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Abstract — Moisture carryover (MCO) is modeled in the General Electric Type-4 boiling water reactor
(BWR) using machine-learning methods and data from operating plants. Understanding MCO and the
conditions that give rise to an elevated value is important since excessive MCO can damage critical turbine
components, can result in elevated dose levels to on-site personnel, and can interfere with late-cycle power
management. The analysis of MCO takes into account simplifying reactor symmetries and important geometric
dependencies. The plant data are taken from several reactors and were collected over multiple years and
multiple fuel cycles. A brief description of the origin of MCO in U.S. BWR plants is given. A machine-learning
model is constructed from the data using applicable algorithms and data-reduction techniques. Matching
model complexity with available data is one of the more challenging machine-learning tasks. Too many features
and too little data will lead to overfitting. The data for each fuel cycle included over 6876 original features, 9
for each fuel bundle. Two approaches are used to reduce the data set into a manageable number of features.
The first was an engineering analysis that resulted in the selection of steam quality Q and steam liquid phase
velocity VL as the main features driving MCO. Using a Q and a VL for each fuel bundle gives 1528 Q and a VL

feature describing the reactor behavior. An analysis of different functional forms of these two variables led to
the actual inputs to the neural network model. The second approach involved the use of statistical techniques
such as Pearson’s correlation and k-means analysis. The identified groupings of bundles behaved similarly.
Treating each grouping as a single feature further reduced the input variable set to a manageable number.
A model selection criterion is proposed, and results are presented along with a discussion of related issues.

Keywords — Boiling water reactor, moisture carryover, data analytics, machine learning, neural network.

Note — Some figures may be in color only in the electronic version.

I. INTRODUCTION

The boiling water reactor (BWR) operates on
a saturated steam cycle relying on mechanical equipment
to remove liquid moisture from a two-phase mixture that
exits the core. Excess moisture carryover (MCO) can lead
to both intergranular stress corrosion cracking of turbine
blades and an increase in exposure levels of maintenance

personal to 60Co that is carried over in the liquid droplets
that leave the steam dryers.1 While the BWR in the United
States was originally designed to achieve MCO levels that
are acceptable from a plant economic performance per-
spective, changes in recent years in the way these plants
are operated and in the reactor core design efficiencies
have led to increased MCO levels.1 Specifically, new
fuel management strategies and the use of increased core
flow (>100%) to extend the cycle aimed at minimizing fuel
costs have led to a greater fraction of liquid reaching the*E-mail: rvilim@anl.gov
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turbine as a consequence of the increased load on the steam
separators and steam dryers.

The acceptable level of saturated water entering the
power conversion system from the reactor vessel is primar-
ily a problem in economics. While the new fuel manage-
ment/core design strategies have reduced fuel costs, an
associated increase in MCO raises operating costs as
a result of greater personnel exposure and turbine damage.

In the United States, two technical solutions are pre-
sently being pursued for better managing MCO under
these new operating regimes. The first is to replace the
steam separators and steam dryers with higher-capacity
units. This can make economic sense for a plant granted
an operating license extension or power uprate, and
hence, the opportunity to better offset the equipment
and installation costs with a longer and increased revenue
stream. In the case where license extension is uncertain,
the operation of the reactor over the cycle is being exam-
ined with the goal of better optimizing operating condi-
tions. This, however, requires an improved understanding
of how MCO depends on operating conditions. That is
the subject of this paper.

This paper describes the use of machine-learning and
data analysis methods to characterize MCO as a function of
operating condition. This data-driven approach to modeling
takes advantage of operational data to learn the operating
characteristics of the reactor. A data-driven model can poten-
tially yield superior performance compared to a physics-
based model as the latter invariably involves approximations.
On the other hand, the data-driven approach of this work is
limited primarily by its interpolation nature and is not valid
for making process predictions outside the range of the train-
ing data set. For the particular application examined in this
paper, the data set is in fact well posed for modeling MCO
level over a wide range of reactor operation parameters. That
is, the data set does provide a reasonable basis for learning
MCO dependence in a way that is useful to better manage
MCO through reactor operation and to utilize the information
when performing core design to alter reactor conditions to
manageMCO. This, in combination with power uprating and
cycle extension techniques, provides a powerful basis upon
which to improve economic and operational performance in
the presence of license extension uncertainty.

II. DESCRIPTION OF THE BWR

Approximately a third of commercial nuclear reac-
tors in the United States are BWRs. The main character-
istic of a BWR compared to a pressurized water reactor is
the presence of significant boiling within the reactor core

with the steam going directly to the turbine after exiting
the vessel. The structure, operation, and fuel management
of a BWR described in this section can be found in
Refs. 2, 3, and 4.

II.A. Nuclear Steam Supply System

A typical nuclear steam supply system in a BWR is
shown in Fig. 1. A steel pressure vessel contains the core
where pressurized water flowing over uranium-bearing
fuel pins absorbs the heat of fission. The coolant is
maintained at a pressure that allows controlled boiling
to occur in the core. The resulting two-phase mixture that
exits the core passes through mechanical equipment to
remove the liquid phase, which is recirculated back to the
inlet of the core, leaving saturated vapor to exit the vessel
and enter the main steam line.

