
Optimizing the Fast Fourier Transform using Mixed
Precision on Tensor Core Hardware

Anumeena Sorna∗, Xiaohe Cheng†, Eduardo D’Azevedo‡, Kwai Wong§, Stanimire Tomov§
∗National Institute of Technology, Tiruchirappalli

108115011@nitt.edu
†Hong Kong University of Science and Technology

xchengaj@connect.ust.hk
‡Oak Ridge National Laboratory

dazevedoef@ornl.gov
§University of Tennessee, Knoxville

kwong@utk.edu
tomov@icl.utk.edu

Abstract—The Fast Fourier Transform is a fundamental tool
in scientific and technical computation. The highly parallelizable
nature of the algorithm makes it a suitable candidate for GPU
acceleration. This paper focuses on exploiting the speedup due
to using the half precision multiplication capability of the latest
GPUs’ tensor core hardware without significantly degrading
the precision of the Fourier Transform result. We develop an
algorithm that dynamically splits the input single precision
dataset into two half precision sets at the lowest level, uses half
precision multiplication, and recombines the result at a later step.
This work paves the way for using tensor cores for high precision
inputs.

Index Terms—Fast Fourier Transform; GPU Tensorcores;
CUDA; Mixed Precision

I. INTRODUCTION

The Fast Fourier Transform (FFT) is a widely used numer-
ical algorithm that plays a vital role in many scientific and
engineering applications. In large computational applications,
including image processing, speech recognition, and large
scale simulations, a majority of execution time is allotted
to computing the FFT [1] [2] [3]. In order to improve per-
formance of the FFT, many investigations have been made
on implementing the FFT on the computationally superior
Graphical Processing Unit (GPU) platform [4].

Recently, half precision floating point arithmetic (FP16) is
gaining popularity with its faster speed and energy saving
ability. With the introduction of the tensor cores on the
NVIDIA Volta GPU Hardware, a large speed up, up to 12x,
in half precision matrix multiplications, has been introduced
[5]. The FFT can benefit greatly from the advantages offered
by tensor cores, as it is a matrix multiplication intensive
algorithm.

Unfortunately, this half precision hardware cannot be ex-
ploited in scientific FFT applications where single precision
(FP32) is required. In order to satisfy the accuracy requirement
while utilizing the advanced half precision hardware, a mixed
precision method utilizing dynamic splitting is developed. This
method efficiently uses the computational capability of tensor
cores without a significant drop in precision.

II. BACKGROUND AND RELATED WORK

In numerical computing, there have been many attempts
to utilize the fast operations on low precision numbers to
emulate high precision computation [6] [7] [8]. The more
compact numerical representation better utilizes the memory
space and eliminates memory communication costs between
memory hierarchy. Besides memory advantage, low precision
calculation tends to outperform high precision calculation for
more than two times in terms of GFLOPS. Therefore, it is
desirable to emulate the accuracy of a high precision number
with two low-precision number. Previous works have presented
various methods to mix double precision and single precision
computation to optimize the performance, but there has been
little discussion on how to exploit the high-speed half precision
hardware.

III. FFT ALGORITHM

The Discrete Fourier Transform (DFT) converts a finite
discrete signal in the time domain to a one in the frequency
domain according to the following equation:

X[k] =

N−1∑
n=0

x(n) ∗ e−2jπnk/N (1)

The inverse is given by:

x[n] =
1

N

N−1∑
k=0

X[k] ∗ e2jπnk/N (2)

Where x(n) is the discrete signal in the time domain, X[k]
is the discrete signal in the frequency domain and N is the
entire length of the sequence. The DFT can clearly be rewritten
as a matrix multiplication with the number of computations
required of the order O(N2).

The class of algorithms that efficiently calculate the DFT
with a lower number of computations is known as FFT.
Gentleman and Sande developed the first FFT algorithm that
rewrote the length N sequence as N = n1 × n2 in order
compute of the DFT with a lower number of computations

[9]. By dividing a problem of size N into two (or x) problems
of size N/2 (or N/x), it attains time complexity O(NlogN)
[10].

The algorithm can be succinctly stated as follows:

1) Represent the length N sequence as an n1× n2 matrix.
2) Transpose the matrix, resulting with an n2× n1 matrix.
3) Take n1 individual n2-point-FFTs down the columns of
the matrix.
4) Perform element wise multiplication with the resultant
matrix and the twiddle factor matrix.
5) Transpose the matrix, resulting with an n1× n2 matrix.
6) Take n2 individual n1-point-FFTs down the columns of
the matrix.
7) Transpose the resultant matrix

This method requires two multicolumn FFTs as well as
three matrix transposition operations.

