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In the present study, shock tube experiments are used to study the very late time de-
velopment of the Richtmyer-Meshkov instability from a diffuse, nearly sinusoidal, initial
perturbation into a fully turbulent flow. The interface is generated by two opposing gas
flows and a perturbation is formed on the interface by transversely oscillating the shock
tube to create a standing wave. A Mach 1.2 shock wave is generated by puncturing a
diaphragm that then impacts a density gradient composed of air and SF6 causing the
Richtmyer-Meshkov instability to develop in the 2.0m long test section. The instability is
visualized with planar Mie scattering in which smoke particles in the air are illuminated
by a Nd:YLF laser sheet and images are recorded using four high speed video cameras
operating at 6 kHz that allow the recording of the time history of the instability. In ad-
dition particle image velocimetry (PIV) is implemented using a double pulsed Nd:YAG
laser with images recorded using a single CCD camera. Initial modal content, ampli-
tude, and growth rates are reported from the Mie scattering experiments while vorticity
and circulation measurements are made using PIV. Amplitude measurements show good
early time agreement but relatively poor late time agreement with existing nonlinear
models. The model of Goncharov (Phys. Rev. Lett., vol. 88, 2002, 134502) agrees with
growth rate measurements at intermediate times but fails at late experimental times.
Measured background acceleration present in the experiment suggests that the late time
growth rate may be influenced by Rayleigh-Taylor instability induced by the interfacial
acceleration. Numerical simulations conducted using the LLNL codes Ares and Miranda
show that this acceleration may be caused by the growth of boundary layers and must
be accounted for to produce good agreement with models and simulations. Adding accel-
eration to the RM buoyancy-drag model produces improved agreement. It is found that
the growth rate and amplitude trends are also modeled well by the Likhachev-Jacobs
vortex model (Phys. Fluids, vol. 17, 2005, 031704). Circulation measurements also show
good agreement with the circulation value extracted by fitting the vortex model to the
experimental data.

† Present address: Roxar Flow Measurement, Gamle Forusvei 17, 4065 Stavanger, Norway
‡ Present address: Lockheed Martin Aeronautics, 1011 Lockheed Way, Palmdale, CA 93599
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1. Introduction

The Richtmyer-Meshkov instability (Richtmyer 1960; Meshkov 1969) is a member of a
class of fluid instabilities that occur across density interfaces in fluid meda. This insta-
bility is very similar to the better known Rayleigh-Taylor (Rayleigh 1900; Taylor 1950)
instability that occurs when an interface is subjected to a constant acceleration such
as produced by gravity. The Richtmyer-Meshkov instability, however, occurs when the
interface is impulsively accelerated. This instability is a major component of supersonic
mixing and enhances mixing during fuel injection in SCRAMJET propulsion systems
(Yang et al. 1993). The instability occurs in nature when the helium-hydrogen interface
in core-collapse supernovae is subjected to the shock wave generated by the bouncing
stellar core (Kifonidis et al. 2006). In engineering applications, the Richtmyer-Meshkov
instability occurs in inertial confinement fusion when a capsule containing deuterium
and tritium is ablated and the heavy and light fuel layers begin to mix. Minimization of
mixing of the deuterium-tritium fuel by instabilities is crucial to the successful formation
of the fusion reaction’s central hot spot (Edwards et al. 2011).

In the generation of Richtmyer-Meshkov instability, a perturbed interface is subjected
to an impulsive acceleration (often produced by a shock wave) which deposits kinetic
energy on the fluid interface and causes perturbations to grow with time. This growth
eventually causes the fluids separated by the interface to mix together and become tur-
bulent. This instability is initiated by baroclinic vorticity deposition (as shown in figure
1) when the shock wave, a pressure gradient (∇p), interacts with a density gradient (∇ρ).
The two dimensional, inviscid vorticity transport equation can be written as

ρ
D

Dt

(
ω

ρ

)
=

1

ρ2
∇ρ×∇p . (1.1)

Thus, the initial vorticity (ω) distribution is generated by the shock wave when there
is a misalignment of pressure and density gradients. Additional weak vorticity will also
be generated by the transmitted and reflected shock waves which will be curved due to
interaction with the perturbed interface (Huerte Ruiz de Lira et al. 2011). The deposited
vorticity causes the interface to roll up into mushroom-like spikes of heavy fluid pen-
etrating into the light fluid, separated by bubbles of light fluid moving into the heavy
fluid (as shown in figure 1). The total amount of vorticity deposited by the shock wave
determines the growth rate of the instability. The spikes and bubbles continue to grow
and the vorticity rolls up into regions of concentrated vorticity of alternating sign. Later
in the development of the instability, the misalignment of the centripetal acceleration of
the vortex cores and the interfacial density gradient causes the generation of additional
vorticity (Peng et al. 2003). The rolling up of the vorticity will also generate shear on the
thin arms of the mushroom structure and leads to the growth of a secondary instability.
Over time, this secondary instability eventually becomes turbulent and the mushroom
structures begin to disintegrate as the stems thin and the arms mix due to turbulent
diffusion.
The Richtmyer-Meshkov instability was initially modeled by Richtmyer (1960) by re-

placing gravity in the linear stability theory of Taylor (1950) with an impulsive acceler-
ation in the form of a Dirac delta function resulting in

a(t) = a0[1 + kA∆V t] , (1.2)

which describes the growth of the perturbation amplitude a where k is the wavenumber
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Figure 1. Explanation of the deposition of baroclinic vorticity on the interface: (Left) The shock
wave travels downward toward the interface and applies a pressure gradient across the density
gradient which generates baroclinic vorticity on the interface. (Right) This baroclinic vorticity
rolls up into spikes of heavy fluid separating bubbles of light fluid as the interface travels down
the shock tube with the mean post-shock flow.

of the initial disturbance, ∆V is the velocity change of the interface due to impulsive
acceleration, and A is the Atwood number that is defined as

A =
ρ2 − ρ1
ρ2 + ρ1

, (1.3)

where ρ2 is the density of the lower fluid and ρ1 is the density of the upper fluid. Richtmyer
further observed that for the light-to-heavy configuration post-shock values of a0 and A
produced the best agreement with numerical simulations, while for the heavy-to-light
configuration Meyer & Blewett (1972) observed that the average of pre-shock and post-
shock values of a0 worked best.
The Richtmyer-Meshkov instability was first observed experimentally by Meshkov

(1969). These early experiments used a thin membrane to separate the two test gases
prior to the impact of the shock wave. This method is still in use today despite the fact
that pieces of the membrane become entrained in the fluid impeding flow visualization.
In addition, it has been found that in the light-heavy configuration, particles from the
membrane will remain on the interface and reduce the linear growth rate of the insta-
bility (Mariani et al. 2008). This technique was used by Sadot et al. (1998) to develop
their semi-empirical model in a shock tube of similar size to the one used for the present
study. In contrast Vetter & Sturtevant (1995) used a large 17 in diameter shock tube in
order to minimize. Other studies have used explosive drivers to ablate easily liquefiable
metal with machined initial perturbations (Benjamin et al. 1984). Another experimental
technique involves extracting a plate that initially separates the interfacial fluids using
the wake it creates as the initial perturbation (Bonazza & Sturtevant 1996). A mem-
braneless approach was developed, using gas cylinders deposited by a laminar jet, to
develop well characterized diffuse initial conditions (Jacobs 1993). This technique was
then extended by using a varicose gas curtain to develop a thin layer initial perturbation
(Jacobs et al. 1993, 1995). This technique is still in use at the Los Alamos National
Laboratory (Balakumar et al. 2008).