The removal of the liquid phase from the two-phase
mixture exiting the core is accomplished by passing
through two equipment units in succession. The steam
separators located above the core outlet establish a vortex
in the two-phase mixture flowing out of the core. The
induced radial velocity component causes the liquid
phase to separate from the vapor phase where the former
is collected at the periphery of the separators, as shown in
Fig. 2. The mixture exiting the separators is saturated
vapor with suspended liquid droplets. It enters the steam
dryers where the droplets are forced to make a series of
rapid changes in direction while traversing the platelike
structures resulting in separation from the mixture, as
shown in Fig. 3. The combined steam separators and
dryers are designed to yield a steam quality of greater
than 99.9% for admission to the turbine.2

II.B. Principles of Operation

The at-power thermal-hydraulic and neutronic condi-
tions in the core are actively managed by controlling four
process variables: (1) coolant flow rate via jet pumps, (2)
coolant inlet temperature via feedwater heaters, (3) pres-
sure via feedwater pumps, and (4) external reactivity via
control rods. When each of these variables is maintained
at a set point, the core will stabilize at an equilibrium
condition at which the reactivity components associated
with structure, coolant, fuel, and control rods sum to zero.
The thermal power and core exit steam quality at the full-
power design condition are set by appropriately adjusting
these control variables.

Over a power-generating cycle the reactivity decreases
and must be compensated for if power is to be maintained.
There is a succession of operational phases that the reactor
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passes through to maintain power over a cycle. At initial
fuel loading, excess reactivity is suppressed by gadolinium
poison which is burnt out over the first part of the
cycle. Second, control rods are slowly removed until com-
pletely withdrawn, and toward the end of this phase reactor
flow is increased to reduce coolant voiding, which increases
reactivity by increasing coolant density. Next, feedwater
heaters are successively taken off line to lower core inlet
temperature, which adds reactivity via coolant density.
Finally, the reactor enters the coastdown phase where
there are no further control actions and power decreases as
fuel reactivity is lost with burnup.

II.C. Core Fuel Management and MCO

A current fuel management strategy involves mana-
ging the arrangement of fresh and burnt bundles in the core
lattice to reduce neutron leakage at the periphery of the
core. The reload strategy is to place twice-burnt bundles
(with the lowest reactivity) in the outer rings of core lattice
positions to serve as reflectors and thus reduce neutron
leakage.3,4 To maintain an acceptable steam exit quality in
these low-power bundles, flow orificing is used to throttle
the coolant flow. The power in these peripheral bundles
can be as low as one-tenth of that of the interior bundles.

Fig. 1. Nuclear steam supply system in BWR.2
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The inner region of the core is populated by a combination
of fresh bundles and once-burnt bundles. A flat radial
power distribution is maintained through a combination
of control rod motion over the cycle and the burnup of
gadolinium poison in selected fuel pins.

The problem ofMCO becomes an operational issue with
the introduction of new fuel management strategies. Twice-
burnt bundles in the outer rings with a lower power-to-flow

ratio than interior bundles have a lower steam exit quality,
resulting in an elevated mass flow rate of saturated liquid
leaving these bundles. This can overload the moisture separa-
tor and steam dryer units causing an elevation in the fraction
of liquid water at the inlet to the turbine, or as referred to in
the industry, elevated MCO. The problem is more pro-
nounced if a group of low exit–quality bundles happen to
be directly below a steam separator.

Fig. 2. Steam separator of BWR/4 reactor.2

Fig. 3. Steam dryer of BWR/4 reactor.2

4 WANG et al. · MACHINE-LEARNING ANALYSIS OF MOISTURE CARRYOVER

NUCLEAR TECHNOLOGY · VOLUME 00 · XXXX 2019



III. MOISTURE CARRYOVER

In a BWR a small amount of liquid water is entrained
in the steam flow to the turbine giving rise to MCO. MCO
is typically cited as the mass percentage of liquid phase in
the steam flow entering the turbine. For U.S. commercial
BWRs the MCO value during normal full-power operation
is to be maintained below 0.1% (Ref. 5). The means for
measuring MCO are described in Refs. 3 and 6. Briefly, the
coolant samples are first obtained from both the coolant
condensate system and the reactor vessel steam/water inter-
face at a steady operating condition, with the interval
between sampling times minimized. The 24Na activity of
both samples are then measured using a high purity
germanium gamma-ray detector system, from which the
concentration of 24Na in both samples are calculated after
the decay correction. The MCO is finally calculated as the
ratio of two 24Na concentration values.

The models and experimental data used originally to
design current-generation BWR moisture separators and
dryers are proprietary and date back to the 1970s. The
fluid-flow phenomena in these two components, while
being multidimensional and multiphysics, were repre-
sented using one-dimensional models with supporting
experiments performed to characterize separate effects
and to provide integral validation. Undoubtedly, some
excess capacity was introduced in these units to cover
uncertainties. But given the cost premium on in-reactor
vessel components, it is unlikely there was capacity
added beyond this. Importantly, in this paper the
machine-learning approach places no dependence on
this original design work. Instead, in its place are recent
measurement data from multiple operating plants and an
associated computer code described in Sec. IV.

III.A. Causes of MCO

While the steam separators and steam dryers are
designed to provide name-plate MCO efficiency at the
full-power condition, there are events that can increase
MCO. A core flow imbalance caused by a jet pump
failing to provide rated flow can skew bundle flow across
the core and result in an MCO increase. A depression in
local power caused by a control blade will decrease
bundle quality and increase MCO if a steam separator is
located above. Or during maintenance on a control rod
hydraulic control unit, the blade may be fully inserted
again creating local low-quality conditions.

