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Magnetically-launched flyer plates were used to investigate the shock response of beryllium
between 90 and 300 GPa. Solid aluminum flyer plates drove steady shocks into polycrystalline
beryllium to constrain the Hugoniot from 90 to 190 GPa. Multi-layered copper/aluminum flyer
plates generated a shock followed by an overtaking rarefaction which was used to determine the
sound velocity in both solid and liquid beryllium between 130 and 300 GPa. Disappearance of
the longitudinal wave was used to identify the onset of melt along the Hugoniot and
measurements were compared to density functional theory calculations to explore the proposed
hep-bcec transition at high pressure. The onset of melt along the Hugoniot was identified at ~205
GPa, which is in good agreement with theoretical predictions. These results show no clear
indication of an hcp-bece transition prior to melt along the beryllium Hugoniot. Rather, the shear
stress, determined from the release wave profiles, was found to gradually decrease with stress
and eventually vanish at the onset of melt.
L. Introduction:

Among metals, beryllium has one of the highest strength-to-weight ratios and elastic
moduli, with an elastic stiffness comparable to steel but at less than a quarter the density."? It
exists in the hexagonal-close-packed (hcp) structure and has the lowest c/a ratio of any
hexagonal metal.> At ambient conditions, beryllium also has the highest longitudinal sound
velocity and lowest Poisson ratio of any metal; consequently it is the only hcp element whose

shear modulus exceeds its bulk modulus.?
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Currently, beryllium is of particular interest as an ablator or liner material for inertial
confinement fusion (ICF)* and magnetized liner inertial fusion (MagLIF)® experiments. In both
fusion concepts, beryllium provides a significant advantage over other materials in that it has a
higher mass ablation rate, ” enables better control of hydrodynamic instabilities,® ° and enables
the use of lower implosion adiabats.* Recent studies of ICF capsule physics with beryllium
ablators'” found that beryllium capsules exhibit the smallest instability growth rates and can
reach the highest theoretical yields of all ablator materials considered.'!

Design of ICF and MagLIF experiments require large-scale hydrodynamic simulations to
model the implosion and resulting extreme pressure and temperature states. These simulations
model the behavior using the conservation relations for mass, momentum, and energy: a set of
equations that is closed by inclusion of an equation of state (EOS).'? Because the EOS of a
material depends on its phase, knowledge of the beryllium phase diagram is critical to
understanding the behavior of the liner or shell throughout a MagLIF or ICF experiment. In
MagLIF experiments, the imploding liner is compressed quasi-isentropically and remains in the
solid phase for the bulk of the implosion.®> Accurate prediction of solid-solid phase transitions is
critical as the liner will see a sudden change in density and sound velocity, which will affect the
propagation of compression waves and can lead to shock formation in the liner. Similarly, in ICF
experiments, the compression uses a multi-shock laser pulse with the first pulse tailored to melt
the Be ablator while keeping the fuel adiabat as low as possible.* This requires knowledge of the
melt behavior of beryllium along the Hugoniot to drive complete melting at the lowest possible
adiabat thereby maximizing the fuel compressibility. A key concern in both MagLIF and ICF

experiments is the control of hydrodynamic instabilities,* ° the growth of which is related to the



sound velocity in the material. Accurate knowledge of these properties enables design of targets
and drive pulses that are less susceptible to instability growth.!?

Theoretical calculations of the beryllium phase diagram predict a transition to a body-
centered-cubic (bce) structure at high pressure and temperature.'*!” At ambient temperature, the
predicted phase diagrams are in reasonable agreement with the hcp-bece transition occurring
between 390'° and 415'* GPa. However, at high temperatures, the predicted hcp-bee-liquid
triple-point varies in pressure and temperature from ~95 GPa and ~3500 K'* to ~180 GPa and
~4300 K'*. This high temperature discrepancy results in the predicted hcp-bec transition along
the principal Hugoniot differing by ~30 GPa. Experimental studies of the Be phase diagram have
yet to constrain the high-pressure hcp-bcec transition and melt curve. At low pressure, a transition
from o-Be to p-Be was observed prior to melting in early studies'® !° but was not observed in
more recent experiments.?’?? At high pressure and temperature, Lazicki et al measured the phase
diagram up to 205 GPa and 4000 K using x-ray diffraction and found no evidence of the hcp-bee
transition.?! Furthermore, their measurements failed to provide clear evidence of melting, and
only provide a lower bound on the melt curve.?!

The high-pressure properties of beryllium have been extensively studied under dynamic
compression. In solid Be, the principal Hugoniot has been measured up to ~160 GPa using
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explosively-driven shocks?*%°, single-*¢ and two-stage®’ gas guns, and magnetically-accelerated

flyer plates?®. Above the melt curve, the Be Hugoniot has been measured to ~1800 GPa using

29.30 and laser-driven shocks®!. Beyond the principal Hugoniot, the

nuclear impedance matching
sound velocity and strength of beryllium have been investigated using both shock and quasi-

isentropic loading. Under shock loading, the bulk and longitudinal wave velocities were

measured and used to infer the shear stress in Be up to a peak stress of 35 GPa.** Quasi-



isentropic loading experiments have measured the shear stress using ramp-release experiments to
110 GPa' and Rayleigh-Taylor experiments to 50 GPa?.

We report measurements of the Hugoniot, sound velocity, and shear stress of beryllium
between 90 and 300 GPa from magnetically-accelerated flyer plate experiments performed on
the Sandia Z machine.*> The beryllium Hugoniot was constrained from 90-190 GPa to resolve a
discrepancy between models and existing data. Sound velocity measurements from 130-300 GPa
probed the proposed hep-bece transition and melting along the Hugoniot. Density functional
theory (DFT) calculations were used to identify the expected change in response across the hcp-
bece transition and compared to the experimental results. The onset of melting was determined to
occur at ~205 GPa and no clear evidence of an hep-bcec transition was identified.

11. Experimental Methods:

The beryllium Hugoniot and sound velocity were measured in flyer plate experiments
performed on the Sandia Z machine, a pulsed-power generator capable of producing currents
greater than 20 MA and magnetic fields exceeding 1000 T with a rise time of ~100-1000 ns.*
These experiments used an asymmetric coaxial load geometry, with a rectangular cathode stalk
surrounded by anode plates with anode-cathode (A-K) gaps of 1.4 and 1.0 mm on the north and
south sides, respectively.** 3> The anode plates were designed to be flyer plates which would
impact the samples. The asymmetric construction produced different magnetic pressures in the
A-K gaps, accelerating the flyer plates to different velocities enabling measurement at two
distinct stress states on a single shot.