Jones & Jacobs (1997) first used the novel technique of using a stagnating flow of gases
exiting from slots in the side wall of the shock tube to create a well defined initial interface.
This technique was further employed by Collins & Jacobs (2002) and Jacobs & Krivets
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(2005). In these experiments the initial perturbation was created by gently oscillating the
shock tube back and forth creating a standing sinusoidal wave on the interface. The time
scale associated with the standing wave is orders of magnitude longer than the time scale
associated with the propagation of the shock wave. Therefore, during the experiment,
the initial perturbation can be considered static. This technique is currently in use at
The University of Arizona and has most recently been implemented by the Wisconsin
Shock Tube Laboratory via moving plates that push and pull the fluid at the interface
in a rigid shock tube (Motl et al. 2007).

The linear stage of the Richtmyer-Meskov instability was the subject of early research.
More recently, due to the poorly understood nonlinear development of the Richtmyer-
Meshkov instability, the late time growth has been the subject of intensive research.
At the University of Arizona, the late time instability has been studied using weak
shock waves by Jacobs & Krivets (2005) by imaging planar laser induced fluorescence
(PLIF). The late time instability has also been studied in incompressible experiments by
Chapman & Jacobs (2006) and Niederhaus & Jacobs (2003). Most recently the instability
was studied using particle image velocimetry (PIV) by Aure & Jacobs (2008). The major
shortcoming encountered in these previous shock tube experiments was the inability
to acquire multiple images from a single experiment. Due to the variation in initial
conditions from experiment to experiment, the scatter in the data was significant. The
current study employs high-speed video imaging to capture a sequence of images from
a single experiment. Hence, the initial perturbation is well characterized and the time
history of the instability is observed. This time history causes relatively little scatter in the
data and time derivatives can be extracted. The objective of the current study, therefore,
is to use this new capability to measure the growth of the instability to very late times
and to make comparisons with PIV circulation measurements, numerical simulations,
and models.

2. Experimental Setup

2.1. Shock Tube

Experiments were performed using the 10m shock tube at the University of Arizona.
Details of previous research using this shock tube can be found in Aure & Jacobs (2008).
Figure 2 shows two diagrams of the shock tube, the left image shows the complete shock
tube to scale, and the right image shows the test section and visualization optics. The
shock tube has a 3.7m driver section, a 6.3m driven section, and a 2.0m test section
with a 88.9mm square cross section. The driven section is separated by two to three
polypropylene diaphragms and is pressurized using nitrogen gas. When the pressure in
the driver section reaches the desired value a solenoid is activated which plunges an
arrowhead made from four X-acto knife blades into the diaphragm. The blades puncture
the diaphragm which sends a shock wave traveling down the shock tube. The shock wave
impacts the air-SF6 interface and the Richtmyer-Meshkov instability develops in the test
section.
The interface is created between air entering through a plenum at the top of the driven

section and SF6 entering through a similar plenum at the bottom of the test section at
matched flow rates of 6 L/min. The opposing flows of gas are allowed to exit through two
6.4mm by 88.9mm slots at the front and back of the top of the test section creating a flat
interfacial stagnation flow. After this flat interface is established, a stepper motor gently
oscillates the flexible shock tube at a prescribed frequency to create a standing wave. Due
to the perturbation formation method, only n+1/2 wavelengths where n = 1, 2, 3 can be
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Figure 2. The University of Arizona 10m vertical shock tube used for the present study. The
left diagram is to scale and demonstrates the overall length of the shock tube. The length of the
test section maximizes the amount of time before re-shock occurs, while the large driver section
delays the onset of the reflected expansion wave. The major difference between this setup and
the particle imaging velocimetry setup is that one CCD camera on a rail system is utilized for
PIV instead of the four CMOS cameras depicted in the right diagram.

generated across the shock tube width. When the shock wave impacts the interface, the
interface is in the shape of a 2D sinusoidal wave which becomes the initial perturbation
for the experiment.
The experiment is initialized by synchronizing a signal from an optical switch attached

to the stepper motor to a handset switch controlled by the operator. When both switches
are simultaneously closed, the solenoid plunger is activated. As the shock wave travels
down the shock tube, it passes two PCB Piezotronics 112A22 high resolution, dynamic,
ICP pressure transducers located 273mm and 732mm above the interface. Both pressure
transducers are connected to an Agilent 225MHz Universal Counter while the second is
also used to trigger a Stanford Research Systems DG535 digital delay generator. The
delay generator employs a prescribed delay before triggering the start of an image ac-
quisition sequence. Experiments are illuminated by laser-light entering the test section
through a fused silica window in the bottom of the shock tube.

2.2. Particle Image Velocimetry

In the PIV experiments, the light and heavy gasses are seeded using custom built atomiz-
ers that atomize a suspension of 0.30µm polystyrene Latex spheres suspended in distilled
water (Liu & Lee 1975). The concentration of Latex spheres in the solution determines
the seeding density in the gas. Water is removed from the seeded gas flow using desiccant
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driers located between the atomizers and the shock tube plenums. The seeding densities
of the gas flows are matched and optimized visually by adjusting the suspension particle
concentrations.

One double exposed image per experiment is obtained by illuminating the seeded flow
using a dual cavity pulsed Nd:YAG laser. The laser beam is focused using 1677.0mm
and 1118.1mm spherical lenses and and expanded to a 1mm thick light sheet using
−165.6mm and −220.7mm cylindrical lenses. Experimental images are captured using
a thermoelectrically cooled Charge Coupled Device camera with 1250 × 1152 pixel res-
olution and a Nikon 60mm f/2.8D macro lens. To enhance the signal to noise ratio of
the data and to minimize noise from reflections and scattering of light from the shock
tube walls, the walls are painted with a mixture of clear varnish and Rhodamine 6G.
When the green laser light is absorbed by the walls, it is weakly emitted in the yellow to
red spectrum (λ > 545 nm). The yellow/red light emitted from the shock tube walls is
filtered out by an optical bandpass filter (λ = 532± 5 nm) attached to the camera lens.