But more consequential than the above events, which
tend to be infrequent, are the effects of recent changes in
how some U.S. utilities are operating their current fleet of

BWRs compared to when these plants first came online.
Improved fuel management/core design strategies have
resulted in increased discharge burnups and have caused
high MCO. Fuel loading plans that place high-burnup and
low-power bundles in the core periphery result in lower
quality steam in these bundles; see Fig. 4. The challenge
is to map out MCO behavior in this new regime and
adjust operating conditions so that the MCO level is
acceptable while maintaining power.

III.B. Impact

Wet steam at elevated temperature can cause corro-
sion of turbine blades necessitating more frequent
maintenance.

Further, the moisture droplets transport 60Co from the
reactor vessel to the turbine, which results in higher dose
rates in the power conversion system. The 60Co originates
from the corrosion of elemental cobalt at the jet pumps
that becomes 60Co after irradiation by neutrons and sub-
sequent neutron capture.1 Increased exposure for main-
tenance personnel has an economic cost and human risk
making a plant less competitive.

III.C. Management

The objective is to understand quantitatively how
MCO correlates with reactor operating conditions so as
to be able to perform an economic trade-off and risk
analysis for various core-loading patterns and control
rod patterns with the associated fuel costs, personnel
exposure, and asset management of the turbine with
increased MCO. With knowledge of the relationship one
can perform an economic optimization, yielding a fuel
loading plan and a reactor operating plan for a proposed
power-generating cycle. Additionally, over the course of
that cycle, continuous refinements can be made to the
operating plan based on the feedback obtained from per-
iodic MCO measurements. This real-time plant data can
be used to further refine the model for MCO as a function
of operating condition for use in future run plans.

IV. PLANT DATA

During the power-generating cycle, the BWR core pro-
cess variables are calculated on a daily basis via General
Electric’s (GE’s) proprietary three-dimensional BWR core
simulation package PANACEA. The PANACEA package
reads in the measured values of the core forcing functions,
including control rod pattern, thermal power level, coolant
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flow rate and pressure, and feedwater temperature from the
sensors indicated in Fig. 5. It then calculates the process
variables for each fuel bundle including steam quality, void
fraction, power distribution, and coolant flow rate distribu-
tion, as shown in Fig. 6.

There are nine bundle parameters as shown in Table I.
There are 764 bundles for each reactor, thus totaling 6876
variables for each fuel cycle of a reactor. In addition, the
core status over the planned cycle is calculated as part of
the reactor run plan using the planned values for the core
forcing functions of pressure, temperature, flow rate, and
rod reactivity. The reactor run plan thus details how the
reactor will be operated over a planned power-generating
cycle.

Moisture carryover is a complicated and expensive
radiochemistry measurement and so is limited to being
performed on a weekly basis at the Limerick Generating
Station. Thus, only a fraction of the daily PANACEA
runs has an accompanying MCO measurement for use
in supervised learning. The data used in this paper
include 540 MCO measurements.

The current practice of taking MCO measurements on
a periodic basis combined with the fact that MCO tends to
increase late in the cycle, as seen in Fig. 5, results in
a preponderance of MCO data points below the 0.1% high

threshold. But from a machine-learning standpoint one pre-
fers the opposite, that is, a greater fraction of the data points
at high MCO values as this is the region where model
prediction accuracy is most valuable.

V. FEATURE SPACE

In engineering applications, machine learning can be
used to encapsulate data from a physical system in a way
that captures the underlying processes in model para-
metric form enabling system behavior to be represented.
The input-output relationships of such a model are useful
for predicting system behavior as driven by system input
variables that are to be manipulated to achieve a system
performance objective. In the MCO problem, the perfor-
mance objective is to optimize the core design to mini-
mize fuel costs while also managing MCO (the output)
by appropriately regulating the nuclear and
thermal-hydraulic processes through plant actuators and
fuel loading (the inputs).

In machine learning, the groupings of inputs
deemed to capture relevance are referred to as “fea-
tures,” while the collection of candidate features is
referred to as “feature space.” The model developer

Fig. 4. Core loading plan with twice-burnt fuel in the periphery.3
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must choose a set of features that is appropriate to the
problem, with the features that force the physical sys-
tem being the desired choice. However, not all indivi-
dual engineering variables should necessarily be

included as inputs as described below. The data at
hand include 6876 distinct initial engineering variables.
We discuss our approach to reducing the data set to
a manageable number of features. We show results

Fig. 5. Typical forcing functions and MCO values during a cycle.

Fig. 6. Some output parameters from each fuel bundle calculated by PANACEA package.
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using steam quality Q and mixture liquid phase velocity
VL and functions of these two variables to reduce the
data features to a manageable number. The variables
Q and VL are features of each fuel bundle, so using this
feature set initially reduces the number of variables to
1528. It should be noted that while at first blush the use
of Q and VL appears to be an over simplification, these
quantities by nature carry spatial information about the
reactor operation and thus can closely characterize its
operation. This avoids models that are too complex for
the available amount of data and saves computational
effort.

In a mathematical sense, feature space contains the
collection of inputs that force the system. In a physical
sense there may be several distinct feature spaces. Table II
identifies three such feature spaces for the MCO problem,
each of which influences MCO and reactor power. Feature
space FS1 contains the process variables that exit the core
and are presented to the steam separators. Feature space
FS2 contains process variables internal to the core that in
turn manifest themselves as the quantities in FS1. Feature
space FS3 contains the raw inputs such as actuators and
fuel loading that influence FS2. This paper is focused
primarily on FS1 in terms of model creation but does
examine FS2 for the purpose of understanding dependen-
cies in the former.

