmonicity correction for this group, G'(1,0) 

= 1.24 ± 2.11%, is close to our nonfluxional reference value G'(0,0) = 1.26%. The standard 

deviation of the results, however, is larger than the value itself, again demonstrating the 

well-known significance of the torsion in determining overall rovibrational properties. 

Clearly, G'(1,0) itself is not a useful predictor of anharmonicity for (1,0) species. 

 The 1D model defined by eq 5 was used to describe the torsion for each species in 

the (1,0) group, and the resulting per-mode anharmonicity corrections, G1D, for the 

remaining nonfluxional modes are plotted in Fig. 3(b). Despite the significant and varied 

influence of the torsion apparent in Fig. 3(a), the results in Fig. 3(b) are seen to all 

increase approximately linearly with temperature and to be clustered around the 

nonfluxional mode reference curve, G(0,0). As above when discussing the (0,1) systems, 

we again interpret the close agreement of G1D and G(0,0) to indicate that the 1D model 

accurately describes the anharmonicity associated with the torsion.  

 To quantify this observation, we computed the average and standard deviation of 

the results in Fig. 3(b), Γ′(1,0)
1D  = 1.08 ± 0.40% (see Table 1), which is in fair agreement 

with the reference G'(0,0) = 1.26%. The discrepancy between Γ′(1,0)
1D  and G'(0,0) may be 

interpreted as an indicator of the error in the 1D model. We emphasize that this 

discrepancy is nearly an order of magnitude smaller than G'(0,0) itself. Using the 

relationship between f and G'1D in eq 8, a difference in of G'1D of 1.16 – 1.08 = 0.18 

translates into an error estimate for f of just 4% and 10% at 1000 and 2000 K, 

respectively, for the largest system in the (1,0) group, CH3CH3.  

 Despite the smallness of these errors, we nonetheless consider improvements to 
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the 1D model in eq 5, and we again quantify the magnitude of each of these 

improvements via comparisons of the results with the reference value, G'(0,0). These tests 

are described next and are intended to provide guidance regarding the optimal balance of 

computational cost, complexity, and accuracy when implementing reduced-dimensional 

treatments for systems with complex rovibrational structures at high temperatures. 

 We first consider the projection correction factor, f!, described by eq 9, designed to 

approximate the effect of coupling between the fluxional and nonfluxional modes. The 

f!1D = f! f1D model was used to describe the torsion for each of the nine species in (1,0) 

group, and the resulting per-mode anharmonicities for the remaining nonfluxional modes 

are shown in Fig. 3(c). The results are again clustered around G(0,0). In every case, f! < 1, 

and Γ#1D is therefore increased somewhat relative to G1D, with Γ#′(1,0)
1D  = 1.18 ± 0.38% and 

in better agreement with G'(0,0) than Γ′(1,0)
1D . The correction factor f!, as defined by eq 9, 

incorporates some, but not all, of the coupling between the torsion and the remaining 

nonfluxional modes that is missing in the reduced-dimensional 1D model of eq 5, and it 

is interesting to note that applying this correction reduces the deviation in the average 

per-mode anharmonicity for nonfluxional modes from the reference value G'(0,0) roughly 

in half. If we again use this deviation and the relationship in eq 8 to estimate the error in 

f, we can quantify that the use of the projection correction f! reduces the error in the 1D 

model by approximately a factor of two, on average. 

 We emphasize that the magnitude of the f! correction is small for the species in the 

(1,0) group, much smaller than the total anharmonicity correction f and the 1D torsional 

correction f1D. These correction factors are compared in Table 2 at 1000 and 2500 K for 

the nine (1,0) systems. For just two of the nine cases, f! has an effect larger than 5% on the 

total partition function (–16% and –6% for CH3CO and CH3CHO), whereas there is much 

greater variation in f and f1D (–40 to +280% and –56 to +95%, respectively). 

 The largest deviation of f! from unity for the species in the (1,0) group is found for 

CH3CO (f! = 0.84). This system has the smallest value of G'1D = 0.54% and the largest 

value of Γ#'1D = 1.92%, both of which deviate notably from the reference value G'(0,0) = 

1.26%, suggesting that neither model may be accurate. This system has a low barrier for 

internal rotation (161 cm–1) and two low normal mode frequencies (99 and 480 cm–1) 
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associated with the torsion and heavy-atom (C–C–O) bend, respectively. The smallness 

and closeness of these frequencies suggest that they may be coupled and that this system 

may be more accurately modeled using a two-dimensional reduced-dimensional 

treatment that included the heavy-atom bend along with the torsion. For comparison, the 

CH3CH system has an even lower torsional barrier (115 cm–1), but is better described by 

the reduced-dimensional 1D models with values of G'1D = 0.97% and Γ#'1D = 1.11%, both 

closer to the reference value G'(0,0) and showing a clear improvement with the correction 

factor applied (f! = 0.98). The better performance of the 1D models for CH3CH relative to 

CH3CO may be attributed to the lighter mass of the terminal atom, which leads to higher 

and more separated frequencies for the torsion and bend (192 and 776 cm–1, respectively) 

and presumably smaller coupling between them. These two examples demonstrate the 

utility of f! as a diagnostic of the strength of the coupling between the modes included in 

the reduced-dimensional model and those that are not. When f!  is small it is useful as a 

quantitative correction factor to f1D, as in the CH3CH example, while larger values of f! 

suggest that additional modes may need to be explicitly coupled to the fluxional ones, as 

is likely the case for CH3CO. 

 Next, we consider improvements to the 1D model via inclusion of geometry-

dependent effective moments of inertia (Ai in eq 5) due to internal rotation, as well as the 

analogous correction to the constants for overall rotation (collectively, Bi). The 1D 

fluxional model in eqs 5–8 neglects both effects. The correction to Ai in eq 5 appears as 

(A/<A>)1/2, where here we have just a single torsion and so we have dropped the subscript 

i, A is the internal rotational constant evaluated at the equilibrium geometry, and <A> is 

the internal rotational constant properly averaged over the torsional angle. (More 

precisely, <A>–1/2 is the Boltzmann-weighted average of A(j)–1/2.) This correction factor 

is shown in Table 2, along with the analogous correction factor to the overall rotational 

partition function, labeled (B/<B>)1/2, where B is the product of the three overall 

rotational constants. For seven of the nine cases, the two correction factors have opposite 

effects, and they partially cancel each other out. For the five systems considered here 

with methyl rotors and for H2O2, both the individual and total corrections are negligibly 

small, resulting in less than a 0.5% change to the total partition function at 1000 K. 

Somewhat larger changes to the overall rotational partition function are found for 
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HC(O)OH and CH2CHOH, where including this geometry-dependence decreases the 

overall rotational partition function by 3 and 10% at 1000 K, respectively. While small, 

with these corrections applied, Γ#′(1,0)
1D  = 1.30 ± 0.32%, in very close agreement with the 

reference value G'(0,0), as shown in Table 1. The standard deviation of the results remains 

somewhat larger for this group than for the (0,0) and (1,0) groups, however. 

 To summarize the results in Table 2, we emphasize that magnitude of the 

corrections to the simple 1D model are small, typically much smaller than the 1D 

correction itself. Together, the corrections affect the total partition function by just 3-4% 

from 1000 to 2500 K, on average, with just two systems (CH3CO and CH2CHOH) having 

corrections larger than 5%. For CH3CO, f!  contributes an 18% correction (largely 

independent of temperature) to the total partition function, which may be interpreted as 

indicating strong coupling to the low-frequency C–C–O bend, as noted above. For 

CH2CHOH, the (B/<B>)1/2 correction to overall rotational partition function is 11-13% 

from 1000 to 2500 K. The magnitude of the 1D corrections themselves are much larger, 

varying from –33 to +95% at 1000 K and from –56% to +75% at 2500 K. Based on the 

relative magnitudes of the correction factors in Table 2, we can conclude the simplest 

implementation of the 1D model in eq 5 is may be sufficiently accurate for (1,0) species 

in many applications. 

 

3.2. Systems with two fluxional modes 

 Species with one torsion and one inversion. The (1,1) group consists of four 

species. Two species, CH2OH and CH3CH2, feature CH2X inversions with low barriers of 

just 139 and 32 cm–1, respectively. These weakly hindered inversions couple strongly 

with the torsion; the effect of this coupling on the zero point energy was previously 

quantified,4 and its effect on Q was previously discussed qualitatively.79 We compare 

results for these species with those for two species featuring NH2X inversions, which are 

much more strongly hindered with barriers of 4633 and 2166 cm–1 for NH2OH and 

CH3NH2, respectively. The larger inversion barriers for the N-centered inversions suggest 

less coupling between the inversion and torsion than for the C-centered inversions, as 

tested below. 

 Figure 4(a) shows G for the four (1,1) systems. Considerable variation in the 
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results can be seen, with a per-mode anharmonicity correction as low as –8% at 2500 K 

for CH3CH2 (due to the large negative anharmonicity associated with its nearly free rotor) 

and as high as +9% at 2500 K for NH2OH (due to its higher-energy secondary 

minimum). For CH2OH and CH3NH2, the per mode corrections are closer to zero, and, on 

average, the anharmonicity corrections for this group are G'(1,1) = 0.15 ± 4.15%. The 

dispersion in the results for the (1,1) group is the largest observed so far, again 

demonstrating that fluxional modes dominate the rovibrational structure. The dispersion 

in G' for the (1,1) group, which features two fluxional modes, is approximately twice as 

large as was observed for the single-fluxional-mode (0,1) and (1,0) groups. 

 The torsion and inversion were modeled as coupled to one another and as coupled 

adiabatically to the remaining modes using the f!2D model, as defined by eqs 5–9. The 

anharmonicity corrections associated with the remaining nonfluxional modes, Γ#2D, are 

shown in Fig. 4(b). For all four systems, Γ#2D shows a linear dependence on T with little 

scatter. On average, Γ#′(1,1)
2D  = 1.36 ± 0.15% for this group, in close agreement with our 

nonfluxional reference value G'(0,0) = 1.26%. The projection correction factor f! is small 

for this group and is less than 5% at all temperatures considered for these four systems. 

