¢

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-CONF-778680

A Framework for Enabling
OpenMP Autotuning

V. Sreenivasan, R. Javali, M. Hall, P.
Balaprakash, T. R. W. Scogland, B. R. de
Supinski

June 20, 2019

international workshop on OpenMP: iWOMP
Auckland, New Zealand
September 1, 2019 through September 1, 2019

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

A Framework for Enabling OpenMP
Autotuning*

Vinu Sreenivasan', Rajath Javali', Mary Hall', Prasanna Balaprakash?, Tom
Scogland?, and Bronis de Supinski?

! University of Utah, Salt Lake City, UT 84103 USA
2 Argonne National Laboratory, Argonne, IL 60439 USA
3 Lawrence Livermore National Laboratory, Livermore, CA 94550 USA

Abstract. This paper describes a lightweight framework the enables au-
totuning of OpenMP pragmas to ease the performance tuning of OpenMP
codes across platforms. This paper describes the framework and demon-
strates its use in identifying best-performing parallel loop schedules and
number of threads for five codes from the Polybench benchmark suite.
This process is facilitated by a tool for taking a compact search-space
description of pragmas to apply to the loop nest and chooses the best so-
lution using model-based search. This tool offers the potential to achieve
performance portability of OpenMP across platforms without burdening
the programmer with exploring this search space manually. Performance
results show that the tool identifies different selections for schedule and
thread count applied to parallel loops across benchmarks, data set sizes
and architectures. Performance gain over the baseline with default set-
tings of up to 1.17x, but slowdowns of 0.5x show the importance of
preserving default settings. More importantly, this experiment sets the
stage for more elaborate experiments to map new OpenMP features such
as GPU offloading and the new loop pragma.

Keywords: Autotuning - Loop scheduling - Performance Portability.

1 Introduction

OpenMP is an API which is used to explicitly direct thread-level, shared mem-
ory parallelism. By design, OpenMP programmers express parallelism with only
modest changes to a sequential code through the addition of pragmas that are
used by the compiler to map the code to a parallel platform. As all widely-used
compilers understand OpenMP pragmas and can generate parallel code, such an
approach allows for a single source code that is portable across systems.
Achieving high parallel efficiency with OpenMP usually requires prescriptive
pragmas that explicitly define the program behavior, specifying, for example,
parallel schedules and number of threads to use. As pragmas become increasingly

* Supported by Department of Energy Exascale Computing Project and Scientific
Discovery through Advanced Computation programs.

This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52- 07NA27344.

2 V. Sreenivasan et al.

prescriptive, the advantage of cross-architecture portability decreases. Descrip-
tive directives pass information about code semantics to the compiler to allow
it to optimize without specifying how it might choose to do that. By leaving
degrees of freedom in the mapping of OpenMP code, an application code can
more readily adapt to different data sets and architectures.

We achieve this goal through the use of autotuning. Autotuning relies on
empirical measurement to explore alternative implementations of a computation.
To manage the large search spaces that arise even with the limited experiment in
this paper, our approach incorporates the Search using Random Forests (SuRF)
framework, which creates a statistical model of the search space and constrains
the time required for empirical measurement [3].

For this paper, we apply the pragma autotuner to the problem of scheduling
parallel loops, designated as #pragma omp parallel for and equivalent. Even
for such a limited experiment, the search space consists of how many threads to
use, whether to use static or dynamic scheduling of loop iterations, and the chunk
size which selects the granularity of the scheduling. For architectures with large
numbers of cores, this search space can be quite large. Moreover, we envision
such a tool will be much more necessary as recent features of OpenMP gain wider
use, including GPU offload and the prescriptive loop construct which leaves the
compiler significant freedom in mapping the code.