V.A. Feature Selection

The selection of features in engineering problems
warrants special attention given that the data tend to be
sparse, unlike problems found in the financial industry.

This is the case for the MCO problem, which is
described later. The challenge is to find the important
inputs that affect MCO so as to restrict the number of
inputs to avoid overfitting in the presence of limited-
size data sets. This necessarily involves a trade-off
between good model generalization capability and
good model predictive accuracy. The appropriate trade-
off in this work is analyzed through simulation studies
where the choice of features is varied and the model
predictive performance is evaluated. Sensitivity studies
are performed to identify the degree to which feature-
space variables affect the output. It is also important to
identify and eliminate inputs that are linearly depen-
dent. Such inputs unnecessarily increase the number of
model parameters and, in analogy with a poorly condi-
tioned matrix in linear algebra, increase the sensitivity
of the model prediction to noise and error in the data.

V.A.1. Engineering Analysis

The engineering analysis approach to feature selec-
tion puts to use expert knowledge about the system and
what is forcing it. This information, combined with mod-
eling studies, is used to appropriately limit the number of
inputs selected from feature space so that overfitting is
avoided. This process, which is described conceptually
here and put into practice below, makes evident the
inherent limitations on what is achievable in terms of
the quality and accuracy of the predictive power of the
model. It also reveals how predictive performance is
inextricably linked to the richness and diversity of the
plant data set.

TABLE I

Bundle Parameters Simulated in PANACEA Package

Name Description Unit

Bundle power Integrated thermal power of each bundle Normalized
Bundle flow Coolant mass flow rate through each bundle Pounds of steam

mixture/h
Exit steam quality Steam quality (mass flow rate fraction of vapor to steam mixture) when

exiting each bundle from the top
1

Bundle void fraction Steam void fraction (area fraction occupied by vapor) when exiting each
bundle from the top

1

Average k-infinity Average k-infinity value over the total length of each fuel bundle 1
Control rod pattern Length of each control rod withdrawn from the reactor core Notches
Top 1 slice nodal power Power distribution in the first top layer of each fuel bundle divided into

25 virtual vertical layers
Normalized

Top 2 slice nodal power Power distribution in the second top layer of each fuel bundle divided
into 25 virtual vertical layers

Normalized

Top 3 slice nodal power Power distribution in the third top layer of each fuel bundle divided into
25 virtual vertical layers

Normalized
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In the MCO problem, expert nuclear engineering
knowledge was used to identify a candidate set of fea-
tures. The variables leaving the core at the bundle level
are related through the conservation of mass:

w � 1� Q
1� α

� �
¼ ρL � A � VL ; ð1Þ

where

w = total mass flowrate

Q = flowing quality

α = void fraction

ρL = liquid density

A = cross-sectional flow area

VL = liquid velocity.

It is assumed pressure is constant, as was verified by the
utility for the data sets provided, and so thermophysical
properties are constant.

There is an additional candidate variable in feature
space FS1, vapor velocity VG, and it is expressible in
terms of the variables above through the relationship

Q ¼ ρG � AG � VG

ρG � AG � VG þ ρL � AL � VL
; ð2Þ

where

AL ¼ ð1� αÞ � A ¼ A� AG : ð3Þ

It is assumed that the MCO analysis is limited to a single
plant type, in which case the geometry and dimensions of
components are fixed. In this case the area variables
above have constant values.

In order to find a set of features of limited dimension
to mitigate overfitting issues, a set of physical arguments
are introduced to reduce the list of above variables from
w, Q, α, VL, and VG to a smaller number. The reasoning
exercised is approximate. With data-driven systems, the
lack of a physics-based model requires some judgement
on the part of the analyst aided by analytical insight into
the structure of the data.

To proceed, note that Eq. (1) implies an implicit
dependence among the five variables that appear there.
As such, any four of these can be regarded as independent
variables that affect the physical system. The fifth should
not be included in the input as its value is constrained by
Eq. (1). This fifth variable can be thought of as represent-
ing overdetermined information or, in analogy with linear
algebra, a colinearity. If it were to be included in the
network at all, it should be treated as an output.

Further reduction in input feature space is achieved by
examining the plant data and finding that for a very large
fraction of bundles α is always contained in the range 0.3 and
0.4. Additionally, α trends with Q whose range of values is
similarly limited. For small changes such as these, the depen-
dence between these two variables will tend to be linear. And
so, we elected to remove α from the input feature space.
Similar arguments apply forVL andVG.We choose to remove
VG from the input feature space.

We are left with variables Q and VL as feature-space
inputs. If indeed the other three variables are important for
learningMCO dependence, then amodel trained onQ andVL
alone should have inferior generalization performance com-
pared to a model expanded to include any of these three other
inputs. This in fact was found not to be case; most MCO
behavior can be described with Q and VL with associated
spatial and clustering information. For example, when VG
was additionally included in input feature space the model
generalization performance was not as good as withQ andVL

TABLE II

Three Candidate Feature Spaces for Modeling Moisture Separator Problem

Feature Space Description Feature

FS1: core outlet process variables Bundlewise coolant conditions exiting
the core

Bundle outlet coolant phase velocities
VL and VG; void fraction α; quality Q;
and densities

FS2: core internal process variables Coupled nodalized thermal-hydraulic
and neutronic conditions in the core

Bundle k-eff and control rod position;
nodalized bundle power; coolant
flowrate; void fraction; coolant density
and quality

FS3: forcing functions and loading plan Variables used to manage the reactor
thermal performance and MCO

Control rod position; coolant flow rate;
coolant inlet temperature; coolant
pressure; fuel bundle loading
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alone. Thus, the above physical and mathematical arguments
for limiting feature space were born out in actual model
training/testing trials.