Results without f! applied are not presented in detail; without this correction Γ′(1,1)
2D  = 1.38 

± 0.40%, as shown in Table 1. 

 The difference between Γ#′(1,1)
2D   and G'(0,0) is small, which we interpret to indicate 

that the projected reduced-dimensional 2D partition function, f!2D, accurately describes the 

effect of the two coupled fluxional modes on Q. This error is similar in magnitude to (but 

opposite in sign from) the errors quantified above for the (1,0) and (0,1) groups. 

Presumably, more sophisticated reduced-dimensional models could further reduce this 

error, similar to the reductions demonstrated above for the (1,0) group. We do not attempt 

such tests here. Instead we emphasize that the magnitude of these refinements is likely 

much smaller than the 2D anharmonicity corrections themselves, while requiring in some 

cases considerable extra effort. The 2D model, which includes explicit potential coupling 

between fluxional modes, while neglecting kinetic coupling and treating other potential 

coupling only approximately, recovers the majority of the anharmonic effects of the 

fluxional modes despite these simplifications. 
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 It is of interest to test the accuracy of even simpler models in which the two 

fluxional modes are treated as uncoupled from one another. These models are commonly 

used, particularly to describe species with multiple torsions, but it is rarely possible to 

quantify their accuracy, particularly at high temperatures. The present strategy of 

choosing a model for the fluxional modes and then comparing the “leftover” 

anharmonicity for the nonfluxional modes with our reference value G'(0,0) allows for such 

a test, as detailed next. 

 The challenge in applying separable 1D corrections for systems with strongly 

coupled fluxional modes can be seen in Fig. 5, where V2 for the four (1,1) systems are 

plotted. For the two CH2X systems (Figs. 5(a) and 5(b)), the potential energy surfaces 

show such strong coupling between the torsion and inversion that separate 1D cuts cannot 

readily be identified. For CH2OH, one could imagine tracing an optimized torsional path 

running through all four equivalent minima, but such a path would feature a full inversion 

cycle along it. Alternatively, one could artificially trace separate torsion and inversion 

paths that each passed through two of the minima and one saddle point, but these paths 

would not naturally follow steepest descent or slowest ascent paths without additional 

constraints. For CH3CH2, the coupling is even more pronounced, as the inversion and 

torsion share a saddle point. 

 For the two NH2X systems, in contrast, the potential energy surfaces in Figs. 5(c) 

and 5(d) show less coupling between the inversion and the torsion, and one can identify 

clearly separate 1D motions for each of the two modes. These systems illustrate another 

source of ambiguity when applying separable models for systems with multiple fluxional 

modes, however. The inversion changes the phase of the torsion, such that, e.g., the 

minimum torsional angle for NH2OH is 180o on one side of the inversion and 360o on the 

other, where, instead, a higher-energy secondary well is found at 180o. One can imagine 

tracing a torsional path on one side of the inversion that passes through each minimum 

once and then tracing an inversion path that again passes through each minimum once. 

Together, these paths would encounter the starting well just once and the secondary well 

twice, when the true symmetry of the problem has both wells appearing with equal 

frequency. Furthermore, the results of these paths would depend on which well they were 

initiated from. This is a common problem that is difficult to address generally, 
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particularly for systems where the fluxional space cannot be exhaustively explored; this 

issue may even go unnoticed in some applications, as the energies along the individual 

paths can appear reasonable. 

 Here we note that for systems with a single symmetric inversion, we can avoid 

these ambiguities by restricting the 1D inversion paths to one side of the inversion (e.g., 

<90o). This is a fair approximation for the NH2X systems, with their large inversion 

barriers, but is a poor one for the CH2X systems, with their strongly coupled motions. 

This is quantified in Fig. 4(c), where the fluxional modes have been described using the 

2x1D model described in Sec. 2, along with the projection correction factor f!, and the per-

mode anharmonicity corrections for the remaining nonfluxional modes Γ#2x1D are plotted. 

Results for the two NH2X systems are in close agreement with G(0,0), indicating that there 

is no significant error in treating the inversion and torsion as separable motions for these 

systems. In contrast and as expected from Figs. 5(a) and 5(b), the separable 2x1D 

description fails qualitatively for the strongly coupled CH2X systems. 

 Species with two torsions and no inversions. The (2,0) group consists of seven 

systems with two torsions, CH3CH2CH3, CH3OCH3, CH3CH2OH, OC(CH3)2, CH3OOH, 

HOCH2OH, and OC(OH)2. As shown in Fig. 6(a), the per-mode anharmonicities, G, vary 

significantly for this group. The two diols both feature low-lying secondary minima and 

values of G > 6% above 1000 K, while G < –3% for acetone, which has low torsional 

barriers. Averaging G at 1000 K gives G'(2,0) = 2.43 ± 3.93%, where, as observed above 

for the (1,1) group, the dispersion in the results for this two-fluxional-mode group is 

approximately twice that for the (0,1) and (1,0) groups. 

 Next, we test the accuracy of treating the coupled torsions using the projected 2D 

model. In Fig. 6(b), the per-mode anharmonicities for the remaining nonfluxional modes, 

Γ#2D, are plotted, and once again they are found to be in good agreement with the 

nonfluxional mode reference G(0,0). Averaging the results in Fig. 6(b) at 1000 K gives 

Γ#′(2,0)
2D  = 1.17 ± 0.43%, again summarized in Table 1, in good agreement with G'(0,0) = 

1.26% and very close to the result for the single-torsion (1,0) group of species, as shown 

in Table 1. Presumably, the refinements to the 1D approach tested above for the (1,0) 

group, such as including geometry dependence in the rotational constants, could further 
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reduce the discrepancy between Γ#′(2,0)
2D  and G'(0,0), but these refinements are not explored 

here. The similarity of Γ#′(2,0)
2D  and Γ#′(1,0)

1D  suggests that the error in the present bD approach 

scales regularly with the number of modes and that there appears to be no significant 

additional error for systems with two torsions relative to systems with a single torsion. 

 The effect of the projection correction factor f! is larger for this group, on average, 

than for the groups considered above. These values are summarized in Table 3 along with 

comparisons of G2D and Γ#2D at 1000 K. For four of the seven systems, f! represents a 

correction greater than 10%, and without this correction G2D is close to or below zero for 

these systems, deviating significantly from the reference value, G(0,0). The most extreme 

example is acetone, OC(CH3)2, where f! = 0.38 and G2D = –3.41% before applying the 

projection correction f!. 

 When discussing the (1,0) group above, we attributed the large deviation of f! from 

unity for CH3CO to coupling of the torsion to heavy-atom bend. All of the species in the 

(2,0) group feature such a bend, as one is necessarily formed by the relative motion of the 

two torsional axes about their shared atom. Just as for the (1,0) group, the presence of 

such a bend doesn’t guarantee a large projection factor correction, however, with f! 

deviating from unity by more than 5% for two of four (1,0) species with heavy-atom 

bends and five of seven (2,0) species. 

 Table 3 gives the two Cartesian normal mode harmonic frequencies w most 

closely associated with the torsions as well as the curvilinear coordinate frequencies 

w* obtained by diagonalizing the Hessian for the reduced-dimensional surface V2. The 

ratio of these frequencies is the high-temperature (classical) limit of f!, as indicated by eq 

9. Typical differences between w and w* are just a few tens of cm–1. The two systems 

with one heavy-atom bend and two methyl rotors, CH3CH2CH3 and CH3OCH3, show the 

smallest differences between w and w*, while the di-ols HOCH2OH and acetone, 

OC(CH3)2 show the largest. The particularly large deviation of f! from unity for acetone 

can be attributed to the smallness of its torsional frequencies (w = 30 and 141 cm–1), such 

that absolute differences between w and w* of a few tens of cm–1 are large relative 

differences. 

 The Cartesian normal mode frequencies most closely associated with the heavy-
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atom bends, wbend, are also shown in Table 3. These frequencies are close in magnitude to 

the torsional frequencies, and in one case, OC(OH)2, are not clearly separated from them. 

It may be worthwhile to consider improved reduced-dimensional models for fluxional 

systems where heavy-atom bends are explicitly coupled to the fluxional modes, e.g., by 

treating them as “fluxional” modes and including them in Vb. Such an approach is not 

pursued here. 

 Figure 7 shows V2 for acetone, where the strong torsional coupling due to very 

low barriers (242 cm–1) is evident by the rotated axes of the lowest contours. This 

coupling is also evident by comparing uncoupled and coupled torsional frequencies. 

Using curvilinear coordinates and treating the two identical torsions as independent, we 

obtain degenerate torsional frequencies of 125 cm–1. Diagonalizing the 2D projected 

Hessian splits the degeneracy, giving w* = 72 and 161 cm–1. Experimentally, the two 

lowest frequencies are 77 and 125 cm–1,88  with the coupled 2D treatment clearly 

improving the description of the lowest-frequency mode. There is a large relative error in 

the lowest Cartesian normal mode harmonic frequency (w = 30 cm–1), which can be 

expected generally for very small frequencies. 

 Finally, we consider the accuracy of treating the two torsions as separable 1D 

hindered rotors, which is a widely used approximation for systems with multiple rotors. 

