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ABSTRACT 
 
Resiliency is and will be a critical factor in determining scientific productivity on current and 

exascale supercomputers, and beyond. Applications oblivious to and incapable of handling 

transient soft and hard errors could waste supercomputing resources or, worse, yield misleading 

scientific insights. We introduce a novel application-driven silent error detection and recovery 

strategy based on application health monitoring. Our methodology uses application output that 

follows known patterns as indicators of an application’s health, and knowledge that violation of 

these patterns could be indication of faults. Information from system monitors that report 

hardware and software health status is used to corroborate faults. Collectively, this information is 

used by a fault coordinator agent to take preventive and corrective measures by applying 

computational steering to an application between checkpoints. This cooperative fault 

management system uses the Fault Tolerance Backplane as a communication channel. The 

benefits of this framework are demonstrated with two real application case studies, molecular 

dynamics and quantum chemistry simulations, on scalable clusters with simulated memory and 

I/O corruptions. The developed approach is general and can be easily applied to other 

applications. 
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1. INTRODUCTION 

Resiliency, in addition to concurrency and energy efficiency, is and will be a major challenge for 

future high-performance computing (HPC) architectures [1]. Preliminary estimates suggest mean 

time to interrupt (MTTI) could be from a few hours to a day as the concurrency on future 

systems increases rapidly [2, 3]. Without additional effort, applications tend to be susceptible to 

this reduction in MTTI, resulting in potentially substantial losses in productivity for end users. A 

wide range of research efforts are under way to enable fault prediction, fault detection, 

preparation for failure and recovery [4-17]. However, the more intrusive such strategies become 

in application code bases, the greater the resistance to their adoption, especially for the large 

body of existing applications. In our experience, application-level checkpoint/restart is the most 

commonly employed fault tolerance technique at present, and a recent survey of exascale 

application teams suggests that it will continue to be for at least the next generation of large-scale 

supercomputers [18], despite dire predictions for their MTTIs. 

Historically, resilience concerns for application running on HPC systems have centered 

around “fail-stop” situations, in which faults leads to failures of hardware or software 

components, and often, interruption of user applications. However, increasingly, evidence is 

demonstrating the data corruption issues are also significant [19-23]. Data corruption, in the 

memories of host or accelerations, processor caches and registers, as well as storage systems 

based on spinning disk or non-volatile memory, may be detected and converted to a fail-stop 

error, but may also be undetected, or silent. Undetected data corruption is one of the most 

insidious forms of error in computational science because of the potential for erroneous results. 

Further, the hardware techniques used to detect (and sometimes correct) data corruption tend to 

be expensive in both additional hardware and power. Levy et al. [24] note that while advanced 
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error correcting codes (e.g., chipkill-correct) are useful, they require more power that may limit 

their viability in future systems where power is an increasing limitation in the design. The 

problem is further exacerbated by the fact that progress in simulation-based science, combined 

with the increasing capabilities of HPC systems, are resulting in rapidly increasing data 

generation and consumption, and therefore more opportunities for data corruption to impact 

simulations. 

As a practical matter, undetected data corruptions can be very challenging for end-users 

to deal with. In cases where they lead to abnormal or early termination of the application, there 

are often few options for debugging or tracing the root cause of the failure. Where they are not 

fatal, there may be delayed detection of numerical inconsistencies and possibly, incorrect 

scientific results. Many HPC systems operate in a batch execution mode, which may make it 

harder for users to monitor their jobs for inconsistencies as they run. Anecdotally, the most 

common response to an unexplained job failure or numerical inconsistency is to simply re-run 

the job, which of course further reduces user productivity as well as the resource utilization 

efficiency of the system [25].  

To address these issues, we hypothesize that application-aware, and, in fact application-

driven, strategies for failure detection, preparedness, and recovery will provide reasonable 

control over productivity. In this paper, we describe an approach that utilizes application 

“health” monitoring, which can be paired with a system-level framework for fault information 

that can be used to corroborate deviations from expected behavior observed at the application 

level for better decision-making. The approach can be implemented mostly as a small, 

standalone framework which is customized to the target application with plugins. 



5 

The concept of application “health” is schematically illustrated in Figure 1. Many 

applications already compute (or could compute) quantities that are indicative of the health of the 

simulation. Deviations or unexpected behavior, as defined by the user, may be indicators of 

errors occurring in the system. Such occurrences can trigger user-defined actions to help 

diagnose and/or respond to the fault. Responses could include, for example, rolling back to a pre-

fault checkpoint and resuming execution. We illustrate the potential for this approach with 

molecular dynamics (MD) and quantum chemistry simulations [26]. 

 
Figure 1: Fault detection mechanism based on application health monitoring based on two alternative 
scenarios. (a) A case where health parameters (such as simulation temperature) stay within a range. (b) A case 
where health parameters approach a converged value (such as minimized system energy).  

 
 

We believe this concept of application health monitoring can be generalized to other 

applications and domains and therefore provide a novel mechanism for application error 

detection and recovery. The advantages of the proposed approach include minimal or no code 

modifications to the application; immediate information on the impact of a fault on the 

application; and mechanisms for application recovery. In particular, the unique contributions of 

the developed approach are  

1. Development of a fault detection and recovery strategy based on application health 

monitoring; 

2. Introduction of a framework to implement cooperative application fault management; and  
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3. Demonstration of the proposed infrastructure and its benefits with two production-level 

applications to test cases using early detection and failure recovery strategies. 