Three dedicated Hugoniot and seven sound velocity experiments were performed to
investigate the properties of beryllium near melt on the Hugoniot. The dedicated Hugoniot

experiments used 0.9 mm thick solid aluminum flyer plates and the sound velocity experiments



used 0.7/0.15 mm thick composite Al/Cu flyer plates. The composite flyer plates were fabricated
by electroplating copper onto an aluminum “blank” and then diamond-turning both sides to the
final desired thickness. The density of the high-purity plated copper was found to be >99% full
density (8.93 g/cm?®). Simulations with the 1D magnetohydrodynamics code LASLO?® show that
the ramp compression wave that accelerates the flyer plate compresses any voids in the copper
layer and that the resulting layer is at full density upon impact with the target. For both flyer
plate types, simulations imply that the plates have a sufficiently thick (>0.2 mm) solid layer at
the impact surface to produce a steady shock which propagates through the target.?’

The relative thickness of the copper and aluminum layers for the sound velocity flyer
plates were determined in two ways: (1) using acoustic microscopy from both sides of the flyer
plate and (2) precision measurements of the flyer plate mass and dimensions. Acoustic
microscopy maps the internal features of the flyer plate, identifying the depth of the Al/Cu
interface from each side as well as interrogating the adhesion of the copper plating to the
aluminum blank. Flyer plates for which the copper was found to have delaminated from the
aluminum during final machining were rejected. For the dimensional method the density of the
copper and the aluminum were taken to be the measured density of the plated copper and the
density of 6061-T6 aluminum (2.70 g/cm®), respectively. The uncertainty in the inferred copper
thickness using this method was dominated by the uncertainties in the lateral dimensions of the
flyer plate (~10 um) as measured with the measuring microscope, and the measured density
uncertainty of the plated copper (contributes ~2 um to thickness uncertainty). Overall
uncertainty in the thickness of the copper layer (using both methods) was determined to be ~3

pum (~2% of the copper thickness).



Beryllium samples for the dedicated Hugoniot experiments were nominally 6.25 % 10
mm and 1 or 0.75 mm thick polycrystalline material (S200F, Brush Wellman), backed by either
lithium fluoride (LiF) or quartz windows. Adjacent samples were quartz windows which enabled
observation of the flyer plate and estimation of the impact time at the beryllium sample. The
measured beryllium density was 1.85 g/cm®. The backing windows were flash-coated with
aluminum on the front surface and antireflective (AR) coated for 532 nm on the back surface.

The beryllium samples for the sound velocity experiments (Figure 1) were stepped
polycrystalline material (S200F, Brush Wellman), nominally 25 mm tall by 10 mm wide with
thicknesses of 0.5, 0.7, 0.9, and 1.1 mm. A 0.1 mm thick layer of copper was electroplated to the
impact surface of the beryllium samplesto generate an impact stress above the melt stress for the
copper impactor. Without this layer the impactor would have remained solid for most of the
experiments described in this manuscript. This would have resulted in a complex release
structure from the copper impactor, thereby complicating the experimental analysis. The
beryllium step heights were measured with a through-the-lens laser autofocus instrument, with
~1 pm precision. Measurements were made both prior to and after plating. Bowing of the
beryllium sample due to residual stress from the plating process resulted in an uncertainty in the
copper thickness of ~2 um.

Quartz or LiF windows, coated similarly to the dedicated Hugoniot targets, were mounted
to the back of the beryllium steps using a low-viscosity epoxy (Angstrombond). The different
window materials were chosen to accommodate the measurement of wave profiles. Lower stress
experiments (below 150 GPa) utilized LiF windows to enable measurement of the beryllium/LiF
interface velocity; LiF has been demonstrated to remain transparent under shock compression to

~210 GPa.*® Higher stress experiments (above 155 GPa, at which stress the resulting shock in the



LiF would render it opaque) utilized a-quartz windows. Above ~90-100 GPa along the Hugoniot
a-quartz becomes reflective, and thus a continuous measurement of the shock velocity can be
obtained using velocity interferometry. Similar to the dedicated Hugoniot experiments, adjacent
samples were quartz windows which enabled observation of the flyer plate and estimation of the
impact time at each step of the beryllium sample.

A multipoint velocity interferometer system for any reflector (VISAR)** 4 with 32
independent channels was used to measure the flyer velocity and either the Be/LiF interface
velocity or the shock velocity in quartz windows, as shown in Figure 1. The VISAR probe was a
Nd:YAG laser that is frequency doubled to 532 nm. Single-crystal quartz is mostly transparent
to 532 nm light, allowing the VISAR probe to pass through the windows and reflect off the back
surface of the flyer plate, tracking its velocity from rest to impact. A sudden change in phase and
amplitude signified the flyer plate impact and shock-breakout at the Be/LiF and Be/quartz
interface; these features were used to determine the transit time of the shock wave through the
beryllium sample. 2r phase ambiguities were resolved by using either two or three different
VISAR sensitivities (measured in velocity-per-fringe (VPF)) at each location. VPF settings
ranged from 0.506 to 1.926 km/s/fringe. Velocity uncertainty was conservatively estimated at
one-tenth of a fringe, resulting in flyer plate and quartz shock velocity uncertainties of ~0.5%
and Be/LiF interface velocity uncertainties of ~1%.

I11. DFT Calculations:

First-principles molecular dynamics (FPMD) calculations were performed using the
Vienna Ab-Initio Simulation Package (VASP), a plane-wave density functional theory (DFT)
code developed at the Technical University of Vienna.*!** For the Hugoniot calculations in this

work, the beryllium atoms were represented with projector augmented wave (PAW) potentials**



45 and exchange and correlation were modeled with the Perdew-Burke-Ernzerhof (PBE)
functional.*® A total of 250 atoms were included in the supercell, with a plane-wave cutoff
energy of 300 eV. Molecular dynamics simulations were performed in the NVT ensemble, with
simple velocity scaling as a thermostat, and typically covered on the order of a few to several
picoseconds of real time with time steps of 2 fs. For these calculations the Brillouin zone was
sampled by a I—centered 2 x 2 x 2 Monkhorst-Pack k-point grid.*’ Calculations were performed
for hep, bee, and liquid.

