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ABSTRACT
Spiking neuromorphic computers (SNCs) are promising as a post
Moore’s law technology partly because of their potential for very
low power computation. SNCs have primarily been demonstrated
on machine learning and neural network applications, but they
can also be used for applications beyond machine learning that
can leverage SNC properties such as massively parallel computa-
tion and collocated processing and memory. Here, we demonstrate
two graph problems (shortest path and neighborhood subgraph
extraction) that can be solved using SNCs. We discuss the approach
for mapping these applications to an SNC. We also estimate the
performance of a memristive SNC for these applications on three
real-world graphs.

CCS CONCEPTS
• Theory of computation → Shortest paths; • Hardware →
Neural systems.
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1 INTRODUCTION
Spiking neuromorphic computing systems (SNCs) are compelling
as a post Moore’s law technology for a variety of reasons, including
the potential for significantly lower power consumption than tra-
ditional computing architectures for certain workloads. The most
natural set of applications to map to SNCs are neural network ap-
plications, because SNCs implement spiking neural networks in
hardware. As a result, much of the work in neuromorphic comput-
ing applications thus far has been targeted towards neural network
computation for both training and inference [17].

There are other application types beyond machine learning and
neural network computation that can be implemented on SNCs
that exploit the inherent architectural characteristics of SNCs in
order to solve problems faster or more efficiently. An SNC is simply
a specialized hardware system with certain characteristics. Com-
munication is relatively simple and usually takes the form of spikes.
SNCs have collocated processing and memory. Finally, SNCs are
massively parallel- with many simple computational units (usually
in the form of neurons and synapses) operating simultaneously.
However, it is often non-trivial to map a non-neural network appli-
cation onto an SNC.

In this work, we discuss how to map two graph problems, single-
source shortest path finding and neighborhood subgraph extraction,
onto a simulated memristive SNC system. We discuss how to con-
figure the network topologies and parameters on the neuromorphic
implementation, as well as how to apply input and interpret output
from an SNC to solve these two problems. Finally, we estimate how
the SNC will perform on three real-world graphs and discuss the
energy estimates to perform those tasks.
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2 NEUROMORPHIC APPLICATIONS
BACKGROUND

The most natural set of applications to map to spiking neuromor-
phic systems are neural network applications. The types of neural
network applications that have been shown either on physical
neuromorphic hardware implementations or demonstrated using
simulations of neuromorphic hardware include:

• Deployment of spiking convolutional neural networks for
inference that were trained using conventional hardware
(e.g., GPUs) [20, 21]

• Unsupervised and supervised on-chip training using plastic-
ity mechanisms such as spike timing dependent plasticity
(STDP) [11, 23]

• For both training and inference using reservoir computing
or liquid state machines [10, 22]

• For training spiking neural networks using genetic algo-
rithms or evolutionary computation [15]

For neural network applications, there is a significant amount of
existing software and/or algorithms to be leveraged for building the
appropriate “programs” (neural networks) to be deployed for real
applications on neuromorphic systems. There is a much lower bar-
rier of entry for non-experts to use neuromorphic systems as neural
network accelerators than for non-neural network applications.

There have been relatively few use cases of neuromorphic sys-
tems for non-neural network applications. In [13], Monaco and
Vindiola present a use case of neuromorphic systems as part of
the sieving process for integer factorization. Severa et al. describe
several neuromorphic algorithm approaches for particle image ve-
locimetry in [19], and demonstrate that deciding how to map a
problem to neuromorphic systems is non-trivial. In [18], Severa,
et al., also demonstrate that neuromorphic systems can be used
to generate Markov process random walks. In [2], Aimone, et al.,
proposes the spiking neural threshold gate model as a framework
for realizing non-neural network applications for spiking neuro-
morphic systems. In [3], Araújo, et al., demonstrate that a spiking
neuromorphic system can simulate the aggregate motion of a flock
of birds.

