
iez: Resource Contention Aware Load Balancing
for Large-Scale Parallel File Systems

Bharti Wadhwa†, Arnab K. Paul†, Sarah Neuwirth?, Feiyi Wang‡,
Sarp Oral‡, Ali R. Butt†, Jon Bernard†, Kirk W. Cameron†

†Virginia Tech, ?University of Heidelberg, Germany, ‡Oak Ridge National Laboratory

Abstract—Parallel I/O performance is crucial to sustaining sci-
entific applications on large-scale High-Performance Computing
(HPC) systems. However, I/O load imbalance in the underlying
distributed and shared storage systems can significantly reduce
overall application performance. There are two conflicting chal-
lenges to mitigate this load imbalance: (i) optimizing system-
wide data placement to maximize the bandwidth advantages of
distributed storage servers, i.e., allocating I/O resources efficiently
across applications and job runs; and (ii) optimizing client-centric
data movement to minimize I/O load request latency between
clients and servers, i.e., allocating I/O resources efficiently in
service to a single application and job run. Moreover, existing
approaches that require application changes limit wide-spread
adoption in commercial or proprietary deployments. We propose
iez, an “end-to-end control plane” where clients transparently
and adaptively write to a set of selected I/O servers to achieve
balanced data placement. Our control plane leverages real-
time load information for distributed storage server global
data placement while our design model leverages trace-based
optimization techniques to minimize I/O load request latency
between clients and servers. We evaluate our proposed system
on an experimental cluster for two common use cases: synthetic
I/O benchmark IOR for large sequential writes and a scientific
application I/O kernel, HACC-I/O. Results show read and write
performance improvements of up to 34% and 32%, respectively,
compared to the state of the art.

I. INTRODUCTION

Load imbalance and poor resource allocation have been
identified as major causes of performance degradation in many
HPC storage systems, including Lustre [1], the widely-used
parallel file system for scientific computing. A number of
recent works [2]–[5] have targeted load imbalance in Lustre1.
Some aim to simultaneously perform resource allocation for all
concurrently running applications on the system (i.e., server-
side approaches [2], [3]). These include the default approach
adopted in Lustre’s request ordering system, the Network
Resource Scheduler (NRS) [6], which reorders incoming I/O
requests on the server-side. Other techniques attempt to mini-
mize resource contention on per-application basis (i.e., client-
side approaches [4], [5]). Unfortunately, while client- and
server-side approaches in isolation work well for some appli-
cations, the diversity of I/O workloads (e.g., large sequential
writes from many clients versus scientific data processing on
a large data set for a single application) leads to situations
where both isolated approaches suffer reduced performance.

1Note that while we focus on Lustre given its wide-spread use, our approach
is applicable to and can be extended for use in other related HPC parallel file
systems.

We propose a novel end-to-end control plane, iez, that
combines the application-centric strengths of client-side ap-
proaches with the system-centric strengths of server-side ap-
proaches. To this end, we faced a number of challenges.
First, existing storage servers lack a mechanism for global
coordination. Second, at any given time, the file system
simultaneously serves multiple, asynchronous, diverse client
applications with no mechanism for data placement coordina-
tion. Furthermore, in the case of Lustre, each client application
leverages somewhat opaque high-level I/O libraries such as
HDF5 [7] and MPI-I/O [8]. Third, in contrast to existing
approaches that modify the application, to enable adoption
in real deployments, the end-to-end control plane techniques
must maintain application portability while providing efficient
data placement.
iez supports three key functions to address the aforemen-

tioned challenges. First, it provides an application-agnostic
global view of all resources to the MetaData Server (MDS).
This includes the current statistics of the distributed Object
Storage Targets (OSTs) that are managed by Object Storage
Servers (OSSs) for storing the application data. Second, it
automatically coordinates all the clients in a scalable fashion in
order to optimize job placement strategies on per-client basis.
Third, iez employs a user-level library to intercept file I/O
calls (metadata operations) and transparently provide runtime
optimization for the client application, thereby maintaining
portability.

More precisely, the proposed system gathers real time
information from clients and servers about the applications’
storage requirements as well as the load on storage servers
and maps the present and future job requests on OSTs in a
balanced manner to provide efficient utilization across a set
of servers. The system considers per-client job requests in a
dynamic client-wide prediction model to synchronize holistic
job placement and resource allocation. Our data placement
strategy supports two widely-used classes of application file
access, i.e., File-Per-Process (FPP), and Single-Shared-File
(SSF) per job request. Moreover, our approach also supports
commonly used I/O interfaces such as POSIX-IO [9], MPI-
I/O [8] and HDF5 [7].

Specifically, we make the following contributions.
1) We introduce an end-to-end control plane, iez, to

optimize I/O resource allocation in existing as well as
next generation HPC systems that use Lustre for their
storage platform.



2) We present the detailed design of iez for the Lustre file
system, which incorporates both server side and client
side functionality to optimize I/O data placement and
job placement.

3) We implement and evaluate the effectiveness of iez on
a cluster with two commonly used use cases: synthetic
I/O benchmark IOR [10] and a scientific application I/O
kernel HACC-I/O [11]. Results show that iez improves
I/O performance by up to 34% compared to the extant
round-robin based load balancing adopted in Lustre.

II. BACKGROUND AND MOTIVATION

Recent studies [3], [4], [12]–[14] have shown that load
imbalance in HPC systems creates resource contention and
degrades overall performance. The complex path of an ap-
plication I/O request—comprising myriad components such
as I/O libraries, network resources, and backend storage—is
a significant bottleneck. In today’s HPC deployments, there
is no global I/O coordinator to handle the overall resource
contention problem. Thus, existing parallel file and storage
systems can only partially optimize some portions of the I/O
path, but not the entire end-to-end path. For example, Network
Request Scheduler (NRS) [6] balances load in the distributed
network of Lustre file system, i.e., on the server side; whereas
Balanced Placement I/O (BPIO) [4] performs load balancing
on per-application basis, i.e., on the client side.

A. Lustre Architecture

We have implemented iez atop Lustre, the parallel file
system deployed most widely in the world’s top supercom-
puting systems [15]. Lustre is a scalable storage platform
that is based on distributed object-based storage. Figure 1
shows a high-level overview of the Lustre architecture and its
key components. Lustre clients provide an interface between
applications and the storage servers. The application data is
managed by two types of servers, MDS and OSS. MDS
manages all name space operations and stores the name space
metadata on one or more storage servers called Metadata
Targets (MDT). The bulk storage of contents of application
data files is provided by OSSs. Each OSS manages a number
of OSTs and stores the data on one or more OSTs. OSTs are
a kind of direct-attached storage. Each data file can be striped
across multiple OSTs, with the stripe count specified by the
user. The distributed components are typically connected via a
high-speed data network protocol, LNet [16], which supports
a host of networks, e.g., Ethernet, Infiniband [17], etc.

B. Approaches for Load Balancing in Lustre

Given typical non-uniform data accesses patterns, the strip-
ing of application data across OSTs give rise to load imbalance
in most cases. Currently, the default OST load-balancing
approach adopted in Lustre is round-robin (RR), also known
as RAID 0. The main limitation is that, RR aims to balance
the load of OSTs only, i.e., without any consideration to the
load on other components, e.g., MDS and OSS. Moreover, our
earlier work on quantitatively studying HPC I/O behavior [2]

Lustre Clients

Metadata 
Server (MDS)

Ethernet or 
Infiniband Network

Object Storage
Targets (OSTs)

Object Storage
Servers (OSSs)

Fig. 1: Overview of Lustre architecture.

has shown that RR can take a long time to balance a system,
and it is unable to capture the complex application behavior.
Consequently, the default policy falls short of providing the
desired I/O balanced system.