Related Work and Contribution. The concept of autotuning OpenMP code is
well-established and the most prevalent of these employ tuning to go beyond
loop schedules, to look at parallel tasks, function inlining, and tuning for en-
ergy [1,4,2]. However, such approaches require the use of specialized libraries or
specific compilers, and would require more extensive adaptation as new OpenMP
constructs are added. In contrast, this paper contributes a general framework
that can be used to explore user-directed search spaces of any pragmas, even
beyond OpenMP. The centerpiece of this work, a pragma autotuner, works with
the C preprocessor to update the pragmas at marked locations in the code.

2 Search Space for Loop Scheduling

We illustrate the approach with a simple example, the main computation from
the atax benchmark from Polybench. This computation has two parallel loops,
one for initialization of the output vector, and the other nested loop to compute
the result A*Ax.

A Framework for Enabling OpenMP Autotuning 3

#pragma omp parallel
{
#pragma omp for
for (i = 0; i < _PB_NY; i++)
yl[il = 0;
#pragma omp for private(j)
for (i = 0; i < _PB_NX; i++) {
tmp[i] = 0;
for (j = 0; j < _PB_NY; j++)
tmp[i] = tmpl[i] + A[i]1[j]1 * x[j];
for (j = 0; j < _PB_NY; j++)
y[j] = y[j] + A[i1[j] * tmpl[il;

o

The scheduling of the parallel loops uses default settings for the following
three parameters:

— Number of threads to use
— Static vs. dynamic scheduling of loop iterations to threads
— Chunk size, which is the scheduling unit

We use the Search using Random Forests framework to navigate the search
space that arises from Figure 1 shows the input to our framework that permits
tuning based on these parameters for a 4-core desktop platform with a maximum
of 8 threads.

3 Pragma Autotuner System Design

Figure 2 depicts the organization of the pragma autotuner, used to optimize
OpenMP. It needs a configuration file which has the search space definition;
for example, the loop scheduling parameters in Figure 1(b). The original loop
scheduling pragmas are replaced with the mapped pragmas. For each replace-
ment pragma in the search space, a separate source code file is generated. The
tool also takes in a parameter list which maps different replacement policies to
every loop marking in the code. For example, loop 1 can be replaced with 3
different types of pragmas whereas loop 2 might take on just 2 types.

One requirement for code modification of the autotuner is that it requires
manual tagging of the beginning of a loop, which is used by the tool to parse
the code and generate multiple code files with all combinations of pragmas. The
C preprocessor then replaces this mark with the selection of pragmas identified
through autotuning search. Then all the output files are executed to record the
execution times of the modified loop. Based on the times a suggestion is made
by the autotuner software regarding which pragma performs well.

The autotuner has a configuration file through which we can specify the path
of the benchmark we want to run. The benchmark source file should have proper

4 V. Sreenivasan et al.

#pragma omp parallel num_threads (#P3)

#pragma omp for schedule(#P1, #P2)
for (i = 0; i < _PB_NY; i++)
y[i] = 0;
#pragma omp for private (j) schedule(#P1, #P2)
for (i = 0; i < _PB_NX; i++) {
tmp[i] = O;
for (j = 0; j < _PB_NY; j++)
tmp[i] = tmp[i] + A[il[j] * x[j];
for (j = 0; j < _PB_NY; j++)
y[31 = y[j] + A[i]1[j] * tmp[il;
}
}

(a) Code with markers for autotuner.
problem.spec_dim(p_id=0, p_space=["static", "dynamic"], default="static")
problem.spec_dim(p_id=1, p_space=[1, 8, 16], default=1)

problem.spec_dim(p_id=2, p_space=[1, 2, 4, 8], default=1)

(b) Excerpt of parameter specification for atax example.

Fig. 1. Modified code to permit pragma autotuning (top) and search space specification
(bottom).

markers placed at the corresponding positions where we want to optimize the
loops. Later, in the problem definition, we need to define the possible options
for those markers using pragmas. We need to pass this problem definition with
parameters, their possible values and default values to the search tool, which
will return individual points in the search space to examine next.