The processing of particle images is implemented using LaVision’s DaVis FlowMaster
software. Image processing is done using a three-step multi-pass autocorrelation algo-
rithm with a decreasing window size. The initial pass utilizes a normalized second order
correlation function and 64×64 pixel interrogation windows with 50% overlap. The final
two passes utilize a normalized correlation function and 32× 32 pixel interrogation win-
dows with 50% overlap (Keane & Adrian 1990, 1991). A liberal restriction was put on the
allowable vector range and a median filter was applied after the final pass. Empty cells
were filled with interpolated vectors. Optimal ∆tPIV and processing parameters were de-
termined based on known theory and optimized experimentally (Westerweel 1993; Raffel
et al. 1998). The raw data was analyzed using MATLAB to extract vorticity, circulation,
and growth rates.

2.3. Planar Mie Scattering

Planar Mie Scattering experiments are visualized by seeding the light gas with incense
smoke. Incense smoke and air are added at the top of the driven section and are allowed
to displace the air in the driven section. The smoke is visualized by a light sheet created
by a 50mm focal length collimating lens, a 600mm focal length focusing lens, and a
2000mm focal length cylindrical lens. A high flashing frequency Photonics Industries
model DM50-527 diode pumped Nd:YLF laser operating at a wavelength of 527 nm is
used for illumination. Scattered light from smoke particles is recorded by four Photron
Fastcam-APX RS cameras with Nikon 50mm f/1.2 lenses operating at a resolution of
512×1024 pixels at 6 kHz.

Acquisition timing is controlled by a LaVision HSC external timing board. Data is
acquired using the DaVis software by LaVision GmbH. The delay generator waits 0.3ms
before triggering the HSC to start recording images. Upon receiving the trigger signal,
the HSC sends synchronized signals to the laser control unit and high speed cameras.
Image data was calibrated in DaVis using an image of a linear scale located at the center
of the laser plane for all of the cameras.

Each camera’s field of view overlaps with its neighbor’s by≈ 1 cm. In order to maximize
the number of data points measured and ultimately create videos of the instability the
images are spliced together. The splicing was accomplished using a number of MATLAB
routines using tools found in the Image Processing Toolbox and DaVis macros. The
MATLAB routines straighten the images, splice them across cameras, and scale their
intensities to match across cameras. Measurements are made visually and have an error
of ! ±0.54mm.
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3. Numerical Simulation Methods

3.1. Miranda

The Miranda code is a research hydrodynamics code developed at Lawrence Livermore
National Laboratory (LLNL). The compressible version of the Miranda code (Cook &
Cabot 2005; Cook 2007) used solves the Navier-Stokes equations for compressible ideal
gases. In order to capture the effects of small scales on the problem, grid dependent
artificial viscosities and diffusivity are used. The governing equations are solved using
a fourth order Runge-Kutta scheme in time, and a tenth order compact scheme for
spatial derivatives (Cook & Cabot 2005). More details on the scheme used for solving
the differential equations are given by Cook (2007).
The setup for the problem in Miranda simulates the instability starting from a pure

cosine wave initial perturbation. In the x direction, periodic boundary conditions are
used to mimic an endless row of developing mushrooms. In the z direction an outflow
boundary condition is used which allows most waves to exit the domain. The simulation
uses a frame of reference traveling downward at the post-shock unperturbed interface
velocity. Thus, when the problem is initiated, the interface appears to travel upward at
the velocity induced by the shock wave (as found in a one dimensional simulation). The
shock wave is initiated 2 wavelengths above the interface and travels downward.
Once the shock wave and interface interact, the unperturbed interface location is frozen

in the moving frame of reference. The perturbed simulations have bubbles and spikes
that grow from the fixed unperturbed interface position. The shock waves that reflect
and refract from the interface are removed from the computational domain to avoid any
spurious reflections that they may cause at the boundaries. This is done by removing
the small pieces of computational domain near the boundaries in which they reside and
enforcing outflow boundary conditions at the post-shock states. The final computational
domain is 6 wavelengths long by 1 wavelength across with the unperturbed interface loca-
tion residing 2 wavelengths from the bottom of the domain (allowing sufficient numerical
domain for the spike to grow into). The resolution of the simulation is 256 grid points
per wavelength on a square mesh.
The initial perturbation is a pure cosine wave

zint = z0 − a0 cos(kx) (3.1)

with a wavenumber

k =
2π(n+ 1

2 )

88.9mm
(3.2)

estimated based on the width of the physical shock tube, where z0 is the mean location
of the interface and zint is the location of the interface. The diffusion profile is the error
function

Y1 =
1

2
+

1

2
erf

(√
π(z − zint)

δ

)
, (3.3)

where Y1 is the species mass fraction of fluid 1, the error function is approximated as
found by Abramowitz & Stegun (1964), and δ is the maximum slope thickness. The
values used for maximum slope thicknesses were measured in PLIF experiments. Shock
wave strengths were estimated based on the mean interface velocity that the shock wave
induced in the experiments. This step is necessary as the interface generation slots re-
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duce the effective Mach number of the incident shock wave. All of the computational
parameters were taken as the mean of the experimental parameters of four experiments.

Amplitude data is extracted using the LLNL VisIt visualization software. Since the
transverse location of the bubbles and spikes do not move in these simulations, line-outs
are used to determine the 50% mass fraction points. The amplitude is calculated as half
of the distance along the shock tube between the 50% mass fraction points that make up
the bubble and spike. Circulation is extracted by area integrating the 2D vorticity over a
box that includes one half wavelength of the instability and extends to the edges of the
simulation.

3.2. Ares

Ares is an Arbitrary Lagrange Eulerian (ALE) hydrodynamics code developed at LLNL.
The Lagrange time advancement is second-order predictor-corrector and uses the Gauss
Divergence theorem to give the discrete finite difference equations (Wilkins 1963). The
Lagrange scheme operates on a staggered mesh where velocities are defined at nodes
and the density and energy are defined at zone centers. All numerical differences are
fully second order in space. Artificial viscosity is used to suppress spurious oscillations
following the method of Kolev & Rieben (2009). The remap phase of the calculation,
where the Lagrangian solution is remapped back to a non-Lagrangian mesh, is fully
second order. The original method is given by Sharp & Barton (1981).