The Rankine-Hugoniot jump conditions,'? which are derived by considering conservation

of mass, momentum, and energy across a steady propagating wave, provide a set of equations

relating the initial energy (E), volume (¥), and stress (o) with steady state, post-shock values

(E—Eo)%(a—ao)(Vo—V) (1)
(o-0y)= pUsu, (2)

PUs
Uy —u, 3)

where p, U, and u, denote the density, shock velocity, and particle velocity, respectively, and

the subscript 0 denotes initial values. The first of these equations, derived from the conservation
of energy, provides a prescription for calculation of the Hugoniot. Temperatures and densities
are iterated to obtain final states close to satisfying Eq. 1 for the stress range of interest with the
final Hugoniot state obtained through interpolation on those values.

Elastic constants were determined by evaluating small strains (~1% in both compression
and tension). In these evaluations, direct entropy calculations for the solid or liquid*® were used

to choose AT such that the strained system remained on an adiabat (AS = 0). For the liquid case



simple isotropic, adiabatic strains were evaluated to determine the adiabatic elastic constants. In
the solid cases (both bce and hep), the strains were applied along strategically chosen directions
such that the independent elastic constants were sampled. For the relatively simple cubic bce
system a single strategically chosen strain tensor provided all three independent elastic constants
(c11, c12, and c44). The lower symmetry hep system required a combination of two strains to
provide all five independent elastic constants (ci1, Ci2, €13, €33, and c44). Note that the equivalence
ces = (C11 - c12)/2 was evaluated and found to be satisfied, lending confidence in the method used.
The bulk sound velocity for the hcp, bee, and liquid were also obtained directly from the elastic
constant calculations. In order to compare with the experimental measurements, which utilized
polycrystalline material, the longitudinal sound velocities for the hcp and bee solids were
determined using a Voigt-Reuss-Hill average*’. The Poisson ratio and shear modulus were also
determined from these calculations and compared with experimental data. These values are listed
in Table I and plotted in Figs. 5, 6 and 8.
IV.  Analysis:

A. Hugoniot

The beryllium shock velocity was determined from the measured thicknesses and shock
wave transit times for the beryllium samples. Since beryllium is opaque the impact time could
not be directly observed. Instead, impact times were interpolated from the observed impact times
for the adjacent quartz windows. A correction to the impact time, based on the flyer velocity,
was applied to account for measured differences in flight distances (typically <3 pm). The
beryllium Hugoniot state was determined through impedance matching using the Rankine-
Hugoniot relations,'? which identify the Hugoniot state as the intersection of the beryllium

Rayleigh line and the backwards-facing aluminum Hugoniot emanating from the measured flyer



plate velocity.'? The piecewise linear Hugoniot fit given in ref. 50 was used for the aluminum
standard in these experiments. Uncertainty in impact and breakout times were conservatively
estimated to be 0.5 ns, producing single-sample uncertainties in shock velocity of ~2-3%. The
measured shock velocity was averaged for the two sample thicknesses, resulting in a final
uncertainty of ~1-2%. Uncertainty in the inferred particle velocity was determined using a
Markov-chain Monte Carlo (MCMC) technique and were found to be of order 1%.

B. Sound Velocity

Sound velocities were inferred using the overtaking rarefaction method and observing the
decrease in velocity upon overtake of the leading shock by the release wave from the copper-
aluminum interface in the flyer plate.’®> This technique is similar to previous experiments
observing a decrease in emission of a liquid (bromoform) analyzer,** 3! 32 but is less affected by
noise and small variations in stress.*> For quartz windowed samples, the reflective shock was
tracked using the VISAR diagnostic and the decrease in velocity at overtake was directly
observed. A similar technique was used for the LiF windowed samples, however in those cases
the Be-LiF interface velocity was tracked rather than the leading shock velocity.

For experiments at peak stresses below melt on the Hugoniot, a complex structure was
identified upon release caused by the splitting of the release wave into the longitudinal and bulk
waves (Figure 2a). The Be-LiF interface velocity (solid blue line) exhibits a velocity plateau
upon the shock entering the LiF followed by a two-stage release. Linear fits were made to the
constant-velocity plateau (dotted black line), longitudinal release (dashed yellow line), and bulk
release (dashed-dotted red line) regions. The overtake time for the longitudinal wave (yellow
star) and bulk wave (red star) was found from the intersection of the release fits with the fit to the

plateau region. The uncertainty in intersection time was calculated using a Monte Carlo



technique with 10° iterations, where the plateau and overtake fits were recalculated using
variable time durations for the fit region. Uncertainties in the overtake times determined in this
manner were typically <I ns.

The beryllium step thicknesses were chosen such that the overtake would occur within
the sample for the thicker steps and within the windows for the thinner steps. In cases where the
overtake occurred within the sample (i.e. there was no constant-velocity plateau in the VISAR
trace), the average of the plateau regions from the thinner steps was used and an effective

negative overtake time was determined. The overtake times and step thicknesses were correlated
for each of the samples and linearly fit to determine the thickness, d,,, and time, t,, where

overtake would occur in an infinitely thick sample (i.e. in the absence of wave interactions). As
seen in Figure 2b, the thicknesses where the longitudinal (dashed yellow line) and bulk (dashed-
dotted red line) would overtake the shock at breakout are identified as the overtake thicknesses.
The copper layer on the impact surface of the beryllium sample served to generate a
simple release from the Cu/Al interface within the flyer plate (the copper melted upon impact).
However, it also complicated somewhat the sound velocity determination from the overtake
measurement due to wave interactions at the Cu/Be interface. Upon the shock reaching the
Cu/Be interface in the target, a release wave was launched back into the copper. Thus, the
overtaking rarefaction from the Cu/Al interface propagated through both shocked copper and
partially released copper as seen in Figure 3. The lower density and temperature of the partially
released copper decreased the sound velocity relative to the shocked copper, resulting in the
rarefaction wave arriving at the Cu/Be interface later than it would have had the partial release

not been present.
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To account for this wave interaction a scale factor, Se.. = f, was used to relate the
’ e

Lagrangian sound velocity of the partially released copper, C,’fcl, to that of the shocked copper,
C, . McCoy, Knudson, and Root™ determined that the scale factor for copper releasing into

quartz is nominally independent of stress, with a value of ~0.85+0.11. We note that a
computationally determined scale factor using the SESAME 3325°¢ EOS table also exhibits a
stress independent scale factor of ~0.84, in very good agreement with the experimentally
determined value (~1% lower). In the absence of an experimentally determined scale factor for
copper releasing into beryllium, we used a value of 0.81, corresponding to a 1% increase in the
scale factor of 0.80 determined computationally from SESAME 3325. The scale factor

uncertainty was assumed to be the same as the experimental value from ref. 35, i.e.