I/O load balance in scalable parallel file systems is being
studied extensively [18]. One approach is to address the
problem from the client side on per job basis [19]–[22]. The
applications’ I/O calls can be intercepted from client side
during runtime and the OSTs assignment can be managed
accordingly to mitigate resource contention [23]–[26]. An
example of such an approach is TAPP-I/O [5]. TAPP-I/O
intercepts file I/O calls (metadata operations) during runtime,
supports both statically and dynamically linked applications,
and provides an automatic placement strategy for both FPP
and SSF I/O modes. However, the main limitation is that
these approaches do not consider the requirements of other
applications running simultaneously on the system due to lack
of a global view of the storage servers.

Conversely, another approach is to have a global view
of storage servers and consider the load balance across all
applications instead of per-application basis. For this, the load
balancing problem can be handled from server side [2], [3],
[27], [28]. The main limitations of such approaches are that
they require modification of application source code, and do
not consider the different file I/O layouts (SSF or FPP).

The above approaches improve the I/O performance of
Lustre by effectively reducing the resource contention and
improving load balance, but fail to exploit the opportunity for
end-to-end I/O path optimization. In contrast, iez aims to
provide an end-to-end load balancing solution, which globally
coordinates between clients and servers of parallel file and
storage systems.

C. Use Cases and Benchmarks

We use a representative synthetic I/O benchmark IOR [10]
as well as a real-world scientific I/O application kernel HACC-
I/O [11] for presenting the design and implementation of iez.

1) HACC-I/O: The Hardware Accelerated Cosmology
Code (HACC) [11] application uses N-body techniques to sim-
ulate the formation of structure in collision-less fluids under
the influence of gravity in an expanding universe. HACC-I/O
captures the I/O patterns and evaluates the performance for
the HACC simulation code. It utilizes the MPI-I/O interface
and differentiates between FPP and SSF parallel I/O modes.



2) IOR: The InterleavedOrRandom (IOR) [10] benchmark
provides a flexible way to measure parallel file system’s I/O
performance. It measures the I/O performance with different
parameter configurations including I/O interfaces ranging from
traditional POSIX to advanced parallel I/O interfaces like MPI-
I/O. It performs reads and writes to and from files on parallel
file systems like Lustre, and provides the throughput rates.

D. Load Imbalance in a Default Lustre Deployment
In order to highlight the load imbalance in a default Lustre

deployment, we conducted a quantitative study that uses RR to
distribute I/O load on OSTs. We deployed a testbed of 6-node
Lustre cluster, with 1 MDS, 3 OSSs and 2 Clients. Each OSS
in our cluster manages 5 OSTs with a capacity of 10 GB each.
Hence, the cluster has 15 OSTs in total with a total capacity of
150 GB. We ran IOR benchmark with 8, 16, and 64 processes
that produce 16, 32, and 64 GB of data, respectively, to be
stored on the OSTs in the FPP access mode. We also ran
HACC-I/O application for 8, 16, and 32 processes for 10 M
particles.

 0

 20

 40

 60

 80

 100

OS
T1

OS
T2

OS
T3

OS
T4

OS
T5

OS
T6

OS
T7

OS
T8

OS
T9

OS
T1
0

OS
T1
1

OS
T1
2

OS
T1
3

OS
T1
4

OS
T1
5

O
S
T

 
U
til
iz
at
io
n 
(%
)

OSTs

IOR (FPP, Stripe Count 8)

8 Procs, 16GB 16 Procs, 32GB 64 Procs, 64GB

Fig. 2: OST Utilization under RR for IOR.

 0

 5

 10

 15

 20

OS
T1

OS
T2

OS
T3

OS
T4

OS
T5

OS
T6

OS
T7

OS
T8

OS
T9

OS
T1
0

OS
T1
1

OS
T1
2

OS
T1
3

OS
T1
4

OS
T1
5

O
S
T

 
U
til
iz
at
io
n 
(%
)

OSTs

HACC-I/O (FPP, Stripe Count 8)

8 Procs 16 Procs 32 Procs

Fig. 3: OST Utilization under RR for HACC-I/O.

Figure 2 shows the storage utilization in each OST, for
different number of processes and a stripe count of 8 for IOR
in FPP mode. In a balanced load setting, these graphs would
be straight lines (representing ideal load balance), but in the
studied scenario, the load is observed to be imbalanced with
some OSTs getting a lot more load than others. A similar
pattern can be seen in Figure 3 for HACC-I/O for FPP mode
with stripe count of 8.

These results show that with the default Lustre deployment
that uses RR scheduling to allocate OSTs for each job, there
can be a significant load imbalance at the server level. The
load imbalance persists at different scales and different stripe-
count and thus can lead to imbalanced resource usage and
resource contention.

III. SYSTEM DESIGN

We have implemented iez for the widely-used Lustre file
system. However, our design can be extended for use in other
HPC distributed storage and I/O systems that employ a similar
hierarchical structure.

Figure 4 shows an overview of the iez architecture. It
presents an “end-to-end” control plane for managing I/O with
components both on the client side and the server side. When
running applications for the first time, the client side makes
use of a customized tracing tool, miniRecorder. This
tool collects information about the I/O accesses, such as the
number of bytes written, file name, number of stripes, and MPI
rank and communicator for each file. MiniRecorder needs
to collect traces only for the first run of an application. iez
identifies an application’s I/O behavior, which does not change
across multiple runs of an application. The collected traces are
fed into the Client (C)-Parser that then uses the information
to drive the prediction algorithm. Our predictions are based
on ARIMA time series modeling [29]. The output of the
time series prediction provides estimates of future application
requests, which are stored in an “interaction database” for later
use by iez. We refer to the database as “interaction database”
because it offers a point of interaction between our server-side
and client-side libraries.

On the server side, OSSs collect the CPU and memory usage
information, associated OSTs capacity (kbytestotal) and the
number of bytes available on the OSTs (kbytesavail). These
statistics are sent to the MDS. The collected information on
the MDS is parsed using Server (S)-Parser and fed to the
OST allocation algorithm. The input to the OST allocation
algorithm is the predicted set of requests received from the
clients via HTTP-based interactions, and the output is the
OSTs to be allocated for every request, which will yield a
load-balanced distribution over the involved OSSs and OSTs.
The allocated OSTs are stored in the interaction database
along with the predicted requests. Next, the placement library,
iez-PL, intercepts the I/O requests from the applications,
consults the interaction database, and routes the application
requests to appropriate resources.

A. Client-Side iez Components

In the following, we describe the iez components that run
on the clients.

1) Tracing Tool: We implement a simple I/O tracing library,
miniRecorder, based on Recorder [30]. Recorder is a
multi-level I/O tracing framework, which can capture I/O
function calls at multiple levels of the I/O stack, including
HDF5, MPI-IO, and POSIX I/O. For our end-to-end system,
we limit the range of intercepted function calls to file creation
and write calls, and record the bytes written, file name, stripe
count, and MPI rank and communicator for each file. We focus
on writes more than reads because caching mechanisms and
burst buffers that are typical in modern HPC deployments
absorb most of the read requests once the file has been
written. Therefore, the load imbalance is mainly due to write
requests [2], [30]. The traced data is processed by the C-Parser



OSS Stats,
OST StatsS-Parser

OST 
Allocation 
Algorithm

MDS 
StatsHTTP Request

HTTP Response

Lustre Client Metadata Server Object Storage 
Targets

Object Storage 
Servers

5c

5b

C-Parser

iez-PL

Interaction DB

Prediction Model

APP

miniRecorder
1

STATS 
Collector

STATS 
Collector

5a

5a

2
3

4

8

7

6

Fig. 4: Overview of the proposed iez architecture.

and converted into a readable (comma separated) .csv format
file. This file is then sent to the prediction library (AIPA-
ARIMA Inspired Prediction Algorithm discussed in the next
section). The tracing tool is lightweight, and our tests show
that it adds a negligible memory and CPU overhead of ∼0.3%
and <1%, respectively, during application execution.