The setup for the Ares problems starts with a pure cosine wave initial perturbation,
and unlike in the Miranda simulations, the full width of the shock tube is simulated.
The diffuseness of the initial interface is modeled with the same error function profile
as in Miranda. The full 2.0m length of the test section is used with the shock wave
starting 10.0 cm above the interface. A reflection region 410.0 cm long is set up above the
interface to prevent spurious waves from interacting with the developing interface. The
bottom, left, and right walls of the shock tube are set as zero normal velocity enforcing
the no penetration condition. Since the full shock tube width is simulated, boundary
layers that approximately simulate those seen in experiments can be developed. The
boundary layer simulations use a simple constant viscosity model for constructing the
viscous stress and the boundary conditions in these simulations are imposed as solid,
no-slip, insulated walls. The top boundary condition is input as a set of sources at the
post-shock conditions. AMR with 4 levels of refinement by factors of 3 is used to resolve
the interface, the boundary layer entrainment, and the incident shock wave. This results
in a resolution of about 218 points per wavelength. Simulations are completed without
modeling physical diffusion.
Amplitude data extraction becomes more complicated when boundary layers are present,

as the location of the point of maximum spike amplitude begins to move in the transverse
direction. Amplitudes were extracted by finding the maximum and minimum points of
the 50% contour (within a window that excludes the boundary layer entrainment region).
Circulation is extracted by area integrating the 2D vorticity over a box containing one
half wavelength of the instability and excluding the boundary layer. The box is centered
at the average interface location and extends far beyond the interface (80 cm in each
direction).

4. Results

4.1. Experimental Results

The sequence of images displayed in figures 3 and 4 show a planar Mie scattering ex-
periment compared to vorticity maps obtained from separate PIV experiments chosen to
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Parameter Symbol 1 1/2 Waves 2 1/2 Waves Units

Initial Amplitude (Pre-shock) a−
0 3.0-3.3 1.9-2.2 mm

Initial Amplitude (Post-shock) a+
0 2.0-2.8 1.5-1.9 mm

Wavenumber k 0.1059 0.1765 1/mm
Shock Mach Number Ms 1.2 1.2 none
Initial Growth Rate ȧ0 7.3-8.5 6.3-7.9 mm/ms
Piston Velocity V 62.51-63.82 65.92-70.45 mm/ms
Non-Dimensional Initial Amp. ka+

0 0.21-0.30 0.26-0.34 none
Atwood Number (Post-shock) A+ 0.68 0.68 none
Shaking Frequency fshake 3.72 4.60 Hz
Shaking Amplitude ashake 1.0 1.0 mm

Table 1. Parameters extracted from single mode planar laser induced Mie scattering experi-
ments for two different wavenumbers. Parameters fshake and ashake are imposed using a stepper
motor controller and an eccentric cam. The superscripts − and + correspond to pre-shock and
post-shock states respectively.

have matching conditions. In these images only one wavelength of a 2 1/2 wavelength
experiment is shown. The first frame shows the instability during the linear growth phase
with the initial vorticity distribution created from the passage of the shock wave through
the diffuse interface. From 1.0ms to around 2.0ms, the interface becomes multivalued
and enters the non-linear phase. In these images, vorticity is advected into areas of con-
centrated vorticity. From 2.5ms to 3.5ms the concentrated vorticity causes the interface
to develop into a mushroom-like shape with spirals of heavy fluid circling the centers
of vorticity. From 4.0ms to 5.5ms the arms of the instability begin to exhibit a sec-
ondary instability as they rotate inward. The centers of vorticity become visible in the
Mie scattering experiments as centripetal acceleration evacuates them of smoke. From
6.0ms onward the spirals near the centers of vorticity begin to break down and strong
mixing occurs. In the last few frames the mushroom stems begin to thin while turbu-
lent diffusion causes the vorticity to spread into the surrounding flow. Table 1 contains
parameters for the planar Mie scattering experiments and Table 2 contains parameters
for the PIV experiments. Interface velocity was extracted as the slope of a linear fit to
the mean interface displacement versus time during the linear growth phase. The time
at which this curve fit intersected the initial mean interface location (average of bubble
and spike locations) was set to t = 0. Initial growth rate and amplitude were extracted
using a linear fit to amplitude versus time plots during the linear growth phase.
We desire to produce a single mode perturbation, but it is likely that the method

used to produce the initial perturbation introduces higher harmonics on the interface.
To examine the modal content of the initial perturbation, a discrete Fourier transform
of an edge detected image of the initial perturbation was constructed. Figure 5 shows
the spectrum of the initial perturbation for a 1 1/2 wavelength and a 2 1/2 wavelength
experiment. These spectra show strong peaks at the dominant wavenumbers, some weaker
harmonics, and little spectral content for the highest wavenumbers. While the spectra
are not completely single mode, the large dimensionless amplitude ka for the dominant
modes will cause them to quickly dominate the flow.
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Figure 3. A montage of images comparing planar Mie scattering images to PIV vorticity images
at (a) t = 0.5ms, (b) t = 1.0ms, (c) t = 1.5ms, (d) t = 2.0ms, (e) t = 2.5ms, (f) t = 3.0ms, (g)
t = 3.5ms, (h) t = 4.0ms, (i) t = 4.5ms, and (j) t = 5.0ms. The vorticity can be seen to roll up
into concentrated centers of vorticity as the instability develops.
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Figure 4. Continued montage of images comparing planar Mie scattering images to PIV vor-
ticity images at (k) t = 5.5ms, (l) t = 6.0ms, (m) t = 6.5ms, (n) t = 7.0ms, (o) t = 8.0ms, (p)
t = 9.0ms, (q) t = 10.0ms, (r) t = 11.0ms, and (s) t = 12.0ms. The vorticity is seen to disperse
as the secondary instability breaks up the mushroom structures.