This can be represented as:

FFT(x) = FN · x = (Fn1 · (WN × [Fn2 · xTn1×n2])T)T (3)

Where xn1×n2 is the vector x reshaped as a matrix
of n1 × n2 and FN is the Fourier matrix defined by
FN [k, l] = exp(−2jπkl/N) and W is twiddle matrix given
by WN [k, l] = exp(−2jπkl/N).

For convenience, the × operation is used to denote scalar
multiplication and the · operation is used to denote matrix
multiplication.

A. Adapting the Algorithm

1) Choosing the radix: The real and imaginary Fourier
matrices are defined as:

FNreal[k, l] = cos(2πkl/N) (4)
FNimag[k, l] = − sin(2πkl/N) (5)

By choosing a radix of 4, or only allowing N = 4, we can
observe that the elements of the real and imaginary Fourier
matrix is either 1, 0, or −1. This is exactly representable in
FP16 without loss of precision.

F4real =


1 1 1 1
1 0 −1 0
1 −1 1 −1
1 0 −1 0



F4imag =


0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1



2) Elimination of a Few Transposes: Large matrix trans-
positions are bulky operations limited by communication and
memory bandwidth. To reduce the number of transpositions
required, we may employ common matrix properties to sim-
plify the FFT equation.

FFT(x) = (F4 · (WN × [FN/4 · xT4×N/4])
T)T (6)

= (WN × [FN/4 · xT4×N/4])
T T · FT4 (7)

= (WN × [FN/4 ·XT
4×N/4]) · F

T
4 (8)

This can be further simplified by observing that the real
and imaginary Fourier matrices of a length 4 sequence are
symmetrical. Therefore, FT4 = F4.

FFT(x) = (WN × [FN/4 · xT4×N/4]) · F4 (9)

This simplification reduces the number of transpositions
required from 3 to 1. But, this introduces a complexity in the
code; the FFTs computed in step 3 and 6 cannot be calculated
in an identical fashion. The order of matrix multiplication is
interchanged in the two steps. However, this complication is
preferable to computing extra transpositions.

B. Adapted FFT Algorithm

Keeping the previous adaptations in mind, the implemented
FFT algorithm is as follows:

1) Represent the length N sequence as a 4×N/4 matrix.
2) Transpose the matrix, resulting with a N/4× 4 matrix.
3) Take FFTs down the columns of the matrix recursively
until the size of the FFT transform does not exceed 4.
4) Perform element wise multiplication with the resultant
matrix and the twiddle factor matrix.
5) Take length-4 FFTs down the columns of the matrix.

IV. DYNAMIC SPLITTING

In order to exploit the throughput of the tensor cores, a
mixed precision approach is developed. This method ensures
that only the matrix multiplication operations are done on the
half precision input dataset but the rest of the FFT algorithm
operates on the single precision dataset.

At the lowest level of the FFT algorithm, the single pre-
cision data sequence is converted into two half precision
datasets. Every FP32 number is expressed as a scaled sum of
two FP16 numbers. As the FFT is a linear algorithm, Length-
4 FFTs are applied separately to the half precision datasets
and recombined. This splitting operation is called twice, right
before the FFT matrix multiplication in step 3 of the adapted
FFT algorithm and before the FFT matrix multiplication in
step 5 of this algorithm.

xfp32[:] = s1fp32 × x1fp16[:] + s2fp32 × x2fp16[:]
(10)

FN · xfp32[:] = s1fp32 × (FN · x1fp16[:]) + s2fp32 × (FN · x2fp16[:])
(11)

In order to retain as much accuracy as possible, a dynamic
splitting algorithm is employed. Scaling vectors, s1 and s2

are utilized to minimize the error caused by the FP32 to
FP16 conversion. These scaling factors are determined for each
column of the input matrix and are single precision numbers.