2) ARIMA-Inspired Prediction Algorithm (AIPA): HPC
applications have been known to show distinct I/O patterns [2].
Based on our interactions with HPC practitioners, this pre-
dictability is expected for emerging applications as well. We
leverage this observation to model three key properties of
HPC I/O, namely write bytes, stripe count, and MPI rank.
We collect these parameters using the tracing tool on the first
run of an application to train our model. We use AutoRe-
gressive Integrated Moving Average (ARIMA) model to fit
our multivariate time series data and predict future values.
Our choice of ARIMA is dictated by its performance and
the time-series nature of the write bytes and stripe count
of the requests. We experimented with several alternatives,
such as the Markov Chain Model [31], to model the data.
However, ARIMA yielded better accuracy with lower memory
and computing overhead. For example, we observed a 99.1%
accuracy in IOR data using ARIMA, while Markov chain
model yielded an accuracy of 95.5%. The CPU overhead for
ARIMA was less than 1.2% compared to 4.5% in Markov
Chain, while the memory usage for ARIMA is 10 MB in
comparison to 90 MB usage in Markov chain.

We implement our prediction model on the client side,
where the calls would be intercepted, rather than on MDS.
This has two advantages: i) since each application has its own
client, the model can be applied at scale without overwhelming
the centralized MDS; and (ii) the approach makes the MDS
application-agnostic, where the server can focus on write
requests and types in a global fashion and not be concerned
with individual applications. The approach also provides for a
much more efficient solution when multiple applications run
on (multiple) clients simultaneously.

A time series is defined as a sequential set of data points,
measured typically over successive times. It is represented as
a set of vectors x(t), t = 0, 1, 2..., where t is the elapsed
time [32]. The term ARIMA involves three parts, AR denotes

that the variable is regressed on its prior values, I stands for
‘integrated’, which means that the data values are replaced
with the difference between the present and previous values,
and MA represents the fact that the regression error is a linear
combination of error terms occurring in the past. There are
three parameters used for every ARIMA model. The parameter
‘p’ is the number of lag observations (lag order), ‘d’
denotes the number of times raw observations are differenced
(degree of differencing), and ‘q’ represents the size of
moving average window (order of moving average).

The first step is to select the values of parameters (p,
d, q). To this end, we run the model on all combinations
(skipping the ones that fail to converge) of the parameters over
our dataset, which we get from the tracing tool, and select the
combination with the least Root Mean Square Error (RMSE).
We vary the values of p, d, and q from 0 to 5. We go from 0
to 5 for all the values because going beyond 5 would be com-
putationally expensive. For HACC-IO, the least RMSE was
found for (5, 1, 2) and IOR gave the minimum RMSE
for (2, 1, 1). The next step is to fit the ARIMA(p,
q, d) model by exact maximum likelihood via Kalman
filters [33]. This fitted model is then used to predict the write
bytes, stripe count, and MPI rank values for future application
I/Os. We use statsmodels.tsa.arima_model package
in Python for our ARIMA implementation. Our results show
a 98.3% accuracy in HACC-I/O data and 99.1% accuracy in
IOR data.

3) Interaction Database: The interaction database is an
SQL database located on the Lustre clients. It serves as the
medium through which the MDS and clients interact with
one another. First, the values predicted by AIPA are stored
in the database. Table I shows an example snapshot of the
interaction database for HACC-I/O in FPP mode. We store
the file names, the number of bytes written, number of stripes
associated with every file, and the MPI Rank. The MDS uses
the HTTP protocol to access the interaction database. The
process starts with the MDS sending a HTTP Request to the
client to retrieve the required database contents. The specific
steps are discussed in Section III-B3. For our implementation,
we use MySQL 8.0.12 Community Server Edition. Our results
show that writing and retrieving data from the interaction



TABLE I: Interaction Database Snapshot showing write requests for HACC-I/O in FPP mode.

File Name Write Bytes Stripe Count MPI Rank
/lustre/scratch/hacc-io/FPP1-Part00000000-of-00000008.data 803405824 8 0
/lustre/scratch/hacc-io/FPP1-Part00000001-of-00000008.data 803405824 8 1
/lustre/scratch/hacc-io/FPP1-Part00000002-of-00000008.data 803405824 8 2
/lustre/scratch/hacc-io/FPP1-Part00000003-of-00000008.data 803405824 8 3
/lustre/scratch/hacc-io/FPP1-Part00000004-of-00000008.data 803405824 8 4
/lustre/scratch/hacc-io/FPP1-Part00000005-of-00000008.data 803405824 8 5
/lustre/scratch/hacc-io/FPP1-Part00000006-of-00000008.data 803405824 8 6
/lustre/scratch/hacc-io/FPP1-Part00000007-of-00000008.data 803405824 8 7

Input: File Name file, Access mode flags
Output: Call real metadata operation, e.g., open()
begin

if fileExits(file) == TRUE then
return realMetadataOperation(file, flags)

end
r = queryInteractionDatabase(file)
layout→scount = row → stripe count
layout→stripe size = row → stripe size
layout→ost list = row → ost indices
createInode(layout, flags, mode)
return realMetadataOperation(file, flags)

end
Function createInode

Input: File Layout layout, Access mode flags
mode = 0644
flags = flags | O_LOV_DELAY_CREATE
request = LL_IOC_LOV_SETSTRIPE
fd = real open(file, flags, mode)
ioctl(fd, request, placement)
close(fd)

Algorithm 1: File layout and Lustre inode creation.

database is very efficient, using <0.3% and <0.4% of CPU
and memory, respectively.

4) Placement Library: The placement library, iez-PL,
complements the prediction model by providing a lightweight
and user-friendly mechanism to place an application’s I/O
workload in accordance with the predicted set of OSTs.
iez-PL utilizes function interposition to prioritize itself over
standard function calls, and the profiling interface to MPI
(PMPI) for MPI and MPI-IO routines. iez-PL is imple-
mented as a shared, dynamic user library, and can be used
by specifying it as the preloading library via the environment
variable LD_PRELOAD. The POSIX I/O, MPI-IO, and HDF5
metadata operations (e.g., open()), which are issued by
the application, are intercepted and re-routed to iez-PL for
processing purposes. For every I/O cycle, the library queries
the interaction database with the file name passed by the
function call and fetches the corresponding row with the
predicted placement information. This information includes
the stripe count, stripe size, and a list of OST indices. Next,
iez-PL creates a Lustre inode on the MDS and places the
stripes on the OSTs as returned by the prediction model. For
this purpose, Lustre provides the user library llapi, which
allows the user to describe a specific file layout, i.e., the
striping pattern. However, iez-PL cannot directly take ad-
vantage of the user library, since llapi calls open() internally,
which means that the preloading mechanism would cause an
endless loop. Therefore, iez-PL mimics the behavior of llapi
and communicates directly with the Lustre Logical Object
Volume (LOV) client software layer to create the Lustre inode.
Algorithm 1 presents a simplified overview of the preloading

library, which is run on every client. If the file does not exist
yet, it queries the prediction database to receive the predicted
layout information. The next step is to create the Lustre inode
by issuing the ioctl() system call with the Lustre-specific
request code LL_IOC_LOV_SETSTRIPE, which allocates
a Lustre file descriptor and applies the striping pattern to
the file-to-be-created. In the last step, iez-PL forwards
the call to the original metadata operation (e.g., open()
or MPI_File_open()). Currently, iez-PL supports the
following I/O function calls: open[64](), creat[64](),
MPI_File_open(), and H5Fcreate(). The key advan-
tage of this transparent approach is that user applications can
directly benefit from the prediction model without modifying
the source code.