 

2. METHODOLOGY AND FRAMEWORK 

Our approach is based on monitoring application progress using a set of quantities that are 

expected to conform to a set of rules predefined by the user. If those rules are violated, warnings 

are triggered, and a cooperative fault management system is then consulted to corroborate the 

failure and locate its possible source. If the failure is confirmed, then the recovery process can be 

initiated, based on user-defined actions. In this section, we describe the detailed methodology 

and the developed framework.  

 

Application health monitoring: Many applications monitor calculated quantities that are 

expected to follow predictable patterns in a scientific simulation. Such quantities typically are 

inspected by users as indicators of the health of the simulation. The use of a quantity to indicate 

application health depends on the following properties: (1) It should follow expected patterns. (2) 

No (or few) resources should be required to obtain this quantity while the application is running. 

(3) There should be no (or very little) delay in the simulation state to which that the quantity 

corresponds. (4) It should be possible to define rules that indicate that the quantity is not 

behaving as expected for normal application runs. For example, production-stage MD 

simulations are often run as constant-temperature ensembles with a specific target temperature, 

such as 300 kelvin (K), or as constant-energy ensembles. While the temperature (or energy) does 

fluctuate for numerical and algorithmic reasons, any significant deviation or drift from the target 

value indicates a bad simulation state, due to either a software problem (inappropriate 
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configuration of the simulation or a bug in the application) or a fault. In another type of 

simulation (such as a quantum chemistry calculation) in which energy is minimized through an 

iterative process at each step, any abnormal increase in the system energy or the number of 

iterations at each minimization step can be used to trigger a warning of an unhealthy simulation 

state.  

 

Error detection and recovery: We propose that simulation health can be measured by 

monitoring suitable parameters such as simulation temperature (or, e.g., total energy or 

simulation volume). In Figure 1(a), the black dashed curve denotes a healthy trajectory, and an 

unhealthy state (solid black) can be detected when the temperature violates a set of ranges, which 

could be defined as a set of rules. Similarly, as shown in Figure 1(b), an unexpected large 

increase in system energy could trigger a warning for the type of energy minimization simulation 

commonly used for quantum chemistry calculations. Note that results from healthy runs are not 

needed, as long as the user has enough knowledge of the simulation domain to be able to define 

appropriate rules to identify suspicious changes in the system state. Rules may be based on 

instantaneous behavior or may utilize historical values (for example a moving average). In 

principle, an application could be modified to incorporate the monitoring and response 

mechanisms directly; however, if the mechanisms operate external to the application, there is 

much greater potential for reuse of the resilience infrastructure. While the specific quantities of 

interest, the rules that identify unhealthy simulations, and the desired responses are specific to an 

application, the overall process of monitoring quantities of interest against the rule set, 

corroborating possible faults, and carrying out the user-defined action in response is quite 

general. 
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External monitors (run concurrently with the application) that are aware of the history of 

the quantities of interest offer another major advantage over internal monitors: individual time-

steps in applications (such as MD simulations) may show only small deviations in these 

quantities; however, over time, a large deviation (drift) may be a sign of failure. Therefore, we 

hypothesize that an external agent that can keep a history of desired health parameters could 

provide a vital strategy for failure detection and recovery. 

 

 
Figure 2: Cooperative fault management system. 

 
Framework description: Our framework consists of the application monitoring agent, the fault 

coordinator agent, system monitors, the communication infrastructure, and other essential 

components. Figure 2 illustrates a prototype implementation of the proposed framework. An 

important component of the framework is the application monitor agent. The features of the 

application monitor agent include the ability to (1) read in a set of user-defined rules based on a 

health parameter, (2) monitor the simulation output (during the progress of the simulation) for 

the defined health parameter, (3) run an evaluation engine on the simulation output, (4) issue a 

warning or error message when the user-defined rules are violated, and (5) maintain a history of 
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the simulation health parameter to aid the recovery process by determining a healthy checkpoint 

before the error began impacting the simulation. Note that a regular expression describing how to 

extract the health parameter information from the simulation output is also an input to the health 

agent.  

The application monitor agent is fundamentally independent of the application. The rules 

and the application output to be monitored (defined as input to the agent by the user) are 

application-specific; however, the occurrence and functioning of the agent are independent from 

the application. As discussed earlier, the application monitor agent could be closely integrated 

with (or even coded into) the applications. However, this approach would make an agent too 

specific to an application and limit its reusability. Further, the generic and decoupled nature of 

this agent allows close integration into the communication infrastructure, such as the Fault 

Tolerance Backplane (FTB) from the Coordinated Infrastructure for Fault Tolerant Systems 

(CIFTS) project [4]. CIFTS is based on a holistic approach to dealing with failures and provides 

a framework, through FTB, that enables any component using an agreed API, whether software 

or hardware, to share events to facilitate coordinated identification of and response to faults 

within the system. FTB can connect a diverse range of components, such as operating systems, 

job schedulers, mathematics libraries, parallel runtime libraries, file systems, and user 

applications. 

In addition to monitoring the application, additional monitors may be deployed to track 

the hardware and system software environments. System monitors may take various forms, using 

information from the computer’s reliability, availability and serviceability (RAS) subsystem, 

such as an Intelligent Platform Management Interface, system logs, or other information sources. 

