
LLNL-CONF-778700

Making OpenMP Ready for C++
Executors

T. R. W. Scogland, D. Sunderland, S. L. Olivier,
D. S. Hollman, N. Evans, B. R. de Supinski

June 20, 2019

international workshop on OpenMP: iWOMP
Auckland, New Zealand
September 1, 2019 through September 1, 2019



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



Making OpenMP Ready for C++ Executors

Thomas R.W. Scogland1, Dan Sunderland2, Stephen L. Olivier2, David S.
Hollman2, Noah Evans2, and Bronis R. de Supinski1

1 Lawrence Livermore National Laboratory
{tscogland,bronis}@llnl.gov

2 Center for Computing Research, Sandia National Laboratories
{dsunder,slolivi,dshollm,nevans}@sandia.gov

Abstract. For at least the last 20 years, many have tried to create a
general resource management system to support interoperability across
various concurrent libraries. The previous strategies all suffered from ad-
ditional toolchain requirements, and/or a usage of a shared programing
model that assumed it owned/controlled access to all resources available
to the program. None of these techniques have achieved wide spread
adoption. The ubiquity of OpenMP coupled with C++ developing a
standard way to describe many different concurrent paradigms (C++23
executors) would allow OpenMP to assume the role of a general resource
manager without requiring user code written directly in OpenMP. With
a few added features such as the ability to use unbound threads to ex-
ecute tasks and to specify a task “width”, many interesting concurrent
frameworks could be developed in native OpenMP and achieve high per-
formance. Further, one could create concrete C++ OpenMP executors
that enable support for general C++ executor based codes, which would
allow Fortran, C, and C++ codes to use the same underlying concurrent
framework when expressed as native OpenMP or using language specific
features. Effectively, OpenMP would become the de facto solution for a
problem that has long plagued the HPC community.

Keywords: C++ Executors, OpenMP Tasks

1 Introduction

As high performance simulations reach extreme scales, the software engineering
and resource management challenges have become increasingly important. In
particular, managing machine-level parallelism, large numbers of threads, and
memory access patterns can be essential as individual machine nodes become
more capable and as the costs of data movement become prohibitive.

To manage the complexity of these systems, performance portability layers
(e.g. RAJA [13], Kokkos [7]) that support platform independent code written in
a higher-level abstraction are gaining wide adoption. In the broader computer
science community, a similar approach of using higher-level work-runner abstrac-
tions has taken hold to allow algorithms to be expressed independently of the



2 T. Scogland et al.

underlying execution system. These various efforts have spawned the current ef-
fort to define a fundamental executor concept and interface for C++, currently
targeting C++23. This concept would support the use of user or vendor-defined
executors with standard library algorithms to execute those algorithms in arbi-
trary contexts. Executors would generalize many aspects of RAJA and Kokkos,
and would provide a common interface in which the next generation of platform-
independent libraries could be written.

While these execution interfaces can make a component portable across dif-
ferent programming models or architectures, only code written using those in-
terfaces gains those benefits. Simulations often consist of multiple components,
libraries, and even languages. Composability between components in these com-
plex systems can complicate their correct and effective use. The problem is often
most severe when different components use different runtime systems, with each
runtime system competing for resources. Attempts to solve the composability
problem would provide application-level resource management [10] or a common
substrates for resource management [15,8]. An especially promising approach
uses OpenMP as a common thread pool and resource layer beneath other ab-
stractions. Integrating a code written with OpenMP with a code using the RAJA
or Kokkos OpenMP backend is no harder than integrating OpenMP codes, al-
lowing modern C++ to interface (relatively) seamlessly with the occasional 30-
year-old Fortran library that nobody admits to needing in their code but always
seems to be there.

In a C++ executors world, this approach requires an implementation of the
executor concept on top of OpenMP. This requirement is not, in itself, a problem.
A parallel loop or a runner is straightforward to implement in OpenMP but
executors and Kokkos and, to some extent, RAJA use a model that does not
ideally match OpenMP. Some patterns cannot be expressed in OpenMP while
adhering to their interfaces. Performance will suffer if these patterns are not
enabled.