B. Server-Side iez Components

In the following, we describe the iez components that run
on the servers (OSSs and MDS) and how they interact with
each other.

1) Statistics Collection: Statistics collection is done for
every OSS. The list of all the OSTs for a particular OSS
is saved in a configuration file that is provided as input to
the collector for that specific OSS along with the OSS id. For
every OST, we collect the total and available capacity, found in
the files /proc/fs/lustre/obdfilter/ost name/kbytestotal
and /proc/fs/lustre/obdfilter/ost name/kbytesavail, re-
spectively. We also collect the CPU and memory utilization of
the OSS by reading data from the files /proc/meminfo and
/proc/loadavg. We save all the statistics in a space separated
string statistics. The statistics collection algorithm runs every
60 seconds on all the OSSs. We choose 60 seconds as our
interval for statistics collection so that we get updated statistics
on the MDS without over-loading the OSSs. These statistics
are sent to the MDS.

The load monitoring (statistics collection) solution needs
to be scalable. Therefore, we use a publisher-subscriber
model [34] for the statistics collection framework. This is
shown in Figure 5. OSSs act as publishers and MDS as the
subscriber. Statistics collected in the OSSs are sent to the MDS
via a message queue. We use ZeroMQ (φMQ) [35] as our
message queue because it is lightweight and has been shown
to be very efficient at large scale. We also collect the CPU
and memory utilization of the MDS every 60 seconds, in the
same way as it is collected in the OSSs. Our tests with the
implementation show that the statistics collection framework



Object Storage Servers

∅MQ

∅MQ

Metadata Server

Fig. 5: Publisher-Subscriber model for statistics collection.

on average has negligible CPU and 0.1% memory utilization
on the OSSs, and 0.6% CPU and 0.1% memory on the MDS.

2) Statistics Parser: The S-Parser in the MDS is responsi-
ble for handling the following:
• Statistics collected from the MDS.
• Statistics collected in the OSSs and published to the MDS

via ZeroMQ.
• Current and predicted write requests retrieved from the

clients via HTTP.
The CPU and memory utilization collected in the MDS is

important to determine when the OST allocation algorithm will
run. We allow the allocation algorithm to run only if the CPU
utilization is lower than 70% and memory utilization is lower
than 50%. This is done so that the load balancing algorithm
does not disrupt the normal functionalities of Lustre’s MDS.
The parsed statistics of the OSS and the write requests from
the clients are sent as input to the OST allocation algorithm
(Section III-B3). Parsing is done whenever unparsed data
arrives at the MDS, therefore should be done very efficiently.
Our results show that the parser has a CPU utilization of 0.1%
and negligible memory utilization.

3) OST Allocation Algorithm: The OST allocation algo-
rithm runs only when the CPU utilization goes below 70% to
ensure no interruption to Lustre’s default activities. The input
to the algorithm is the parsed OSS and OST statistics, and the
write requests (file name, write bytes and stripe count) sent
by the clients. Before we present the details of our algorithm,
we discuss a key practical constraint imposed by Lustre.

a) Lustre’s 64k alignment constraint for stripe size:
Stripe size is an important parameter for load balancing in
a distributed file system. Every stripe needs to be assigned
to an OST. Intuitively, in order to calculate stripe size, we
can divide the total file size by the stripe count. Both of these
parameters are given as input to the OST allocation algorithm.
But calculating stripe size is not that simple because Lustre
imposes the constraint that in order to place stripes into the
allocated OSTs, stripe size should be even multiples of 64k.
We term 64k or 65536 bytes as Alignment Parameter (AP).
This constraint becomes a problem for files which are not
AP aligned, for example in Table I, 803, 405, 824 is not an
even multiple of AP. We consider two ways to overcome this
constraint.

Method-I: This method assumes that we can allocate equal
number of even multiples of AP into the first (stripeCount - 1)
number of OSTs, and the remaining even multiple of AP goes
into the last OST. Equation 1 gives the total allocation such
that the stripes are AP aligned. The first part of the equation

is the placement on first (stripeCount - 1) number of OSTs
and the second part is the number of bytes written on the last
OST.

writeBytes = (AP ∗ 2 ∗N ∗ (stripeCount− 1))+

(AP ∗ 2 ∗X)
(1)

where,

N =

⌊
writeBytes

AP ∗ 2 ∗ (stripeCount− 1)

⌋
(2)

The remaining number of bytes to be written on the last OST
is then given by:

remainingBytes = writeBytes−
(AP ∗ 2 ∗ (stripeCount− 1))

(3)

Therefore,

X =

⌈
remainingBytes

AP ∗ 2

⌉
(4)

Note that we round down the allocation in the first
(stripeCount - 1) number of OSTs and round up the allocation
in the last OST. Multiplication with 2 ensures that the stripe
size is an even multiple of AP. Stripe size for the last OST
is (AP ∗ 2 ∗ X), and for each of the remaining OSTs is
(AP ∗ 2 ∗ N). However, a major drawback here is that this
method does not place the load evenly among all the OSTs.
The number of bytes written on the last OST will always be
smaller compared to the bytes written on the other OSTs for
a particular file.

Method-II: This method overcomes the drawback of the
previous method by allocating even multiple of AP in all the
OSTs.

writeBytes = AP ∗ 2 ∗N ∗ stripeCount (5)

where,

N =

⌈
writeBytes

AP ∗ 2 ∗ stripeCount

⌉
(6)

Stripe size for all the OSTs is given by (AP ∗ 2 ∗ N).
Therefore, both methods ensure an even multiple of 64k
alignment of stripe size for all the stripes allocated in the
stripeCount number of OSTs, by allocating a little bigger file
than was requested by the client. The second method places
all the stripes equally on all the OSTs but needs a bigger
file to be allocated in comparison to the first method. Thus,
there is a trade-off between how big the file allocation we can
allow versus balancing all the stripes among the OSTs. Our
results show that for a 766.175 MB file size, we allocated
833 KB (0.1%) bigger file using the second method and
63 KB (0.008%) more in the first method. We proceed with the
second method because in spite of allocating a little more than
was requested by the client, this approach ensures allocating
equal stripes on all the OSTs. This would lead to similar
load accesses from all OSTs and OSSs, therefore approaching
towards a load-balanced setup.