Information about faults, errors, and other anomalous events can be used to assist in diagnosing 
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and responding to anomalies in the application health parameters. Warnings from both the 

application and system monitors are fed into the fault coordinator agent as they occur. The fault 

coordinator provides the cooperative aspect of the system by checking for correlations between 

anomalous events in the application and the system. Heuristically, if a system event is followed 

closely by an application event, a causal connection is assumed, allowing the user to be more 

confident in formulating responses to application anomalies. Without such corroboration, the 

application anomaly might be due to a programming error in the application itself, bad initial 

conditions, or bad configuration, or to system errors that occurred during execution but went 

undetected. System anomalies that occur without triggering application anomalies can also be 

handled, if desired. 

The fault coordinator agent selects a corrective action for an application in response to 

the events observed by consulting rules registered by the application. These rules, provided by 

the user (or site policies), define preferable actions depending on the fault situation. The role of 

the system and application monitors is to garner all information that may provide clues to enable 

the fault coordinator to evaluate the application integrity and possible causes and take 

appropriate actions. The corrective actions could have implications for system-wide resources 

(for example, an application requesting immediate checkpointing could impact file-system and 

other applications); therefore, the process requires coordination and policy management. In the 

past, we have described efforts to enable such coordinated policy management [27].  

Regarding the implementation details of the framework, the FTB from the CIFTS project 

was selected as the fault communication infrastructure in this study. The FTB is a prototype for 

exchanging fault events and provides a mechanism for transparent event exchange. Further 
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details of the FTB implementation used in the proposed management system are available in ref. 

[27]. 

 

Types of failures detected: The proposed framework will allow a mechanism for detection of 

silent errors, defined as errors that are not fatal to the application but lead to corruption of the 

application state and data. We do not claim that the proposed framework is an exhaustive 

mechanism for detection of all silent errors; rather, it detects only those errors that alter the 

health of a simulation to trigger a warning when the user-defined rules are violated. The types of 

errors that could lead to such silent corruptions in an application include (1) hardware/software 

memory corruption on nodes; (2) file-system or data corruption during I/O; and (3) in graphical 

processing unit (GPU) –enabled simulations, errors induced when the error-correcting code 

(ECC) memory is turned off to improve memory bandwidth and capacity on the device. The 

approach may also detect some kinds of software bugs which push the simulation into unhealthy 

states, and potentially certain hardware issues, such as the Pentium FDIV bug [28]. Note that our 

assumption is that errors that are fatal to an application, such as a node going down or failure of a 

communication link, would be detected by other mechanisms.  

 

Overhead and scalability considerations: The resource requirements for the application 

monitor and the fault coordinator agents are modest. They can run on a front/login node or any 

other node with access to application output and the FTB. Therefore, the overall impact of the 

proposed infrastructure on HPC systems depends on the underlying scalability of the application 

code as well as the scalability of the failure communication framework (such as the FTB). 

Moreover, the framework is event driven, so communication, processing, and memory overheads 
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are generated only in the event of an unexpected behavior. MD and quantum chemistry codes 

have been demonstrated to scale to thousands and tens of thousands of cores on current HPC 

machines for quite some time [29, 30]. The scalability of the FTB has also been described [4]. 

Consequently, the framework should not lead to any significant overheads in terms of memory 

and communication requirements; therefore, the given approach can be targeted for exascale 

deployment.  

 

Applicability to other applications: The motivation of the development of the health 

monitoring strategy and framework is to allow wider applicability to other applications and 

domains. As discussed earlier, the use of an external agent to monitor the health parameters 

outside a simulation will require no changes or minimal changes (if the output must be formatted 

to conform for easy monitoring) to the application code base. A brief survey of other applications 

indicates that it should be possible to define suitable health parameters in many cases. The 

essential requirement is that it be possible to define computationally observable quantities that 

behave predictably in a healthy simulation and that could be expected to be sensitive to the 

introduction of random error into the simulation data. For example, simulations in biophysics, 

chemistry, and materials science that use energy minimization and constant- energy/temperature 

simulations could use health parameters similar to those described for MD simulations and the 

quantum chemistry test cases discussed in the following section. Other areas, such as 

computational fluid dynamics, might make use of conservation laws (i.e., conservation of mass 

or momentum) or drift in statistical quantities characterizing steady-state flows. Note that it is 

not necessary that values be constant to be useful for monitoring. Quantities with predictable 

trends, such as monotonic increases or decreases, can also be used.  
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Techniques for detecting (and in some cases correcting) silent errors have been studied 

for a variety of iterative solvers [31-35], adaptive numerical integrators [36-38], and other widely 

used computational approaches [39-41]. Clearly, not all application outputs would be useful as 

health indicators; but our experience, informed by discussions with many colleagues, is that most 

computational scientists develop techniques to check their simulations to determine whether the 

results are believable. Many such checks could be automated and applied throughout a 

simulation using our approach. In cases where none of the reported information in the 

application output is suitable for use as a health parameter, memory access, I/O, or 

communication patterns could be used as indicators of simulation health, as well as timing, as in 

the AutomaDeD project [14]. 

 

3. RESULTS  

In this section, we describe the use of the proposed application health monitoring strategy and 

cooperative fault management for two application test cases with simulated errors in the memory 

and I/O systems, respectively. 