Our position paper proposes that two new developments, the executors pro-
posal for the 2023 C++ standard and the increasing use of OpenMP as a resource
manager, enable unique and synergistic solutions to these problems. The common
timeframe for these standards provides a unique opportunity to codesign them.
C++ is already the lingua franca for performance portability layers in HPC,
and OpenMP is becoming the de facto runtime composition layer included in
every major compiler implementation. Marrying the two in a way that provides
best-in-class performance and composability for and between both models will
open new possibilities for more performant, more maintainable, and more easily
composed components and scientific applications.

This paper makes the following contributions:

– An analysis of the state of OpenMP tasking and offload from the perspective
of abstraction layers and C++ executors;

– A proposal of two extensions to OpenMP to improve the composability of
tasks, target regions, and parallel loops, as well as making asynchronous
tasks more amenable to abstractions; and



Making OpenMP Ready for C++ Executors 3

– A discussion of the feasibility of implementing the extensions in both a re-
search runtime and the OpenMP standard.

2 Background

For nearly a decade, the C++ standards committee (ISO/IEC JTC1/SC22/WG21)
has iterated on numerous designs of generic abstractions for execution, known as
executors. Representing one of the most ambitious generic library design efforts
of its kind, the current proposal [11] aims to address the needs of vastly different
application domains, from embedded computing to high performance computing
and everything in between. At least a subset of the features proposed therein are
likely to be merged into the C++ standard working draft early in the C++23
cycle [18], with other portions expected to follow shortly thereafter.

While the exact syntactic details of executors remain undecided, the vari-
ous designs have fairly consistently focused several important axes in the design
space. The most prominent of these is the expression of cardinality of work, dis-
tinguished by the elaboration of separate interfaces for single and bulk execution,
somewhat akin to providing both a parallel for and task interface. Different
prominent stakeholders have tended to see either of these extremes as funda-
mental: GPGPU stakeholders, for instance, tend to consider bulk execution to
be fundamental. Networking stakeholders, on the other hand, tend to see single
execution as the fundamental operation. Designs that can incorporate both of
these world views have led to new paradigms in generic programming [12].

Another fundamental design axis that has appeared consistently across the
history of executors is the distinction between one-way execution (“fire-and-
forget” work) and two-way execution—that is, work that requires some means of
signaling completion, failure, and/or cancellation. Programming models based on
promises and futures, dating back to at least the late 1970s [4], are a traditional
example of the latter. Recently, the design of two-way executors has begun to
converge on push-style programming models [17] due to their ability to unify the
observer pattern [9] with future/promise semantics.

Across all of these dimensions, the basic interfaces of all proposals has had
one thing in common: Much like OpenMP’s tasks, when in a parallel region,
they abstract over asynchrony. Work is allowed to be queued for later execution,
or run immediately, possibly singly or in bulk, and possibly with or without a
propagated value, but the basic expression of algorithms using any of these in-
terfaces is based upon the ability to asynchronously generate work. At present,
OpenMP can model single or bulk execution with or without signaling comple-
tion. Enabling asynchronous scheduling of these units of work however requires
that all the associated code can be wrapped in a parallel region, which is not
possible due to the interface itself as well as interference with the rest of the
program. There is also currently no way to model an asynchronous check for
completion of a task. Though it can be modeled with atomics or similar, we
leave exploration of this aspect for future work.



4 T. Scogland et al.

3 Requirements and Proposed Features

Since its introduction in version 3.0 of the specification, OpenMP support for
task parallelism has evolved into an increasingly powerful tool to expose paral-
lelism in application to be exploited by the OpenMP runtime system. Expres-
siveness has been expanded by allowing more sophisticated dependences and
synchronizations between tasks, and the scope of task parallelism in OpenMP
has expanded to encompass asynchronous offload to accelerators. However, the
awkward relationship of task parallelism to thread parallelism has changed little
from OpenMP 3.0 to 5.0. Otherwise promising use cases for task parallelism,
of which C++ executors implementation is but one, are rendered difficult or
impossible by the limitations of this relationship. We outline some of the issues
below, along with a high-level view of some potential future changes to the spec-
ification to address them. The changes are comparatively light on new syntax,
and the first is only semantic.

3.1 “Free-agent” Threads

The first issue, and the one encountered even by programmers writing the sim-
plest OpenMP program using tasks, is the requirement to create a team of
threads even for a program comprised entirely of explicit tasks. In the absence
of such a team of threads, the tasks would be executed only sequentially. This
leads to the frequent idiom combining parallel and single or master to start
a team of threads and then begin task creation on only one thread of the team,
as shown in Figure 1.