Consider now the problem of how Q and VL should
appear at the input layer. It is noted that suitably trans-
forming an input variable by input data manipulation is
superior to leaving this job to the model trainer where
data are limited and the type of network is a single hidden
layer, feedforward. That is, it is prudent for the engineer
to determine if there is a more natural functional form of
the variable rather than simply the variable itself so as to
minimize the burden placed on the model to modify
features in automated fashion. To those ends we note
that MCO should increase with a decrease in steam
quality exiting the bundles, that is,

MCO ,
1

Qm
; ðm > 0Þ ; ð4Þ

so the preferred input to the model is the right side of Eq. (4).
Similarly, MCO may increase with a decrease in the

velocity of the liquid component at the bundle outlet as
the steam separators will be less effective, that is,

MCO ,
1

Vn
L

; ðn > 0Þ ; ð5Þ

so the preferred input to the model is the right side of Eq. (5).
The above principles guided the treatment of feature

space in the modeling studies reported in Sec. VII.

V.A.2. Correlation Analysis

A validation of the physics-based arguments that
were introduced to arrive at the reduced dimension inputs
described above was accomplished by performing
a correlation analysis. A correlation analysis provides
a cross-check means for identifying the colinearities that
are hypothesized to exist in feature space FS1. The ana-
lysis was performed using the Pearson correlation
method.7 Briefly, a correlation coefficient of +1 or −1
indicates perfect positive or negative linear correlation
between two variables, and a correlation coefficient of 0
indicates no obvious linear correlation.

Taking advantage of the pronounced octagonal sym-
metry in both the reactor core lattice and fuel loading
pattern seen in Fig. 4, the core is split into eight sectors
each covering 45-deg angle. The core process variables
(w, Q, α, VL, and VG) distributed over the entire core are
similarly split into the same eight sectors for the correla-
tion study. This partitioning increases the number of

training data points by a factor of 8 while reducing the
number of unique bundle positions by a factor of 8, both
of which work toward reducing overfitting.

As seen in Fig. 7a, the correlation coefficients
between VL and VG are close to unity for the majority
of fuel bundles, which means that these two process
variables are highly correlated. A high correlation is
also observed between Q and α, as seen in Fig. 7b.
Such a high level of correlation means the corresponding
variables are redundant, which agrees with the conclusion
drawn from engineering analysis. Importantly, Q and VL

have a lower level of correlation as shown in Fig. 7c,
indicating that these two variables are more independent
from each other and therefore important for capturing
MCO dependence. Note that the variable w is not
shown here as it was eliminated as a dependent feature-
space variable in Sec. V.A.1.

Having identified the number and types of degrees of
freedom in feature space through a correlation analysis, the
correlation between MCO and each of the presumed process
inputs 1/Q and 1/VL is calculated along with the correlation
for related and presumed redundant parameters 1/α and 1/VG.
The resulting correlation coefficients are plotted in Fig. 8 as
a function of bundle radial distance from the core center over
all cycles. It is clear that the 1/Q and 1/VL of peripheral
bundles have high positive correlation with MCO and that
1/α and 1/VG, respectively, replicate that and therefore do not
contain significant new information. This agrees with the
conclusion in Sec. III.A.

The correlation study and remarks are shown in
Table III. In summary, both an engineering analysis and
correlation analysis indicate that the input space should
be limited to 1/Q and 1/VL.

V.B. Data Reduction

As discussed previously, to build a robust model
for prediction, the number of input variables should be
a canonical set to avoid modeling the noise in MCO
data, which can result in overfitting. In addition to
rejecting the redundant quantities 1/α and 1/VG as dis-
cussed above, the remaining 1/Q and 1/VL of each
bundle in the one-eighth sector contribute approxi-
mately 200 variables. This number is too high for the
total 540 MCO points considering that a single hidden
layer one-neuron feedforward model will use up all the
degrees of freedom. The “effective” number of points
may well be lower as about 70% of the data points are
clustered together with similar conditions and low
MCO values.

10 WANG et al. · MACHINE-LEARNING ANALYSIS OF MOISTURE CARRYOVER

NUCLEAR TECHNOLOGY · VOLUME 00 · XXXX 2019



To discover the similarities between the fuel bundles,
a k-means auto-clustering analysis was performed for each
of the eight sectors. By analyzing the similarities of bundles
in the 1/Q and 1/VL domain, it is found that the bundle
division stabilizes at three groups, as shown in Fig. 9. To
capture additional physics behind theMCO related to steam
separator spatial location,5 the bundles were grouped more
finely. Incorporating information on separator spatial loca-
tion resulted in one of the best-performing grouping
schemes, which is shown in Fig. 10. Thus, we are left with
14 features with which to describe the problem.