One type of algorithm or application that is likely well suited
to SNCs is graph algorithms. This is because SNCs natively imple-
ment spiking neural networks, which are essentially just specialized
graphs. In [8], Hamilton, et al., describes a mapping of commu-
nity detection in graphs to spiking neuromorphic hardware. They
have also been used for other graph problems by mapping either
constraint satisfaction problems to spiking neural networks [7] or
mapping Ising models to spiking neural networks [5]. In [6], Davies,
et al., note that there are methods (specifically [14]) for calculating
shortest weighted path using SNCs; we discuss a variation of this
approach further in Section 3.

One thing that is abundantly clear in all of these approaches is
that mapping non-neural network applications to neuromorphic
computing systems is likely to be non-trivial. Furthermore there
will likely be trade-offs in different algorithmic approaches in the
network size needed to implement the algorithm, the energy re-
quired (often mapped to the number of events in the system), and/or
the wall clock run time of the system.

3 APPROACH
We configure spiking neural network “programs” such that the
spiking dynamics can be used to extract relevant information from
a graph without the need for extensive rate or temporal decoding.
We construct an SNC similar to that described in [16]. This is a
mixed analog-digital neuromorphic implementation where each
synapse is implemented with two memristors (in order to allow
for both positive and negative weight values). Our SNC is defined
by a set of leaky integrate-and-fire neurons {n(vth , tR )} with pro-
grammable thresholds (vth ) and refractory periods (tR ), and a set
of synapses {s(δ , sw )} with programmable delays (δ ) and weights
(sw ). We require that the synapses in the SNC can realize a form
of spike timing dependent plasticity (STDP) and for the two graph
problems discussed in this work, we rely on 1-step STDP. That is,
only activity that occurs within a single time step around a neuron’s
firing can contribute to the plasticity process.

An undirected graph G(V ,E) is defined by a vertex setV (G) and
an edge set E(G). A directed graph D(V ,E) is defined by a vertex
set V (D) and a set of directed arcs E(D). The notation E can refer
to either a set of undirected edges or directed arcs, but directed
edges are labeled by the arc direction ei→j , ej→i while undirected
edges are labeled by the two terminal nodes ei j = eji . We convert
unweighted graphs into weighted graphs by assigning each e ∈ E
a length of 1. To avoid confusion with synaptic weights, we refer
to graph edges as having lengths rather than weights.

The first step in configuring an SNC for graph applications is
embedding the graph into a spiking neural network. We describe
a relatively general embedding process in which a graph (G or
D) is directly mapped to a SNC: each vi ∈ V defines a neuron
ni ∈ n and each edge e ∈ E defines a synapse s ∈ S . Directed
arcs are mapped to directed synapses, and undirected edges are
mapped to symmetric pairs of synapses ei j → (si→j , sj→i ). We
assume that the graphs can be embedded directly into an SNC such
that there are sufficient neurons and synapses and connectivity
between them to realize the graph in the SNC. In future work, we
plan to investigate adaptations of these algorithms in which the
graphs cannot be directly embedded. Once the graph is embedded,
the system parameters (vth , tR ,δ , sw ) are defined by the specific
application.

3.1 Shortest Path
We implemented a single-source multiple-destination shortest path
finding algorithm on a simulated SNC using an approach simi-
lar to that described in [14]. The shortest path between a source
vertex vs and a destination vertex (or set of destination vertices)
are non-backtracking and thus cannot return to any previously
visited vertex. To implement this non-backtracking constraint in
spiking dynamics we configure the SNC such that any neuron that
fires only fires once. After directly mapping a given graph G or
D into a spiking neural network we set the system parameters
(vth = 0, tR = α ,δ = len(e) + 1, sw = 1), which we derive below.

For each v ∈ V , we create a neuron n(vth = 0, tR = α) where α
is defined as:

α =

(∑
e ∈E

len(e) + 1

)
+ 1. (1)
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By setting the refractory period to be greater than the sum of the
edge lengths in the graph, we force each neuron in the network
to fire at most once. Our simulated SNC allows for very large re-
fractory periods, so this can be easily realized. If a neuromorphic
implementation cannot support arbitrarily large refractory periods,
additional structure (more neurons and synapses) can be added for
each vertex to force the corresponding neuron for that vertex to fire
exactly once. This will inflate the size of the network required to
implement the graph on the SNC, and it will also increase the num-
ber of accumulate and fire events in the implementation. However,
neurons that only implement relatively short refractory periods
may have much simpler circuitry and thus may reduce the energy
required to perform each accumulate and fire event in the neuron.