1 int main()

2 {

3 #pragma omp parallel

4 #pragma omp single

5 {

6 #pragma omp task

7 func1();

8 #pragma omp task

9 func2();

10 } // tasks join here

11 }

Fig. 1. Asynchronous tasking without free-agent threads

Related shared memory tasking frameworks like OmpSs [6], Cilk [14], Ar-
gobots [16], and Qthreads [19] simply make threads available for executing tasks
immediately at program startup. While many OpenMP implementations already
create threads upon initialization of the run time library, the current semantics
of OpenMP forbid using those threads to execute tasks until one or more teams



Making OpenMP Ready for C++ Executors 5

have been created. The constraint is more than an inconvenience, because the
creation of teams segregates the available threads. Since neither threads nor
tasks can be exchanged between two different teams of threads, the effect is to
limit composability and load balancing.

The solution proposed for future OpenMP versions is to allow a pool of “free
agent” threads maintained by the implementation to exist outside of a team and
available to execute tasks. This new semantic would allow a program to execute
tasks asynchronously on an implementation’s thread pool without creating a
parallel region, as shown in Figure 2.

1 int main()

2 {

3 #pragma omp task

4 func1(); // executes on an available thread in the pool

5 #pragma omp task

6 func2(); // executes on another available thread in the pool

7 #pragma omp taskwait // tasks join here

8 }

Fig. 2. Asynchronous tasking with free-agent threads

The effect of the code, assuming that the implementation has a pool of
threads ready to execute the tasks, is equivalent to Figure 1. While the dif-
ference is just a few lines, it not only simplifies reasoning about how to use
of tasks, a boon especially for new users, but also places fewer constraints on
interleaving tasks with parallel regions or parallel loops.

3.2 Task Width

Another important issue is that OpenMP currently provides no way for the
programmer to indicate when creating a task that the task includes further
parallelism inside the task or to what degree. The implementation becomes aware
of the nested parallelism only at the time the nested constructs within the task
are encountered. If, however, the implementation had knowledge of the nested
parallelism at task creation, it could plan to execute the task where and when
adequate threads are available for the nested parallelism. The solution proposed
for future OpenMP versions is to admit a clause on task-generating constructs
to specify the degree of nested parallelism present in the task.

We propose to add a width clause to the task directive. The argument to
new clause would indicate the amount of nested parallelism created within the
task, as shown in Figure 3. A more restrictive way to accomplish the same effect
would be to allow a nowait clause on the parallel construct, transforming its
region into a task. The example in Figure 4 shows the equivalent code using this
alternate approach.



6 T. Scogland et al.

1 #pragma omp task

2 func1(); // no width specified, so assume 1 thread only

3 #pragma omp task width(5)

4 {

5 // width(5) indicates internal parallelism

6 #pragma omp parallel for num_threads(5)

7 for (int i = 0; i < MAX; ++i)

8 func2(i);

9 }

Fig. 3. Parallelism inside a task with a specified width

1 #pragma omp task

2 func1(); // no width specified, so assume 1 thread only

3 #pragma omp parallel for num_threads(5) nowait

4 for (int i = 0; i < MAX; ++i)

5 func2(i);

6 }

Fig. 4. Asynchronous parallel regions

A point in favor admitting the nowait clause on the parallel construct
would be symmetry with the target construct, which already admits the clause.
It would also be a convenient way to express asynchronous bulk parallelism.
However, it does not support some use cases that are supported by task width
for interoperability of OpenMP users’ programs with libraries that use OpenMP
internally. Consider the example shown in Figure 5, in which the function call
is made to a math library routine. Because the nested parallelism is hidden
inside the library routine, the more restricted parallel nowait idiom does not
support this use case.

An open question regarding semantics is whether the number of threads in
the clause indicates maximum or minimum nested parallelism within the task.
Additionally, should it reflect only first nesting level of parallelism, or all levels,
if more than one level of parallelism is present within the task? This information
may need be readily available even to the programmer if the nested parallelism is
inside library calls. Even the basic indication that there exists nested parallelism
with in the task, regardless of size gives the runtime system more information
than it currently has for scheduling.