Application 1: Molecular dynamics with memory corruption 

MD is a computational technique for simulating the behavior of a system of particles over time 

by integration of Newton's equations of motion. Atomistic MD simulations are computationally 

intensive. Each step involves billions of arithmetic operations that model the interactions among 

thousands of particles, which additionally must be repeated millions or more times. The typical 

implementation spreads the computation over cores and uses a communication layer (such as 

MPI) to aggregate the intermediate results from all cores, update the simulation state, and 

redistribute new computations. This process implies that the processes must be synchronized 
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after each time-step and the computations delegated to each processor core are essential for the 

entire simulation.  

MD simulation runs last for hours (or longer) and small errors (associated with even one 

processor core) will likely alter the future trajectory of the simulation. Therefore, early detection 

of silent errors is crucial to minimize the impact on end-user productivity. For the purposes of 

this study, we chose the MD engine LAMMPS (Large-scale Atomic Molecular Massively 

Parallel Simulator) [42, 43] because of its performance characteristics and wide user base. 

LAMMPS contains routines applicable to performing simulations in biology, chemistry, and 

materials science. The massively parallel scalability of LAMMPS, even up to billion-atom 

systems on tens of thousands of CPU-cores, is well documented [29]. No code modifications of 

LAMMPS were required for this study. LAMMPS was an early target for porting to 

heterogeneous architectures and has been successfully ported on systems accelerated with GPUs 

and field-programmable gate arrays [44, 45]. The checkpointing (or application restarting) 

information consists of the atomic coordinates and velocities that are written to disk periodically, 

based on the number of time-steps. Typically, this restart information ranges from 1 to 200 

megabytes (MB) depending on the number of particles in the system.  

 

Without health monitoring: Currently, simulations that use no health monitoring strategy but 

encounter silent errors are difficult to diagnose. The fault (either hard or soft) may be fatal, 

leading to termination of the application. In the case of silent errors, there is no explicit 

mechanism to validate the accuracy of the simulation. One exception is the use of internal checks 

to ensure that the atomic forces do not exceed thresholds, which are typically set to very large 

values, to detect bad simulation states. Normally, in the post-production period, if the user 
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suspects unexpected behavior, the typical response is to re-run the simulation and see if the cause 

was silent error (in which case, the two outputs are different) or a bad simulation state (the two 

outputs are the same or similar).  

 

With health monitoring: Simulation temperature (T) is commonly analyzed by end-users as an 

indicator of simulation health. In simulation ensembles with constant temperature (or constant 

energy), the quantity is routinely computed and printed in the output information. Therefore, our 

application monitoring agent is configured to monitor T in the simulation output and evaluate a 

number of user-defined rules. Table 1 and Figure 3 describe a set of rules to monitor the health 

of an application based on T. Note that in Figure 3, the black trajectory is the healthy trajectory, 

which is not known in advance. The definition of these rules does not require knowledge of the 

healthy trajectory. Further, a significant advantage of this approach is that, based on the defined 

rules to which these faults are traced back, the simulation can be rolled back to a healthy 

checkpoint for an application recovery process. As shown in Figure 3, careful selection of rules 

will allow tracing in the history where the deviant behavior started. The checkpoints (labeled as 

CPX) before this point in history will be useful for application restart.  

 
Table 1: Description of temperature-based rules for MD 

 Description  Notes 
Rule 1: T > Thigh  

or T < Tlow 
Temperature exceeds 
hard limit of Thigh or 
falls below Tlow 

Rule 2: abs( Tn – T(n-1))> Δ1 Temperature 
difference since last 
step exceeds Δ1 

Rule 3: abs(Tn – T(n-d)) > Δ2; 
 d < M 

Temperature 
difference in current 
step and any time 
during the last M steps 
exceeds Δ2 
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The fault management system was tested using LAMMPS and the standard rhodo 

benchmark (32,000 atom system based on the protein rhodopsin in explicitly represented waters). 

Note this is a real benchmark that is distributed with the LAMMPS source code. The test was 

conducted under constant-energy conditions (also referred to as an NVE ensemble), and no 

temperature control was applied. The test, a widely used benchmark for biological simulations 

with LAMMPS, was run for 1,000 MD steps taking about 300 seconds to complete. The output 

from LAMMPS (log.lammps) was monitored for simulation temperature (grep –i temp). The 

stream of extracted temperatures was monitored by the application monitoring agent. A set of 

three representative rules (see Table 1) were read by the monitoring agent at the start. 

 

 
Figure 3: Sample rules for application health monitoring. 

 
 
Fault injection: Our evaluation included a fault injection mechanism that introduced bit-flips at 

runtime into the dynamically allocated heap memory of a single MPI rank of a LAMMPS 

simulation. The injection technique employed an entirely user-space mechanism based on the 

ptrace() system call. On invocation, a random address was selected from the heap and an error 

was injected into the target address (data) by randomly flipping one or more bits. The following 

is an approximation of the sequence of steps:  

1. Start the FTB fault injection event logger.  
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2. Start LAMMPS using mpirun on all available cores.  

3. Sleep for N (=30) seconds for LAMMPS to start up.  

4. Start fault injector on a single node, for a single process, looping until process exits or a 

threshold is exceeded. Every M (=10) seconds, the injector selects a random address 

from the heap and injects an error (bit-flip) into the target address (data).  