The parser method in the autotuner then replaces the markers in the source
file with the corresponding values received from the search tool and generates
a new source file that will be saved in a temporary location in the experiment
directory. Later, the generated source files are compiled and run with the options
from the configuration file. Once the run has been completed, the execution
time will be passed to SuRF as a cost measurement. Based on the execution
time, SURF will return the best combination suitable for the benchmark to run
efficiently. To limit the overhead associated with autotuning, the system limits
the time of the search, in the case of this paper to 10,000 seconds.

Sometimes we need an empty string for a parameter to indicate that the
default values or no parallelization should be used. Therefore the autotuner
supports the empty string parameter value. Whenever the value None has been
returned from the search tool, the parser will replace it as an empty string in
the final code generation.

A Framework for Enabling OpenMP Autotuning 5

Code
Output Code

Look Up
Loop

K M [Execution Times Auto Tuner Tool ~ [SUgdestion
ags/Markings|

Timing

Auto Tuner Tool

Problem
Definition

Config

Problem.py -
program
mapping Parameters

Fig. 2. System design of pragma autotuner.

The generated source is compiled with standard OpenMP compilers; we have
tested clang and gce compilers, and gec is used in this paper.

4 Experiment

In this section, we describe a simple experiment to demonstrate the capability of
the pragma autotuner and its ease of use. We revisit the loop scheduling problem
from Section 2.

4.1 Methodology

Our goal is to determine via autotuning an optimized schedule (static or dy-
namic), a chunksize (1, 8 or 16 to coincide with a fully dynamic schedule or a
cache line), and number of threads (1, 2, 4 or 8). We execute this experiment on
a desktop platform, an Intel CORE i7-4770 with 4 Cores and 8 threads due to
hyperthreading. We apply the system to five benchmarks from Polybench shown
in Table 1. This subset of benchmarks were chosen as representative of 1D, 2D
and 3D loop nests, and all have OpenMP parallel for loops without reductions.
We used two inputs to test adaptability, Default and Large. For each input, Ta-
ble 1 provides the settings for Schedule, Chunk and Threads identified by the
framework.

6 V. Sreenivasan et al.

Name Selection (default) | Selection (large)
Sched|Chunk|Threads||Sched|Chunk| Threads
atax dyn 8 4 stat 16 8
3mm stat 1 4 stat 1 8
convolution-2d | stat | 16 4 stat 16 8
covariance dyn 8 4 stat 1 8
correlation dyn 8 4 stat 1 8

Table 1. Polybench benchmarks used in this experiment.

4.2 Performance Results

Figure 3 shows speedup over baseline for the five benchmarks and each of the
two input data sets. We observe modest speedups for all benchmarks other
than convolution-2d. The most significant speedups of 1.17x are for the long-
running correlation benchmark. We believe the slowdown for convolution-2d
is likely because we are not including the default chunksize in our search space.
We plan to correct this for the final paper.

14
1.2

W Default

W Large

Fig. 3. Performance improvements over default Baseline schedule.

5 Ongoing OpenMP Autotuning Strategies

The above simple experiment shows modest performance gains, but we antici-
pate the true productivity advantage of the pragma autotuner will be to derive
pragmas for more complex codes targeting the architectural diversity of current
and future systems. This paper describes a work-in-progress as to applications

A Framework for Enabling OpenMP Autotuning 7

of the pragma autotuner. In this section, we detail an experiment we are design-
ing to explore a search space for the #pragma omp loop that was introduced in
OpenMP 5. This construct indicates to the OpenMP compiler that the loop’s
iterations are independent but leaves it to the discretion of the compiler writer
to generate the most appropriate code. In an ongoing experiment, we wish to
replace the prescriptive loop pragma with descriptive OpenMP pragmas that
express how to optimize the loops. For example, we consider the following alter-
natives:

— A parallel for loop, with the scheduling parameters from the previous section.

— For multi-dimensional loops, we might augment the parallel for loop with
a collapse clause to assign multiple loop dimensions to a single thread
dimension.