3.3 Broader Applicability

Progress on these issues is important not only for the success of OpenMP as
an implementation platform for C++ executors, but also for other important
use case scenarios. Among these use cases are real-time systems and GUI-based
programs, in which an event loop runs continuously and spawns new work peri-
odically or based on user input and sensors. Ever-increasing levels of hardware



Making OpenMP Ready for C++ Executors 7

1 void user_func(...)

2 {

3 #pragma omp task width(5)

4 {

5 blas_library_call(...); // allowed to use 5 threads internally

6 }

7 }

8

9 // (Inside the library)

10 void blas_library_call(...)

11 {

12 #pragma omp parallel for // gets up to "width" threads

13 for (int i = 0; i < MAX; ++i)

14 ...

15 }

Fig. 5. Task with a width calling library code

parallelism also motivate more flexible mechanisms to expose application paral-
lelism and provide more information to inform run time task scheduling.

Increasingly, single-source programming models for portable utilization of
heterogeneous compute resources, in which applications provide a single im-
plementation that is generic over execution model and resources, are a popular
approach to heterogeneous library design. Kokkos [7] is one such library that has
had a significant impact on major portions of the ISO-C++ executor design pro-
cess. Kokkos provides the concept of an ExecutionSpace that closely resembles
an executor. Users write code that is generic over the specific ExecutionSpace

type in order to express, with a single source, an algorithm that can run with
multiple execution models.

The obvious concern in the design of the ExecutionSpace concept is restrict-
ing the programming model enough to provide low-overhead performance (rela-
tive to an execution-model-specific implementation) on all supported ExecutionSpace

types. Specifically, Kokkos provides ExecutionSpace implementations for OpenMP,
CUDA, thread-pool-based execution, and serial execution, among others. The
restrictions on the ExecutionSpace design thus include abstractions that can
map to a notional “intersection” of execution model restrictions for all of the
supported backends. (ISO-C++ executor design is very similar in this respect.)

The extensions to the OpenMP programming model presented herein do not
represent an expansion of that intersection, since (for instance) serial execution
will always be a supported execution model. However, expanding the “intersec-
tion” of a subset of the supported execution models often enables an increase
in the precision of the user’s mental performance model for some generic code
because programming model abstractions can be mapped to a smaller “outer
product” of performance characteristics.



8 T. Scogland et al.

In this context the nowait clause on the parallel construct has a semantic
much more similar to that of a CUDA kernel launch than the traditional use of
the parallel construct. The restricted programming model that encompasses
both the synchronous parallel construct’s semantics and the asynchronous
semantics of a CUDA kernel launch requires the user to assume that the earliest
an algorithm’s execution can begin is immediately upon invocation, and the
latest the algorithm can finish execution is upon return from the next call to an
explicit Kokkos::fence() on the ExecutionSpace used by the algorithm. They
cannot rely on the encountering thread to block, or not to block. Presentation of
a consistently asynchronous model, or at least a potentially asynchronous one,
can help reduce the variability in behavior of the code across platforms.

4 Feature Interactions and Feasibility

The main challenge with this set of extensions is deciding how arrangements of
asynchronous execution, tasks, parallel regions, and widths that were not previ-
ously possible can interact without harming backward compatibility or perfor-
mance unduly. This section will discuss the various trade-offs and considerations
necessary to integrate free-agent threads and task widths into OpenMP.

4.1 Task Joining

As discussed previously, OpenMP tasks either execute immediately in the en-
countering thread, in a serial context, or are joined at the end of their enclosing
parallel region. As a result, there is currently no way for tasks to logically “run
off” the end of a program. If however we allow tasks to run asynchronously at
the top level of the program, we need to define what happens if tasks are still
executing when main ends. For example, take the code in Figure 2, if there were
no taskwait at the end of main there would be no guarantee that either func1
or func2 would be done at the end of the program.

Given the way OpenMP is currently defined, there is logically a parallel re-
gion around the entire program comprising only the initial thread. If we naively
extend this to make free agent threads accessible, we would assume that these
tasks should join on return. Given the considerations of implementations how-
ever, and the fact we want OpenMP to be usable when main is compiled without
it, our recommendation is that tasks are allowed to be cancelled by the end of
the program. Users always have the option to use either taskwait or taskgroup
to join tasks if they want them joined.

4.2 Threads Available for parallel

Since threads may now be executing task work alongside the initial thread, it
is possible to encounter a synchronous parallel region while some threads are
busy. There are a number of options available to handle this situation:

1. Run the parallel region immediately with fewer threads.



Making OpenMP Ready for C++ Executors 9

2. Make parallel wait for the concurrent tasks to pause or finish before start-
ing with all threads it would otherwise have been allotted.