As indicated by the contour plots in Fig. 8, the four systems with methyl rotors may be 

expected to show good separability, independent of the identity of the central group (O 

atom or CH2) and independent of the identity of the second rotor (CH3 or OH). Although 

the contour plots the two di-methyl systems in Figs. 8(a) and (b) look superficially 

similar to that for OC(CH3)2 in Fig. 7, the former suggest significantly less torsion–

torsion coupling than the latter. This is perhaps most clearly indicated by differences in 

the first- and second-order saddle points. For the CH3CH2CH3 and CH3OCH3 systems in 

Fig. 8, the energies of the second-order saddle points are close to twice that of the first-

order ones, as would be expected for uncoupled motions. For acetone, OC(CH3)2, in 

contrast, the second-order saddle point energy is more than 3x that of the first-order 

saddle point. We also note the differences in the 2D curvilinear frequencies for the 

degenerate torsions. For CH3CH2CH3 and CH3OCH3, the 2D curvilinear frequencies are 

split by 30–40 cm–1, whereas this splitting is 90 cm–1 for acetone; furthermore, these 
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splittings represent a change in the frequencies of just 10%–20% for CH3CH2CH3 and 

CH3OCH3, relative to the uncoupled 1D frequencies, but 70% for acetone. 

 Fig. 6(c) shows the result of treating the two torsions using the separable 2x1D 

approach and including the projection correction f!. As anticipated, results for the 2x1D 

model are in fair agreement with those for the 2D model in Fig. 6(b) for the species with 

methyl rotors, aside from acetone, OC(CH3)2. Table 3 quantifies f2D/f2x1D at two 

temperatures, where these ratios differ from unity by less than 5% for all but the di-ols 

and acetone.  

 Figure 9 shows contour plots for the two di-ols. The contours follow motions that 

appear rotated by 45o, indicating natural motions where the two OH groups are rotating 

concertedly either together or in opposite directions. The 360o periodicity for hydroxyl 

rotors leads to a more complex landscape than species with methyl rotors and their 120o 

periodicity, with multiple minima and multiple distinct first- and second-order saddle 

points. Together, these features lead to the observed poorer performance of the 2x1D 

model for the di-ols than for the species with methyl rotors. 

 To summarize the results from Sec. 3.2, we note that despite the larger dispersion 

in G for the b = 2 groups than for the b = 1 groups, the error in the bD approach remains 

small for both groups. This is despite the greater likelihood of the fluxional modes 

coupling strongly to heavy atom bends for b = 2 than for b = 1. The separable 2x1D 

model was shown to perform well for methyl and alkyl rotors and for (1,1) systems with 

large inversion barriers, but its use resulted in relatively large errors for systems with 

low-barrier inversions and coupled OH rotors. 

  

3.3. Systems with three fluxional modes 

 Species with inversions and torsions. One (1,2) system, NH2NH2, and three (2,1) 

systems, CH3CHCH3, CH3CHOH, and HOCHOH, were considered, and their results are 

analyzed together here. As expected, when no fluxional mode correction is applied, the 

per-mode anharmonicity corrections vary significantly and feature nonlinear temperature 

dependence, as shown in Fig. 10(a). The rovibrational anharmonicity corrections for this 

group vary from strongly negative (–4% per mode) for CH3CHCH3, which may be 

expected to behave similarly to CH3CH2, to strongly positive (+10% per mode) for 
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HOCHOH, which has low-lying secondary minima. On average, G'(1,2),(2,1)= 4.15 ± 

4.88%. We note that this value and its standard deviation are larger than those quantified 

for any of the one- or two-fluxional-mode groups discussed above, as seen in Table 1.  

 When the f!3D model is used to describe the three fluxional modes, the resulting 

per-mode anharmonicities for the remaining nonfluxional modes, Γ#3D, are once again 

found to be in good agreement with the G(0,0) reference, as shown in Fig. 10(b). The 

curves vary nearly linearly with temperature, and Γ#′(2,1),(1,2)
3D  = 1.14 ± 0.23. Despite the 

good agreement of this value with G'(0,0) and the small dispersion in the results, we note 

that for all four systems, the Cartesian normal mode frequencies associated most closely 

with the fluxional modes are not clearly separated from the nonfluxional ones. This leads 

to some ambiguity in the application of the f! correction in the f!3D model, as discussed 

next. 

 For NH2NH2, the four lowest Cartesian normal mode frequencies computed using 

our fitted PES are w = 401, 864, 1046, and 1128 cm–1. The lowest-energy mode is clearly 

associated with the torsion, and the 3rd frequency, when visualized, may be 

unambiguously assigned as an antisymmetric linear combination of the two –NH2 

inversions. The motions associated with the 2nd and 4th frequencies are similar, however, 

with both showing some character of the symmetric combination of the inversions as well 

as some character of the N–N stretch. Note that the average of the 2nd and 4th frequencies 

is close to the 3rd, further suggesting that coupling to the N–N stretch has split the 

frequency associated with the symmetric combination of inversions away from a value 

more similar to that of the antisymmetric combination.  

 The N–N stretch was not included in our reduced-dimensional 3D fluxional 

model, and the three frequencies calculated using V3 therefore do not include the splitting 

arising from coupling to the N–N mode. Instead, w* = 404, 1006, and 1012 cm–1. The 

computation of our projection correction f! is therefore ambiguous, as it is unclear which 

Cartesian normal mode frequency to assign as the 2nd inversion. We chose to set this 

frequency to the average of the 2nd and 4th frequencies, which resulted in a value of Γ#3D 

for NH2NH2 that is in good agreement with G'(0,0); it is not clear that such an approach 

can be relied upon generally. A more rigorous approach may require expanding the 
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number of modes included in Vb to include the N–N stretch. 

 For the three (2,1) systems, all of which feature an X–CH–Y inversion, the 

Cartesian normal mode frequency associated the heavy-atom bend is intermediate of the 

three fluxional frequencies. Coupling of the bend to the inversion is strongest for 

CH3CHCH3, where the four lowest frequencies are w = 113, 140, 345, and 403 cm–1, with 

motions associated with the 3rd and 4th frequencies both including significant bending 

character. Coupling is weakest for HOCHOH, where w = 277, 361, 540, and 958 cm–1, 

with the bend at 540 cm–1 separated from the inversion at 958 cm–1 and the torsions at 

361 cm–1 and below. CH3CHOH is an intermediate case, with w = 186, 366, 407, and 611 

cm–1. For all three species, we chose to use the 1st, 2nd, and 4th Cartesian normal mode 

frequencies in our application of f!. With this choice, f! = 0.85 for CH3CHCH3 (T > 500 K) 

indicating that a more rigorous approach may require expanding the number of modes 

included in Vb to include the C–C–C bend. For CH3CHOH and HOCHOH, f! = 0.97 (T > 

500 K), but the ambiguity in the assignment of Cartesian frequencies as fluxional modes 

again suggests strong coupling to the heavy atom bend. 

 The (2,1) systems share features with both the (1,1) and (2,0) groups, as evident in 

the contour plots shown in Figs. 11 and 12. There considerable complexity in the 3D 

space of fluxional modes, including multiple low-energy minima and first- and second-

order saddle points. For CH3CHCH3, the inversion and torsion are strongly coupled (cf. 

Fig. 11(a)), as was the case for CH3CH2. HOCHOH, in contrast, has a fairly large barrier 

to inversion, but its two OH rotors are strongly coupled (cf. Fig. 11(d)), as was the case 

for the di-ols in the (2,0) group. CH3CHOH is an intermediate case, and one can identify 

strong coupling between the inversion and OH torsion, as noted above for CH2OH in Fig. 

12(b).  

 We tested the use of the fully separable 3x1D model for the (1,2) and (2,1) 

species, and the resulting values of Γ#3x1D are shown in Fig. 10(c) and given in Table 1. 

These calculations considered just half of each inversion when computing its 1D 

correction, as motivated above when discussing the (1,1) group. As expected from Figs. 

11 and 12, the fully separable 3x1D model performs poorly for these systems. 

 Species with three torsions. Three (3,0) systems were studied: HOCH2CH2OH, 

CH3OOCH3, and HC(OH)3. Figure 13(a) shows G for this group, which includes both 
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large positive and negative anharmonicity corrections, and G'(3,0) = 4.09 ± 4.57%, on 

average. Notably, the average and dispersion in G(3,0) is similar to those quantified for the 

(1,2) and (2,1) species. As seen in Table 1, increasing the number of fluxional modes 

generally leads to larger anharmonicity corrections, on average, but, even more 

importantly, these corrections become more and more difficult to anticipate as indicated 

by the increasing dispersion in G with b. 

 In Fig. 13(b), the f!3D model has been used to describe the three torsions, and the 

leftover per-mode anharmonicities for the remaining nonfluxional modes Γ#3D are shown. 

This correction results in curves that show a fairly linear temperature dependence and 

that are close to but somewhat larger than the G(0,0) reference curve, with Γ#(3,0)
3D  = 1.40 ± 

0.20%. We again note some ambiguity when applying the f! model, as the torsional 

frequencies for these three systems are not well separated from the frequencies for the 

heavy-atom bends. This is likely a general result, with the f! model increasingly difficult 

to apply for large system where fluxional modes are less and less likely to be well 

separated from nonfluxional ones. When the projection correction is not applied, the 

results are found to be in closer agreement with G(0,0) for this group, with Γ(3,0)
3D  = 1.25 ± 

0.09%.  

 Figure 13(c) shows the result of treating the three torsions using the projected 

3x1D model, i.e., as independent 1D rotors and applying the f!  correction. The 

independent rotor approximation introduces very little error for CH3OOCH3, which is 

readily rationalized by the separable torsional paths evident in the contour plots in Fig. 

14.  

 Multiple OH rotors lead to stronger coupling and more complex potential energy 

surfaces, as was observed above for the di-ols in the (2,0) and (2,1) groups. For the tri-ol 

CH(OH)3, strong coupling of the OH rotors is evident in Fig. 15. HOCH2CH2OH is a 

more interesting case, where the OH rotors are clearly strongly coupled to one another 

when in its “gauche” configuration (Fig. 16(a)) but much less coupled when in the “anti” 

configuration (Fig. 16(b)), i.e., the strength of the OH coupling itself is coupled to the 

internal alkyl rotor. Neither multi-ol system is well represented by the 3x1D model. 
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3.4. Summary of errors in Q 

 Throughout Secs. 3.1–3.3, per-mode anharmonicities were used to quantify the 

impact of different types of fluxional modes as well as to judge the performance several 

reduced-dimensional models. Here we convert this information from per-mode errors to 

errors in the total rovibrational partition function. This analysis is intended to give a more 

intuitive feeling for the errors identified throughout this work.  