For each e ∈ E we create synapses s(δ = len(e) + 1, sw = 1). In
particular, note that the delay on a synapse is proportional to the
length of the corresponding edge in the graph. However, all of the
synapses in the initial spiking neural network will have the same
weight value.

Once the spiking neural network is configured we load it onto
the SNC device. Then, we choose source vertex vs and stimulate
its corresponding neuron ns in the network at network time 0. We
then simulate the activity in the network for α time steps, which
is equivalent to running the SNC for the same amount of time.
After simulation, we can determine the length of the shortest path
from ns to each neuron in the network (and thus the corresponding
length of the path from the source node to every node in the graph)
by looking at the fire times of each neuron. If a neuron does not fire
in the allotted simulation time, then there is no path from the source
node to that neuron. We can then determine the shortest paths in
the network by reading out the updated network parameters. The
synapses that have potentiated (increased weights) are those that
caused their post-synaptic neuron to fire, and thus, are part of the
shortest path to that neuron from ns . If there are multiple shortest
paths (i.e., the shortest paths are not unique), this approach will
find all of the shortest paths. It is worth noting that simulating
for α time steps is a worst-case scenario for single-source shortest
path. Stopping the run after all neurons have fired can reduce the
required simulation time and the resulting energy cost.

3.2 Neighborhood Subgraph Extraction
A neighborhood of vertexvs in a graphG , NG (vs ), is defined as the
subgraph made up of all vertices vj ∈ V (G) such that ei, j ∈ E(G)
and the set of all edges that connect the vertices in this set. Examples
of neighborhoods in a graph are shown in Figure 1. To extract
NG (vs ) from spiking dynamics we need to configure the SNC such
that only a subset of neurons fire throughout the “program.” The
extraction is done in two stages: first the vertices of NG (vs ) are
identified, then the edges are identified. After directly mapping
a graph into a spiking neural network, we load the network into
the SNC and configure it with the following parameters: (vth =
0.5, tR = 1) for all neurons, and (δ = 2, sw = 1) for all synapses. In
particular, the neuron refractory periods and the synapse delays
are set such that if a neuron fires at time t , it will still be able to fire
at time t + δ due to arriving charge from another neuron.

To identify the vertices, we stimulate neuron ns at time step
0 and simulate the network for exactly two time steps (or long

Table 1: Energy Estimate per Event Type

Accumulation Fire Learning Idle
Neuron 9.81 pJ 12.5 pJ - 7.2 pJ
Synapse 1.45 pJ - 2.58 pJ 0.07 pJ

enough for charge to propagate from the source neuron along all
of its outgoing synapses). The neurons that fire in those two time
steps will be {n′∪ns }, the set of neurons that are adjacent to ns and
ns itself, which correspond directly to the vertices in our desired
subgraph. It is not required to “read" the updated network during
this step, since all we are interested in obtaining in this step is which
vertices are part of the neighborhood, which is determined entirely
via output spikes. To identify the edges, we increase the spike
threshold for all of the neurons outside the neighborhood subgraph,
or {n} \ {n′ ∪ns }. The new threshold value for these neurons is set
to be |E(G)| + 1. We then reset the simulation, clearing all activity,
and load the new graph with updated thresholds and sw = 1. We
simultaneously stimulate every neuron in the set {n′ ∪ ns }, which
is the source neuron and all of its neighbors (as determined in
the previous step). After two time steps we “read" the network
parameters and determine all of the synapses that have sw > 1
(the original weight). These are the synapses that have potentiated
during the last run of the SNC, which means that they connect two
neurons that are part of the neighborhood of the source neuron.
Thus, these synapses correspond to the edges of NG (vs ).