Algorithm 2 shows the the OST allocation algorithm, which
employs a minimum-cost maximum-flow approach [36]. The



Input: OSS statistics cpu & mem, OST statistics totalKbytes &
kbytesAvail, Write Requests writeBytes & stripeCount

Output: OSTAllocationList
begin

for request r in WriteRequests do
stripeSize = calculateStripeSize(writeBytes, stripeCount)

end
for OSS oss in OSSList do

ossLoad = (cpuweight ∗ cpu) + (memweight ∗mem)
for OST ost in OSTList do

ostCostToReach = OSSLoad
ostCost = (totalKbytes− kbytesAvail)/totalKbytes
ostCapacity = kbytesAvail/stripeSize

end
end
flowGraph = buildGraph(Requests, OSS, OST)
OSTAllocationList = minCostMaxFlow(flowGraph)
return (OSTAllocationList)

end
Function calculateStripeSize

Input: writeBytes w, StripeCount sc
Output: stripeSize
stripeSize = ceil(w/(AP ∗ 2 ∗ sc))
return (stripeSize)

Function buildGraph
Input: Requests req, StripeCount sc, OSTCostToReach ossLoad, ostCost

ostLoad, OSTCapacity ostCap
Output: FlowGraph G
totalDemand = sum of stripeCount for all Requests
G.addNode(‘source’, totalDemand)
G.addNode(‘sink’, -totalDemand)
for request r in reg do

G.addEdge(‘source’, r, cost = 0, capacity = sc)
for OST ost in ostList do

G.addEdge(r, ost, cost = ossLoad, capacity = 1)
end

end
for OST ost in ostList do

G.addEdge(ost, ‘sink’, cost = ostLoad, capacity = ostCap)
end
return (G)

Algorithm 2: Obtaining list of OSTs for each request.

flow graph that is used to solve the problem is shown in
Figure 6. We calculate the stripeSize based on Method-II
described above, cost to reach an OST (which is the load of
the OSS), cost of an OST (ratio of bytes already used in the
OST to the total size of the OST), and capacity of an OST (the
number of stripes that can be handled by the OST, given by
the ratio of available space in the OST to the stripe size). In
order to derive the flow graph, we need to identify the source
and sink nodes. The total demand for the source node is the
total number of stripes requested, and the total demand for
the sink node is the negative amount of the total number of
stripes requested. We solve the minimum-cost maximum-flow
using the Ford-Fulkerson algorithm [37]. This outputs a list of
OSTs (OSTAllocationList) using which will yield a balanced
load over both OSS and OSTs. For our implementation, we
use the networkx library in Python. Our results show that
the algorithm on average uses 1.58% CPU and 0.1% memory
on the MDS.

The list of OSTs obtained from the OST allocation algo-
rithm, along with the stripeSize, are then sent to the respective
clients where they are stored in the interaction database. An
example entry for the database with the complete allocation
for a HACC-I/O application in FPP mode is shown in Table II.
We replace the Write Bytes in the database with the stripeSize
and add a new column OST List. The OST List is a space
separated load-balanced list of OSTs for every write request.
This example is for a setup with 3 OSSs and 15 OSTs (5 OSTs

Fig. 6: Graph used in OST Allocation Algorithm.

associated with every OSS) – therefore, OST ids range from
1 to 15. As described earlier, the placement library (iez-PL)
then uses this information to place the requests, thus complet-
ing the load-balanced allocation of resources. If for any run of
the application, iez-PL is unable to find more than 50% of
files in the interaction database, miniRecorder, AIPA and
OST Allocation Algorithm will be executed again to update
the interaction database.

Summary: iez components run both on the client and
server side of a Lustre deployment. MiniRecorder along
with AIPA runs on the clients during the first execution
of an application (or if the system cannot find prediction
information for most of the accessed files) to capture its
I/O characteristics. The client and server libraries of iez
interact using the Interaction Database. Statistics collection
on the OSS and MDS happens periodically. Whenever, the
interaction database is updated, it sends the new values to the
MDS, which (if not overloaded) proceeds to parsing the most
recent statistics via the Statistics Parser. The OST Allocation
Algorithm is then executed and the results are sent back to
the interaction database. For subsequent application runs, the
placement library intercepts the application write calls, reads
from the interaction database and writes the request to a load-
balanced set of OSTs.

IV. EVALUATION

We evaluate iez using a real Lustre deployment testbed.
We use a Lustre cluster of 6 nodes with 1 MDS, 3 OSSs and 2
clients. All of the nodes run CentOS 7 atop a machine with 8
cores, 3.2 GHz processor, and 16 GB memory. Furthermore,
each OSS has 5 OSTs, each supporting 10 GB of attached
storage. Our tests use HACC-I/O kernel and IOR benchmark
in FPP and SSF access modes.

To the best of our knowledge, iez is the first work to
consider a global view of all the system resources in decid-
ing application request stripe placement. Existing approaches
(BPIO [4], TAPP-I/O [5] etc.) balance load among I/O servers
on per-application basis, i.e., on the client side, and do not
consider the global view, i.e., the requirements of the other
applications as well as the OSS and OST states. Moreover,
unlike iez, such client-side techniques cannot handle mul-
tiple simultaneous applications. Thus, these are not directly
comparable to iez. For these reasons, we choose to use the
default RR approach of Lustre as the basis for our comparison.

To capture the degree of load balancing across participating
OSTs for a particular test run, we define a metric, OSTCost, as



TABLE II: Interaction Database Snapshot showing OST Allocation for HACC-I/O in FPP mode.

File Name Write Bytes Stripe Count MPI Rank OST List
/lustre/scratch/hacc-io/FPP1-Part00000000-of-00000008.data 100532224 8 0 8 13 12 9 7 4 3 5
/lustre/scratch/hacc-io/FPP1-Part00000001-of-00000008.data 100532224 8 1 11 2 15 10 1 6 8 13
/lustre/scratch/hacc-io/FPP1-Part00000002-of-00000008.data 100532224 8 2 12 9 7 4 3 11 2 5
/lustre/scratch/hacc-io/FPP1-Part00000003-of-00000008.data 100532224 8 3 1 6 15 10 8 13 12 9
/lustre/scratch/hacc-io/FPP1-Part00000004-of-00000008.data 100532224 8 4 7 4 3 11 2 1 6 5
/lustre/scratch/hacc-io/FPP1-Part00000005-of-00000008.data 100532224 8 5 15 10 8 13 12 9 7 4
/lustre/scratch/hacc-io/FPP1-Part00000006-of-00000008.data 100532224 8 6 3 11 2 1 6 5 15 10
/lustre/scratch/hacc-io/FPP1-Part00000007-of-00000008.data 100532224 8 7 14 8 13 12 9 7 4 3

the ratio of the maximum utilization of any OST to the mean
utilization of all the OSTs. Therefore,

OSTCost =
MaxOSTUtil

MeanOSTUtil
(7)

An ideal load balanced system has the OSTCost of 1. We
also define OST Utilization of an OST as the storage used by
the client application on the OST as a fraction of the total
storage available on the OST.

 0

 20

 40

 60

 80

 100

OS
T1

OS
T2

OS
T3

OS
T4

OS
T5

OS
T6

OS
T7

OS
T8

OS
T9

OS
T1
0

OS
T1
1

OS
T1
2

OS
T1
3

OS
T1
4

OS
T1
5

O
S
T

 
U
til
iz
at
io
n 
(%
)

OSTs

IOR (FPP, Stripe Count 8)

8 Procs (RR)
16 Procs (RR)

64 Procs (RR)
8 Procs (iez)

16 Procs (iez)
64 Procs (iez)

Fig. 7: OST Storage Utilization for IOR in FPP mode and Stripe Count 8.

A. Load Balance for FPP Access IOR

Figure 7 shows the comparison of load under iez and the
default RR data allocation on 15 OSTs in the Lustre cluster
represented as OST Utilization for the IOR benchmark with
varying stripe count, processes, and data sizes. We see that
iez balances the load on all OSTs in a near-optimal manner.
For example, for 64 processes, the maximum load observed
with RR approach is on OST-9: the OST utilization is 75%,
while the mean utilization is 51.06%, resulting in the OSTCost
of 1.47. In contrast, the maximum load observed under iez is
52% on OST-5 and OST-10 with the corresponding OSTCost
of 1.01, i.e., near optimal. The almost horizontal line for OST
Utilization for iez underscores its effectiveness. Overall, iez
was able to reduce the OSTCost by 31.3% compared to the
default RR approach.