4.2. Comparisons with Simulations

Several simulations were completed to compare with experiments. Figure 6 shows a com-
parison of experimental images with images from a Miranda simulation. Good qualitative
agreement is observed throughout this sequence. Some slight differences are observable
with the experiment exhibiting less symmetry and finer detail. The secondary instability
is observed to occur earlier in the experiment and also becomes more turbulent at later
times. Also in the experiments, the vortex cores are marked by the evacuation of smoke
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Parameter Symbol 1 1/2 Waves 2 1/2 Waves Units

Initial Amplitude (Pre-shock) a−
0 3.0 1.1 mm

Wavenumber k 0.106 0.176 1/mm
Shock Mach Number Ms 1.21 1.21 none
Piston Velocity V 63.5 63.5 mm/ms
Non-Dimensional Initial Amp. ka−

0 0.32 0.12 none
Atwood Number (Post-shock) A+ 0.66 0.66 none
Shaking Frequency fshake 3.72 4.59 Hz
Shaking Amplitude ashake 1.5 1.0 mm
Driver Pressure pd 239.2 239.2 kPa

Table 2. Parameters extracted from single mode particle image velocimetry experiments for
two different wavenumbers. The superscripts − and + correspond to pre-shock and post-shock
states respectively.

k (1/mm)

a
(m

m
)

k (1/mm)

a
(m

m
)

Figure 5. Spectra of wavenumbers present in the initial perturbation of Mie scattering experi-
ments. Both sets of spectra exhibit weak higher harmonics and a strong peak near the desired
wavenumber.

particles caused the strong centrifugal forces present in these regions. Figure 7 compares
experimental amplitude measurements to those extracted from a Miranda simulation and
an Ares simulation. This comparison shows good qualitative agreement at early times.
However, at later times, the amplitude of the simulations is noticeably less than that
of the experiment. A comparable simulation was run using the Ares code which is also
shown in figure 7. As observed in figure 7, the Ares and Miranda simulations produced
similar amplitude trends. Note that the data of figure 7 is plotted in terms of the dimen-
sionless variables kȧ0t versus k(a− a0) with ȧ0 obtained from Richtmyer’s theory. These
variables are used in order for amplitude curves with different initial growth rates to have
a slope of unity near the origin and to better reveal differences in the nonlinear behavior.
This rescaling is shown to collapse the experimental amplitude measurements well into
the non-linear region (Jacobs & Krivets 2005). However, both simulations are observed
to produce a non-dimensional late time growth rate that is less than that produced by
the experiment.
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Figure 6. Montage of experimental images (left) compared with pseudocolor images of species
mass fraction from a Miranda simulation (right) at (a) t = −0.08ms, (b) t = 1.42ms, (c)
t = 2.92ms, (d) t = 4.42ms, (e) t = 5.92ms, (f) t = 7.42ms, (g) t = 8.92ms, and (h)
t = 10.42ms. Good qualitative agreement is observed, but an amplitude discrepancy is present.
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Figure 7. Non-dimensional amplitude for two simulations compared to 2 1/2 wavelength exper-
imental data. The simulations without boundary layers or acceleration have lower amplitudes
than the experiments.

4.3. Effects of Additional Acceleration

The amplitude discrepancies observed in figure 7 can be explained by examining the
late time interface velocities. Figure 8 shows the velocity of the bubble tips in the lab
fixed frame for four 2 1/2 wavelength experiments. Note that the bubble velocity should
decay to zero as t → ∞ in the reference frame moving with the mean interface location.
This implies that bubbles should approach constant velocity in the laboratory frame.
In our experiments, however, the bubble velocities are observed to be increasing with
time at late times. In order to investigate this further, several flat interface experiments
were undertaken in which no initial perturbation was imposed. Figure 9 shows interface
velocity measurements taken from four of these experiments. As can be seen in these plots,
the velocity increases with time indicating acceleration. Since the acceleration is directed
from the light fluid into the heavy fluid one would expect the addition of Rayleigh-Taylor
instability to induce RM growth rates that are larger than those with no acceleration
present. This additional Rayleigh-Taylor growth could explain the discrepancy observed
in figure 7.
In one-dimensional gas dynamics theory, flat fluid interfaces with a shock wave im-

pacting them from the light gas to the heavy gas are expected to reflect a shock or
compression wave and transmit a shock or compression wave. The interface then moves
at the constant velocity induced by the transmitted wave. Figure 9 shows a horizontal
line indicating the expected results from a 1-D analysis. The figure shows that when
accelerated by a shock wave, the interface travels at a speed initially less than that pre-
dicted by gas dynamics and then slowly accelerates approaching but not reaching the 1-D
result. In an attempt to understand this variation, two possible causes were investigated
using numerical simulations. The first is the effect of the slots, the two 6mm openings
in the shock tube walls, on the resulting interface velocity. This effect was simulated in
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t (ms)

Vb (mm/ms)

Figure 8. A plot of the bubble velocities relative to the shock tube fixed frame from four
experiments showing how they accelerate at late times in disagreement with most predictions.
The flat interfaces in the experiment experience a similar acceleration to that experienced by
the bubbles.

t (ms)

V (mm/ms)

Figure 9. Comparison of results from flat interface experiments and a simulation in Miranda
where the effects of the slots are approximately modeled.

Miranda by applying a localized mixed boundary condition which allows the pressure
to relax to the ambient value for the 0.75 cm of shock tube wall occupied by the slots.
In figure 9 this simulation shows the shock interaction to accelerate the interface to a
constant velocity lower than the theoretical value. Thus, the slots appear to reduce the
impulsive acceleration of the interface, but do not produce acceleration.
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t (ms)

V (mm/ms)

Figure 10. Comparison of results from flat interface experiments, a simulation in Ares where
the effects of boundary layers are approximately modeled, the boundary layer leakage models of
Roshko (1960) and Brocher (1964), and the compressible 1D wave generation models of Mirels
& Braun (1957).

The other possible cause for the acceleration that was investigated in the simulations
was the effect of the boundary layers that are known to grow on the shock tube wall follow-
ing shock acceleration. Contact surface acceleration was described in Glass & Patterson
(1955) when they observed the velocity of the contact surfaces in their experiments in-
creasing with the distance traversed by the contact surface. This effect has more recently
been produced in the numerical simulations of Badcock (1992). The theory developed by
Roshko (1960) for laminar boundary layers and Brocher (1964) for turbulent boundary
layers, describes the acceleration as being caused by mass leakage through the interface
caused by the boundary layer. In order to conserve mass in a shock fixed reference frame,
the length of the gas column between the interface and the shock must decrease. Ac-
cording to Mirels (1956), boundary layers will produce a wall normal velocity which will
act on the inviscid mean flow as a mass source or sink. For negative wall velocities, the
mass sink will cause the generation of expansion waves that will accelerate the interface
(Mirels & Braun 1957). These situations are assumed to be analogous to the boundary
layer growing between the transmitted shock and the interface.