S, =0.81+0.11.
The copper Hugoniot and sound velocity were used to determine the times at which the
rarefaction, 7, , enters the beryllium sample. The beryllium Lagrangian sound velocity, C, ,,

was then determined from

Q)]

The uncertainty in sound velocity was found to be ~2-3% and was dominated by the thickness
measurements and inferred overtake times. The impact and Be/window breakout times were
directly observed with VISAR and resulted in smaller contributions to the overall uncertainty.
C. Shear Stress
The shear stress was estimated using the self-consistent method proposed by Asay and

Lipkin.>® This technique assumes the in-situ particle velocity is known at multiple points within



the material of interest, and the Lagrangian sound velocity is determined as a function of the
particle velocity, as shown in Figure 4. Determination of the in-situ particle velocity requires
knowledge of the EOS of the window material as well as the interface particle velocity. For the
LiF windowed samples (Figure 2a) the interface particle velocity is directly observed with
VISAR. For the quartz windowed samples, the VISAR observed the quartz shock velocity rather
than the interface particle velocity. To extract the interface velocity, the Lagrangian technique
developed by McCoy and Knudson®* was used. This correction used the quartz Hugoniot and
release model described by Knudson and Desjarlais®® with the most recent model calibration
coefficients.>

Because the shock impedances of quartz and LiF are similar to that of beryllium, the in-
situ particle velocity for the beryllium samples could be determined accurately through
impedance matching. At each time along the wave profile, an impedance match was made
between the beryllium and window material in a manner similar to that described in ref. 56. By
repeating this for the entire wave profile, the in-sifu particle velocity was determined as a
function of time (solid blue line in Fig. 4). After determining the in-sifu response, and assuming
uniaxial strain, the derivatives of the longitudinal stress (o) and strain ( ¢ ), are determined

through

do(¢)=do, (6‘)+§d2‘(8) and (3)

; (6)

where o, is the mean stress and 7 is the shear stress. By substituting the bulk (C,) and

longitudinal ( C,) sound velocities, Eq. 5 can be rewritten as



dr(g)=%p0 [C,z(g)—Cb2 (6‘)de€, (7)

where 0, is the initial density. The shear strength can be estimated as ¥ =27 using the J2

theory', which, by substituting Eq. 6 and integrating Eq. 7, gives
3 2 2
¥ =—=[=——tgu. (8)
4 G

For each sample the wave profiles for the two thinnest Be steps, where both the
longitudinal and bulk release occurred within the window, could be analyzed using Eq. 8 to
estimate the shear strength. This provided two independent measurements of the shear stress,
which were then averaged to determine a shear stress and uncertainty. Additional details on the
calculation can be found in refs. 1 and 53.

V. Results and Discussion:

A. Hugoniot
A total of three dedicated Hugoniot experiments were performed on beryllium, yielding
six Hugoniot measurements. The pertinent parameters for these experiments are listed in Table

IL. v, and Uy denote the measured flyer plate velocity and the shock velocity in the beryllium,
respectively. u,, o ,and p denote the inferred particle velocity, stress, and density of the

beryllium in the shocked state, respectively. The Hugoniot is plotted in Fig. 5. Also shown in the
figure are data from gas gun measurements conducted by Isbell ef al?’ (green circles) and Wise et
al (open circles)*®, and explosively-driven data from the Marsh compendium (yellow triangles)*’
=

and Walsh et al (open triangles)™. The present results (red diamonds) are significantly less

compressible than the Isbell results and agree well with an extrapolation of the other data.



In comparison to EOS models, we find that the present results agree with both tabular
models shown: SESAME?®’ 2024 (dashed-dotted black line) and XEOS 403 (dashed blue line; a
QEOS model with similar behavior to the recent multiphase model developed by Benedict et

al'*). Density functional theory (DFT) Hugoniot fits were determined for hcp Be (

Uy =7.766+1.182u,,, solid red line), bec Be (U =7.488+1.208u,,, dashed orange line), and

liquid Be (Uy =7.800+1.187u ). The experimental data are in excellent agreement with the hep

fit, whereas the bcc fit is systematically more compressible than the data, particularly at the
lower stresses. However, we note that over the stress range explored here, the solid and liquid
fits cannot be distinguished experimentally. No experimental data exists in the 200-300 GPa
stress range, within the liquid phase, to compare with the DFT calculations.We note that
inclusion of the copper layer on the impact surface of the sound velocity targets in this study
resulted in an inability to measure the Be Hugoniot directly in those experiments. However, due
to the agreement between DFT and both the experimental results and tabular models in the solid
regime, we chose to use the DFT solid and liquid Hugoniots to calculate the stress, density, and
particle velocity of the shocked beryllium for the sound velocity experiments. This differentiated
between the solid and liquid phases in Be, and represented the change in Hugoniot slope upon
melting absent from the single-phase SESAME and XEOS models.

B. Sound Velocity

Seven sound velocity experiments were conducted, yielding fourteen measurements of
the beryllium sound velocity at stresses between 130 and 300 GPa, as shown in Figure 6. Eight
of these measurements exhibited a two-wave release structure, as illustrated in Figure 2a,
indicative of release from the solid phase. The remaining six measurements exhibited a single-

wave release structure, indicative of release from the partially molten or liquid phase. The



pertinent parameters for these experiments are listed in Table III. v, and U denote the
measured flyer plate and shock velocity, respectively. u, and o denote the inferred particle

velocity and peak stress obtained from the DFT Hugoniot for Be and the measured shock

velocity. C,, C,, G, Y, and v denote the inferred longitudinal and bulk sound velocities, the

shear modulus, the shear strength, and Poisson’s ratio, respectively, obtained from the measured
overtake times.