VI. MACHINE-LEARNING MODEL

VI.A. Network Architecture

The neural network architecture used is shown in
Fig. 11. It is composed of one input layer that serves to
normalize the multidimensional data, one hidden layer
with multiple neuron nodes and their associated non-
linear activation functions, and a linear output layer.
The neuron will manipulate the value coming from
each input by first multiplying by a weight W and

Fig. 7. Correlation between three different pairs of process variables with each shown as a function of distance from center of core.

Fig. 8. Correlation between MCO and inverse process variables.
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then adding an offset b and feeding the result to the
nonlinear activation function to approximate the non-
linearity. The weight and offset in the hidden layer will
be optimized automatically by optimizing the cost
function, which is also known as the “learning” pro-
cess. We used a Levenberg-Marquardt backpropagation
algorithm to adjust the ultimate neural network weights
used in the final model.8,9

Certain elements of the neural network architecture
are well suited to capture the nature of the MCO problem.
For example, the MCO is a single physical quantity at the
reactor vessel outlet measured by means of
a radiochemistry experiment, and its value is the result
of the performance of individual steam separators whose
individual contributions sum in some nonlinear fashion.
Presenting at the input spatial regions that reflect indivi-
dual steam separators combined with automatic adjust-
ment of the weights provides a nonlinear fitting capability
suited for modeling the main phenomena providing that
there is no measurement that could determine the con-
tribution of MCO values from each core region.

VI.B. Data Division

The MCO data set was randomly divided into
four logical subsets comprising training (70%), vali-
dation (10%), valid-2 (10%), and test (10%) for use
as indicated by these names. Given these logical
partitions and associated fraction of the MCO data
set, a so-called training/validation/valid-2/test data set
was created by populating these logical subsets with
data from the MCO data set. The populating proce-
dure involved selecting at random from the MCO
data set. This process of creating the training/valida-
tion/valid-2/test data set was repeated again and again
to create 2048 such data sets. A sensitivity study was
performed by varying the data division fraction. The
cost function (see Sec. VI.C) behavior was essentially
unchanged for data divisions that varied the training
data component from 43% to 88%. This indicates that
the results we report for the 70–10–10–10 split
described above are not sensitive to this particular
split.

TABLE III

Correlation Among Variable Pairs

Pair Variables Figure Remarks

Input-Input VL and VG Fig. 7a Highly correlated
Q and α Fig. 7b Highly correlated
VL and Q Fig. 7c Weaker correlation

Input-Output 1/Q and MCO Fig. 8a Accept as a canonical pair representing a degree of freedom
1/α and MCO Fig. 8b Dependency similar to 1/Q and MCO; reject as representing

a new degree of freedom
1/VL and MCO Fig. 8c Accept as a canonical pair representing a degree of freedom
1/VG and MCO Fig. 8d Dependency similar to 1/VL and MCO; reject as representing

a new degree of freedom

Fig. 9. k-means clustering for bundle parametric similarities.
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VI.C. Cost Function

A cost function, the mean square error (MSE), is
defined for later use as

MSE ¼
XN
i¼1

1

N
yMODEL;i � yTARGET ;i
� �2

; ð6Þ

where

yMODEL = output of the neural network model

yTARGET = target value for the output

subscript i = i’th exemplar in a data subset.

VI.D. Training

For the neural network model described in Sec. VI.A,
a trained instance was created for each of the 2048

training/validation/valid-2/test data sets. Each instance
began first with network weights being randomly
assigned. Thus the 2048 neural network models were
created from a random data division of the MCO data
and random initial guesses for model weights.

The training procedure used a cost function defined
as the difference between the neural network model out-
put and the target output for the supervised learning. The
minimization of the cost function is the objective of the
model training process. Given that training the neural
network model amounts to a regression process, the
MSE is an intuitive and standard practice choice for the
cost function.

The MSE is defined as

MSETRAINING ¼
XN
i¼1

1

N
yMODEL;i � yTRAINING;i
� �2

; ð7Þ

where index i is over the exemplars in the training data set.
However, the minimization of MSE during the train-

ing process to a near-zero residual may result in the
model being overfit to the data. Essentially the model
begins to fit the noise within the training data resulting in
poor generalization for data that were never seen by the
model. This problem is typically addressed as follows.
The training set is used to optimize the neural network by
adjusting its parameters so as to optimize the cost func-
tion, and the smaller validation set is used to stop the
training when the cost function on the validation set stops
decreasing, thus avoiding overfitting.10

VI.E. Model Selection

A model selection procedure was invoked to choose
a “best” model from among the 2048 trained neural net-
works. This procedure defines the best model as that
neural network model that has the lowest value of
a figure of merit given by

F¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSETRAINING þMSEVALID�2ð Þ2þ MSETRAINING �MSEVALID�2ð Þ2

q
; ð8Þ

Fig. 10. One of the best performing bundle grouping
schemes: 7 groups.

Fig. 11. Example of one hidden layer neural network.
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where

MSEVALID�2 ¼
XN
i¼1

1

N
yMODEL;i � yVALID�2;i

� �2
: ð9Þ

This criterion reflects an imposed requirement that a best
trained neural network should satisfy both the smallness
and closeness of the cost functions within the training and
valid-2 data sets.

VII. RESULTS

VII.A. Feature Analysis

It is essential to show how the selected input features,
exiting steam quality Q and liquid velocity VL, might be
optimally combined before input to any machine-learning
algorithm. Intuitively, the MCO was fit into a logarithm
function shown in Eq. (10) and a similar power function
shown in Eq. (11):

logðMCOÞ ¼ a � logðhQiÞ þ b � logðhVLiÞ þ c ð10Þ

and

MCO ¼ c � hQia � hVLib þ d ; ð11Þ

where the independent variables 〈Q〉 and 〈VL〉 are the
steam quality and liquid component velocity averaged
over all the fuel bundles.