3.3 Estimating Energy Usage
To determine approximate energy usage of a memristive SNC on
these tasks, we collect event information from the simulation of
each network on the SNC. In particular, we track the number of
times each neuron accumulates, the number of times each neuron
fires, the number of times each synapse receives a fire, and the
number of times each synapse potentiates or depresses for each
network.We have previously discussed the details of this simulation
code in [16], and we have discussed howwe estimated energy usage
for each event for this neuromorphic implementation in [1, 4, 16].
A summary of the approximate energy usage of those events is
given in Table 1, where the neuron estimates come from [4] and
the synapse estimates come from [1]. Because the behavior of the
neuromorphic system is simulated using a discrete event simulation,
we do not explicitly calculate the number of idle cycles for each
neuron and synapse during the simulation. Instead, we use the
number of simulation time steps (or simulated clock cycles), the
number of neurons and synapses in the networks, and the other
event counters to calculate how many idle cycles there are for
neurons and synapses in the network.

4 RESULTS
To understand how a SNC may behave on real-world problems,
we use three graphs from the Stanford Large Network Dataset
Collection [12] to evaluate performance on a simulated SNC. These
three graphs are: a California road network graph (roadNet-CA), a
collaboration network graph from high energy physics on Arxiv
(ca-HepPh), and a co-purchasing network from Amazon for June
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Figure 1: Examples of three neighborhoods in a graph. The source vertex vs for each neighborhood is shown in green. The
neighboring vertices are shown in purple, and the induced edges are highlighted and shown in red.

Table 2: Real-World Graphs [12]

Graph Type Vertices Edges
roadNet-CA Undirected 1,965,206 2,766,607
ca-HepPh Undirected 12,008 118,521

amazon0601 Directed 403,394 3,387,388

1, 2003 (amazon0601). Table 2 gives information about each graph,
including the number of vertices and edges, as well as whether the
graph is directed or undirected. None of these graphs are weighed
(i.e., the edges do not have associated lengths), so we implicitly
include lengths of 1 for each edge.

To obtain performance for single-source shortest path and neigh-
borhood subgraph extraction, we select the source vertex to be
the vertex with the highest degree. To confirm the output of the
neuromorphic implementation, we implemented naive shortest
path and neighborhood subgraph extraction implementations for
CPU. We confirmed that the output of the CPU implementations
and the simulated SNC on these tasks are identical. In particular,
for single source shortest path, the neuromorphic implementation
output in both the lengths of the paths found and the paths them-
selves matched exactly. For neighborhood subgraph extraction, the
neighborhoods (the vertices and edges) matched exactly for each
approach.

Table 3 summarizes the differences between the two approaches
in terms of SNC usage and traditional processor usage, as well as
communication between the two. The number of clock cycles re-
quired on the SNC for shortest path relies on the size of the graph,
while the number of clock cycles required for neighborhood sub-
graph extraction is fixed for any graph size. However, the shortest
path method requires significantly less traditional processor com-
putation for extraction. In particular, it requires a single O(|E(G)|)
sweep through the graph to determine the paths in post-processing.
For neighborhood extraction, it requiresO(|V (G)|+ |E(G)|) process-
ing, where the O(|V (G)|) sweep comes from resetting thresholds
between neuromorphic calls and the O(|E(G)|) sweep comes from
determining which edges have been potentiated (which correspond
to the edges that are in the subgraph).

Table 3 also summarizes the number of network loads and net-
work reads required for each method as well. We contrast network
reads and loads with simply applying spiking input to and reading

spiking output from the SNC. Network “loads" require setting up
a new network topology and/or parameters of the network, such
as neuron thresholds or synapse weights. Network “reads" require
reading the network parameters back off the SNC. In this case, the
only parameters that are updated over the course of a simulation
that might need to be read are the synaptic weights, which may be
updated due to STDP. Though we note these communications in
Table 3, we do not include those as part of the energy estimates.
However, these communications are not likely to be optimized for
most neuromorphic implementations, since for neural network im-
plementations a network “load" will only occur once and a network
“read" may never be required. Because they are not optimized, they
may require a significant amount of time to complete on physical
implementations.

Table 4 gives a breakdown of estimated energy usage per graph
per task. Because of the O(|E |) clock cycles required for shortest
path (i.e., the number of clock cycles required depends on the num-
ber of edges in the graph), significantly more time is spent on the
SNC than in the neighborhood subgraph extraction task, and thus,
more energy usage is required. It is worth noting that these energy
estimates do not capture the co-processor computation cost or com-
munication cost associated with implementing these algorithms.
However, they do give a rough estimate on what performance to
expect from an SNC on this task.