The sound velocities and Poisson ratio are plotted in Fig. 6. The peak longitudinal sound
velocity (open diamonds) was observed at ~150 GPa. At higher stresses, the longitudinal wave
velocity begins to decrease rapidly and approaches the bulk sound velocity (red diamonds) near

~200 GPa. In contrast, the bulk sound velocity increases monotonically over this stress range.

308 -

The Poisson ratio, defined as v =—7—-,
30 +C,

was used to determine the onset of melt (Figure 6¢);

a piecewise linear fit (solid black line) to these data (diamonds), the data of Chhabildas et al*?
(squares), and the ambient Poisson ratio (yellow triangle)®, suggests an onset of melt at a stress

of 0=204+13GPa.
Using the DFT Hugoniot and ambient thermal Griineisen parameter, I'; =1.30, from

Zhang et al’®, the bulk sound velocity was calculated from

C - [I—FEVO) _do]| (PO ©
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1. . : o
where V' =— is the specific volume and the subscript H denotes the stress and derivative of the

t60

stress along the principal Hugoniot.”” Here we make the common assumption of pI” being
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constant; i.e., ['= in Eq. 9. Under this assumption, the calculated bulk velocity (solid red

line) falls within the uncertainty of the measurements reported here as well as those of
Chhabildas et al*>. The discrepancy between these data and the DFT calculations arises from the

Griineisen parameter; assuming ol to be constant yields I'J 0.75 at melt on the Hugoniot

whereas the DFT calculations imply T'J 0.91. Previous DFT calculations by Luo'® with the DFT
I". While the calculation assuming pl” =constant better matches the data, we don’t believe that it

accurately represents the Be Griineisen parameter at these stresses due to the extreme
extrapolation from ambient measurement.

The longitudinal sound velocity, calculated using the bulk sound velocity and the fit to
the experimentally determined Poisson ratio, is shown as the black dashed line. We note that the
bulk sound velocity from the model by Ignatova et al®! (dashed-dotted purple line) agrees with
the present results. However, the longitudinal wave velocity from Ignatova (dashed-dotted green
line) significantly overpredicts the peak wave velocity compared to this work. This large
discrepancy in the longitudinal velocity implies that the Ignatova model does not produce a
reasonable value for the high-stress shear modulus of beryllium.

At increasing stress and temperature along the Hugoniot, beryllium is predicted to
undergo a solid-solid phase transition from the hexagonal-close-packed to body-centered-cubic
(hep-bece) phase at a stress just below the melt boundary. Different calculations of the phase
diagram (see Fig. 7) predict the hep-bec transition along the Hugoniot in the stress range from
~165' and ~195' GPa, and melt along the Hugoniot between ~205 and ~210 GPa. These
predictions for melt along the Hugoniot appear to be in good agreement with the present

experimental results, as illustrated by the Poisson ratio shown in Figure 6c.



DFT calculations for solid Be (see Fig. 6b) show essentially no difference between the
bulk velocity (solid symbols) in the hep (triangles) and bece (circles) phases. A small difference
(~0.3 km/s) is seen between the hep and bece longitudinal velocities (open symbols), with the hep
phase exhibiting a consistently higher value. Given the relative size of the experimental
uncertainty and the predicted difference in longitudinal velocity for the two phases, the present
results are incapable of resolving between the two. In particular, the observed steady decrease in
longitudinal velocity between ~150-200 GPa is consistent with either a steady decrease in the
shear modulus and loss of strength as melt is approached or an hcp-bec transition.

This lack of conclusive evidence for a solid-solid phase transition is in agreement with
the laser-heated diamond anvil cell work by Lazicki et al.?' In that study diffraction
measurements only observed the hcp phase for P-T conditions up to 195 GPa and 4000 K. These
conditions are well into the bce regions defined by Robert!® and Luo'®, but potentially fall short
of the transition boundaries predicted by Benedict!# and Xian!”. However, as noted by Robert,
the predicted location of the hcp-bee boundary has large uncertainty due to the small enthalpy
difference between the two phases. Conclusive evidence for the bce phase would require phase-
sensitive measurements, such as diffraction. Further investigation of the hcp-bcc phase boundary
in this region would require use of shock-ramp compression techniques to reach the transition
stress while remaining at temperatures below the melt curve.

At stresses above the onset of melt along the Hugoniot, only the bulk sound velocity
(yellow diamonds) is observed. In this stress regime the experimental data are in excellent
agreement with the DFT calculations (dashes). In ICF experiments, the first shock is tailored to
melt the ablator, with the subsequent shocks driving the implosion of the capsule.®? As growth

rates and oscillation periods of the ablative Richtmyer-Meshkov instability are sensitive to the



sound velocity in the shocked fluid®, use of the DFT liquid sound velocity would be
recommended for hydrodynamic simulations of ICF capsules with Be ablators.
a. Shear Modulus
The shear modulus, G, can be estimated from the longitudinal and bulk wave velocities of
shocked beryllium through the relation

il

G=4p(c,2—c,f). (10)

As shown in Figure 8, the peak shear modulus inferred from this study (red diamonds) is ~240
GPa. This is in good agreement with the peak values measured by Chhabildas et al (black
squares)®? for shock compression up to 34 GPa. Using the calculated bulk velocity and the piece-
wise linear fit to the Poisson ratio shown in Fig. 6¢, a model for the shear modulus can be
constructed (solid red line). This model for the shear modulus, which exhibits a maximum of
~260 GPa at a stress of ~90 GPa on the Hugoniot, is in good agreement with the values inferred
from the present study and Chhabildas et al.

The only other experimentally inferred values for the shear modulus are from Brown et
al. (yellow triangles), obtained from quasi-isentropic (ramp) compression experiments. The
values reported by Brown et al are in good agreement with those of Chhabildas et al and our
experimentally derived model for stresses below 50 GPa. At stresses of ~80-100 GPa the values
reported by Brown et al are somewhat higher than our model. We note that the values reported
by Brown et al are from quasi-isentropic compression experiments, and at these stresses the
shock temperature exceeds that of the isentrope by ~1000 K. This difference might be sufficient
to explain the shear modulus discrepancy between our model and the values reported by Brown

et al.