Both trivial curve fittings returned MSE values no
less than 8 × 10−2, which is two orders of magnitude
larger than the MCO variance due to measurement
uncertainty.3 Such a poor quality of fit demonstrated the
need for finer feature tuning and nonlinear mapping cap-
ability such as is obtainable through neural network.

The multinode neural network is able to capture the
nonlinearities in the input variables when the training data
sets are diverse and large in size. However, the small size
of the training data sets in this work limited the network to
at most two hidden nodes and consequently limited the
power of the network to capture all nonlinearities in gen-
eralization. Given this limited mapping capability, efforts
were undertaken to move into feature-space nonlinear
operations that might otherwise challenge the fitting cap-
ability of a couple of hidden nodes.

Many training sessions were conducted to identify
a nonlinear combination of the inputs represented by
Eqs. (4) and (5) that resulted in the best fit to the data.
These quantities were superposed in various functional

combinations to find an optimized combination and asso-
ciated exponential parameters m and n that yielded the
smallest and most stable MSE for the test set with the
least number of neurons in the network.

After a coarse search that limited the exponents to
integer values, several candidate combinations were
found that yielded a robust and minimum MSE for all
random training and test set division, using two neurons
in the neural network. Among these candidates, the best
input identified was

xi ¼
X

j2Groupi

1

Q2
j � VL

2
j

; i 2 ½1; 7�

and

xiþ7 ¼
X

j2Groupi

1

VL
1
j

; i 2 ½1; 7� : ð12Þ

VII.B. Selecting Number of Neurons

A parametric study was performed to identify the
optimum number of neurons in the hidden layer of the
neural network. The cost function (MSE) distribution for
each of the training, validation, valid-2, and test sets were
plotted as a function of number of neurons. As shown in
Fig. 12, the MSE for the training set decreases with more
neurons in the network, but the MSE for the test set stops
decreasing with more than three neurons, which indicates
overfitting. Indeed, the overfitting appears at three neu-
rons, where the suddenly increased error bar indicates
that the model becomes less robust on the test set. To
this end, a two-neuron model was selected to be the
optimal point that balances both the model robustness
and flexibility.

One advantage of a neural network algorithm in
a machine-learning approach lies in part with the non-
linear mapping capability afforded by the neural net-
work. Classic models for learning data associations
assume a linear-type regression approach. The perfor-
mance advantage was investigated by replacing the
neural network with a linear regression model that for
consistency used the same features shown in Eq. (12).
The MSE result obtained for this linearly regressed
model appears in Fig. 12 as the “0 neuron” case. It is
observed that the nonlinear activation function in the
neural network provides superior mapping capability.
The MSE of the test set for the two-neuron case is
2.9 × 10−4 compared to a value of 6.0 × 10−4 for the
linear regression model, a reduction of 52%. Thus the
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neural network is better able to capture the dependency
of MCO on core parameters.

VII.C. Model Selection

A selection of a “best” neural network model from
among the 2048 trained models was made. The best is
defined to be that model that yields the minimum F in

Eq. (8). In Fig. 13, each of the 2048models trained according
to the training-validation procedure is represented by a circle.
The x-axis is the value of the MSETRAINING cost function of
Eq. (7) and the y-axis is the MSEVALID–2 cost function of
Eq. (9). The best model appears as the green point and has the
identifier “Model 937.”

A comparison of output from the selected model,
Model 937, with measured MCO is shown in Fig. 14.
Recall that the measured MCO is the target the model
was trained against. Shown in Fig. 14 is the output from
Model 937 as driven by the validation and the valid-2
data from the training/validation/valid-2/test data set. The
closeness of the validation and valid-2 set results to
measured MCO suggest this model might generalize
well. However, only when we see it actually generalize
well (test set) can we say, “Model 937 does a good job
predicting MCO,” and at that point it is proper to say
“predicting.”

Table IV reports the performance of the best model,
Model 937, on a cycle-by-cycle basis. That is the R2 and
MSE values for Model 937 when presented with each of
the four different data set types: training, validation,
valid-2, and test.

VII.D. Performance of Selected Model on Test Data Set

The litmus test for model performance is how well the
trained model predicts data not yet seen before. Such data
are those of the test data set. The test data set is not
involved in modeling. It is not involved in training, valida-
tion, or model selection. In Fig. 15 the MCO measure-
ments are shown for comparison with Model 937 output as
driven with its associated test data. The model prediction
performance is quite good indicating the model training
and model selection process were successful in generating
a model for MCO prediction that generalizes well.

VII.E. Discussion

Model testing is an integral component of machine
learning and is performed to ensure the robustness of
model predictions. The testing process ensures that the
training data have been learned to the degree that the
model has predictive or generalization power, which
implies that excursions due to idiosyncratic features in
the data have been limited. Such features can
include second-order physical phenomena that are not
fully expressed in the data set or measurement error.
Essentially the degrees of freedom in the model must be
aligned with the main physics features present in the data
to avoid the classic problem of overfitting.

Fig. 12. Cost function distribution versus number of
neurons.