 We use the full-dimensional, fully coupled MCPSI values of f as benchmarks, and 

we test the performance of several different combinations of models for the fluxional 

modes, fF, and for the nonfluxional modes, fNF. In our first set of tests, we consider fF = 

f!bD, fbD, or f!bx1D, and we assume that nonfluxional modes are well described, on average, 

by the standard value G(0,0), i.e., 

  fNF = f(0,0) = [1 + G(0,0)(T)]a–b–3/2, (11) 

where a and b are the numbers of total rovibrational modes and fluxional modes, 

respectively. For each of the thirty-six systems, we computed the error fFfNF – f, which is 

the relative error (reported as a percentage error) in the predicted rovibrational 

anharmonic partition function. These errors were averaged for several different groups of 

species, and their mean and one-sigma standard deviation are reported in Table 4 at 1000 

and 2500 K. We emphasize that this analysis relies on two assumptions: (1) that 

nonfluxional modes behave uniformly, on average, according to eq 11, and (2) that any 

deviation of fFfNF from f may be attributed as an error in the model for fF. 

As discussed throughout Sec. 3 and as shown in Table 4, the error in the f!bD 

method performs well for all of the groups considered here, although we note 

approximately twice as much error for b = 2 and 3 groups than for b = 1 groups, on 

average. The error in the f!bD approach is small when averaged over all thirty-six systems 

and is just 0 ± 10% and –3 ± 15% at 1000 and 2500 K, respectively. We may further 

condense this information into a single error estimate (labeled ~2s in Table 4) by adding 

the absolute value of the mean error to twice the standard deviation and then averaging 

over the two temperatures. Doing so for the f!bD method gives a ~2s error estimate of just 

27%, as shown in Table 4. 

The small magnitude of this error is notable, as in many kinetics applications 
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errors of this size will typically be smaller than or similar to other sources of error,89–91 

such as those associated with practical treatments for computing tunneling,92 collisional 

energy transfer,93 and/or threshold energies.94 Furthermore, the magnitude of this error is 

competitive with experimental error bars assigned in many kinetics studies, thus further 

validating a priori theory, alongside experiment, as an independent source of kinetic and 

thermochemical information. 

The smallness of the error in the f!bD method is also notable in that the bD model 

used here is fairly simple in its implementation. By sampling the fluxional coordinates 

and Boltzmann-averaging the resulting partially-optimized potential energies, and 

avoiding any sophisticated treatments of kinetic couplings, the fluxional modes are 

already shown to be very accurately described. While more complicated implementations 

can further reduce the error, as demonstrated above for a few such implementations, the 

magnitude of the reductions may be expected generally to be quite small; the simplest 

approaches may be sufficiently accurate for many applications. 

The neglect of coupling between fluxional modes, as in the f!bx1D model and as is 

commonly employed, is a severe approximation, with errors, on average, as large as 17 ± 

148% at 2500 K (~2s = 249%), as shown in Table 4. For the systems considered here 

different fluxional motions in a given species typically involve the same atoms, and so 

the strong coupling among these fluxional modes is not surprising. It is interesting to note 

that the separable bx1D approach performs notably better at 1000 K than at 2500 K and 

performs fairly well for b = 2. These results may explain, in part, the perceived success of 

this widely used approach, which is most likely to be tested at lower temperatures and for 

smaller systems. 

The errors in the f!bD, fbD, and f!bx1D methods may be compared with the error in the 

simple single-well RRHO approximation used here as our reference for f; this approach is 

labeled fRRHO in Table 4. A more complete RRHO approximation might include sums of 

RRHO partition function for every well in the system, but such an approach is not tested 

here. In the context of the present error analysis, the single-well RRHO approximation is 

equivalent to setting fF = 1 and fNF = 1. As expected, this approximation systematically 

underestimates rovibrational anharmonicity and the magnitude of the error increases with 

temperature. When averaged over all thirty-six systems, ~2s = 355% for this RRHO 
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method, which is notably not too dissimilar from the error assigned to the separable bx1D 

approach. These values of ~2s suggest that there may be only marginal gain in applying 

the much more complicated and computationally demanding bx1D approach than simply 

using the RRHO approach. Of course, this result is system-dependent, but we note it to 

emphasize the straightforward point that more complicated calculations are not 

necessarily worth the effort. Realistic error estimates, such as the values of ~2s in Table 

4, are required to usefully make judgements about the optimal compromise of 

computational cost and accuracy. 

Finally, we compare results for two approaches where the anharmonicity 

associated with the nonfluxional modes is neglected entirely, i.e., where we have set fNF = 

1. We label these methods f!bDfRRHO and f!bx1DfRRHO in Table 4. Comparing the f!bDf(0,0) and 

f!bDfRRHO results allows us to comment on the importance of the nonfluxional modes in 

determining the overall anharmonicity. The f!bDfRRHO method performs very poorly, with 

~2s = 164%, demonstrating that, again averaged over all the systems considered here, the 

cumulative anharmonicity associated with the nonfluxional modes is a significant 

component of the overall anharmonicity and cannot be quantitatively neglected at 

elevated temperatures. Unlike the anharmonicity in the fluxional modes, the 

anharmonicity associated with the nonfluxional modes has a consistent (positive) sign, 

and so approximate approaches can benefit from a cancelation of errors. This is perhaps 

seen in the results for the f!bx1DfRRHO method, where the positive systematic errors for the 

f!bx1Df(0,0) method for some groups are lowered when using the f!bx1DfRRHO method. The 

f!bx1DfRRHO method has been widely applied in gas phase kinetics, and this cancellation, 

along with the method’s fair accuracy at lower temperatures and for b = 2, likely 

explains, in part, its relative success. The present comparisons suggest that this 

cancellation of errors may not be reliable for larger systems. 

 

4. Conclusions 

 Full-dimensional fully-coupled semiclassical rovibrational anharmonicity 

corrections f were computed and analyzed for several species with up to three fluxional 

modes. This set of results was used to quantify the importance of fluxional modes in 
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determining rovibrational properties at high temperatures as well as to test the accuracy 

of reduced-dimensional approaches. We showed that as the number of fluxional modes 

increases, the magnitude of their impact increases and, more importantly, these effects 

become more and more difficult to anticipate. 

 We showed that a fairly simple bD reduced-dimensional approach where all b of 

the fluxional modes are coupled to one another but as uncoupled from the nonfluxional 

modes generally performs well, with a derived two-sigma error estimate at high 

temperatures (>1000 K) of just ~2s = 27%. More detailed implementations of the bD 

approach were tested, and, although these studies generally led to improved results, the 

already small errors for the simplest bD approach suggests that more complicated 

implementations may not be worth the extra computational cost and complexity. 

 Although we have emphasized the testing of reduced-dimensional models 

throughout this work, we note that one could instead simply compute f in its full-

dimensionality without approximation. The present work demonstrates that such 

applications are possible for fairly complex systems with up to eleven atoms and three 

fluxional modes. The present calculations benefitted from access to high performance 

computing resources and employed fitted potential energy surfaces to converge f to ~1%. 

In more practical applications, where such small statistical uncertainties are not needed, 

MCPSI calculations may be possible using direct (on-the-fly) implementations.  

 We note also the approach described by us in Ref. 71 where the full-dimensional 

MCPSI integral for Q is replaced by convolutions of many lower-dimensional ones. This 

approach is expected to scale favorably with system size, and this approach is currently 

being explored as means of avoiding the need for reduced dimensional strategies. 

 Although the bD method performs well, several ambiguities in its implementation 

were pointed out, and one expects these ambiguities to become more and more prevalent 

for larger systems. We noted the increasing difficulty in separating the fluxional modes 

from the nonfluxional ones, and we specifically highlighted the prevalence of low-

frequency bends that appeared to be coupled strongly to inversions and torsions. By 

comparing Cartesian normal mode frequencies with reduced-dimensional (i.e., projected) 

curvilinear ones, we showed that f! was sometimes diagnostic of this coupling. 

 Central to our analysis was the identification of a standard per-mode 



 

 

31 

anharmonicity parameter G(0,0) for nonfluxional modes. This value was quantified to be 

1.26% per vibrational mode per 1000 K. While this anharmonicity is much more reliably 

estimated than the anharmonicity associated with the nonfluxional modes, we note that it 

is often neglected entirely in practical applications as it has fairly small per-mode 

contribution relative to fluxional modes. Because of the relatively larger number of 

nonfluxional modes, however, they can comprise a significant fraction of the overall 

anharmonicity, particularly at high temperatures. 
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Table 1. Rovibrational anharmonicity corrections per mode and per 1000 K 

(Nt,Ni) Systemsa G', % Γ#'βD, % G'βD, % Γ#'βx1D, % 

(0,0) H2O, HO2, CH2O, CH4, 
CH2CH2 

1.26 ± 0.13    

(0,1) CH2, CH3, NH3, CH2CH 1.03 ± 1.50   1.04 ± 0.12b   1.13 ± 0.20b c 

(1,0) H2O2, CH3OH, CH3CH, 
CH3CO, CH3OO, 
CH3CHO, CH3CH3, 
HC(O)OH, CH2CHOH 

1.24 ± 2.11    1.18 ± 0.38   1.08 ± 0.40 c 

(1,1) CH2OH, CH3CH2, 
NH2OH, CH3NH2 

0.15 ± 4.15    1.36 ± 0.15   1.38 ± 0.40 –2.29 ± 2.55 

(2,0) CH3CH2CH3, OC(OH)2, 
CH3CH2OH, CH3OOH, 
HOCH2OH, CH3OCH3, 
OC(CH3)2 

2.43 ± 3.93   1.17 ± 0.43 
[1.26 ± 0.39]d 

  0.03 ± 1.58 

[0.61 ± 0.47]d 
  1.13 ± 0.38 

 