5. Stop the FTB fault injection event logger.  

6. Archive fault injection log, LAMMPS input and output data, and metadata for the 

experiment run.  

The number of faults injected during a single LAMMPS run varied between 20 and 30. 

Approximately 50% of 67 test runs resulted in hard failures. However, our focus was on 

identification of potential silent data corruption, so we ignored these hard failures and 

concentrated on the cases in which LAMMPS exited normally (i.e., no backtrace or program-

detected error in the LAMMPS output file). Further, 90% of the trajectories that ran to 

completion showed almost no numerical variation, possibly indicating the injected memory fault 

did not lead to corruption of data essential to the simulation, or introduced a small enough error 

that it was naturally corrected as the simulation progressed.  

About 10% of the trajectories that eventually ran to completion (5% of overall runs) 

triggered a warning due to of violation of health rules. Figure 4 shows two alternate cases: (a) the 

fault injection was a single bit-flip and (b) two bit-flips. As a result of fault injection, the first 

case triggered a warning due to violation of Rule 2 (with Δ1 = 4 K), and the second case showed 

violation of Rule 1 (with Thigh = 304 K). The analysis and detailed statistics regarding the impact 

of the different numbers of bit-flips and the time required to observe a deviation in the healthy 

behavior will be the topic of future studies. This information will be vital for defining the 
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sensitivity of the rules required to capture a fault quickly without leading to an increased 

frequency of false positives. 

 

 
Figure 4: Detection of memory-related fault by MD health monitoring in two alternative scenarios. (a) 
Simulation with single bit fault injection. (b) Simulation with 2-bit fault injection. 
 
 

Error corroboration and recovery: Once the application monitor agent issues a warning, the 

fault coordinator (see Figure 2) looks for corroboration from other independent sources. This test 

case emulated silent errors in the application that occurred due to corruption in the host (main) 

memory or the non-ECC memory of the GPU devices. Corroboration will come from a system 

monitor agent that publishes information regarding memory errors detected at the hardware level 

or other software layers. Many modern hardware platforms provide basic mechanisms to detect 

and report memory errors (e.g., bit flips). For example, on x86 platforms, the machine-check 

architecture (MCA) and machine-check exception (MCE) provide a basis for detecting and 

reporting errors (e.g., ECC errors, parity errors, cache errors) [46]. These exceptions are typically 

managed by the operating system and logged in the system logs. There are some user-space 

utilities that can be used to process logs of MCE events and decode the exception data, i.e., 
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determine whether the event was a single- or double-bit error. For example, the mcelog utility 

[47] can be used to aid in reporting errors. It can also assist in management techniques like 

memory page soft off-lining, where a user-space daemon tracks errors and, if thresholds are 

exceeded, leverages a kernel mechanism to migrate data from the problem page to a new page 

[47]. FTB-enabled monitors that analyze the system logs (e.g., syslog) to extract these types of 

events can be developed. Recently, the use of accelerators GPUs has improved the throughput of 

simulations. Features of GPUs such as ECC memory provide improved accuracy at the expense 

of reduced memory bandwidth and capacity. Therefore, some applications may prefer to disable 

ECC during production runs. In such cases, our health monitoring agent could also provide a 

mechanism for detecting deviant behavior due to memory errors on the GPU. The hardware 

query/monitoring agents can provide a mechanism for validating the errors. For example, 

NVIDIA’s System Management Interface program provides information about errors when ECC 

is turned on. 

Once the event is corroborated, then the fault coordinator can initiate a recovery process, 

such as rolling back to a checkpoint determined as healthy. Note that the fault coordinator needs 

a list of actions generated by the user, such as rollback and restart (excluding or replacing failed 

resources), checkpoint and terminate, or terminate immediately (a graceful failure). In this test 

case, the checkpoint CP3 for the single-bit flip case (immediately before the threshold was 

crossed) and CP2 for the 2-bit flip case (the checkpoint before the 10-point moving average of T 

was greater than (Thigh-Tavg)/2) were automatically selected for restarts. 

 

Implementation on HPC architectures: This test was conducted on a Linux cluster. The cluster 

provided us the ability to experiment and allowed the fault injection mechanism for memory 
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corruptions. However, the individual components of the prototype framework are also available 

for HPC architectures, such Oak Ridge National Laboratory’s IBM AC922 supercomputer 

(Summit). Unfortunately, the batch submission process on these HPC systems does not allow the 

flexibility to inject faults for this test. Nonetheless, the overall cooperative fault management 

system described here is fully applicable to current HPC and future extreme-scale systems. 

 

Application 2: Energy minimization with I/O errors 

The motivation for this test case is to simulate faults in the I/O subsystem, and errors associated 

with file-system/storage are explored based on checkpointing and restarting a simulation. 

Quantum chemistry (electronic structure) calculations are routinely used to investigate the 

properties of various chemical systems based on quantum mechanical models. Common 

calculations consist of energy minimization, where the system energy follows predictable 

patterns of gradual decrease toward a converged value. We used the popular ab initio package 

GAMESS-US (The General Atomic and Molecular Electronic Structure System) [48, 49], which 

is available on many large-scale HPC machines. No code modifications to GAMESS were 

required for this study. Note that our strategy is equally valid for other ab initio quantum 

chemistry packages, as long as the simulation output containing the appropriate quantity (energy) 

is available to the health monitoring agent.  