Also shown in Fig.8 are calculations of the shear modulus using various strength and
EOS models for Be. Calculations were performed using the Steinberg-Guinan strength model
(short-dashed blue line) and the SESAME 2024 table with the elastic constants from ref. 64, and
the Burakovsky-Preston strength model (long-dashed blue line) with the Simon fit presented in
Eq. 28 of ref. 65. Temperature dependence of the shear modulus was modeled using a fit to the
average values from Nadal and Bourgeois® and extrapolated linearly to higher temperature.
Calculations were also performed using both the Steinberg-Guinan and Burakovsky-Preston
strength models with the XEOS 40 table shown in Figure 5. This calculation gave approximately
the same values as SESAME 2024, so only the one table is shown for clarity. The Burakovsky-
Preston model is in better agreement with the data and experimental fits than the Steinberg-
Guinan model. This is expected as the Burakovsky-Preston model updated the Steinberg-Guinan
model to correct the insufficient negative curvature which resulted in overprediction of the shear
modulus at moderate compression. The RING model (dashed-dotted purple line)®! overpredicts
the Be shear modulus along the Hugoniot for the entire stress range up to shock-melting. We
note that at ambient conditions, the RING model predicts a shear modulus ~25% greater than
experiment. Decreasing the model by this amount would reduce the peak value by more than 100
GPa and bring the calculation into better agreement with the other models and experimental data.

C. Shear Stress

The inferred shear stress from these experiments, shown in Fig. 9, constrains the strength
of beryllium for stresses above 100 GPa and temperatures approaching the melt curve. Data from
this work (red diamonds) exhibit a steady decrease in strength along the Hugoniot, culminating
with complete strength loss upon melting at a stress of just over 200 GPa. The peak shear

strength inferred in this work was ~3.5 GPa, which is in good agreement with the peak shear



strength inferred by Brown (yellow triangles)' and Bat’kov (open circles)®’. At stresses below 50
GPa, both the Brown and Bat’kov results agree with those of Chhabildas (black squares)®?, such

that the yield curve of solid beryllium can be constrained for all stresses accessible under single-
shock compression.

The Steinberg-Guinan (dashed blue line)®* strength model for beryllium agrees with the
experimental results up to the peak shear stress. However, conventional models fail to accurately
capture the loss of strength exhibited experimentally as the melt stress is approached. To account
for this, the RING relaxation model (dashed-dotted purple line)®! and earlier phenomenological

model of strength (PMS, solid black line)®® developed by VNIIEF scale the shear stress by a

T . : ; P w
factor of 1——, where 1 is the melt temperature at a given stress. This construct is similar to

m

) T .
the Preston-Tonks-Wallace (PTW)®® temperature correction factor of 1—a — ; the coefficient

prevents the PTW model from vanishing at melt and is not present in the VNIIEF models. Both
VNIIEF models adequately represent the experimental data up to 100 GPa. However, the RING
model systematically under predicts the shear stress as melt is approached. In contrast, the PMS
model remains in good agreement with the experimental data. This conclusion contradicts the
work of Henry de Frahan, et al’. They found that the RING model best represented the
experimental results at low stresses. This indicates that while a relaxation model, such as RING,
may accurately represent the behavior at low stresses, the accuracy may decrease for stress and
temperature conditions approaching melt.
VI.  Conclusions

The principal Hugoniot, sound velocity and shear stress of beryllium were measured

using magnetically-accelerated flyer plates on the Sandia Z machine. Hugoniot measurements



further constrained the solid behavior from 90-190 GPa and were in good agreement with lower-
stress data and DFT calculations. However, these results and DFT calculations do not agree with

results reported by Isbell et al*’

for solid Be above 90 GPa. The agreement between these results
and the DFT calculations for the hcp phase lend confidence for the use of DFT for liquid Be
where experimental data is sparse.

The bulk and longitudinal sound velocity were measured over the stress range of 130-300
GPa to investigate the melt behavior of Be. In the solid phase, the bulk sound velocity is slightly
higher than predictions from DFT calculations for both the bee and hep phases but is in good
agreement with a Mie-Griineisen calculation using the DFT Hugoniot and ambient data.
Measurements above the melt transition are in good agreement with DFT calculations for the
liquid phase. The longitudinal sound velocity is in better agreement with calculations for the hep
phase below 150 GPa; this also agrees with calculated phase diagrams which predict the hep-bee
transition at stresses above 165 GPa. Above 150 GPa, the longitudinal velocity decreases
monotonically until the onset of melt at ~205 GPa. No clear evidence for the hep-bec transition
was identified from the sound velocity measurements.

The shear modulus and shear stress were determined for solid beryllium approaching
melt. The peak value of the shear modulus is in reasonable agreement with the Burakovsky-
Preston strength model but occurs at a peak stress ~50 GPa lower than predicted by that model.
The present results are within the uncertainty of previous data when adjusted for temperature
differences between the Hugoniot and isentrope. Measurements of the shear stress are in good
agreement with earlier data and the PMS and RING models developed by VNIIEF. This work

suggests that ~50 GPa prior to melt, Be begins to exhibit a gradual loss of strength that continues

until the onset of melt.



These results and DFT calculations suggest that the phase diagram of Benedict et a/'*
best represents the high pressure and temperature response of beryllium and the expected hcp-
bece transition. Furthermore, use of the DFT Hugoniot and liquid sound velocity presented here
will allow for more robust ICF and MagLIF designs, increasing the likelihood of successful
experimental designs.
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Table I: DFT calculations of the sound velocity in solid and liquid Be. P, p, U, u

p°

Tr,cC,,

C,, G,and v are the pressure, density, shock velocity, particle velocity, temperature, bulk

sound velocity, longitudinal sound velocity, shear modulus, and Poisson ratio, respectively. In

the liquid phase, there is only a bulk sound velocity, thus there is no shear modulus or Poisson

ratio.