Fig. 13. Selecting the neural network minimizing F.
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The work reported here marks the completion of the
first phase of a two-phase approach to the MCO problem
using machine-learning methods. This work demonstrates
that, having used random data division, a model was
created which can accurately predict MCO at any other
arbitrarily chosen historical state points inside that mod-
eled fuel cycle.

Having achieved this indicates that MCO in general
is a predictable phenomenon when data quantity is suffi-
cient. The high accuracy under the in-cycle conditions
gives us confidence that pursuing out-of-cycle prediction
will be fruitful.

In this first phase a model training procedure was used
to select a best model, and this model was then tested
against data not seen before from the same six cycles.

The second phase will involve testing the model against
data from a fuel cycle not contained in the fuel cycles used for
training. From a physical data point of view, each fuel cycle
has its own characteristics that introduce variation and error
into the results. First, each cycle begins with a different fuel
loading pattern. The number and positions of twice-burnt
bundles change as do the number and positions of the new
and once-burnt bundles. Perhaps even more importantly, the
positions of the control rods change over time in a different

Fig. 14. Comparison of MCO measurements with MCO output by Model 937 for both validation and valid-2 data sets.

TABLE IV

Cycle-by-Cycle Performance Results for Model 937

Criteria_2 Training (70%) Validation (10%) Valid-2 (10%) Test (10%)

Model 937 R2 MSE R2 MSE R2 MSE R2 MSE

6 Cycles 0.908 1.57E–04 0.825 3.58E–04 0.927 1.07E–04 0.798 4.50E–04
Cycle 1 0.952 1.77E–04 N/Aa 9.14E–05 N/Aa 1.33E–04 N/Aa 1.04E–04
Cycle 2 0.943 9.98E–05 0.717 2.44E–04 0.966 4.86E–05 0.870 2.80E–04
Cycle 3 0.856 2.79E–04 0.965 3.33E–04 0.934 1.38E–04 0.852 4.41E–04
Cycle 4 0.812 2.31E–05 0.815 2.79E–05 0.639 8.57E–05 0.851 4.32E–05
Cycle 5 0.930 1.32E–04 0.819 2.82E–04 0.917 1.13E–04 0.674 7.05E–04
Cycle 6 0.807 8.12E–05 −0.282b 1.19E–03 0.979 9.45E–06 0.185 7.10E–04

aOnly two points exists in the validation, valid-2, and test set contributed by Cycle 1. R2 is meaningless for a linear fitting of only
two points due to lack of degree of freedom.
bA negative R2 value indicates a large variance between the model output value and the target value in which the residual from the
optimal linear fit is larger compared to the residual from a simple average.
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way during each cycle. These changes can introduce asym-
metries and local “hot” or “cold” spots which in turn affect
MCO to various degrees depending on geometry.

By its nature the machine-learning model should be able
to deal with these variations in cycle behavior. The ability to
do this depends critically on the amount of data and the variety
of conditions the data represent. In the case studied in this
paper, there is a modest amount of data and not yet enough to
model the entire spectrum of possible fuel cycle conditions.
Using the inherent symmetry of the reactor system and redu-
cing the feature set to functions of Q and VL has certainly
helped. However, we do know that asymmetric conditions
exist, and in a subsequent paper we will analyze their impact.

Future enhancements to this analysis will include using
interpolations of the MCO values. While reactor-state mea-
surements occur every day, MCO is measured once per week
limiting the number of data points. Also, further refining the
feature set will improve the model’s predictive power.

Finally, there is the issue of the intrinsic error in the
measured MCO values and PANACEA output. This will be
analyzed and accounted for in future efforts as well.
Currently, there is limited knowledge of these errors, so as
a first step we have examined models assuming errors in
reported values to be negligible.

VIII. CONCLUSION

The prediction of MCO values as reactor burnup
progresses is an important operational issue with

significant economic impacts to power generation. It
depends on a very complex set of operating condi-
tions, and the electric utility has limited ways to con-
trol and manage MCO while keeping power at
planned levels. Having a useful predictive model of
MCO is thus of high importance. Given the large
amount of data collected over the years of nuclear
reactor operation, machine learning presents itself as
a very promising way to model MCO. Machine learn-
ing is based on rigorous mathematical theory and, in
simple terms, posits that the function governing the
system’s evolution is in the data and can be approxi-
mated if enough data are available. Of course, the data
also contain noise and so appropriate care was taken
in this paper to avoid fitting the noise.

We have used data from two GE Type-4 BWR
reactors with a combined six fuel cycles to model
MCO as a function of various reactor variables.
Given the large number of features per fuel cycle,
we used a physics-guided approach to reduce those
variables to a small set of independent variables.
Additionally, we took advantage of the apparent sym-
metry of the reactor layout to virtually increase our
data set by a factor of eight. Also, the k-means tech-
nique was used to cluster variables and so find the
Q and VL natural groupings.

In this paper we have demonstrated that a model
of MCO can be constructed for random data division
within multiple fuel cycles and will generalize by
predicting randomly selected points in the space that

Fig. 15. Comparison of MCO measurements with MCO output by Model 937 for test data set.
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are not part of the training of the model. We have also
taken advantage of the random seeding inherent in
neural networks to explore the space of valid models
which differ by their random starting point. We then
picked a model that had best valid-2 set performance.
Thus, we are encouraged that this approach will allow
even more useful models to be constructed. Future
work will develop models of separate fuel cycles
given a set of completed cycles from existing reactors.
In addition, we will develop models of future MCO
values within a given fuel cycle.
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