The quantum chemistry calculations write information (such as two electron integrals) to 

disk, which is read in later during the simulation. Further, these calculations typically run for 

much longer durations than the wall time permitted by batch queues; therefore, restart files are 

commonly used for long runs. Our test case consists of a GAMESS calculation, which is started 

periodically in the simulation from the information written to disk by the previous calculation. In 

this test case, we simulate an I/O fault by corrupting a single byte in the restart file. 
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Without health monitoring: No specific mechanism is currently available to check for silent 

errors directly. However, a number of internal integrity checks ensure that the simulation states 

obey the underlying equations (based on the defining physical laws). In a manner similar to MD 

runs, if a user suspects unexpected behavior, the typical course of action is to re-run the 

simulation and see if the behavior is caused by silent error (the two outputs are different) or a bad 

simulation state (the two outputs are same or similar). 

 

With health monitoring: As shown in Figure 1 (b), we used deviations from the predictable 

pattern of gradual decrease in system energy as a health parameter. In addition, we used the 

number of self-consistent field (SCF) iterations at each step as another health parameter. Table 2 

describes two rules used to investigate the health of these simulations. GAMESS simulations in 

this test case were used to minimize energy for a 195-atom system using STO-3G basis set. This 

test was performed on a Linux cluster with a total of 128 cores (16 nodes with 8 CPU-cores 

each) and took approximately 20 minutes to complete. To represent a long run involving 

multiple restarts, we restarted the simulation every five minimization steps, using the atomic 

coordinates and orbital guess from the previous run. In addition to the normal simulation, two 

additional runs were performed with fault injections. 

 
Table 2: Rules used for monitoring quantum chemistry runs 

 Description  Notes 
Rule 1: ΔEN > 

fe*ΔEN-1      
fe = 2 

The energy change from the 
previous step is greater by a 
factor (f) since the preceding 
steps. We use f =2. 

Rule 2: IN >I<S>+ δ        
S = 5, δ = 1        

The number of SCF iterations 
are greater that average of last 
S steps and a grace (δ) of 1, we 
use S = 5.      
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Figure 5: Detection of error in I/O system based on application health monitoring in quantum chemistry 
calculations. (a) Monitoring system energy convergence. (b) Monitoring the number of SCF iterations. 
 
 

Fault injection: The fault injection mechanism involved modifying the restart files by changing 

one digit in one atomic coordinate (that is, 1-byte corruption in a ~5.1 MB file). See Table 3 for 

fault injection details. The results for this test case are shown in Figure 5, where red and blue 

curves (representing two different runs with fault injection) immediately show violations of 

Rules 1 and 2 and therefore the health monitoring agent triggers a warning.  

 
Table 3: Difference in original and corrupted restart files 

 Size 
(bytes) 

Fault 
injection 
1 (red) 

Fault 
injection 
2 (blue) 

 Original  5,148,693 22.965622  22.969007  
Corrupted 5,148,693 22.065622  22.069007 

 
 

Error corroboration and recovery: A system monitoring agent associated with the file system 

(or even system logs) could be used by the fault coordinator to corroborate the warning issued by 

the application monitor. These logs may also provide insights into I/O errors that are reported by 

storage devices or file-system errors. These file-system events are especially common in network 
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file systems in which communication links may be busy or partitioned because of failures. Once 

the occurrence of the rule violation is correlated in history with the file-system monitoring agent, 

a user-predefined direction to the fault coordinator could allow the recovery to be initiated by 

picking up a healthy checkpoint from before the fault. For this test case, the checkpoints/restart 

events are indicated by vertical dotted lines in Figure 5; the ones immediately before the issuance 

of a warning by the application monitor (CP2 for the red simulation and CP3 for the blue 

simulation) were used to restart the healthy application.  

The relevance of this synthetic test case is that it demonstrates the ability of the proposed 

fault management system to catch silent errors. It could be argued that the hardware fault 

detection mechanism associated with hard disks and the software mechanisms in the file system 

will be able to catch a significant proportion of errors that lead to corruption. Moreover, the 

application will generate warning messages and quit if there is a significant amount of data 

corruption (file format violations). However, this synthetic test case provides an example of an 

additional mechanism in the multi-level hierarchy that can allow detection of errors associated 

with file systems and storage. 

 

Implementation on HPC architectures: This test was also conducted on a Linux cluster, 

similar to the MD test case. However, the overall cooperative fault management system 

described for this test case is also fully applicable to current HPC and future extreme-scale 

systems. 

 

Selection of check-point considerations: Checkpointing and selection of checkpoints are 

important for ensuring end-user productivity in case of failures and recovery [5, 50-51]. In the 
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proposed approach, violation of the health rules is based on the assumption that the silent errors 

are almost instantaneous and affect the simulations immediately so that the rule violation is 

trigged within a few steps of the simulations. If such an event occurs, a healthy or error-free 

checkpoint is selected from a state that is considered healthy, based on the defined rules. 

However, it is possible to envision cases in which the silent errors are small and do not cause 

immediate rule violations but rather a drift in the health parameter. Such cases would be much 

harder to trap with simple rules. With user experience, detailed knowledge of the health 

parameters will be useful to define tighter rules to trap slow drift (and not only sudden 

violations). 