— If our target architecture supports efficient simd execution, we might want
to use the pragma omp simd directive.

— If our target architecture supports GPU offload, we might want to map
coarse-grain loops to the GPU using the pragma omp target directive.

5.1 Case Study: 27-point Stencil

Since loop is a new feature of OpenMP that is not even supported yet by the
compilers used in our experiment, there do not currently exist benchmarks that
use this construct. However, we note that a similar descriptive construct in
OpenACC is the #pragma acc independent pragma. We found an example use
of this pragma in the 27 point stencil code from the EPCC OpenACC Benchmark
Suite. Figure 4 shows the input code (once converted to use loop), and the
autotuning search space used for the desktop system in the previous paper. The
same approach can be used to derive the best mapping of the code.

This more complex experiment has a number of challenges. We plan to ex-
plore how to compactly describe the search space, but the example in Figure 4
illustrates the bulleted items in the above list absent the GPU offload since there
is no GPU on our target desktop system.

8 V. Sreenivasan et al.

for (iter = 0; iter < ITERATIONS; iter++) {
// PO
#pragma omp loop
for (i = 1; i < n+1; i++) {
// P1
#pragma omp loop
for (j = 1; j < n+1; j++) {
// P2
#pragma omp loop
for (k = 1; k < n+1; k++) {
all[ixsz*sz+j*sz+k] = (
a0 [i*sz*sz+(j-1)*sz+k] + aO[ixsz*sz+(j+1)*sz+k] +
a0[(i-1)*szxsz+j*sz+k] + aO[(i+1)*sz*sz+j*sz+k] +
a0[(i-1)*sz*sz+(j-1) *sz+k] + a0[(i-1)*sz*sz+(j+1)*sz+k]
a0[(i+1) *sz*xsz+(j-1)*sz+k] + aO[(i+1)*sz*sz+(j+1)*sz+k]
a0 [ikxsz*sz+(j-1)*sz+(k-1)] + aO[iksz*sz+(j+1)*sz+(k-1)]
a0[(i-1) *sz*sz+j*sz+(k-1)] + aO[(i+1)*sz*sz+j*sz+(k-1)]
a0[(i-1)*sz*xsz+(j-1)*sz+(k-1)] +
a0[(i-1)*szxsz+(j+1)*sz+(k-1)] +
a0[(i+1) *sz*sz+(j-1) *sz+(k-1)] +
a0[(i+1) *szxsz+(j+1)*sz+(k-1)] +
a0 [ikxsz*sz+(j-1)*sz+(k+1)] + aO[iksz*sz+(j+1)*sz+(k+1)] +
a0[(i-1)*sz*sz+j*sz+(k+1)] + aO[(i+1)*sz*sz+j*sz+(k+1)] +
a0[(i-1)*sz*sz+(j-1)*sz+(k+1)] +
a0[(i-1)*szxsz+(j+1)*sz+(k+1)] +
a0[(i+1) *sz*sz+(j-1) *sz+(k+1)] +
a0 [(i+1) *sz*sz+(j+1) *sz+(k+1)] +
a0 [ikxsz*xsz+j*sz+(k-1)] + aO[i*sz*sz+j*sz+(k+1)]) * fac;

+ + + +

331
(a) 27 point stencil input code.

problem.spec_dim(p_id=0, p_space=["None",
"#pragma omp for schedule(#P3, #P4) nthreads(#P5)",
"#pragma omp for schedule(#P3, #P4) collapse(#P6) nthreads(#P5)",
], default="#pragma omp for schedule(#P3, #P4) nthreads(#P5)")
problem.spec_dim(p_id=1, p_space=["None",
"#pragma omp for schedule(#P3, #P4) nthreads(#P5)",
"#pragma omp for schedule(#P3, #P4) collapse(#P6) nthreads(#P5)",
], default="#pragma omp for schedule(#P3, #P4) nthreads(#P5)")
problem.spec_dim(p_id=2, p_space=["None",
"#pragma omp for schedule(#P3, #P4) nthreads(#P5)",
"#pragma omp simd",
1, default="#pragma omp simd")
problem.spec_dim(p_id=3, p_space=["static", "dynamic"], default="static")
problem.spec_dim(p_id=4, p_space=[1, 8, 16], default=1)
problem.spec_dim(p_id=5, p_space=[1, 2, 4, 8], default=1)
problem.spec_dim(p_id=6, p_space=[2,3], default=1)

(b) Customized search space for this code.