Phase

hep
hep
hep
hep
bee
bee
bee
liquid
liquid
liquid
liquid

P
(GPa)
88.4
142
179
210.0
136.4
176.8
203.9
262.7
323.0
498.1
797.8

P u, T C, G G
(gem’)  (km/s) (kmis) () (kmis)  (km/s)  (GPa)
2696 12340 3.872 1200 11577 15342  200.2
2993 14177 5414 2540 12.736 16.142  220.8
3.171 15240 6349 3400 13354 16710  239.9
3289 16107 7.047 4400 13.842 16.811 2245
2993  13.895 5306 2142 12572 15862  210.0
3.177 15.126 6318 3262 13280 16302  213.0
3289 15872 6.944 4000 13.681 16.547 213.7
3464 17457 8.134 5068 14736 *** ok
3.650 18.816 9.279 6985 15691  *xx ok
4079 22195 12.126 13530 17.344 % ok
460 26862 16.056 27290 19.954  xx ok

0.266
0.302
0.314
0.341
0.307
0.331
0.344

ksksk
skskosk
skesksk
skskock

Table II: Direct-impact Hugoniot data for solid Be. v, and Uy are the measured flyer plate and

shock velocity, respectively. u,, o ,and p are the inferred particle velocity, peak stress, and

density, respectively.

Table III: Sound velocity and shear stress measurements for Be. v

Sample

z1707N
z17078
z1684N
216848
z1685N
z16858

v, (km/s)
7.46+0.05
8.62+0.05
9.36+0.05
10.36+0.05
10.94+0.05
12.19+0.05

U (km/s)
12.46+0.23
13.29+0.30
13.78+£0.17
14.48+0.18
14.76+£0.19
15.71+0.26

u, (km/s)
4.02+0.04
4.66+0.05
5.07+0.05
5.62+0.05
5.95+0.04
6.63+0.05

o (GPa)
92.6+1.3
114.5+1.8
129.1+1.3
150.4+1.5
162.6+1.6
192.8+2.3

/

p (g/em’)
2.73+0.03
2.85+0.05
2.93+0.03
3.02+0.03
3.10+0.04
3.20£0.05

- and U, are the measured

flyer plate and shock velocity, respectively. u, and o are the particle velocity and peak stress,



Sample

z1680N
z1680S
z1689N
z1688N
z1689S
z1688S
z1657N
z1681IN
z1657S
z1708N
z1681S
z1624N
z1708S
z1624S

respectively, determined from the DFT solid Hugoniot and the measured sock velocity. The

longitudinal, C,, and bulk, C,, sound velocities were determined from wave overtake times. The

Poisson ratio, v, and shear modulus, G, were calculated from the sound velocities. The shear

strength, ¥ = 27 (7 is the shear stress), is the integrated area between C, and C, in the

Lagrangian sound velocity vs. particle velocity plane. The six shots with v, >10 km/s melted,

hence there is no longitudinal velocity, Poisson ratio, shear modulus, or shear strength.

v, (km/s)

7.49+0.08
8.13+0.08
8.32+0.08
8.58+0.08
9.16+0.08
9.49+0.08
9.61+£0.08
9.78+0.08
10.76+0.08
10.79+0.08
10.97+0.08
11.29+0.08
12.00+0.08
12.66+0.08

U (km/s)
13.86+0.17
14.35+0.18
14.62+0.24
14.78+0.23
15.29+0.23
15.56+0.19
15.65+0.28
15.86+0.26
16.77+0.27
16.85+0.27
17.04+0.27
17.20+0.28
17.80+0.31
18.37+0.44

u, (km/s)

5.16+0.06
5.57+0.07
5.80+0.10
5.94+0.09
6.37+0.10
6.60+0.08
6.67+0.12
6.85+0.11
7.55+0.12
7.62+0.12
7.78+0.12
7.92+0.13
8.42+0.15
8.90+0.22

o (GPa)

132.2+3.4
147.9+£3.6
156.9+4.1
162.3+4.1
180.2+4.3
189.9+4.1
193.2+4.8
201.0+4.8
234.4+5.4
237.545.5
245.3+5.5
251.9+5.9
277.4+6.4
303+10

C, (km/s)
12.98+0.30
13.29+0.27
13.40+0.30
13.4240.32
13.99+0.30
14.03+0.27
14.09+0.36
14.13+0.33
14.18+0.33
14.42+0.34
14.40+0.32
14.60+0.35
14.66+0.38
15.38+0.45

Cz (km/s)

16.50+0.54
16.74+0.48
16.36+0.49
16.07+0.52
15.46+0.46
15.12+0.40
14.66+0.43
14.21+0.39

sksksk
skesksk
sksksk
sksksk
sksksk
sksksk

v

0.30+0.04
0.31+0.03
0.34+0.03
0.35+0.04
0.42+0.03
0.44+0.03
0.47+0.03
0.50+0.03

sksksk
sksksk
ksksk
sksksk
sksksk
sksksk

G (GPa)

229+24
23622
203+21
181£22
103+16
77+13
40.249.1
5.5+6.8

sksksk
sksksk
ksksk
sksksk
sksksk
skesksk

Y (GPa)
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Figure 1: Representative VISAR data for an experiment with quartz windows (inset). The copper
flyer plate velocity (blue line) was tracked from launch to impact with the windows adjacent to
the stepped beryllium sample. Upon breakout of the shock from the Be sample into the quartz
windows the shock velocity in the quartz is recorded at each step (black lines). The time between

impact and shock breakout was used to determine the Be shock velocity.
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Figure 2: a) Typical overtake measurement in a LiF windowed experiment for solid Be. For
stresses below melt, the Be release splits into a two-wave structure with the longitudinal wave
propagating ahead of the bulk wave. The sudden drop in interface velocity upon rarefaction
overtake indicated the overtake time for a given step. In samples where a two-wave structure is
present, the intersection (stars) of linear fits to the constant plateau (dotted black line) and the
longitudinal (dashed yellow line) and the bulk (dashed-dotted red line) releases is used to
determine the overtake time. b) The thickness at which overtake would occur in an infinitely
thick sample was determined by fitting the longitudinal and bulk overtake times as a function of

the step thickness. The overtake thicknesses (arrows) are then determined by the ¢, =0

intercepts.
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Figure 3: x—¢ diagram of the rarefaction overtake in a thin Be sample. Upon impact of the
Cu/Al flyer plate with the target, a shock (solid lines) is launched into the flyer plate and Cu
layer on the target. When the shocks reach the Cu/Al interface (left axis) and Cu/Be interface,
rarefaction waves (dashed lines) are launched into the flyer plate and Cu layer, respectively.
These rarefaction waves interact, resulting in the overtaking rarefaction from the Cu/Al interface
propagating through previously shocked and partially released copper (dotted line). Note that a
similar wave interaction occurs near the Be/Quartz interface; in this case the overtaking
rarefaction interacts with a recompression wave (quartz has a higher impedance than Be).