 Another approach to ensuring that the selected check point is error-free is performing 

short, multiple simulation restarts with checkpoints going several states back. If the simulations 

are deterministic, a healthy state will be marked by the last checkpoint that provides values for 

health parameters that agree with those from older checkpoints. Such an approach would require 

dedicating somewhat more resources; but as it can be completely automated, it would provide 

increased end-user productivity with more control by ensuring that the checkpoint is error-free. 

 

Cost of recovery considerations: One of the benefits of the concurrent monitoring of the 

application health parameters is that it involves minimal cost (time) during the recovery process. 

The selection criteria for the health parameters include the ability to access the information at a 

relatively low cost. In the two test cases, this was done by live monitoring (by grep) of text 

files. The cost of this step was trivial, as the output files are generated typically at rate of 

<1 MB/sec. As the decision agent is run simultaneously, the real cost in recovery is associated 

with issuing an application termination signal, waiting for the unhealthy application to terminate, 
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and restarting the application at a previously healthy checkpoint. The decision of which 

checkpoint is used for restart is made when the warning is triggered (rule violation); therefore, it 

does not require any additional analysis or resources. If the simulation is being performed within 

a runtime allocated by a queue manager, the recovery and restart steps are also performed within 

the allocated time and resources.  

 The cost of recovery for the two test cases was less than 1 minute for issuing the 

application termination signal, a grace period for cleanup, and relaunching the application. MD 

and electronic structure calculations require run for hours to several days. Therefore, this 

approach resulted in a significant improvement in productivity. Note that the recovery cost does 

not include the time already spent between the healthy state and the point when the health 

warning was triggered. Further, it does include the case when termination, cleanup, and 

application relaunching could be delayed because of other factors. It can be envisioned that as 

this approach is used, a good set of health rules will be developed by the community which will 

allow the most optimal wait between the unhealthy behavior and when the warning is triggered.  

 

Performance modeling of recovery: Realistic performance modeling would require comparing 

the average time-to-solution for an ensemble of regular jobs submitted to a queue manager which 

fail as a result of fault injection, with the average time-to-solution based on jobs that use the 

proposed recovery approach triggered by rule violation. This comparison would only be 

meaningful when the collected data is based on a set of rules that allow an in-domain user to 

improve the overall productivity. In the current study, we propose only a limited set of rules. 

However, future research would explore selecting rules that improve user productivity and 

evaluating the performance of the framework and approach based on these rules. 
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4. RELATED WORK 

Approaches for error detection based on basic textual logging (e.g., syslog) to numeric metric 

gathering (e.g., performance counters) have been studied extensively in prior work [6, 52-55]. 

There has been extensive research in the analysis of large-scale system monitoring data, 

specifically reliability, availability, and serviceability (RAS) and console logs [7, 8, 56-58]. The 

Chopstix [59] system employs a probabilistic approach to monitoring, whereby a sketch of 

monitoring events efficiently characterizes a state, which can be used for identification and 

diagnostic purposes. The FENCE framework analyzes data logs to explore potential markers for 

fault prediction [9]. Such system monitoring tools can provide input to a system-level fault 

information framework, making them complementary to our application-driven primary 

approach. 

Monitoring, maintenance, and job logs were used in several studies to identify errors over 

the lifespan of a large-scale system, or successive generations of systems. Levy et al. studied the 

system logs to gain insights into memory errors [24]. They observed no significant correlation 

between correctable memory (DRAM) faults and subsequent uncorrectable faults that would 

serve as a predictive measure. It was also noted that no root cause was determined for the 

majority of “system down events”; this finding underscores the need for both improved 

monitoring and resilience mechanisms. The mean time between failures (MTBF) is a useful 

metric that applications can use to estimate failure-free work durations. Gupta et al. studied logs 

from five generations of systems at Oak Ridge National Laboratory spanning 2008–2015 and 

found a node-count normalized MTBF ranging from ~8 hours to ~23 hours [58]. The study 

found that most of the failures came from a relatively small set of failure types (causes) over the 
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five system generations, with machine check exceptions (MCEs)1 being the top failure type in 

three of five systems (and the second and third most frequent failure type in the other two 

systems) [58]. 

Software-implemented fault tolerance (SIFT), which takes advantage of the redundancy 

available in distributed networks, was used to develop middleware providing fault tolerance 

capabilities [60]. SIFT provided a hierarchical error detection framework designed to adapt to 

changing application needs, including changes in throughput. SIFT test cases included space-

borne applications, wireless telephone network controllers, and main memory database systems 

[61]. One of the limitations of SIFT was the high overhead introduced by redundancy, which 

might limit its benefit for user applications in an HPC environment. 

The AutomaDeD project [14] is a statistical tool that uses timing models of the 

application to detect abnormalities in the runtime behavior of an application. It is similar to the 

health monitor presented in this paper in that neither require changes to the target application. 

However, although timing anomalies may be related to errors occurring within the system, they 

are at best secondary indicators. In fact, many other factors can also influence the execution 

times of different phases of an application, including the specifics of the simulation inputs and 

usage of the system (i.e., contention with other jobs for shared resources). The Trident tool [62] 

is a compiler-based approach that seeks to model the effects of soft errors on a program overall 

and on individual instructions. Trident uses a probabilistic model to predict silent data corruption 

effects, in contrast to fault injection–based methods. A recent survey found the majority of 

exascale computing projects use MPI [18]. Therefore, work to add resilience capabilities to MPI 

[15-17] will be useful to help support resilience in next-generation applications.  