3. Begin the parallel region with available threads and join others in as the
tasks either finish or reach scheduling points.

Given the potential performance implications, the user will almost certainly
want control over the choice of the options above. However the choice of de-
fault has implications both for performance and for backwards compatibility.
When an OpenMP parallel region starts, it is provided with some number of
threads. The actual number is always implementation-defined, and can be af-
fected by a variety of environment variables through OpenMP’s Internal Control
Variables (ICVs). That said, when the dyn-var ICV 3 is set to false, the number
of threads in each parallel region is fixed, and codes are allowed to rely on this
property to access thread-local state and for various other reasons.

Given the requirements imposed by dyn-var, we propose that either option
two or three is used when dyn-var is true, and allow only option one when it is
false. The user can then control the general behavior they prefer with an existing
ICV, get a more specific thread count with a task with a width or asynchronous
parallel region, or use a taskwait to ensure tasks have joined before the parallel
region starts.

4.3 Interactions Between Width and Num-Threads

The concept of the width clause for a task is simple on the surface–it tells the
runtime that the task being created should be provided with a given level of
parallelism, and that something in the dynamic scope of that task will make
use of it. Unlike with parallel nowait there is no guarantee precisely when
that parallelism will be used, so that many threads don’t necessarily need to be
immediately available. Given the way OpenMP is specified today, the simplest
way to think about translating a task with a width of six would be to set the
nthreads-var ICV to six inside a task as in Figure 6.

1 #pragma omp task // width(6)

2 {

3 omp_set_num_threads(6);

4 }

Fig. 6. A naive de-sugaring of a task with a width

This approach provides the desired behavior of controlling the number of
threads used in a dynamic scope, and allows different values of width for tasks
nested within one another while re-using a well established mechanism. It gets

3 The value set by the OMP DYNAMIC environment variable.



10 T. Scogland et al.

surprisingly close to the overall goal, even to providing the appropriate level
of parallelism when calling into a library, although it does not provide the
runtime or compiler with appropriate scheduling information. The downside
is that if the number of threads is set this way it overrides the value from
omp_get_max_threads(), and it can be overridden relatively easily. It may be
more appropriate to employ a mechanism like the thread limit on teams to re-
sist called code expanding past the resources allotted, and to provide a method
to interrogate the total number of threads available. While a parallel run in the
tasks context could only have the number specified by the limit, an asynchronous
task there could request more.

4.4 Feasibility

In order to explore the design space, we created an initial prototype runtime
implementing the new semantics we describe for tasks outside of a parallel con-
text. We considered implementation in the LLVM OpenMP runtime, GOMP,
and BOLT [1] which is a user-level threaded version of the LLVM runtime im-
plemented on top of argobots [16]. The LLVM and GOMP runtimes could both
implement the pattern we have discussed, but currently rely on the scoping of
parallel regions for memory management of their tasking runtimes. For example,
while the task-running threads and per-thread contexts persist across parallel
regions the task queues and attendant metadata do not. However, BOLT does
not, instead relying on the argobots system to manage some of these details. As
a result, a naive prototype is as simple as removing the checks for whether tasks
should be allowed to be run asynchronously outside of a parallel context4.

Given the structure of other runtimes we expect implementation of this fea-
ture to require a rework in the lifetime management of data structures, but
relatively little change in implementation logic other than to take advantage
of newly available information. We do not provide performance comparisons in
this paper as none of the proposed features have a direct impact on performance
in our implementation due to the underlying structure of BOLT. As such the
prototype performs identically to a stock BOLT library, simply allowing expres-
sion of tasks in an alternative manner. We may explore performance impact on
applications composed of multiple components and higher-level runtimes in the
future.

Overall, free-agent threads, tasks with a width, and asynchronous parallel
regions appear feasible from both a runtime and specification perspective. Af-
ter further experimentation and performance testing with codes in the wild,
some defaults and further mechanisms may become desirable. That said the
base mechanisms show strong promise for being implementable and providing
substantial benefit to composability of OpenMP with itself as well as making
it more practical as a substrate for libraries and systems with asynchronous or
thread-pool-like interfaces such as C++ executors.