We observed similar results while running IOR with stripe
count of 4. As shown in Figure 8, iez is able to distribute
data on all 15 OSTs in a balanced way for other studied cases
as well. In this case, we observe an OSTCost of 1.22 and 1.01
under RR and iez respectively. Hence, iez provides 17%
better OSTCost than the default RR approach.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

OS
T1

OS
T2

OS
T3

OS
T4

OS
T5

OS
T6

OS
T7

OS
T8

OS
T9

OS
T1
0

OS
T1
1

OS
T1
2

OS
T1
3

OS
T1
4

OS
T1
5

O
S
T

 
U
til
iz
at
io
n 
(%
)

OSTs

IOR (FPP, Stripe Count 4)

8 Procs (RR)
16 Procs (RR)

64 Procs (RR)
8 Procs (iez)

16 Procs (iez)
64 Procs (iez)

Fig. 8: OST Storage Utilization for IOR in FPP mode and Stripe Count 4.

 0

 5

 10

 15

 20

OS
T1

OS
T2

OS
T3

OS
T4

OS
T5

OS
T6

OS
T7

OS
T8

OS
T9

OS
T1
0

OS
T1
1

OS
T1
2

OS
T1
3

OS
T1
4

OS
T1
5

O
S
T

 
U
til
iz
at
io
n 
(%
)

OSTs

HACC-I/O (FPP, Stripe Count 8)

8 Procs (RR)
16 Procs (RR)

32 Procs (RR)
8 Procs (iez)

16 Procs (iez)
32 Procs (iez)

Fig. 9: OST Storage Utilization for HACC-I/O in FPP mode.

B. Load Balance for FPP Access HACC-I/O

For HACC-I/O, we evaluated iez for particle data of 10M
for 8, 16 and 32 processes. Each process creates one data
file that is stored in the Lustre OSTs with a stripe count of
8. Total data stored in the files is approximately 4, 7.7, and
13.5 GB for 8, 16, and 32 processes, respectively. As for
IOR, we observe a significant improvement in load balancing
for HACC-I/O as well (shown in Figure 9) compared to the
default approach. OSTCost for 32 processes with default load
balancing approach and iez is observed to be 1.37 and
1.00, respectively, with iez reducing the OSTCost by 27 %.
Similarly, for 16 processes, the OSTCost is observed to be
almost 1.00 under iez.

C. I/O Performance

Next, we compared the read and write performance for
the studied cases. We measured the ‘I/O rate’ for storing
the data to and reading it from OSTs. Figures 10a and 10b
show the read and write performance, respectively, for the
IOR benchmark with stripe count 4 and FPP access mode.
We observe that even though for smaller scale, there is a
small decline in write performance, compared to the default
RR approach, iez’s I/O rate is 34% higher for reading the



 500

 550

 600

 650

 700

 750

 800

 850

 900

8 16 64

I/
O

 
R
a
te

 
(M
B
/s
)

Number of Processes

IOR Read Perf. (FPP, Stripe Count 4)

RR
iez

a)

 500

 550

 600

 650

 700

 750

8 16 64

I/
O

 
R
a
te

 
(M
B
/s
)

Number of Processes

IOR Write Perf. (FPP, Stripe Count 4)

RR
iez

b)

 500

 550

 600

 650

 700

 750

 800

 850

 900

8 16 64

I/
O

 
R
a
te

 
(M
B
/s
)

Number of Processes

IOR Read Perf. (FPP, Stripe Count 8)

RR
iez

c)

 500

 550

 600

 650

 700

 750

8 16 64

I/
O

 
R
a
te

 
(M
B
/s
)

Number of Processes

IOR Write Perf. (FPP, Stripe Count 8)

RR
iez

d)

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

8 16 64

I/
O

 
R
a
te

 
(M
B
/s
)

Number of Processes

HACC-I/O Read Perf. (FPP, Stripe Count 8)

RR
iez

e)

 400

 450

 500

 550

 600

 650

 700

8 16 64

I/
O

 
R
a
te

 
(M
B
/s
)

Number of Processes

HACC-I/O Write Perf. (FPP, Stripe Count 8)

RR
iez

f)

 590

 600

 610

 620

 630

 640

 650

 660

 670

16 32

I/
O

 
R
a
te

 
(M
B
/s
)

Number of Processes

IOR Read Perf. (SSF, Stripe Count 8)

RR
iez

g)

 520

 530

 540

 550

 560

 570

 580

 590

 600

16 32

I/
O

 
R
a
te

 
(M
B
/s
)

Number of Processes

IOR Write Perf. (SSF, Stripe Count 8)

RR
iez

h)

Fig. 10: Read and write performance of IOR and HACC-I/O for FPP and SSF accesses for different Stripe Counts.

data from OSTs. This improvement is achieved due to a
balanced load over OSTs and OSSs, which help in mitigating
the resource contention and hence improve the parallelism in
the data access. Similar results were observed for the IOR
benchmark with stripe count 8, as well as for HACC-I/O
with stripe count 8. We observe an improvement of up to
32% in the I/O rate while reading the data for IOR with
stripe count 8 as shown in Figure 10c. Moreover, in this case,
there is improvement of up to 32% in the write performance
(Figure 10d).

For HACC-I/O, we observe an improvement of up to 8% for
reading (Figure 10e) and 11% for writing (Figure 10f). Here
we also observe that the improvement gains vary for different
observation points. This is because, OST load depends on a
number of factors namely, write-bytes of a request, number of
stripes, and MPI-Rank for MPI jobs. Different configurations
of a job will yield different jobs requests, and hence different
performance improvement, mainly due to varying load and
stripe count used in the evaluation.

D. Utilization of OSSs

In our next experiment, we measured the storage utilization
of each OSS under the default approach and iez. This is
because we want to balance the load on both OSSs and
OSTs for an overall load-balanced setup. To this end, we
aggregated the load (storage utilization) on each OST and
calculated the ratio of storage being used with respect to
the total storage in each OSS. In a balanced scenario, each
OSS should be utilized equally by hosting an equal share of
application data. We observe that with the default approach the
OSSs are imbalanced, while iez distributes the application
data in a balanced manner across the OSSs. Figure 11 shows
the comparison of OST Utilization of all 3 OSSs of our testbed
under iez as compared to the default approach. Here we use
the IOR benchmark with 64 processes, FPP access, and stripe
count 8 storing a total application data of 64 GB. With the
default approach, OSS-2 becomes highly loaded—31% more
than mean utilization—as compared to OSS-1 and OSS-3.

In contrast, with iez, all the three OSSs are utilized in a
balanced manner.

 35

 40

 45

 50

 55

 60

 65

OSS1 OSS2 OSS3

O
S
S

 
U
til
iz
at
io
n 
(%
)

Object Storage Servers

IOR (FPP, Stripe Count 8, 64 Processes)

RR
iez

Fig. 11: OSS Storage Utilization for IOR.

E. Load Balance for Single Shared File Access

For SSF mode, all the processes write into and read from
one shared file. We observe that since there is only one file
created and the whole data is striped into almost equal stripes,
under the default approach, there is only a little imbalance,
as compared to the FPP access. But iez is able to eliminate
even that imbalance. We ran both IOR and HACC-I/O with
different stripe counts to observe the load distribution for SSF
access. We found almost same pattern in all cases. Due to
space limitation, we present two representative scenarios.