However, the use of multiple thickness Be steps and extrapolation to ¢, =0, as shown in Fig. 2b,

determines the overtake thickness in absence of these interactions (i.e. for an infinitely thick Be

sample).
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Figure 4: Representative shear stress calculation. The wave profile shown in Fig. 2a is used to
determine the Lagrangian sound velocity as a function of the particle velocity (solid blue line). A
linear fit (dashed red line) is used to estimate the bulk response up to the peak particle velocity.
Integration of the area between the longitudinal and bulk curves gives an estimate of twice the

shear stress.!
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Figure 5: a) U —u,, and b) P— p Hugoniot for solid beryllium. This work (red diamonds)

constrained the Hugoniot from 90-190 GPa, a range previously only measured by Isbell (green
circles)?’. The current results are in good agreement with lower stress work by Wise (open
circles)?, Marsh (yellow triangles)?® and Walsh (open triangles)** as well as the XEOS 40
(dashed blue line) and SESAME 2024 (dashed-dotted black line) tables. The Isbell data neither
agree with the other legacy data nor the present results. The DFT Hugoniot fit for the hcp phase
(solid red line) is in excellent agreement with the data (with the exception of the Isbell data that
appears to be an outlier) over the entire region. In contrast, the DFT Hugoniot fit for the bcc
phase (dashed orange line) is systematically more compressible, particularly at the lower

stresses. The calculated Hugoniot using the Vinet EOS and Debye thermal expansion fits from



Lazicki (dotted purple line)?! is slightly more compressible than the present results. This

discrepancy is likely due to the poor constraint for the thermal expansion fit noted by Lazicki.
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Figure 6: a) and b) Hugoniot sound velocity and c) Poisson ratio of beryllium. Below ~200 GPa,
Be is solid as indicated by the existence of both longitudinal (open diamonds) and bulk (solid
diamonds) release waves. The present results are in good agreement with earlier work by
Chhabildas (squares)*2. The bulk sound velocity (solid red line), determined from the DFT

Hugoniot for the hcp phase and the ambient Griineisen parameter, agrees with the experimental



data, as does the model by Ignatova®® (dashed-dotted blue line). Calculation of the bulk velocity
using the Griineisen parameter determined from DFT calculations (long-dashed pink line)
diverges from the ambient calculation above 130 GPa and is in better agreement with DFT
calculations of the sound velocity (solid circles and triangles). The longitudinal velocity (dashed
black line) was modeled using the bulk velocity (solid red line) and a piece-wise linear fit to the
Poisson ratio (solid black line in (c)). Above 150 GPa, the longitudinal velocity exhibits a steady
decrease, consistent with a softening of the shear modulus approaching melt. Prior to this
decrease, the measured longitudinal velocities agree with DFT calculations for both the hcp
(open triangles) and bcc (open circles) phases. In contrast to the bulk sound velocity, the
longitudinal sound velocity from the model by Ignatova (dashed-dotted green line) is
significantly higher than this work. The measured sound velocity in the liquid phase (yellow

diamonds) is in good agreement with DFT calculations for liquid Be (dashes).
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Figure 7: P—T phase diagram of beryllium. Phase boundaries are from Robert (solid purple
lines)'®, Benedict (dashed blue line)'*, Luo (long-dashed green line)!¢, and Xian (dotted brown
line).!” We note that the Robert determined the melt boundary using a heat-until-melt method
and thus should be viewed as an upper limit for the melt curve. Also shown are Hugoniots from
the SESAME 2024 table (dashed-dotted black line) and Benedict (short-dashed blue line). The
Hugoniot sound velocity experiments from this work that appear to have remained solid (red
diamonds) do not provide conclusive evidence for the hep-bec transition. This is consistent with
the highest P—T results from Lazicki (open triangles)*' where they found Be to remain in the
hep phase. Taken together, these results are in reasonable agreement with the phase boundaries
of Benedict and Xian, but disagree with the boundaries of Robert and Luo. However, as noted by
Robert, the predicted location of the hcp-bee boundary has large uncertainty due to the small
enthalpy difference between the two phases. The experimentally determined onset of melt is

shown as the yellow diamond. We stress that the temperature states for these experiments are not

measured, but were determined from 7' (P) obtained from the DFT hcp Hugoniot and ignore any



temperature increases due to dissipation; the actual temperature states may be higher than those

shown here.
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Figure 8: Pressure dependence of the shear modulus for Be. A fit to the Poisson ratio from this
work and that of Chhabildas results in the shear modulus denoted by the red line. DFT
calculations do not show a significant difference in the shear modulus of the hcp and bee phases.
Brown (yellow triangles)' reports a somewhat higher shear modulus from ramp compression
experiments; this may be explained by the temperature difference between the Hugoniot and
isentrope. The peak value of the shear modulus from this work is in reasonable agreement with
DFT and results from the Burakovsky-Preston strength model (short-dashed blue line). In
contrast, both the RING model (dashed-dotted purple line)®! and results from the Steinberg-
Guinan model (long-dashed blue line) predict a shear modulus that is significantly larger than

that inferred from this work.
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Figure 9: Pressure dependence of the shear stress (or half the shear strength) of Be. The shear
stress in this work (red diamonds) is inferred from the offset between the bulk and longitudinal
response of beryllium during release. These data are in good agreement with previous results by
Chhabildas (black squares)®?, Brown (yellow triangles)!, and Bat’kov (open circles)®’. As an
example of conventional non-relaxation models, the Steinberg-Guinan strength model (dashed
blue line) agrees with data up to peak shear stress but fails to accurately represent the decrease in
strength approaching melt. The PMS (solid black line)®® and RING (dashed-dotted purple line)®!

models developed by VNIIEF both accurately represent the data up to peak shear stress;

however, the PMS model better represents the data approaching melt.