As can be seen in Figure 2, the vast majority of the energy cost
for both tasks comes from neuron and synapse idle states. In fact,
it is only in the case of the ca-HepPh graph for the neighborhood
subgraph extraction task that other event types contribute similarly
to the energy estimate. For all other tasks, the idle costs are orders
of magnitude more than the other event types. In the single-source
shortest path task, because each neuron fires at most once, neurons
and synapses are idle for most of the execution of the task. In the
case of neighborhood subgraph extraction, neighborhoods in large
graphs may be relatively small with respect to the larger graph,
which again results in most neurons and synapses remaining idle
for even the short execution time. If the idle costs in the SNC can
be reduced, significantly less energy will be required to complete
the task.
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Figure 2: Energy breakdown by event type in simulation. The three graphs are shown in the three columns (left to right:
amazon0601, ca-HepPh, and roadNet-CA). The first row shows results for neighborhood subgraph extraction task and the
second row shows results for the single source shortest path calculation task. Note that the x-axis (the energy estimates) is on
a log scale. The different event types are shown as bars of different colors.

Table 3: SNC/CPU Co-Processor Breakdown

Shortest Path Neighborhood
SNC Runtime O(|E(G)|) O(1)
CPU Runtime O(|E(G)|) O(|V (G)| + |E(G)|)

CPU− >SNC Net Loads 1 2
SNC− >CPU Net Reads 1 1

Table 4: Estimated SNC Energy Usage Results

roadNet-CA ca-HepPh amazon0601
Shortest Path 161.35 J 48.85 mJ 21.28 J
Neighborhood 58.32 µJ 999.14 nJ 12.56 µJ

5 CONCLUSION
Though mapping non-machine learning and non-neural network
tasks to SNCs may be non-trivial, this is an area that has been
relatively under-explored and has the potential for significant al-
gorithmic development. In this work, we show how two graph
problems can be mapped to a memristive SNC and give energy es-
timates on performance for three real-world graphs. These results
illustrate how one might map a non-standard task onto an SNC.

The results also show that the two tasks have different performance
and ways of utilizing the characteristics of the hardware, despite
both being graph-related tasks. It is worth noting that the goal of
this work is not to give a direct comparison of how a neuromor-
phic system behaves with respect to a CPU. Instead, our goal is
to illustrate that there are non-neural network applications that
can be mapped to neuromorphic systems, how those mappings
might occur, and how their performance characteristics may show
properties of existing neuromorphic implementations that may not
emerge in neural network applications.

An interesting consequence of this work is that both of these
applications resulted in energy usages that were dominated by idle
costs of the neuromorphic system. In our previous uses of neuro-
morphic systems, this was not a characteristic that was observed.
In particular, either the networks used were run for fairly short
amounts of time or there were much fewer neurons and synapses
in the networks and most of the neurons and synapses were more
active during simulation than the activity profiles for these applica-
tions. It is worth noting that non-neural network applications such
as these will likely have very different performance characteristics
than the neural network uses of neuromorphic systems. Thus, we
should consider these types of applications in the design of neuro-
morphic systems moving forward, as there are likely to be more
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and more non-neural network use cases of neuromorphic systems
as they become more widely available.

In future work, we plan to explore direct comparisons with other
compute systems (e.g., CPUs and GPUs) in terms of power and
time-to-solution on non-neural network applications such as these
two graph algorithms. We also intend to investigate implementing
other graph algorithms; in this work we assumed the SNC had
specific capabilities (e.g. synaptic plasticity, long refractory times).
In particular, we are defining a variety of spike-based primitives that
can be composed to produce more complicated graph algorithms
and can be adapted to a wider variety of SNCs [9]. Finally, we intend
to investigate the implementation of these algorithms on physical
neuromorphic hardware systems, such as Intel’s Loihi [6], so that
we can quantify the effect of communication costs and embedding
costs in an existing neuromorphic platform.
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