A. Dynamic Splitting Algorithm:

Step 1: Find the absolute norm of each column of the input
matrix to decide s1 and divide the respective column by the
scaling factor

s1(j) = maxmi=1 ‖xfp32(i, j)‖ : i = 1, ..., n1
: j = 1, ..., n2

xfp32(i, j) =
xfp32(i, j)

s1(j)

Step 2: Convert the input FP32 matrix xfp32 into FP16 matrix
x1fp16

x1fp16(i, j) . xfp32(i, j) : i = 1, ..., n1
: j = 1, ..., n2

Step 3: Calculate the residual error caused by conversion and
store as x2fp32

x2fp32(i, j) = xfp32(i, j)− ~x1fp16(i, j)× s1(j) : i = 1..n1
: j = 1..n2

xfp32(j) = xfp32(i, j)× s1(j)

Step 4: Find the absolute norm of each column of the residual
matrix to decide s2 and divide the respective column by the
scaling factor

s2(j) = maxmi=1 ‖x2fp32(i, j)‖ : i = 1, ..., n1
: j = 1, ..., n2

~x2fp32(i, j) =
~x2fp32(i, j)

s2(j)

Step 5: Convert the residual FP32 matrix x2fp32 into FP16
matrix x2fp16

x2fp16(i, j) . x2fp32(i, j) : i = 1, ..., n1
: j = 1, ..., n2

In order to avoid mathematical round off error, the scaling
factors, s1 and s2, are chosen to be powers of 2. In this case
then multiplication or division may be done by simply shifting
the exponent bit pattern, leaving the mantissa unmodified.

V. IMPLEMENTATION

Our experimental platform is a heterogeneous processor
consisting of a CPU and a GPU. We implemented the FFT
algorithm as described in sections 3 and 4 on an NVIDIA
Volta V100 graphics card.

Specification V100
Peak FP32 TFlops 15.7
Peak FP16 TFlops 125

Tensor Cores 640
CUDA Cores 51200
GPU Memory 16 GB

Memory bandwidth 900GB/sec

Implementing the FFT on the graphics card is a relatively
straightforward process simplified by utilizing the commonly
used cuBLAS library API.

The algorithm consists of 3 major arithmetic operations:
splitting FP32 numbers into two FP16 numbers, transposing
matrices, and multiplying matrices. Customized kernels are
written for the splitting operation and the transpose operation.
The matrix multiplication is computed using the CublasGem-
mEx and CublasGemmStridedBatch functions.

Of the three operations, only the matrix multiplication
operation utilizes the tensor core hardware. We expect the
overhead due to splitting the input is not greater than the
speedup offered by computing the matrix multiplication on
the computationally superior tensor cores.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate our FFT implementation by
comparing it with cuFFT library APIs. We run experiments
to test their performance under various configurations. The
problem size, i.e. the number of elements in a single vector,
increases from 4 to 655361. We also test the multi-vector
(batched) cases and the batch size is from 1 to 1024. The
input data are randomly generated and are restricted to a given
range.

The major performance metrics in the evaluation are speed
and accuracy. We choose not to compare the FLOPS as the
algorithm used in cuFFT APIs are automatically determined,
and the number of operations varies among different algo-
rithms. We make use of CUDA Event to mark the beginning
and completion of computation to measure the execution time.
The error of our implementation and the half-precision cuFFT
is assessed based on the results of single-precision cuFFT. We
normalize the error by the input range:

Error =

∑
|Result−BaselineResult|

InputRange

Figure 1 compares the accuracy of two half-precision FFT:
our implementation and cuFFT that takes 16-bit inputs. The
error statistics indicate that our implementation reduces the
computation error significantly. It preserves high accuracy
even with growing input sizes, which may qualify it for many
scientific applications.

An important aspect to consider is the execution time of
the matrix multiplication as compared to the splitting and
subsequent recombining of the FP32 numbers. If the overhead
due to splitting is larger than the speed up due to the tensor
core multiplication, then the mixed precision method would
not achieve and benefit over the normal method. Figure 2
shows that this is not the case. As the input size increases,
the execution time of the splitting and recombining operations
stays relatively low as compared to the GEMM matrix multi-
plication. This implies utilizing the tensor cores would provide

1We intended to test the performance under larger problem sizes, but a
limit is imposed by the cuBLAS library. The batched matrix multiplication
API is called during our implementation, and the total size cannot exceed
65536 [11].

Fig. 1. Accuracy of half-precision cuFFT and our implementation.

Fig. 2. Execution time breakdown at different input sizes.

speed up to the FFT algorithm despite the overhead incurred
due to mixed precision.

Lastly, the execution time of the entire FFT program is
compared to that of the cuFFT of FP32 and FP16. It is seen
that our implementation is currently inferior to the highly
optimized cuFFT library. However, from the previous results,
we infer using this mixed precision method with optimized
kernels would achieve lower execution time.

VII. CONCLUSION AND FUTURE WORK

We have designed and implemented a FP32-FP16 mixed
precision FFT that takes advantage of the recent tensor core
hardware. The dynamic splitting method effectively emulates
single-precision calculation and produces highly accurate re-
sults from a variety of inputs. The speed of current cuBLAS-
based implementation is inferior to cuFFT APIs, but we expect
it to gain an advantage with larger input size as the tensor core
can be fully utilized and the setup cost can be amortized.