The theory as outlined in Brocher (1964) consists of balancing the flow entering through
the shock with the flow leaking out of the interface and relating this to the change
in volume of the column of gas. This leads to the following expressions relating non-
dimensional gas column length to non-dimensional time

ln

(
1

1− L1/2

)
+ L1/2 = −T

2
, (4.1)

for laminar boundary layers and
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1− L1/5

)
+

1

2
tan−1(L1/5)− L1/5 =

T

5
, (4.2)

for turbulent boundary layers. The non-dimensional length is L = l/lm where l and lm
are the physical length and maximum length of the gas column respectively where

lm =

(
d

4β

)2( ρ2
ρw

)2 (ut − u2)2

u2

(
ρ2
µw

)
, (4.3)

and for turbulent boundary layers

lm =

(
ut

u2

)(
d

4β

)5/4(ρwut

νw

)1/4

. (4.4)

Here d is the width of the shock tube, the subscript w indicates wall values, the subscript
2 denotes shocked test gas values, ν is the kinematic viscosity, and β is an empirical
boundary layer scaling. The non-dimensional time scale is T = (ut−u2)t/lm, where ut is
the velocity of the transmitted shock and u2 is the velocity induced by the transmitted
shock. For the Mirels & Braun (1957) approximation, all terms relating to the regions
above the interface are ignored and the weak shock limit is assumed. This leaves the
expression

∆u2

a2

(
d

ut

)1−n(a2d

ν2

)n 1− n

2L2(M2
2 )

1−n

=
4

(γ + 1)M2

[(
1 +

(γ + 1)M2

8

)(
1− u2

ut

1− γ+1
4 M2

)1−n

−
(
1 +

γ + 1

4
M2 −

u2

ut

)1−n]
t1−n ,

(4.5)
for the velocity perturbation ∆u2 at the interface. Here n = 1/2 for laminar, n = 1/5 for
turbulent, and the parameter L2 is given in Mirels (1956) by equation (D3c) for laminar
and (E1c) for turbulent. The parameters a2, M2, and γ are the sound speed , the Mach
number, and the adiabatic index of the shocked test gas respectively.
Figure 10 shows the behaviors of the various acceleration models. The transmitted

Mach number and the boundary layer β parameter were adjusted iteratively to produce
the best agreement with the data for the Roshko (1960) and Brocher (1964) models. It
can be seen that for the laminar case, this produces a somewhat large β parameter. In this
case β2 = 47 which is much larger than the theoretical value for incompressible laminar
flow of β2 = 2.962 (Schlichting & Gersten 2000). However, a very realizable transmitted
Mach number, Mt = 1.276 is found. For the turbulent case β2 = 0.0021 which is very
close to the theoretical value of β2 = 0.0023 based on incompressible, turbulent flow, with
a 1/7 power velocity profile (v. Karman 1921). In this case,Mt = 1.28 which is reasonable
compared to a theoretical value of Mt = 1.27 for an incident shock strength of Ms = 1.18
(as was found by matching interface velocity in a Miranda simulation to experiments).
It is notable that the turbulent model of Brocher (1964) approaches an acceleration of
around 200m/s2 at late times. The model of Mirels & Braun (1957) produces worse
agreement as it lacks a free parameter. It does consider compressibility effects and shock
attenuation which would tend to decrease the acceleration of the interface. It is important
to remember that these models were developed to predict the arrival time of the contact
surface. However, the agreement of the Brocher (1964) model indicates that a turbulent
boundary layer may produce the acceleration observed in the experiments.
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Figure 11. Non-dimensional amplitude for four simulations compared to data. The simulations
without boundary layers have lower amplitudes than the experiments. The simulations with
boundary layers and acceleration exhibit increased amplitudes and growth rates agreeing better
with experimental trends.

Boundary layers were produced in the Ares simulations applying no-slip boundary
conditions on the walls. This produced thick, laminar, 2D, and under resolved bound-
ary layers which is in contrast to the turbulent 3D boundary layers likely present in
the experiments. It can be observed in figure 10 that these boundary layers produce a
prolonged accelerative effect on the interface. The magnitude of this acceleration is on
the order of that observed in the flat interface experiments, and using linear fits to the
data, the magnitude of this acceleration is found to be approximately 200m/s2.
Figure 11 shows experimental amplitudes compared to amplitudes from Ares simu-

lations and Miranda simulations with accelerative effects present. Simulations were run
using Ares to determine how boundary layers might effect the late time growth rates.
As shown in figure 11, the presence of boundary layers produces increased late time
amplitudes and growth rates. The agreement with experimental data seen in figure 11
is better than should be expected, as this simulation is two-dimensional and does not
simulate the boundary layers properly. Richtmyer-Meshkov instability with an imposed
Rayleigh-Taylor instability was also simulated in Miranda by imposing a gravitational
acceleration of 200m/s2 at t = 1ms in order to simulate the acceleration measured in flat
interface experiments. This produced an increased late time growth rate consistent with
that observed in the experimentsas shown in figure 11. In addition, the simulations also
produced a constant late time growth rate also observed in the experiments. Nevertheless
the magnitude of the late time growth rate differs slightly from that measured.

4.4. Comparison with models

Figures 12 and 13 show comparisons of experimental amplitude and growth rate mea-
surements with those predicted by linear early-time model of Richtmyer (1960) along
with the nonlinear models described below.
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4.4.1. The Zhang & Sohn model

Zhang & Sohn (1997b) modeled the nonlinear growth of the RM instability using Padé
approximates in which the growth rate can be expressed as

ȧb/s = η̇even ∓ η̇odd , (4.6)

where the upper sign is for the bubble and the lower sign is for the spike,

η̇odd =
ȧ0

1 + a0ȧ0k2t+max{0, a20k2 −A2 + 1/2}ȧ20k2t
, (4.7)

and,

η̇even =
Akȧ20t

1 + 2k2a0ȧ0t+ 4k2ȧ20[a
2
0k

2 + (1/3)(1−A2)]t2
, (4.8)

where ȧ0 = kA∆V a0 according to the theory of Richtmyer (1960). The Zhang and Sohn
model produces the worst agreement with our experiments due to its 1/t2 late time
growth behavior.

4.4.2. The Sadot et al. model

The model of Sadot et al. (1998) is an empirical model with parameters chosen to match
observed asymptotic behaviors of the Richtmyer-Meshkov instability. In this model the
growth rate is expressed as

ȧ(t) = ȧ0
1 + ȧ0kt

1 + (1±A)ȧ0kt+
1

2πC ( 1±A
1+A )ȧ20k

2t2
, (4.9)

with the remaining parameter chosen as C = 1/(3π) for A " 0.5. The model parameters
are chosen to produce good agreement at late time with experiments, simulations, and
with the early time behavior as given by the first two terms of the asymptotic expansion
of Zhang & Sohn (1997a). Expanding equation 4.9 around t → ∞ leads to the late time
behavior of

ȧb/s →
1

1
2πC ( 1±A

1+A )kt
. (4.10)