[1.00 ± 0.18]d 

(1,2), 
(2,1)e 

  

NH2NH2, CH3CHCH3, 
HOCHOH, CH3CHOH 

4.15 ± 4.88   1.13 ± 0.23   0.82 ± 0.52 –1.61 ± 2.47 

(3,0) CH3OOCH3, HC(OH)3, 

HOCH2CH2OH 
4.09 ± 4.57   1.40 ± 0.20   1.25 ± 0.09      –1.22 ± 2.93 

aItalics indicate anharmonicity corrections taken from Ref. 79. 
bCH2 is atypical and was excluded from these results. See text for details. 
cThe 1D and bD models are equivalent for these groups. 
dOC(CH3)2 is atypical and was excluded from the results in brackets. See text for details. 
eThese results include both the (1,2) and (2,1) groups. 
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Table 2. Correction factors to the total partition function at two temperatures for nine 

(1,0) systemsa 

System T, K f f1D f!   (A/<A>)1/2   (B/<B>)1/2 

CH3OH 1000 1.183 1.019 1.000 0.999 1.001 
 2500 1.117 0.748 1.000 0.998 1.001 

CH3CH 1000 0.751 0.665 0.982 0.996 1.003 
 2500 0.605 0.442 0.981 0.996 1.003 

CH3CO 1000 0.815 0.762 0.844 1.004 0.997 
 2500 0.744 0.515 0.837 1.004 0.997 

CH3OO 1000 1.177 0.982 1.037 0.999 0.995 
 2500 1.141 0.709 1.039 0.999 0.994 

CH3CHO 1000 1.156 1.031 0.941 1.001 1.004 
 2500 1.139 0.763 0.937 1.001 1.005 

CH3CH3 1000 1.399 1.173 1.005 0.999 1.000 
 2500 1.673 1.024 1.006 0.999 1.000 

H2O2 1000 1.159 1.027 1.017 1.002 0.996 
 2500 1.115 1.750 1.020 1.002 0.996 

HC(O)OH 1000 1.329 1.196 1.035 1.000 0.970 
 2500 2.278 0.849 1.048 1.002 0.904 

CH2CHOH 1000 2.223 1.952 1.006 1.004 0.895 
 2500 3.799 1.132 1.007 1.013 0.869 

average 1000 1.24 ± 0.42 1.09 ± 0.37 0.99 ± 0.06 1.00 ± 0.00 0.98 ± 0.04 
 2500 1.51 ± 0.99 0.88 ± 0.39 0.99 ± 0.06 1.00 ± 0.00 0.97 ± 0.05 
aCorrections larger than 5% are shown in bold. 
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Table 3. Projection and anharmonicity corrections at 1000 K, fluxional frequencies 

(cm-1), and ratios of the 2D and 2x1D corrections at two temperatures for the (2,0) group 

System f! G2D Γ#2D w* w wbend 
f 2D/f 2x1D 

1000 K 2000 K 

CH3OCH3 0.98 1.13% 1.24% 213, 254 203, 260 420 0.992 0.995 

CH3CH2CH3 0.96 0.73 0.88 234, 264 216, 274 362 0.963 0.970 

OC(OH)2 0.94 1.15 1.73 543, 650 529, 600 546,602 0.902 0.864 

CH3OOH 0.87 0.08 1.03 193, 308 195, 258 449 1.012 0.997 

CH3CH2OH 0.86 0.18 0.92 271, 294 236, 281 412 1.031 1.015 

HOCH2OH 0.82 0.36 1.75 398, 472 377, 379 586 0.904 0.712 

OC(CH3)2 0.38 –3.41 0.62 72, 161 30, 141 372,479 1.346 1.404 
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Table 4. Errors (%) in the rovibrational partition function Q at two temperaturesa 
Group f!bDf(0,0) fbDf(0,0) f!bx1Df(0,0) fRRHO f!bDfRRHO f!bx1DfRRHO 

all 0 ± 10 
–3 ± 15 

8 ± 15 
7 ± 20 

2 ± 92 
17 ± 148 

–56 ± 113 
–90 ± 169 

–25 ± 33 
–69 ± 84 

–23 ± 93 
–53 ± 143 

 
~2sb 27 42 249 355 164 275 

 
b = 1 3 ± 6 

0 ± 8 
4 ± 5 
1 ± 8 

3 ± 6 
0 ± 8 

–20 ± 36 
–42 ± 83 

–14 ± 6 
–42 ± 36 

–14 ± 6 
–42 ± 36 

 
2 1 ± 10 

–6 ± 24 
18 ± 22 
18 ± 30 

13 ± 18 
27 ± 52 

–49 ± 78 
–103 ± 162 

–26 ± 18 
–79 ± 64 

–16 ± 25 
–57 ± 53 

 
3 –4 ± 18 

–5 ± 13 
6 ± 10 
7 ± 18 

–16 ± 219 
 45 ± 347 

–169 ± 206 
–203 ± 293 

–55 ± 64 
–130 ± 157 

–62 ± 218 
–87 ± 332 

 
(0,0) 0 ± 1 

0 ± 3 
0 ± 1 
0 ± 3 

0 ± 1 
0 ± 3 

–11 ± 5 
–29 ± 17 

 

–11 ± 5 
–29 ± 17 

 

–11 ± 5 
–29 ± 17 

 
(0,1) 1 ± 1 

0 ± 5 
2 ± 3 
3 ± 4 

1 ± 1 
0 ± 5 

–9 ± 13 
–22 ± 23 

–8 ± 3 
–23 ± 11 

–8 ± 3 
–23 ± 11 

 
(1,0) 3 ± 7 

0 ± 9 
4 ± 6 
0 ± 9 

3 ± 7 
0 ± 9 

–24 ± 42 
–51 ± 99 

–16 ± 6 
–51 ± 40 

–16 ± 6 
–51 ± 40 

 
(1,1) 0 ± 1 

–4 ± 7 
0 ± 6 

–5 ± 17 
21 ± 29 
22 ± 38 

–8 ± 51 
–30 ± 91 

–14 ± 6 
–39 ± 26 

5 ± 30 
–21 ± 48 

 
(2,0) 1 ± 13 

–8 ± 30 
29 ± 21 
31 ± 29 

8 ± 9 
30 ± 61 

–73 ± 85 
–144 ± 184 

–33 ± 19 
–102 ± 70 

–28 ± 11 
–77 ± 47 

 
(1,2),
(2,1) 

3 ± 6 
–2 ± 10 

11 ± 10 
4 ± 13 

87 ± 62 
184 ± 228 

–112 ± 125 
–114 ± 128 

–30 ± 17 
–71 ± 41 

39 ± 59 
54 ± 163 

 
(3,0) –14 ± 25 

–10 ± 19 
0 ± 3 

11 ± 25 
–153 ± 298 
–142 ± 439 

–244 ± 298 
–322 ± 442 

–90 ± 94 
–208 ± 235 

–196 ± 299 
–274 ± 445 

 
aEach entry shows the average and one standard deviation for the group. Results at 1000 

K are shown above results at 2500 K. 
bA two-sigma error (%) was estimated as the absolute value of the mean error plus twice 

the standard deviation, averaged over the two temperatures. 

  



 

 

36 

References 
 
1  Pilling, M. J. Reactions of Hydrocarbon Radicals and Biradicals. J. Phys. Chem. A 

2013, 117, 3697–3717. 
2  Klippenstein, S. J. From Theoretical Reaction Dynamics to Chemical Modeling of 

Combustion. Proc. Comb. Inst. 2017, 36, 77–111. 
3  McCoy, A. B. Diffusion Monte Carlo Approaches to Investigating the Structure and 

Vibrational Spectra of Fluxional Systems. Int. Rev. Phys. Chem. 2006, 25, 77–107. 
4  Harding, L. B.; Georgievski, Y.; Klippenstein, S. J. Accurate Anharmonic Zero Point 

Energies for some Combustion Related Species from Diffusion Monte Carlo, J. Phys. 

Chem. A, 2017, 121, 4334–4340. 
5  Carney, G. D.; Sprandel, L. I.; Kern, C. W. Variational Approaches to the Vibration-

Rotation Spectroscopy for Polyatomic Molecules. Adv. Chem. Phys. 1978, 37, 305–

380.  
6  Bowman, J. M. Self-Consistent Field Energies and Wavefunctions for Coupled 

Oscillators. J. Chem. Phys. 1978, 68, 608−610.  
7  Bowman, J. M.; Christoffel, K.; Tobin, F. Application of SCF-SI Theory to 

Vibrational Motion in Polyatomic Molecules. J. Phys. Chem. 1979, 83, 905−912.  
8  Carter, S.; Bowman, J. M.; Handy, N. C. Extensions and Tests of “Multimode”: A 

Code to Obtain Accurate Vibration/Rotation Energies of Many-Mode Molecules. 

Theor. Chem. Acc. 1998, 100, 191–198. 
9  Tew, D. P.; Handy, N. C.; Carter, S. A Reaction Surface Hamiltonian Study of 

Malonaldehyde. J. Chem. Phys. 2006, 125, 084313. 
10  Chakraborty, A.; Truhlar, D. G. Converged Vibrational Energy Levels and Quantum 

Mechanical Vibrational Partition Function of Ethane, J. Chem. Phys. 2006, 124, 

184310. 
11  Njegic, B.; Gordon, M. S. Exploring the Effect of Anharmonicity of Molecular 

Vibrations on Thermodynamic Properties. J. Chem. Phys. 2006, 125, 224102. 
12  Begue, D.; Gohaud, N.; Pouchan, C. A Comparison of Two Methods for Selecting 

Vibrational Configuration Interaction Spaces on a Heptatomic System: Ethylene 

oxide. J. Chem. Phys. 2007, 127, 164115.  