The current implementation can handle a large variety of
inputs. The relative error exceeds 0.1 or the program throws
an error when: input data range greater than 3 * 1E10; or
input data range less than 5 * 1E-11 (close to the dynamic
range of single precision number). The range may be further
enlarged by pre-scaling all input numbers.

Fig. 3. Average execution time of three different FFTs with growing input
sizes.

Our GPU-based mixed precision FFT implementation can
easily be applied to many areas of scientific computing where
increased accuracy is desired.

There are several interesting directions for further optimiza-
tions. Many operations can be tuned specifically for the prob-
lem size involved in the FFT calculation. The time spent on
16-bit GEMM grows quickly when input size exceeds 16384.
This may due to the inefficient cuBLAS implementation for
the problem set. This may be improved by implementing
transpose and GEMM kernels. Another direction is to design
an auto-tuning splitting algorithm that supports ill-conditioned
inputs, and further optimizes the splitting overhead. A more
sophisticated splitting algorithm may be designed. This could
be done using bit manipulations. Lastly, our implementation
of matrix transpose kernel has yet to take advantage of the
shared memory. It can be accelerated by applying the “tiled”
design.

ACKNOWLEDGMENT

This research project was sponsored by the National Science
Foundation through Research Experience for Undergraduates
(REU) award, with additional support from the Joint Insti-
tute of Computational Sciences at University of Tennessee
Knoxville. This project used allocations from the Extreme
Science and Engineering Discovery Environment (XSEDE),
which is supported by the National Science Foundation. In
addition, the computing work was also performed on technical
workstations donated by the BP High Performance Computing
Team.

This material is based upon work supported by the U.S.
DOE, Office of Science, BES, ASCR, SciDAC program. This
research is sponsored by the Office of Advanced Scientific
Computing Research; U.S. Department of Energy. The work
was performed at the Oak Ridge National Laboratory, which is
managed by UT-Battelle, LLC under Contract No. De-AC05-
00OR22725.

REFERENCES

[1] B.-Y. T. Shing-Tai Pan, Chih-Chin Lai, “The implementation of speech
recognition systems on fpga-based embedded systems with soc archi-
tecture,” IJICIC, vol. 7, no. 10, 2011.

[2] M. F. H. Buijs, A. Pomerleau, “Implementation of a fast fourier
transform (fft) for image processing applications,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 22, pp. 420–424, 1974.

[3] J. Kong and S. Yu, “Fourier transform infrared spectroscopic analysis
of protein secondary structures,” Acta biochimica et biophysica Sinica,
vol. 39, no. 8, pp. 549–559, 2007.

[4] X. L. Shuo Chen, “A hybrid gpu/cpu fft library for large fft problems,”
IEEE 32nd International Performance Computing and Communications
Conference, 2014.

[5] S. C. Stefano Markidis, I. P. Erwin Laure, and J. Vetter, “Nvidia tensor
core programmability, performance and precision,” Eighth International
Workshop on Accelerators and Hybrid Exascale Systems, 2018.

[6] A. Buttari, J. Dongarra, J. Langou, J. Langou, P. Luszczek, and
J. Kurzak, “Mixed precision iterative refinement techniques for the
solution of dense linear systems,” The International Journal of High
Performance Computing Applications, vol. 21, no. 4, pp. 457–466, 2007.

[7] M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou,
P. Luszczek, and S. Tomov, “Accelerating scientific computations with
mixed precision algorithms,” Computer Physics Communications, vol.
180, no. 12, pp. 2526–2533, 2009.

[8] S. Le Grand, A. W. Götz, and R. C. Walker, “Spfp: Speed without
compromise—a mixed precision model for gpu accelerated molecular
dynamics simulations,” Computer Physics Communications, vol. 184,
no. 2, pp. 374–380, 2013.

[9] W. M. Gentleman and G. Sande, “Fast fourier transforms: for fun and
profit,” in Proceedings of the November 7-10, 1966, fall joint computer
conference. ACM, 1966, pp. 563–578.

[10] D. H. Bailey, “Ffts in external or hierarchical memory,” The Journal Of
Supercomputing, vol. 4, p. 23–35, 1989.

[11] (2018, Jul.) cublas batched gemm throw not sup-
ported error with large batch size. [Online]. Avail-
able: https://stackoverflow.com/questions/51500189/cublas-batched-
gemm-throw-not-supported-error-with-large-batch-size

