
Data Jockey: Automatic Data Management for
HPC Multi-Tiered Storage Systems

Woong Shin∗, Christopher D. Brumgard∗, Bing Xie∗, Sudharshan S. Vazhkudai∗,
Devarshi Ghoshal†, Sarp Oral∗, Lavanya Ramakrishnan†,

*Oak Ridge National Laboratory
Email: {shinw, brumgardcd, xieb, vazhkudaiss, oralhs}@ornl.gov

†Lawrence Berkeley National Laboratory
Email: {dghoshal, lramakrishnan}@lbl.gov

Abstract—We present the design and implementation of Data
Jockey, a data management system for HPC multi-tiered stor-
age systems. As a centralized data management control plane,
Data Jockey automates bulk data movement and placement for
scientific workflows and integrates into existing HPC storage
infrastructures. Data Jockey simplifies data management by elim-
inating human effort in programming complex data movements,
laying datasets across multiple storage tiers when supporting
complex workflows, which in turn increases the usability of multi-
tiered storage systems emerging in modern HPC data centers.

Specifically, Data Jockey presents a new data management
scheme called “goal driven data management” that can automat-
ically infer low-level bulk data movement plans from declarative
high-level goal statements that come from the lifetime of iterative
runs of scientific workflows. While doing so, Data Jockey aims
to minimize data wait times by taking responsibility for datasets
that are unused or to be used, and aggressively utilizing the
capacity of the upper, higher performant storage tiers.

We evaluated a prototype implementation of Data Jockey
under a synthetic workload based on a year’s worth of Oak Ridge
Leadership Computing Facility’s (OLCF) operational logs. Our
evaluations suggest that Data Jockey leads to higher utilization of
the upper storage tiers while minimizing the programming effort
of data movement compared to human involved, per-domain ad-
hoc data management scripts.

I. INTRODUCTION

Scientific workflows have become increasingly sophisticated
with the growing emphasis on data analysis to keep up with
data growth from experiments, observations and simulations
[1]. This growth has given rise to several performance and
data management challenges for scientific workflows running
in HPC environments. To address such challenges, modern
HPC storage infrastructure is evolving to have deeper storage
hierarchies. In particular, a tiered storage architecture is gain-
ing more interest in large-scale HPC deployments, and such a
trend is expected to continue for the next decade [2], [3]. While
the tiered storage architecture has been around for a long time
to overcome limitations of monolithic storage architectures, it
is gaining renewed interest as new storage technologies, e.g.,
SSDs, diversify and enrich the hierarchy.

This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department
of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that
the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these
results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan).

The combined impact of complex data pipelines (work-
flows) and deeper storage hierarchies (multiple storage tiers)
has made data management on modern HPC centers a complex
and challenging task. The current data management practices,
which rely heavily on ad-hoc, manual data migrations are no
longer feasible to manage vast amounts of scientific datasets
across multiple storage tiers. Instead, providing a simpler stor-
age abstraction that hides the underlying storage architecture
is necessary to empower scientists to focus on the scientific
discovery process.

Despite a few existing solutions, data management tasks
are still largely relegated to the users. For instance, while
users can employ scientific workflow managers [4] [5] [6],
they typically cannot cope with multiple storage tiers. Simi-
larly, existing tiered storage management mechanisms [7] and
automatic data management systems [8] are not suitable for
large-scale HPC data centers, because they are not designed
to accommodate the batch-oriented, workflow-driven nature
of HPC applications, and thus cannot readily coordinate with
existing system components (i.e., job scheduler, file systems,
archival, and workflow management systems). Furthermore,
such systems aim to facilitate system administrator’s tasks
(i.e., performing system-wide data migrations) and do not
provide an intuitive abstraction for end-users to orchestrate
data migrations conforming to their individual needs.

To fill this gap, we present Data Jockey, a user-driven
workflow-aware data management system for multi-tiered stor-
age systems in batch-oriented HPC environments. Our goal
is to automate the task of orchestrating bulk data movement
and placement of datasets consumed by scientific workflows.
Data Jockey is deployed as an HPC center-wide consolidated
data management service that intelligently migrates datasets
and manages storage capacities as required by target scientific
workflows.