 



 

 

37 

 
13  Keçeli, M.; Shiozaki, T.; Yagi, K.; Hirata, S. Anharmonic Vibrational Frequencies 

and Vibrationally Averaged Structures of Key Species in Hydrocarbon Combustion: 

HCO+, HCO, HNO, HOO, HOO–, CH3+, and CH3. Mol. Phys. 2009, 107, 1283–1301. 
14  Keçeli, M.; Hirata, S. Size-Extensive Vibrational Self-Consistent Field Method. J. 

Chem. Phys. 2011, 135, 134108. 
15  Yagi, K.; Keçeli, M.; Hirata, S. Optimized Coordinates for Anharmonic Vibrational 

Structure Theories. J. Chem. Phys. 2012, 137, 204118. 
16  Faucheaux, J. A.; Hirata, S. Higher-Order Diagrammatic Vibrational Coupled-Cluster 

Theory. J. Chem. Phys. 2015, 143, 134105. 
17  Ceperley, D. Path Integrals in the Theory of Condensed Helium. Rev. Mod. 

Phys. 1995, 67, 279–355.   
18  Berne, B. J.; Thirumalai, D. On the Simulation of Quantum Systems: Path Integral 

Methods. Annu. Rev. Phys. Chem. 1986, 37, 401–424.  
19  Mielke, S. L.; Srinivasan, J.; Truhlar, D. G. Extrapolation and perturbation schemes 

for accelerating the convergence of quantum mechanical free energy calculations via 

the Fourier path-integral Monte Carlo method. J. Chem. Phys. 2000, 112, 8758–8764. 
20  Mielke, S. L.; Truhlar, D. G. Displaced-Points Path Integral Method for Including 

Quantum Effects in the Monte Carlo Evaluation of Free Energies. J. Chem. Phys. 

2001, 115, 652–662. 
21  Miller, T. F. III; Clary, D. C. Torsional Path Integral Monte Carlo method for 

calculating the absolute quantum free energy of large molecules, J. Chem. Phys. 

2003, 119, 68–76. 
22  Sturdy, Y. K.; Clary, D. C. Torsional Anharmonicity in Transition State Theory 

Calculations. Phys. Chem. Chem. Phys. 2007, 2397–2405. 
23  Mielke, S. L.; Truhlar, D. G. Improved Methods for Feynman Path Integral 

Calculations of Vibrational–Rotational Free Energies and Application to Isotopic 

Fractionation of Hydrated Chloride Ions. J. Phys. Chem. A 2009, 113, 4817–4827. 
24  Mielke, S. L.; Truhlar, D. G. Improved Methods for Feynman Path Integral 

Calculations and their Application to Calculate Converged Vibrational–Rotational 

 



 

 

38 

 
Partition Functions, Free Energies, Enthalpies, Entropies, and Heat Capacities for 

Methane. J. Chem. Phys. 2015, 142, 044105. 
25  Light, J. C.; Hamilton, I. P.; Lill, J. V. Generalized Discrete Variable Approximation 

in Quantum Mechanics. J. Chem. Phys. 1985, 82, 1400–1409.  
26  Tennyson, J. The Calculation of the Vibration-Rotation Energies of Triatomic 

Molecules Using Scattering Coordinates, Comput. Phys. Rep. 1986, 4, 1–36.  
27  Carter, S.; Handy, N. C. A Variational Method for the Determination of the 

Vibrational (J = 0) Energy Levels of Acetylene, using a Hamiltonian in Internal 

Coordinates. Comput. Phys. Commun. 1988, 51, 49–58. 
28  Chen, R.; Ma, G.; Guo, H. Six-Dimensional Quantum Calculations of Highly Excited 

Vibrational Energy Levels of Hydrogen Peroxide and its Deuterated Isotopomers. J. 

Chem. Phys. 2001, 114, 4763–4774. 
29  Fabri, C.; Matyus, E.; Furtenbacher, T.; Nemes, L.; Mihaly, B.; Zoltani, T.; Csaszar, 

A. Variational Quantum Mechanical and Active Database Approaches to the 

Rotational-Vibrational Spectroscopy of Ketene, H2CCO. J. Chem. Phys. 2011, 135, 

094307. 
30  Christiansen, O. Selected New Developments in Vibrational Structure Theory: 

Potential Construction and Vibrational Wave Function Calculations. Phys. Chem. 

Chem. Phys. 2012, 14, 6672−6687. 
31  Wodraszka, R.; Manthe, U. Iterative Diagonalization in the Multiconfigurational 

Time-Dependent Hartree Approach: Ro-vibrational Eigenstates. J. Phys. Chem. A 

2013, 117, 7246–7255. 
32  Halverson, T.; Poirier, B. Large Scale Exact Quantum Dynamics: Ten Thousand 

Quantum States of Acetonitrile. Chem. Phys. Lett. 2015, 624, 37–42. 
33  Yu, H.-G. An Exact Variational Method to Calculate Rovibrational Spectra of 

Polyatomic Molecules with Large Amplitude Motion. J. Chem. Phys. 2016, 145, 

084109. 
34  Carrington, T. Perspective: Computing (Ro-)Vibrational Spectra of Molecules with 

More than Four Atoms. J. Chem. Phys. 2017, 146, 120902.  

 



 

 

39 

 
35 Avila, G.; Carrington, T. Computing Vibrational Energy Levels of CH4 with a 

Smolyak Collocation Method. J. Chem. Phys. 2017, 147, 144102. 
36  Troe, J. Simplified Models for Anharmonic Numbers and Densities of Vibrational 

States. I. Application to NO2 and H3+. Chem. Phys. 1995, 190, 381–392. 
37  Schmatz, S. Approximate Calculation of Anharmonic Densities of Vibrational States 

for Very Large Molecules. Chem. Phys. 2008, 346, 198–211. 
38  Clabo, D. A.; Allen, W. D.; Remington, R. B.; Yamaguchi, Y.; Schaefer III, H. F. A 

Systematic Study of Molecular Vibrational Anharmonicity and Vibration–Rotation 

Interaction by Self-Consistent-Field Higher-Derivative Methods. Asymmetric Top 

Molecules. Chem. Phys. 1998, 123, 187–239. 
39  Schneider, W.; Thiel, W. Anharmonic Force Fields from Analytic Second 

Derivatives: Method and Application to Methyl Bromide. Chem. Phys. Lett. 1989, 

157, 367–373. 
40  Wang, F.; Landau, D. P. Efficient, Multiple-Range Random Walk Algorithm to 

Calculate the Density of States. Phys. Rev. Lett. 2001, 86, 2050–2053. 
41  Barone, V. Vibrational Zero-Point Energies and Thermodynamic Functions Beyond 

the Harmonic Approximation. J. Chem. Phys. 2004, 120, 3059–3065. 
42  Barone, V. Anharmonic Vibrational Properties by a Fully Automated Second-Order 

Perturbative Approach. J. Chem. Phys. 2005, 122, 014108. 
43  Vazquez, J.; Stanton, J. F. Simple(r) Algebraic Equation for Transition Moments of 

Fundamental Transitions in Vibrational Second-order Perturbation Theory. Mol. 

Phys. 2006, 104, 377−388. 
44  Vazquez, J.; Stanton, J. F. Treatment of Fermi Resonance Effects on Transition 

Moments in Vibrational Perturbation Theory. Mol. Phys. 2007, 105, 101−109. 
45  Nguyen, T. L.; Barker, J. R. Sums and Densities of Fully Coupled Anharmonic 

Vibrational States: A Comparison of Three Practical Methods. J. Phys. Chem. A 

2010, 114, 3718–3730. 
46  Bloino, J.; Biczysko, M.; Barone, V. General Perturbative Approach for 

Spectroscopy, Thermodynamics, and Kinetics: Methodological Background and 

Benchmark Studies. J. Chem. Theory Comput. 2012, 8, 1015–1036. 

 



 

 

40 

 
47  Dzugan, L. C.; Matthews, J.; Sinha, A.; McCoy, A. B. Role of Torsion-Vibration 

Coupling in the Overtone Spectrum and Vibrationally Mediated Photochemistry of 

CH3OOH and HOOH. J. Phys. Chem. A 2017, 121, 9262–9274. 
48  Pitzer, K. S.; Gwinn, W. D. Energy Levels and Thermodynamic Functions for 

Molecules with Internal Rotations I. Rigid Frame with Attached Tops. J. Chem. Phys. 

1942, 10, 428–440. 
49  Truhlar, D. G. A Simple Approximation for the Vibrational Partition Function of a 

Hindered Internal Rotation. J. Comput. Chem. 1991, 12, 266–270.  
50  Knyazev, V. D.; Dubinsky, I. A.; Slagle, I. R.; Gutman, D. Unimolecular 

Decomposition of t-C4H9 Radical. J. Phys. Chem. 1994, 98, 5279–5289. 
51  Forst, W. Sum and Density of States of Polyatomic Systems with Hindered Rotors. J. 

Computational Chem. 1996, 17, 954–961. 
52  McClurg, R. B.; Flagan, R. C.; Goddard III, W. A. The Hindered Rotor Density-of-

States Interpolation Function, J. Chem. Phys. 1997, 106, 6675–6680. 
53  Knyazev, V. D. Density of States of One-Dimensional Hindered Internal Rotors and 

Separability of Rotational Degrees of Freedom. J. Phys. Chem. A 1998, 102, 3916–

3922. 
54  Ayala, P. Y.; Schlegel, H. B. Identification and Treatment of Internal Rotation in 

Normal Mode Vibrational Analysis. J. Chem. Phys. 1998, 108, 2314–2325. 
55  Ellingson, B. A.; Lynch, V. A.; Mielke, S. L.; Truhlar, D. G. Statistical 

Thermodynamics of Bond Torsional Modes: Tests of Separable, Almost-Separable, 

and Improved Pitzer–Gwinn Approximations, J. Chem. Phys. 2006, 125, 084305. 
56  Sharma, S.; Raman, S.; Green, W. H. Intramolecular Hydrogen Migration in 

Alkylperoxy and Hydroperoxyalkylperoxy Radicals: Accurate Treatment of Hindered 

Rotors. J. Phys. Chem. A, 2010, 114, 5689–5701. 
57  Zheng, J.; Yu, T.; Papajak, E.; Alecu, I. M.; Mielke, S. L.; Truhlar, D. G. Practical 

Methods for Including Torsional Anharmonicity in Thermochemical Calculations on 

Complex Molecules: The Internal-Coordinate Multi-Structural Approximation. Phys. 