4 In fact, the original naive prototype only required changing eight lines of code.



Making OpenMP Ready for C++ Executors 11

5 Related Work

The emergence of manycore and heterogeneous systems and increasing use of
hybrid MPI-X programming models has led to a proliferation of frameworks
to support performance portability, composition, interoperability, and resource
management. Kokkos [7], and RAJA [13] provide performance portability frame-
works, however they do so at the middleware level. By specifying memory and
concurrency at the language standards level, performance portability policy sup-
port becomes a compiler rather than a middleware capability. This appraoch
ensures support across platforms and provides vendor independent ways of im-
plementing cross platform high performance simulation software.

OmpSs [5] is a task-based OpenMP-like programming model that has inspired
many of the current features and behaviors of task parallelism in OpenMP.
BOLT [1] provides an alternative implementation of the LLVM OpenMP runtime
ABI on top of Argobots [16], which offers user-level threading to support over-
decomposition and deeper nesting than is feasible with OS-level thread models.
For hybrid MPI+X programming, OmpSs provides direct integration with MPI
and BOLT provides integration with the MPICH implementation of MPI [2]
using the Argobots [16] runtime framework. StarPU [3] provides integration of
heterogeneous computing and software resources in a uniform manner via the
runtime. It includes OpenMP 4 with a focus on task parallelism and extensions
to support run time scheduling optimizations.

Lithe [15] provides a common runtime substrate to enable coscheduling of
runtimes similar to CPU inheritance scheduling [8] while adding a hardware
thread abstraction to ensure that multiple runtimes do not oversubscribe sys-
tem resources. Modified versions of the runtimes (e.g., OpenMP and Threading
Building Blocks) are required. The QUO [10] library provides an alternative
approach to composing MPI and threading runtimes, managing heterogeneous
thread and memory resources at the application level and manually quiescing
and running thread groups via the pthreads system interface, thus manually
avoid oversubscription of system resources in multiple interacting runtimes.

Our approach is based on the view that the upcoming incoporation of ex-
ecutors into the C++ language standard will make their use commonplace, and
that leveraging the many high quality OpenMP implementations in open source
and vendor compiler suites is a promising way both to support executors and
to integrate C++ programs using them with native OpenMP code. Like other
solutions to address the problems of composition and thread resource manage-
ment, we seek to avoid unintended oversubscription of hardware execution re-
sources. However, using OpenMP as the integration point provides the benefits
of greater portability and high-level abstraction compared to ad-hoc and system-
level frameworks.

6 Conclusions

Composing multiple frameworks and performance portability layers is an increas-
ingly necessary for high performance computing at scale. However, standardizing



12 T. Scogland et al.

on the portability layer has been difficult, leading to multiple implementations
with no clear standard interface. In this paper we have argued that the ubiquity
of OpenMP and the coming executors concept in the C++ standard provide a
unique opportunity to ensure that both standards grow to a point where they
can compose with one another to efficiently and effectively integrate components
built with state-of-the-art techniques in C++ with the extensive performance-
oriented ecosystem of OpenMP applications and libraries.

We analyzed the requirements for the extensions to tasking as well as the
necessary extensions to the OpenMP standard to provide the necessary function-
ality. Specifically, we propose incorporating the concept of “free-agent” threads
into OpenMP, allowing asynchronous execution of tasks and parallelism with-
out a scoping restriction, and extending tasks with a width, allowing a task to
represent a quantity of resources allocated to the code executed inside it. Fi-
nally we discussed an implementation of ”free agent” threads in an OpenMP
runtime along with some of the major design considerations for implementing
these changes in the specification. While exploring this approach we found a
few more potential future extension points, including a non-blocking mechanism
for checking if tasks are complete and a mechanism for executing tasks in other
teams, but we leave these for future work.

Acknowledgments

This work was performed under the auspices of the U.S. Department of En-
ergy by Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344. Sandia National Laboratories is a multimission laboratory man-
aged and operated by National Technology and Engineering Solutions of San-
dia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-NA-0003525.