Fig. 4. 27 point stencil code input (top), and associated search space (bottom).

A Framework for Enabling OpenMP Autotuning 9

5.2 Handling Errors

As search spaces become more complex, as in the previous example, SURF may
generate invalid pragma combinations, such as the following example.

for (iter = 0; iter < ITERATIONS; iter++) {
#pragma omp parallel for
for (i = 1; 1 < n+1; i++) {
#pragma omp for collapse(2)
for (j = 1; j < n+1l; j++) {
#pragma omp simd
for (k = 1; k < n+1; k++) {
<27pt stencil calculation goes here>

33

The OpenMP compiler will throw an error when it encounters this kind of
combination. For erroneous configurations, the tool must minimally check the
exit code from the compiler and report to SuRF an execution time of MAX_DBL
so that such configurations are avoided by the search. Ideally, we prefer to build
configuration rules into the system to detect errors before generating the code
and attempting the compilation. This encoding of OpenMP domain knowledge
will increase the complexity of the tool implementation, but reduce the tuning
time, and is the subject of future work.

6 Conclusion

This paper has described a pragma autotuner that we have developed to ease
the performance portability of OpenMP applications and reduce the program-
mer’s burden of tuning their code as they migrate to the increasingly diverse
hardware platforms, and support complex codes. We showed modest gains could
be achieved using this system for loop scheduling parameters, and discussed how
it could be extended to derive mappings for the new #pragma omp loop con-
struct. As OpenMP’s capabilities continue to expand to support a diversity of
architectures, we believe autotuning will play an increasingly important role in
achieving performance portability of current and future OpenMP codes.

References

1. Katarzynski, J., Cytowski, M.: Towards autotuning of openmp applications on mul-
ticore architectures. CoORR abs/1401.4063 (2014), http://arxiv.org/abs/1401.4063

2. Mustafa, D., Aurangzeb, A., Eigenmann, R.: Performance analysis and
tuning of automatically parallelized openmp applications. In: Proceed-
ings of the T7th International Conference on OpenMP in the Petascale
Era. pp. 151-164. IWOMP’11, Springer-Verlag, Berlin, Heidelberg (2011),
http://dl.acm.org/citation.cfm?id=2023025.2023041

10 V. Sreenivasan et al.

3. Nelson, T., Rivera, A., Balaprakash, P., Hall, M., Hovland, P.D., Jessup,
E., Norris, B.: Generating efficient tensor contractions for gpus. In: 2015
44th International Conference on Parallel Processing. pp. 969-978 (Sep 2015).
https://doi.org/10.1109/ICPP.2015.106

4. Silvano, C., Palermo, G., Agosta, G., Ashouri, A.H., Gadioli, D., Cherubin, S., Vi-
tali, E., Benini, L., Bartolini, A., Cesarini, D., Cardoso, J., Bispo, J., Pinto, P., No-
bre, R., Rohou, E., Besnard, L., Lasri, I., Sanna, N., Cavazzoni, C., Cmar, R., Marti-
novic, J., Slaninova, K., Golasowski, M., Beccari, A.R., Manelfi, C.: Autotuning and
adaptivity in energy efficient hpc systems: The antarex toolbox. In: Proceedings of
the 15th ACM International Conference on Computing Frontiers. pp. 270-275. CF
’18, ACM, New York, NY, USA (2018). https://doi.org/10.1145/3203217.3205338,
http://doi.acm.org/10.1145/3203217.3205338