Comparing the Zhang and Sohn and the Sadot models to the data in figure 12 shows
the Sadot model to provide significantly better agreement with the data than does the
Zhang and Sohn model, a finding also observed in previous experiments (Jacobs & Krivets
(2005). However, contrary to what was observed in the earlier experiments, the Sadot
model appears to diverge from the data a the latest times. It should be noted that the
experiments of Jacobs & Krivets (2005) used a technique that allows the acquisition of
only one image per experiment thus introducing scatter to the data. It can be seen in
figure 12 that the Sadot et al. (1998) model passes through the data but the trajectories
at late time are different. Thus this late time trend could have easily been obscured by the
data scatter. Since the Sadot et al. (1998) model is based on providing good agreement
with experimental data, it may be influenced due to the presence of shock tube boundary
layers in their experiments and thus may not accurately represent the boundary layer
free situation one might expect to find in a shock tube with much larger cross sectional
area.
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4.4.3. The Buoyancy-Drag model

Starting from a kinematic viewpoint, the Richtmyer-Meshkov instability can be mod-
eled as a series of bubbles of fluid either rising or falling while surrounded by a heavier
or lighter fluid (Oron et al. 2001). The equations of motion for the bubble and spike are

(ρ2 + Caρ1)ä = geff(ρ2 − ρ1)−
Cd

λ
ρ1(ȧ)

2 , (4.11)

(ρ1 + Caρ2)ä = geff(ρ2 − ρ1)−
Cd

λ
ρ2(ȧ)

2 . (4.12)

Where Ca is the virtual mass coefficient, Cd is a drag coefficient, and λ is the wavelength
of the instability. This results in,

ä = gC −Bȧ2 (4.13)

with the constants gC and B expressed as

gCb/s =
2gA

1∓A+ Ca(1±A)
, (4.14)

and,

Bb/s =
Cd(1±A)

λ[1∓A+ Ca(1±A)]
. (4.15)

For Richtmyer-Meshkov instability, geff → 0 and Oron et al. (2001) chose Ca = 2 and
Cd = 6π (for 2D) resulting in

ȧ2b/s = − 3±A

3k(1±A)
äb/s . (4.16)

The growth rates can be found by integrating equation 4.16, resulting in

ȧb/s =
3±A

3k(1±A)

1

kt
. (4.17)

It can be seen that equation (4.17) exhibits a 1/t late time dependence and matches
what Goncharov (2002) found using a method similar to Layzer (1955). Figure 13 shows
the experimentally measured growth rates plotted in logarithmic form. Thus a 1/t late
time dependance will be given by a straight line with −1 slope in these plots. Also shown
on Figure 13 are lines indicating the asymptotic behavior given by equation 4.17 which
appears to agree with the data at intermediate times but is unable to properly predict
the trends in the data at early and late times.

4.4.4. The RM-RT Buoyancy-Drag model

One could argue that the discrepancy with the nonlinear models might be anticipated
because of the observed late-time acceleration present in the experiments, and thus, it
might be expected that better agreement can be obtained by properly accounting for the
accelerations present in the shock tube experiments. The differential equation found for
the Buoyancy-Drag model is known to reliably predict single mode late time Rayleigh-
Taylor growth as well as that of Richtmyer-Meshkov instability. If it is assumed that the
difference in growth rate between the simulation and experiment is caused by the addition
of a nearly constant acceleration, one would expect that the buoyancy drag model may
be applied by retaining both terms on the right hand side of equation 4.13. Furthermore,
it is reasonable to expect the initial growth rate to be well modeled by linear stability
theory followed by Rayleigh-Taylor growth. Thus, we will model the experiments by
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Figure 12. Amplitude measurements from Mie scattering experiments in non-dimensional coor-
dinates compared to models for the Richtmyer-Meshkov instability. The RM-RT buoyancy-drag
model plotted here uses Rayleigh-Taylor instability theory to attempt to account for accelera-
tions present in the shock tube experiments.

imposing a constant acceleration after the initial linear Richtmyer-Meshkov instability
stage, matching linear Richtmyer-Meshkov instability growth rate to non-linear single
mode Rayleigh-Taylor instability growth rate at kȧ0t = 1. Thus,

ȧ = ȧ0 = kAV a0 (4.18)

for kȧ0t ! 1 and,

ȧ =

√
gC

B
coth[

√
gCB(t+ CR)] (4.19)

for kȧ0t > 1 with

CR =
1√
gCB

coth−1

[
ȧ0

√
B

gC

]
− 1

kȧ0
. (4.20)

The result of this RM-RT modified Buoyancy-Drag model, using an acceleration of
approximately 200m/s2, is shown in figures 12 and 13. As can be seen this model agrees
well with the data at early times through the non-linear transition, but fails to properly
capture the late time growth rate of the instability (see figure 13).

4.4.5. The Likhachev & Jacobs vortex model

As shown by Jacobs & Sheeley (1996), the 2D fluid motion induced by the Richtmyer-
Meshkov instability can be described by two rows of equally spaced positive and negative
line vortices. The vortex model of Likhachev & Jacobs (2005) extends the model of Ja-
cobs & Sheeley (1996) to systems with non-zero Atwood numbers. The model attempts
to capture the asymmetry causing effects of the Atwood number by introducing a per-
turbative displacement ε to the vortex spacings. In this model, the streamfunction takes
the form

Ψ =
Γ

4π
ln

(
cosh(ky) + cos[k(x+ ε)]

cosh(ky)− cos[k(x− ε)]

)
, (4.21)



22 R. V. Morgan et al.

kȧ0t
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Figure 13. Measured growth rates from Mie scattering experiments compared to the
Goncharov model, the vortex model, and the combined RM-RT Buoyancy-Drag model.

where the vorticies are displaced by ±ε from the uniform spacing. The most significant
difference between the two models is that the perturbed vortex row moves upward as a
whole in the direction of the light fluid with the constant velocity

V =
kΓ

4π
tan(kε) . (4.22)

This velocity can be subtracted from the total velocity in order to determine the bubble
and spike growth rates in the reference frame traveling with the vortex system. The
bubble and spike growth rates are given by

d(kab/s)

dτ
= ∓ cos(kε)

cosh(kab/s)± sin(kε)
− 1

2
tan(kε) (4.23)

where the non-dimensional time is defined as τ = k2Γt/(2π). This implies that the growth
rate of the full (bubble to spike) amplitude of the instability will approach constant value
at late time. In viewing figure 11, the experimental data indeed appears to asymptote to
a constant growth rate in agreement with what is predicted by the vortex model and does
not appear to have the 1/t dependence predicted by most Richtmyer-Meshkov models.
The weakness of this model, however, lies with the fact that the circulation and vortex
spacing are unknown. Nevertheless, they can be used as fitting parameters, adjusted to
obtain the best agreement with the experimental data. Figures 12 and 13 show plots of
the vortex model with parameters chosen to provide the best fit. As can be seen in this
plot, the vortex model seems to capture the character of the instability throughout the
largest portion of the development. This is in part due to the parameters being adjusted
to produce the best agreement. Nevertheless, the vortex model does have the proper
asymptotic behavior implying that point vortices do well to model the flow.