References

1. BOLT: A lightning-fast OpenMP implementation, https://bolt-omp.org/
2. Argonne National Laboratory: MPICH2: High performance and portable mes-

sage passing. http://www.mcs.anl.gov/research/projects/mpich2, http://www.

mcs.anl.gov/research/projects/mpich2

3. Augonnet, C., Thibault, S., Namyst, R.: StarPU: a Runtime System for Schedul-
ing Tasks over Accelerator-Based Multicore Machines. Tech. Rep. RR-7240, Lab-
oratoire Bordelais de Recherche en Informatique - LaBRI, RUNTIME - INRIA
Bordeaux - Sud-Ouest (Mar 2010), http://hal.inria.fr/inria-00467677

4. Baker, H.C., Hewitt, C.: The incremental garbage collection of
processes. ACM SIGPLAN Notices 12(8), 55–59 (Aug 1977).
https://doi.org/10.1145/872734.806932

5. Bueno, J., Duran, A., Martorell, X., Ayguadé, E., Badia, R.M., Labarta, J.:
Poster: Programming Clusters of GPUs with OmpSs. In: International Con-
ference for High Performance Computing, Networking, Storage and Analysis



Making OpenMP Ready for C++ Executors 13

(SuperComputing). ACM (May 2011). https://doi.org/10.1145/1995896.1995961,
http://portal.acm.org/citation.cfm?id=1995896.1995961&coll=DL&dl=

GUIDE&CFID=61704752&CFTOKEN=92261478

6. Duran, A., Ayguadé, E., Badia, R.M., Labarta, J., Martinell, L., Martorell,
X., Planas, J.: OmpSs: A Proposal for Programming Heterogeneous Multi-Core
Architectures. Parallel Processing Letters 21(2), 173–193 (2011), http://www.

worldscinet.com/abstract?id=pii:S0129626411000151

7. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: Enabling many-
core performance portability through polymorphic memory access pat-
terns. Journal of Parallel and Distributed Computing 74(12), 3202 – 3216
(2014). https://doi.org/https://doi.org/10.1016/j.jpdc.2014.07.003, http://www.

sciencedirect.com/science/article/pii/S0743731514001257, domain-Specific
Languages and High-Level Frameworks for High-Performance Computing

8. Ford, B., Susarla, S.: CPU inheritance scheduling. In: OSDI. vol. 96, pp. 91–105
(1996)

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1994)

10. Gutiérrez, S.K., Davis, K., Arnold, D.C., Baker, R.S., Robey, R.W., McCormick,
P., Holladay, D., Dahl, J.A., Zerr, R.J., Weik, F., Junghans, C.: Accommodating
Thread-Level Heterogeneity in Coupled Parallel Applications. In: 2017 IEEE Inter-
national Parallel & Distributed Processing Symposium (IPDPS). Orlando, Florida
(2017)

11. Hoberock, J., Garland, M., Kohlhoff, C., Mysen, C., Edwards, C., Hollman,
D.: P0443r10: A unified executors proposal for C++ (Jan 2019), http://www.

open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0443r10.html

12. Hollman, D., Kohlhoff, C., Lelbach, B., Hoberock, J., Brown, G., Dominiak, M.:
P1393r0: A general property customization mechanism (Jan 2019), http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1393r0.html

13. Hornung, R., Keasler, J.: The RAJA portability layer: Overview and status. Tech.
rep., Lawrence Livermore National Laboratory (LLNL), Livermore, CA (2014)

14. Leiserson, C.E.: The cilk++ concurrency platform. The Journal of Supercomputing
51(3), 244–257 (2010)

15. Pan, H., Hindman, B., Asanović, K.: Composing parallel software efficiently with
lithe. ACM Sigplan Notices 45(6), 376–387 (2010)

16. Seo, S., Amer, A., Balaji, P., Bordage, C., Bosilca, G., Brooks, A., Carns, P.,
Castelló, A., Genet, D., Herault, T., et al.: Argobots: A lightweight low-level
threading and tasking framework. IEEE Transactions on Parallel and Distributed
Systems 29(3), 512–526 (2018)

17. Shoop, K., Niebler, E., Howes, L.: P1055r0: A modest executor proposal (Apr
2018), http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1055r0.
pdf

18. Sutter, H.: Trip report: Winter ISO C++ standards meet-
ing (Kona) (Feb 2019), https://herbsutter.com/2019/02/23/

trip-report-winter-iso-c-standards-meeting-kona/

19. Wheeler, K.B., Murphy, R.C., Thain, D.: Qthreads: An API for programming with
millions of lightweight threads. In: IEEE International Symposium on Parallel and
Distributed Processing. pp. 1–8. IEEE (2008)