Figure 12 shows the OST Utilization of all OSTs for IOR
benchmark with 16 processes, creating a file of 32 GB with a
stripe count 8. Figure 13 shows the OST Utilization of all OSTs
for IOR benchmark with 32 processes creating a file of 64 GB
with a stripe count 8. For a single shared file access, for both
HACC-I/O as well as IOR, all the processes create one single
file that is striped across the eight OSTs, since the Lustre stripe
count for these two data files is 8. Hence only eight OSTs are
allocated to store each of the files, and the unallocated OSTs
are not used. For example, as shown in Figure 12, with the
default RR allocation scheme, for IOR, the created data file is
striped across, OSTs 1, 2, 5, 7, 8, 13, 14, and 15. Out of the
8 allocated OSTs, the OST utilization for OSTs 5, 14 and 15



is greater than 50%, but for the rest of the allocated OSTs is
less than 50%. In contrast, while using iez, the data file is
striped across OSTs 3, 4, 7, 8, 9, 11, 12, and 13. For all of
these allocated OSTs, the utilization is the same (47%). Hence,
mitigating the imbalance with RR. Figure 13 shows a similar
behavior. We also observed that in SSF access mode, iez
performs better for reading and writing the data with SSF as
compared to default approach. Figures 10g and 10h show the
read and write performance of iez compared to the default
approach for 16 and 32 processes, respectively. iez improves
read and write performance by up to 8% and 6%, respectively,
compared to the default approach.

 0

 10

 20

 30

 40

 50

 60

OS
T1

OS
T2

OS
T3

OS
T4

OS
T5

OS
T6

OS
T7

OS
T8

OS
T9

OS
T1
0

OS
T1
1

OS
T1
2

OS
T1
3

OS
T1
4

OS
T1
5

O
S
T

 
U
til
iz
at
io
n 
(%
)

OSTs

IOR (SSF, Stripe Count 8, 16 Processes)

RR
iez

Fig. 12: OST Storage Utilization for IOR in SSF mode for 16 Processes.

 0

 20

 40

 60

 80

 100

 120

OS
T1

OS
T2

OS
T3

OS
T4

OS
T5

OS
T6

OS
T7

OS
T8

OS
T9

OS
T1
0

OS
T1
1

OS
T1
2

OS
T1
3

OS
T1
4

OS
T1
5

O
S
T

 
U
til
iz
at
io
n 
(%
)

OSTs

IOR (SSF, Stripe Count 8, 32 Processes)

RR
iez

Fig. 13: OST Storage Utilization for IOR in SSF mode for 32 Processes.

F. Load Balance for Concurrent Applications

In our next test, we evaluated iez simultaneously running
HACC-I/O and IOR with different job configurations from
two different Lustre Clients with 16 processes on each. Each
process creates one file that is stored on Lustre OSTs with
a stripe count of 8 for HACC-I/O and 4 for IOR. The total
amount of data stored for each file for HACC-I/O and IOR
is 7.7 GB and 32 GB, respectively. As with the single
application tests, we observe a significant improvement in load
balancing for concurrent applications compared to the default
RR approach. Figure 14 shows the comparison of load under
both approaches on 15 OSTs in the Lustre cluster. We see
that iez balances the load on all the OSTs. The maximum
load observed with RR is on OST1 with a utilization of 35%,
while the mean utilization is 30%, resulting in the OSTCost
of 1.17. In contrast, under iez, the OST load observed on all
of the 15 OSTs is 30%, and hence has the OSTCost of 1.0.
Moreover, the CPU utilization and memory usage on MDS
while using iez for load balancing in concurrent application
runs is observed to be about 1.55% and 0.12%, respectively.

 0

 10

 20

 30

 40

 50

OS
T1

OS
T2

OS
T3

OS
T4

OS
T5

OS
T6

OS
T7

OS
T8

OS
T9

OS
T1
0

OS
T1
1

OS
T1
2

OS
T1
3

OS
T1
4

OS
T1
5

O
S
T

 
U
til
iz
at
io
n 
(%
)

OSTs

HACC(FPP, Stripe Count 8) and IOR (FPP, Stripe Count 4)

RR iez

Fig. 14: OST Storage Utilization for a simultaneous IOR and HACC execution in FPP
mode with Stripe Count of 4 and 8, respectively.

V. DISCUSSION AND FUTURE WORK

a) Limitations and Scope of iez: The key feature of
iez is the construction of a global view of all system
resources in the I/O path, which is then used to drive the
data placement decisions and achieve load balancing under
global knowledge. Future systems will continue to scale up
as they must, and we expect the backend I/O servers and
metadata servers will scale up accordingly - Lustre’s DNE
Phase 1 and 2 (Distributed Namespace Extension) are moving
toward that direction. This will inevitably drive up the cost
(communication and computation) of obtaining the global
view needed by our approach. iez will have to take this
into consideration and carefully balance the trade-offs, e.g.,
by adopting a hierarchical or partitioned design where only
the view across a set of interacting applications or shared
resources is needed.

b) Use of Different Datasets Across Different Runs: We
plan to automate iez to support multiple runs of applica-
tions that use varying datasets as follows. If the number of
unseen/new requests in subsequent application runs exceeds
a threshold (currently 60%), it re-triggers the learning phase.
For now, this re-triggering is manual, but we plan to automate
it in our future work.

c) Implementation of iez in other hierarchical HPC
file systems: While the current implementation of iez uses
the widely-used Lustres monitoring facilities, similar moni-
toring exists/can be built into other multi-tiered file systems,
e.g., BeeGFS [38], IBM GPFS (Spectrum Scale) [39] and
Ceph [40]. Even though our particular prototype and evalua-
tion are performed on Lustre platform, but the metrics we have
chosen, and the assumptions on the architecture components
are mostly generic across the spectrum of large scale parallel
file systems, such as decoupling of MDS and data servers
(OSDs), data striping, and striping width and length. The
monitoring metrics we have chosen can find their equivalents
in other systems as well. Case in point: Cephs built-in “ceph
mon dump” and GPFSs “mmpmon” and its array of sensors
can all provide even greater data collection capabilities, and
are amenable with our proposed algorithms.

Our future work also involves evaluating iez on large-
scale HPC systems such as the ones located at Oak Ridge
National Laboratory. In addition, we would expand iez to
enable Lustre Progressive File Layout (PFL) feature.



VI. CONCLUSION

We presented the design of an “end-to-end control plane”
to optimize parallel and distributed HPC I/O systems, such as
Lustre, by providing efficient load balancing across storage
servers. Our proposed system, iez, provides global view
of the system, enables coordination between the clients and
servers, and handles the performance degradation due to
resource contention by considering operations on both clients
as well as servers. Our implementation of iez provides a
balanced distribution of load over OSTs and OSSs in the
Lustre file system. We evaluated iez on a real Lustre testbed
using two representative benchmarks—IOR and HACC-I/O—
with multiple stripe counts of files as well as SSF and FPP
accesses. Compared to the default Lustre RR policy, iez
provides up to 31.3% improvement in balancing the load.
Moreover, we also observed an I/O performance improvement
of up to 34% for reads and 32% for writes. Finally, the
transparent design of iez makes it attractive for adoption
in real-world deployments where access to application source
code, needed for existing approaches, may not always be
possible.

ACKNOWLEDGMENT
This work is sponsored in part by the NSF under the grants:

CNS-1405697, CNS-1615411, and CNS-1565314/1838271,
This research used resources of the Oak Ridge Leadership
Computing Facility, located in the National Center for Com-
putational Sciences at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the DOE under
Contract DE-AC05-00OR22725.