 
1 The Machine Check Exception (MCE) is the hardware mechanism used to report various hardware errors, e.g., bus 
errors, memory errors, CPU errors. 
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Autonomic computing has emerged as an approach to deal with large, complex software 

systems characteristic of many areas of modern computing [63]. For example, da Silva and 

Rebello presented a hierarchical MPI-based application management framework that provides 

fault tolerance by detecting failed tasks and framework components and restarting them or 

redistributing work to surviving framework components [64,65]. Similarly, Haupt et al. 

presented an approach for the autonomic execution of computational workflows which involves 

a distributed service-oriented architecture to monitor and respond to jobs or job steps in the 

distributed (grid-based) execution of a multidisciplinary design optimization workflow by 

rerunning them [66].  

As we progress toward exascale HPC systems, it is expected that failures (both hard and 

soft) will become much more frequent events that the application must be prepared to handle [36, 

24, 58, 67]. Bronevetsky and de Supinski explored the effect of soft errors on iterative linear 

algebra methods [68]. They used a fault injection technique to determine the impact of targeted 

soft errors and then explored algorithm-based fault tolerance techniques that could be integrated 

into the application to help detect and mitigate the effects of these errors. Currently, many HPC 

applications rely on checkpoint/restart rollback recovery fault tolerance techniques to support 

application recovery after a failure [10]. The storage requirements for checkpoint/restart 

techniques at exascale are a concern [27, 69]. Recent advancements in checkpoint targeted file-

system optimizations [70-72] and innovative hardware designs [73] are likely to help mitigate 

this issue in the near term. Some applications are starting to experiment with algorithm-based 

fault tolerance (ABFT) techniques [11, 74, 75] and natural fault tolerance [12, 13] techniques as 

alternatives to traditional checkpoint/restart techniques. ABFT and natural fault tolerance 

techniques are intrusive approaches that allow an application to improve its ability to detect and 
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manage the effects of both soft and hard errors but require substantial changes to the code, 

leading to concerns regarding their widespread adoption in user communities, especially with 

legacy applications.  

 

5. CONCLUSIONS AND FUTURE DIRECTIONS 

The described methodology and cooperative fault management system enables the development 

of an application-centric fault detection and recovery mechanism to provide resilience on HPC 

architectures. Our methodology is not designed to detect all silent errors but only to capture the 

ones that impact application health. In combination with a set of user-defined rules and an FTB 

that allows the exchange of failure-related information between different layers, we 

demonstrated that it is possible to catch silent errors arising from memory or file-system 

(storage) failure. Moreover, we presented a methodology that could allow detection of the source 

of the errors, as well as the simulation steps where the failure started making an impact on the 

simulation. Based on this information, we were able to initiate an application recovery process 

from healthy checkpoints, thereby minimizing the resources wasted by erroneous calculations. 

Note that it is possible that the application monitor agent (or the system monitor) might issue a 

warning and no corroborating evidence be found. In such situations, it would be up to the user to 

define rules that would treat this warning as a silent error and attempt recovery, treat it as an 

application error and halt, or disregard the warning and continue. 

  This strategy was implemented for two different applications, MD using the LAMMPS 

code, and quantum chemistry (electronic structure) calculations using the GAMESS package. 

These two test cases were used to demonstrate the detection of simulated faults in the memory 

and I/O systems, which would remain undetected without the proposed scheme and would 
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require human intervention. The cooperative scheme demonstrates how future exascale systems 

and applications could be co-designed for improved resiliency and productivity. 

As a proof of principle, the present work does not provide for resilience of the monitoring 

framework, which may be considered a requirement for a production-quality system. That issue 

could be addressed straightforwardly by implementing the monitoring framework in a redundant 

fashion. As the monitoring framework is not computationally intensive, implementing the 

proposed approach would not add significantly to the cost of a simulation. This approach could 

protect against both node failures and data corruption within the framework. Another important 

aspect of this research concerns the ability to distinguish between unhealthy behavior in an 

application due to silent error(s) and unhealthy behavior due to a bad simulation state. 

Sometimes bad simulation states result from bad input parameters or other issues associated with 

the simulations. There are strategies that could be used to distinguish between these two 

scenarios by rolling back the simulations and rerunning them with a different set of hardware 

resources. If the unhealthy state occurs again, it is most likely due to a bad simulation state. 

However, if it does not reoccur or if a new type of issue with the application is triggered, then 

there is a better chance the unhealthy state was caused by a silent error. The health monitoring 

strategies and framework described herein would allow such functionalities to be implemented in 

the future. Similar approaches may be useful to distinguish between software bugs and data 

corruptions.  

Additional future work in this area will focus on generalization of the implementation to 

other domains, as well as collecting application-specific information that allows better definition 

of the user-defined rules for health monitoring. Another area of focus will be to integrate 

application timing–based rules similar to those in the AutomaDeD project. However, external 
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events can strongly affect the performance (timing) of applications, for example, a burst of I/O 

by another application. The proposed cooperative fault management system could also include 

statistical timing information for the application progress, and a violation in timing-based ruled 

rules could be used to trigger an investigation.  
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