Chem. Chem. Phys. 2011, 13, 10885–10907. 
58  Skouteris, D.; Calderini, D.; Barone, V. Methods for Calculating Partition Functions 

 



 

 

41 

 
of Molecules Involving Large Amplitude and/or Anharmonic Motions. J. Chem. 

Theory Comput. 2016, 12, 1011–1018. 
59  Li, Y.-P.; Bell, A. T.; Head-Gordon, M. Thermodynamics of Anharmonic Systems: 

Uncoupled Mode Approximations for Molecules. J. Chem. Theory Comput. 2016, 12, 

2861–2870.  
60  Hsu, K.-H.; Huang, Y.-H.; Lee, Y.-P.; Huang, M.; Miller, T. A.; McCoy, A. B. 

Manifestations of Torsion-CH Stretch Coupling in the Infrared Spectrum of CH3OO. 

J. Phys. Chem. A 2016, 120, 4827−4837.  
61  Huang, M.; Miller, T. A.; McCoy, A. B.; Hsu, K.-H.; Huang, Y.-H.; Lee, Y. P. 

Modeling the CH Stretch/Torsion/Rotation Couplings in Methyl Peroxy (CH3OO). J. 

Phys. Chem. A 2017, 121, 9619–9630. 
62  Ghale, S. B.; Lanorio, J. G.; Nickel, A. A.; Ervin, K. M. Conformational Effects on 

Gas-Phase Acidities of Isomeric C3 and C5 Alkanols. J. Phys. Chem. A 2018, 122, 

7797–7807. 
63  Doll, J. D. Anharmonic Corrections in Unimolecular Theory: A Monte Carlo 

approach. Chem. Phys. Lett. 1980, 72, 139–142. 
64  Barker, J. R. Sums of Quantum States for Nonseparable Degrees of Freedom: 

Multidimensional Monte Carlo Integration.  J. Phys. Chem. 1987, 91, 3849–3854. 
65  M. Berblinger, C. Schlier, J. Tennyson, S. Miller, Accurate Specific Molecular State 

Densities by Phase Space Integration. II. Comparison with Quantum Calculations on 

H3+ and HD2+. J. Chem. Phys. 1992, 96, 6842–6849.  
66  Berblinger, M.; Schlier. How accurate is the Rice-Ramsperger-Kassel-Marcus 

theory? The case of H3+. J. Chem. Phys. 1994, 101, 4750–4758. 
67  Ming, L.; Nordholm, S.; Schranz, H. W. On the estimation of anharmonic densities of 

states of molecules, Chem. Phys. Lett. 1996, 248, 228–236. 
68  Taubmann, G.; Schmatz, S. Numbers and Densities of States and Partition Functions 

From an Efficient Approach to Phase Space Integration. Phys. Chem. Chem. Phys. 

2001, 3, 2296–2305. 

 



 

 

42 

 
69  Ma, X.; Yang, N.; Johnson, M. A.; Hase, W. L. Anharmonic Densities of States for 

Vibrationally Excited I–(H2O), (H2O)2, and I–(H2O)2. J. Chem. Theory Comput. 2018, 

14, 3986–3997.  
70  Kamarchik, E.; Jasper, A. W. Anharmonic State Counts and Partition Functions for 

Molecules via Classical Phase Space Integrals in Curvilinear Coordinates. J. Chem. 

Phys. 2013, 138, 194109. 
71  Kamarchik, E.; Jasper, A. W. Anharmonic Vibrational Properties from Intrinsic n-

Mode State Densities. J. Phys. Chem. Lett. 2013, 4, 2430–2435. 
72  Whitten, G. Z.; Rabinovitch, B. S. Accurate and Facile Approximation for 

Vibrational Energy-Level Sums. J. Chem. Phys. 1963, 38, 2466–2473. 
73  Miller, W. H. Classical Path Approximation for the Boltzmann Density Matrix, J. 

Chem. Phys. 1971, 55, 3146–3156. 
74  Messina, M.; Schenter, G. K.; Garrett, B. C. Approximate Path Integral Methods for 

Partition Functions. J. Chem. Phys. 1993, 98, 4120–4127. 
75  Wadi, H.; Pollak, E. Accurate Computation of Quantum Densities of States and 

RRKM Rate Constants for Large Polyatomic Molecules: The STAIR Method. J. 

Chem. Phys. 1999, 110, 8246–8253. 
76  Prudente, F. V.; Varandas, A. J. C. A Direct Evaluation of the Partition Function and 

Thermodynamic Data for Water at High Temperatures. J. Phys. Chem. A 2002, 106, 

6193–6200. 
77  Troe, J.; Ushakov, V. G. Anharmonic Rovibrational Numbers and Densities of States 

for HO2, H2CO, and H2O2. J. Phys. Chem. A 2009, 113, 3940–3945.  
78  Kramer, Z. C; Skodje, R. T. A Semiclassical Adiabatic Calculation of State Densities 

for Molecules Exhibiting Torsions: Application to Hydrogen Peroxide and its 

Isotopomers. Theor. Chem. Acc. 2014, 133, 1530. 
79  Jasper, A. W.; Gruey, Z. B.; Harding, L. B.; Georgievski, Y.; Klippenstein, S. J.; 

Wagner, A. F. Anharmonic Rovibrational Partition Functions for Fluxional Species at 

High Temperatures via Monte Carlo Phase Space Integrals. J. Phys. Chem. A 2018, 

122, 1727–1740. 

 



 

 

43 

 
80  Feynman, R. P.; Hibbs, A. R. Quantum Mechanics and Path Integrals; McGraw-Hill: 

New York, 1965. 
81  Ceperly, D. M. Path Integrals in the Theory of Condensed Helium. Rev. Mod. Phys. 

1995, 67, 279–355. 
82  Leonard, C.; Handy, N. C.; Carter, S.; Bowman, J. M. The Vibrational Levels of 

Ammonia. Spectrochim. Acta, Part A 2002, 58, 825–838. 
83  Braams, B. J.; Bowman, J. M. Permutationally Invariant Potential Energy Surfaces in 

High Dimensionality. Int. Rev. Phys. Chem. 2009, 28, 577–606. 
84  Špirko, V.; Jensen, P.; Bunker, P. R.; Čejchan, A. The Development of a New Morse-

Oscillator Based Rotation–Vibration Hamiltonian for H3+. J. Molec. Spectroscopy 

1985, 112, 183–202. 
85  Isaacson, A. D.; Truhlar, D. G. The Accuracy of the Pitzer-Gwinn Method for 

Partition Functions of Anharmonic Vibrational Modes. J. Chem. Phys. 1981, 75, 

4090–4094. 
86  Lynch, V. A.; Meilke, S. L.; Truhlar, D. G. Accurate Vibrational-Rotational Partition 

Functions and Standard-State Free Energy Values for H2O2 from Monte Carlo Path-

Integral Calculations. J. Chem. Phys. 2004, 121, 5148–5162. 
87  Bross, D. H.; Jasper, A. W.; Ruscic, B.; Wagner, A. F. Toward Accurate High 

Temperature Anharmonic Partition Functions. Proc. Combust. Inst. 2019, 37, 315–

322. 
88  NIST Computational Chemistry Comparison and Benchmark Database NIST 

Standard Reference Database Number 101, Release 19, April 2018, Editor: Russell D. 

Johnson III. http://cccbdb.nist.gov/ DOI:10.18434/T47C7Z 
89  Harding, L. B.; Klippenstein, S. J.; Jasper, A. W. Ab Initio Methods for Reactive 

Potential Energy Surfaces. Phys. Chem. Chem. Phys. 2007, 9, 4055–4070. 
90  Jasper, A. W.; Hansen, N. Hydrogen-Assisted Isomerizations of Fulvene to Benzene 

and of Larger Cyclic Aromatic Hydrocarbons. Proc. Combust. Inst. 2013, 34, 279–

287. 
91  Klippenstein, S. J. From Theoretical Reaction Dynamics to Chemical Modeling of 

Combustion. Proc. Comb. Inst. 2017, 36, 77–111. 

 



 

 

44 

 
92  Fernandez-Ramos, A.; Ellingson, B. A.; Garrett, B. C.; Truhlar, D. G. “Variational 

Transition State Theory with Multidimensional Tunneling,” in Reviews in 

Computational Chemistry, Vol. 23, Lipkowitz, K. B.; Cundari, T. R., eds. (Wiley-

VCH; Hoboken, NJ, 2007), pp. 125–232. 
93  Jasper, A. W.; Pelzer, K. M.; Miller, J. A.; Kamarchik, E.; Harding, L. B.; 

Klippenstein, S. J. Predictive A Priori Pressure-Dependent Kinetics. Science 2014, 

346, 1212–1215. 
94  Klippenstein, S. J.; Harding, L. B.; Ruscic, B. Ab Initio Computations and Active 

Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion 

Species. J. Phys. Chem. A 2017, 121, 6580–6602. 



 

 

45 

Figure Captions 

Fig. 1.  Average rovibrational anharmonicity corrections per-mode for five nonfluxional 

species. The average of the five results is shown as a sold black line and labeled 

(0,0). 

Fig. 2.  Average rovibrational anharmonicity corrections per-mode for four species with 

one inversion. In (a) results for all rotational and vibrational modes are shown. 

In (b) the inversion is described using a one-dimensional (1D) model, and G for 

the remaining nonfluxional modes are shown. The average of the results in each 

panel is shown as a sold blue line and labeled (0,1), with the reference (0,0) 

result included for comparison. In (b) black circles show the result of correcting 

for anharmonic coupling to overall rotation for CH2. 