REFERENCES

[1] P. J.Braam. The lustre storage architecture (tech. rep.). Technical report,
Available: http://wiki.lustre.org/., 2004.

[2] Arnab K Paul, Arpit Goyal, Feiyi Wang, Sarp Oral, Ali R Butt, Michael J
Brim, and Sangeetha B Srinivasa. I/o load balancing for big data hpc
applications. In Proc. Big Data 2017. IEEE, 2017.

[3] Bin Dong, Xiuqiao Li, Qimeng Wu, Limin Xiao, and Li Ruan. A
dynamic and adaptive load balancing strategy for parallel file system
with large-scale i/o servers. JPDC, 72(10):1254–1268, 2012.

[4] Feiyi Wang, Sarp Oral, Saurabh Gupta, Devesh Tiwari, and Sudhar-
shan S Vazhkudai. Improving large-scale storage system performance
via topology-aware and balanced data placement. In Proc. ICPADS
2014, pages 656–663. IEEE, 2014.

[5] Sarah Neuwirth, Feiyi Wang, Sarp Oral, and Ulrich Bruening. Automatic
and transparent resource contention mitigation for improving large-scale
parallel file system performance. In Proc. ICPADS. IEEE, 2017.

[6] Yingjin Qian, Eric Barton, Tom Wang, Nirant Puntambekar, and Andreas
Dilger. A novel network request scheduler for a large scale storage
system. Computer Science-Research and Development, 23(3-4):143–
148, 2009.

[7] Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana
Robinson. An overview of the hdf5 technology suite and its applications.
In Proc. EDBT/ICDT 2011, AD ’11, New York, NY, USA. ACM.

[8] Rajeev Thakur, William Gropp, and Ewing Lusk. On implementing mpi-
io portably and with high performance. In Proc. IOPADS, NY, USA,
1999. ACM.

[9] Stephen R. Walli. The POSIX Family of Standards. StandardView,
3(1):11–17, March 1995.

[10] LLNL. Ior benchmark. Accessed: March 12 2018.
[11] S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, and K. Heit-

mann. Hacc: Extreme scaling and performance across diverse architec-
tures. In Proc. SC, Nov 2013.

[12] Ali Anwar, Yue Cheng, Aayush Gupta, and Ali R Butt. Mos: Workload-
aware elasticity for cloud object stores. In Proc. HPDC. ACM, 2017.

[13] Arnab Kumar Paul, Wenjie Zhuang, Luna Xu, Min Li, M Mustafa
Rafique, and Ali R Butt. Chopper: Optimizing data partitioning for
in-memory data analytics frameworks. In Proc. CLUSTER. IEEE, 2016.

[14] Arnab Kumar Paul and Bibhudatta Sahoo. Dynamic virtual machine
placement in cloud computing. In Resource Management and Efficiency
in Cloud Computing Environments. IGI Global, 2017.

[15] Top 500. Top 500 supercomputers. Accessed: July 12 2018.
[16] Lustre Networking. High-performance features and flexible support for

a wide array of networks, 2008.
[17] Gregory F Pfister. An introduction to the infiniband architecture. High

Performance Mass Storage and Parallel I/O, 42:617–632, 2001.
[18] Ali Anwar. Towards Efficient and Flexible Object Storage Using

Resource and Functional Partitioning. PhD thesis, Virginia Tech, 2018.
[19] Ali Anwar, Yue Cheng, Hai Huang, Jingoo Han, Hyogi Sim, Dongyoon

Lee, Fred Douglis, and Ali R Butt. bespo kv: application tailored scale-
out key-value stores. In Proc. SC. IEEE, 2018.

[20] Ali Anwar, Yue Cheng, Hai Huang, and Ali Raza Butt. Clusteron:
Building highly configurable and reusable clustered data services using
simple data nodes. In Proc. HotStorage. USENIX, 2016.

[21] Bharti Wadhwa, Suren Byna, and Ali R Butt. Toward transparent data
management in multi-layer storage hierarchy of hpc systems. In Proc.
IC2E. IEEE, 2018.

[22] Nannan Zhao, Ali Anware, Yue Cheng, Mohammed Salman, Daping
Li, Jiguang Wan, Changsheng Xie, Xubin He, Feiyi Wang, and Ali
Butt. Chameleon: An adaptive wear balancer for flash clusters. In
Proc. IPDPS. IEEE, 2018.

[23] Mingfa Zhu, Guoying Li, Li Ruan, Ke Xie, and Limin Xiao. Hysf:
A striped file assignment strategy for parallel file system with hybrid
storage. In Proc. HPCC EUC. IEEE, 2013.

[24] Xiuqiao Li, Limin Xiao, Meikang Qiu, Bin Dong, and Li Ruan. Enabling
dynamic file i/o path selection at runtime for parallel file system. The
Journal of Supercomputing, 68(2):996–1021, 2014.

[25] Shuibing He, Xian-He Sun, and Adnan Haider. Has: Heterogeneity-
aware selective data layout scheme for parallel file systems on hybrid
servers. In Proc. IPDPS. IEEE, 2015.

[26] Yuichi Tsujita, Tatsuhiko Yoshizaki, Keiji Yamamoto, Fumichika
Sueyasu, Ryoji Miyazaki, and Atsuya Uno. Alleviating i/o interference
through workload-aware striping and load-balancing on parallel file
systems. In ISC. Springer, 2017.

[27] Zeng Zeng and Bharadwaj Veeravalli. On the design of distributed
object placement and load balancing strategies in large-scale networked
multimedia storage systems. IEEE TKDE, 20(3):369–382, 2008.

[28] Huaiming Song, Yanlong Yin, Xian-He Sun, Rajeev Thakur, and Samuel
Lang. A segment-level adaptive data layout scheme for improved load
balance in parallel file systems. In Proc. CCGRID 2011, pages 414–423.
IEEE, 2011.

[29] Peter J Brockwell, Richard A Davis, and Matthew V Calder. Introduction
to time series and forecasting, volume 2. Springer, 2002.

[30] Huong Luu, Babak Behzad, Ruth Aydt, and Marianne Winslett. A Multi-
Level Approach for Understanding I/O Activity in HPC Applications.
In Proc. CLUSTER. IEEE, September 2013.

[31] Ramesh R Sarukkai. Link prediction and path analysis using markov
chains1. Computer Networks, 33(1-6):377–386, 2000.

[32] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M
Ljung. Time series analysis: forecasting and control. John Wiley &
Sons, 2015.

[33] Andrew C Harvey. Forecasting, structural time series models and the
Kalman filter. Cambridge university press, 1990.

[34] Arnab K Paul, Steven Tuecke, Ryan Chard, Ali R Butt, Kyle Chard,
and Ian Foster. Toward scalable monitoring on large-scale storage for
software defined cyberinfrastructure. In Proc. PDSW-DISCS. ACM,
2017.

[35] Pieter Hintjens. ZeroMQ: messaging for many applications. O’Reilly,
2013.

[36] Ravindra K Ahuja. Network flows: theory, algorithms, and applications.
Pearson Education, 2017.

[37] Alan Tucker. A note on convergence of the ford-fulkerson flow
algorithm. Mathematics of Operations Research, 2(2):143–144, 1977.

[38] Jan Heichler. An introduction to beegfs, 2014.
[39] Frank B Schmuck and Roger L Haskin. Gpfs: A shared-disk file system

for large computing clusters. In FAST, volume 2, 2002.
[40] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long,

and Carlos Maltzahn. Ceph: A scalable, high-performance distributed
file system. In Proc. USENIX OSDI 2006, pages 307–320. USENIX
Association, 2006.