4.5. Circulation comparisons

Figure 14 shows non-dimensional circulation extracted from the PIV experiments com-
pared with that obtained from four simulations including Ares with and without bound-
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ary layers and Miranda with and without acceleration. In this case the circulation was
obtained by integrating the vorticity over one half wavelength using

Γ =

∫ ∫

λ/2
ωzdxdy (4.24)

Circulation is an important parameter governing the growth of the instability; as shown
by Jacobs & Sheeley (1996) the initial growth rate is proportional to the magnitude of the
circulation deposited by the shock. As shown in figure 14, plotting the non-dimensional
group based on the circulation estimate Γ = 4ȧ0/k of Jacobs & Sheeley (1996) effectively
collapses the data from the two simulations computed without the effects of boundary
layers or acceleration. The circulation extracted from the PIV experiments is observed
to grow with time. Similar trends are also observed in the numerical simulations without
acceleration or boundary layers present but to a lesser degree. The numerical simulations
with the effects of boundary layers and acceleration included exhibit a larger increase in
circulation in better agreement with the data at early times. The Miranda simulation
with acceleration begins to diverge from the data at late times while the Ares simulation
follows the data. This agreement, however, may be caused by the distortion of the in-
terface resulting in vorticity leaving the rectangular interrogation window. One possible
explanation for the early time increase in circulation is Rayleigh-Taylor induced vorticity
production caused by interfacial acceleration. This increase in circulation is also observed
in the Miranda simulations with acceleration, as vorticity is continually produced by RT
growth. Additional circulation is produced by baroclinic generation and can be seen in
Miranda simulations without acceleration.

To characterize the vortex model, the two parameters extracted from fitting the model
to the data, the circulation (Γ) and the vortex displacement (ε) which a re compared
to PIV experiments in figure 15. Using the distance between the centers of vorticity in
PIV experiments, an experimental ε value can be found and compared to that extracted
from the vortex model. As shown in figure 15, the measured vortex displacement initially
increases with time and then slowly decreases during the experiment. The extracted value
of vortex displacement, ε = 3.0mm is very close to the mean value of the displacement
over the entire experiment. The PIV experiments show the circulation growing from
around the Jacobs & Sheeley (1996) value of circulation based on linear stability theory
(Γ = 0.16m/s2) up to approximately the value found from fitting the model to the data
(Γ = 0.39m/s2). Thus the asymptotic circulation value agrees well with the estimated
circulation value of the vortex model.

5. Conclusions

Experiments were performed to study the late-time growth of the Richtmyer-Meshkov
instability from a diffuse nearly sinusoidal initial perturbation into a fully turbulent flow.
This experiment is an improvement of previous experiments because it enables us to
record time sequences of the instability from known membraneless initial perturbations
out to previously unattainable late times. The 2.0m length of the test section makes this
study the longest duration single mode Richtmyer-Meshkov experiment to date. This
long duration allows the observation of the growth of the instability into the non-linear
region and the beginning of turbulence. The experiments used Mie scattering to extract
amplitude and growth rates while PIV experiments were used to extract vorticity and
circulation. Experimental images exhibit the growth of mushroom structures until the
point where secondary instability and turbulent diffusion cause them to break down.
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Figure 14. Circulation from four simulations compared with PIV data from a 2 1/2 wavelength
experiment. The non-dimensionalization is based on the theory of Jacobs & Sheeley (1996)
and causes the circulation from the two simulations without boundary layers or acceleration
to nearly collapse. The boundary layers cause an increase in circulation compared to the other
simulations. The simulation with acceleration sees a continuous increase in circulation.
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Figure 15. Circulation developed in the PIV experiments (left) compared with the extracted
value of circulation from the Likhachev & Jacobs (2005) vortex model. The extracted value is
very close to the peak value of the measured circulation. The Jacobs & Sheeley (1996) value
predicts the initial vorticity. The separations of the centers of vorticity is shown on the right
compared to the spacing extracted from the vortex model.
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Extracting the time series of the instability represents an improvement over previous
experiments which were only able to acquire one image per experiment.

Experimental measurements are compared to those obtained from numerical simula-
tions which are unable to capture all of the physical effects found in the shock tube such
as slots and boundary layers. It is shown that the slots in the shock tube reduce the
impulse imparted to the interface while the boundary layers produce prolonged acceler-
ative effects. Attempts were made to model the acceleration using previously published
shock tube boundary layer analyses. The turbulent boundary layer theory of Brocher
(1964) produces the best agreement with measurements of the flat interface acceleration.
This indicates that the accelerative phenomenon may best be described by a leak at the
interface caused by the growth of turbulent boundary layers. The acceleration present in
the shock tube causes disagreement with existing Richtmyer-Meshkov instability models
and simulations due to the presence of Rayleigh-Taylor instability. Introducing accelera-
tion to the numerical simulations yields improved agreement with late time growth rate
and amplitude trends. Numerical simulations with boundary layers present also improve
agreement, and exhibit increased late time growth rates. Since boundary layers are no
doubt present in all RM experiments using shock tubes of this size, this result implies
that empirical models evaluated using shock tube experiments such as the model of Sadot
et al. (1998) may be influenced by the presence of acceleration. The presence of accel-
eration also produces increased circulation when modeled in simulations improving the
agreement between simulations and experiments. The Likhachev & Jacobs (2005) vortex
growth model, when fit to experiments, produces a circulation estimate that agrees well
with the asymptotic value found using PIV measurements.

Due to the very late times observed, the present experiments make a good basis for
comparison with late time Richtmyer-Meshkov models. The amplitude of the instability
is modeled well by most models at early time, but the model of Zhang & Sohn (1997b) ex-
hibits the worst agreement at late time. The model Sadot et al. (1998) exhibits improved
agreement but appears to have a different functional dependence than the experiments
at late times . Agreement with the models can be improved by accounting for accelera-
tion. This is done using the RM-RT Buoyancy Drag model which exhibits an increased
constant late time growth rate which agrees better with experiments. The Goncharov
(2002) model agrees at intermediate times but fails at the latest experimental times. The
growth rate of the instability is approximated best by the Likhachev & Jacobs (2005)
vortex model. The agreement with the vortex model implies that the vorticity distri-
butions present in the experiment resemble the perturbed point vortices of the model.
The vortex model, however, has the shortcoming that it is impossible to determine the
parameters from the initial perturbation of the instability as the parameters can only be
determined using a curve fit to the experimental data.
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