Fig. 3.  Average rovibrational anharmonicity corrections per-mode for nine species with 

one torsion. In (a) results for all rotational and vibrational modes are shown. In 

(b) the inversion is described using a one-dimensional (1D) model, and G for the 

remaining nonfluxional modes are shown. In (c) the 1D model has been 

corrected by the projection correction factor f!. The average of the results in each 

panel is shown as a sold blue line and labeled (1,0), with the reference (0,0) 

result included for comparison. 

Fig. 4.  Average rovibrational anharmonicity corrections per-mode for four species with 

one torsion and one inversion. In (a) results for all rotational and vibrational 

modes are shown, and in (b) the torsion and inversion are described using the 

projected reduced-dimensional 2D model, and results for the remaining 

nonfluxional modes are shown. In (c) the torsion and inversion are described 

using the projected 2x1D model. The average of the results in each panel is 

shown as a sold blue line and labeled (1,1), with the reference (0,0) result 

included for comparison. 

Fig. 5.  Two-dimensional cuts through the potential energy surfaces for the four (1,1) 

systems. Critical point energies are shown in cm-1 relative to the minimum-

energy well, and the number of apostrophes indicates the order of the saddle 

point. 

Fig. 6.  Average rovibrational anharmonicity corrections per-mode for four species with 
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two torsions. In (a) results for all rotational and vibrational modes are shown, 

and in (b) the torsions are described using the projected reduced-dimensional 

2D model, and results for the remaining nonfluxional modes are shown. In (c) 

the torsions are described by the projected 2x1D model. The average of the 

results in each panel is shown as a sold blue line and labeled (2,0), with the 

reference (0,0) result included for comparison. 

Fig. 7.   Two-dimensional cut through the potential energy surface for acetone. Critical 

point energies are shown in cm-1 relative to the minimum-energy well, and the 

number of apostrophes indicates the order of the saddle point. 

Fig. 8.   Two-dimensional cuts through the potential energy surfaces for four (2,0) 

systems. Critical point energies are shown in cm-1 relative to the minimum-

energy well, and the number of apostrophes indicates the order of the saddle 

point. 

Fig. 9.   Two-dimensional cuts through the potential energy surfaces for two (2,0) 

systems. Critical point energies are shown in cm-1 relative to the minimum-

energy well, and the number of apostrophes indicates the order of the saddle 

point. 

Fig. 10. Average rovibrational anharmonicity corrections per-mode for four species with 

torsions and inversions. In (a) results for all rotational and vibrational modes are 

shown, and in (b) the fluxional modes are described using the projected 

reduced-dimensional 3D model, and results for the remaining nonfluxional 

modes are shown. In (c) the fluxional modes are described by the projected 

3x1D model. The average of the results in each panel is shown as a sold blue 

line and labeled (2,1),(1,2), with the reference (0,0) result included for 

comparison. 

Fig. 11. Two-dimensional cuts through the potential energy surfaces for two (2,0) 

systems. Critical point energies are shown in cm-1 relative to the minimum-

energy well, and the number of apostrophes indicates the order of the saddle 

point. 

Fig. 12. Two-dimensional cuts through the potential energy surface for CH3CHOH. 

Critical point energies are shown in cm-1 relative to the minimum-energy well, 
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and the number of apostrophes indicates the order of the saddle point. 

Fig. 13. Average rovibrational anharmonicity corrections per-mode for four species with 

three torsions. In (a) results for all rotational and vibrational modes are shown, 

and in (b) the torsions modes are described using the projected reduced-

dimensional 3D model, and results for the remaining nonfluxional modes are 

shown. In (c) the torsions are described by the projected 3x1D model. The 

average of the results in each panel is shown as a sold blue line and labeled 

(3,0), with the reference (0,0) result included for comparison. 

Fig. 14. Two-dimensional cuts through the potential energy surface for CH3OOCH3. 

Critical point energies are shown in cm-1 relative to the minimum-energy well, 

and the number of apostrophes indicates the order of the saddle point. 

Fig. 15. Two-dimensional cut through the potential energy surface for CH(OH)3. Critical 

point energies are shown in cm-1 relative to the minimum-energy well, and the 

number of apostrophes indicates the order of the saddle point. 

Fig. 16. Two-dimensional cuts through the potential energy surface for HOCH2CH2OH. 

Critical point energies are shown in cm-1 relative to the minimum-energy well, 

and the number of apostrophes indicates the order of the saddle point. 
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Figure 1 

 
 

Fig. 1. Average rovibrational anharmonicity corrections per-mode for five nonfluxional 

species. The average of the five results is shown as a sold black line and labeled 

(0,0). 

  



 

 

49 

Figure 2 

 
  

Fig. 2. Average rovibrational anharmonicity corrections per-mode for four species with 

one inversion. In (a) results for all rotational and vibrational modes are shown. In 

(b) the inversion is described using a one-dimensional (1D) model, and G for the 

remaining nonfluxional modes are shown. The average of the results in each panel 

is shown as a sold blue line and labeled (0,1), with the reference (0,0) result 

included for comparison. In (b) black circles show the result of correcting for 

anharmonic coupling to overall rotation for CH2. 
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Figure 3 

 
Fig. 3. Average rovibrational anharmonicity corrections per-mode for nine species with 

one torsion. In (a) results for all rotational and vibrational modes are shown. In (b) 

the inversion is described using a one-dimensional (1D) model, and G for the 

remaining nonfluxional modes are shown. In (c) the 1D model has been corrected 

by the projection correction factor f!. The average of the results in each panel is 

shown as a sold blue line and labeled (1,0), with the reference (0,0) result 

included for comparison.  
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Figure 4 

 
 

Fig. 4. Average rovibrational anharmonicity corrections per-mode for four species with 
one torsion and one inversion. In (a) results for all rotational and vibrational 
modes are shown, and in (b) the torsion and inversion are described using the 
projected reduced-dimensional 2D model, and results for the remaining 
nonfluxional modes are shown. In (c) the torsion and inversion are described 
using the projected 2x1D model. The average of the results in each panel is shown 
as a sold blue line and labeled (1,1), with the reference (0,0) result included for 
comparison.  
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Figure 5 

 
 

Fig. 5. Two-dimensional cuts through the potential energy surfaces for the four (1,1) 

systems. Critical point energies are shown in cm-1 relative to the minimum-

energy well, and the number of apostrophes indicates the order of the saddle 

point. 
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Figure 6 

 
Fig. 6. Average rovibrational anharmonicity corrections per-mode for four species with 

two torsions. In (a) results for all rotational and vibrational modes are shown, and 
in (b) the torsions are described using the projected reduced-dimensional 2D 
model, and results for the remaining nonfluxional modes are shown. In (c) the 
torsions are described by the projected 2x1D model. The average of the results in 
each panel is shown as a sold blue line and labeled (2,0), with the reference (0,0) 
result included for comparison. 
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Figure 7 

 
 

Fig. 7. Two-dimensional cut through the potential energy surface for acetone. Critical 

point energies are shown in cm-1 relative to the minimum-energy well, and the 

number of apostrophes indicates the order of the saddle point. 
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Figure 8 

 
 
 
Fig. 8. Two-dimensional cuts through the potential energy surfaces for four (2,0) systems. 

Critical point energies are shown in cm-1 relative to the minimum-energy well, 

and the number of apostrophes indicates the order of the saddle point. 
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Figure 9 

 
 

Fig. 9. Two-dimensional cuts through the potential energy surfaces for two (2,0) systems. 

Critical point energies are shown in cm-1 relative to the minimum-energy well, 

and the number of apostrophes indicates the order of the saddle point.  
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Figure 10 

 
 

Fig. 10. Average rovibrational anharmonicity corrections per-mode for four species with 
torsions and inversions. In (a) results for all rotational and vibrational modes are 
shown, and in (b) the fluxional modes are described using the projected reduced-
dimensional 3D model, and results for the remaining nonfluxional modes are 
shown. In (c) the fluxional modes are described by the projected 3x1D model. 
The average of the results in each panel is shown as a sold blue line and labeled 
(2,1),(1,2), with the reference (0,0) result included for comparison. 
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Figure 11 

 
 

Fig. 11. Two-dimensional cuts through the potential energy surfaces for two (2,0) 

systems. Critical point energies are shown in cm-1 relative to the minimum-

energy well, and the number of apostrophes indicates the order of the saddle 

point. 
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Figure 12 

 
Fig. 12. Two-dimensional cuts through the potential energy surface for CH3CHOH. 

Critical point energies are shown in cm-1 relative to the minimum-energy well, 

and the number of apostrophes indicates the order of the saddle point.  
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Figure 13 

 
 

Fig. 13. Average rovibrational anharmonicity corrections per-mode for four species with 
three torsions. In (a) results for all rotational and vibrational modes are shown, 
and in (b) the torsions modes are described using the projected reduced-
dimensional 3D model, and results for the remaining nonfluxional modes are 
shown. In (c) the torsions are described by the projected 3x1D model. The 
average of the results in each panel is shown as a sold blue line and labeled (3,0), 
with the reference (0,0) result included for comparison. 
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Figure 14 

 
 
Fig. 14. Two-dimensional cuts through the potential energy surface for CH3OOCH3. 

Critical point energies are shown in cm-1 relative to the minimum-energy well, 

and the number of apostrophes indicates the order of the saddle point. 
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Figure 15 

 
 

Fig. 15. Two-dimensional cut through the potential energy surface for CH(OH)3. Critical 

point energies are shown in cm-1 relative to the minimum-energy well, and the 

number of apostrophes indicates the order of the saddle point. 
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Figure 16 

 
 

Fig. 16. Two-dimensional cuts through the potential energy surface for HOCH2CH2OH. 

Critical point energies are shown in cm-1 relative to the minimum-energy well, 

and the number of apostrophes indicates the order of the saddle point. 
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