To support such automation of data management, Data
Jockey presents a new data management scheme called “goal
driven data management” that provides a declarative way of
defining data movement under user workflows. In particular,
this scheme reduces the burden of programming data move-
ment by managing the dynamic state of user data and using
that to automate source to destination data movement. With
this scheme, Data Jockey is designed to have two planes

I/O
 N

et
w

or
k

Home - NFS
User Home 10GB/ -
Project Home 50GB/ -

HPSS - Archival Storage
 70PB Tape Storage

User Archive 2TB/ -
Project Archive 100TB/ -

Spider II - Lustre PFS
 32PB, 1TB/s

Member Work 10TB/14d
Project Work 100TB/90d
World Work 10TB/90d

Project

RHEA (Data Analysis) 512 nodes
 [128GB DDR3] / node

Everest (Visualization)
34 HD Displays

EOS (Development)
736 nodes

Titan (Simulation)18,688 nodes
[32GB DDR3
+ 6GB GDDR5] / node

Summit (Simulation) ~4,600 nodes
[512GB DDR4 + HBM
 / NVRAM 1.6TB] / node

Local NVRAM (SSD). 1.6TB

Spider III - GPFS PFS
 250PB, 3TB/s

Member Work 10TB/14d
Project Work 100TB/90d
World Work 10TB/90d

Project

Fig. 1: Multi-tiered storage in HPC: Users in HPC centers
have to manage data across several storage tiers or locations.
Above is an example of Oak Ridge Leadership Computing
Facility (OLCF) [9] where users have to manage data across
multiple physical storage systems but also multiple logical
storage tiers with different policies being applied [10].

that separate control and data. The control plane implements
the data orchestration scheme as a centralized service that
generates small control tasks about data movement, while the
data plane transforms such control into bulk data movement.
In between, a resource abstraction layer provides a unified
interface to bridge control over heterogeneous data plane
resources.

Contributions: The main contribution of this work is the
design and implementation of Data Jockey that, at the core,
presents a new “goal driven data management” scheme. In
this work, we describe the concept, design, and architecture
of this scheme and demonstrate its impact on a modern HPC
data center. An analysis that quantifies the complexity of
day to day data management is provided where we present
how much complexity is reduced by our method. Further,
we have deployed a prototype implementation of Data Jockey
that implements the key features of our design in a real HPC
environment and demonstrated its feasibility as a center-wide
data management system that can be used in modern HPC
data centers. Data Jockey is capable of reducing 85.7% to
99.9% of the programming complexity of data management,
enabling users to better utilize the higher-performing, upper
storage tiers.

II. BACKGROUND AND MOTIVATION

A. Multi-tiered Storage in HPC

Multi-tiered storage is gaining interest as new storage
technologies such as flash-based SSDs diversify the storage
hierarchy. For example, the Oak Ridge Leadership Computing
Facility (OLCF) [9] will have four storage tiers, namely the
NVM-based burst buffer, the disk-based Spider III GPFS
parallel file system (PFS) along with its predecessor Spider
II Lustre PFS temporarily available before retiring, and the
disk/tape-based HPSS archival storage, all to accommodate de-
manding storage needs from supercomputers including the 200
petaflop Summit system [2] (No. 1 in the Top500 list). These

storage tiers support diverse I/O requirements such as the
need to absorb high-speed, bursty and transient checkpoints,
medium-term data analysis and long-term data retention. Other
facilities have introduced yet another layer, the campaign
storage, between the PFS and the archive, to support extended
data analysis. Such a trend intensifies the already complicated
storage hierarchy, e.g., currently four physical and twelve
logical storage tiers in OLCF (Figure 1), placing an adverse
impact on day-to-day data management tasks of users.

Simulation output: Each storage tier imposes a trade-
off between performance and capacity. Particularly, large-
scale simulations running on a supercomputer require a high-
performance storage tier (e.g., burst buffer) that can rapidly
absorb simulation output and minimize I/O jitter. Also, such
output datasets should be migrated in a timely fashion to a
higher capacity storage tier (e.g., PFS) to reclaim the scarce
capacity of the high-performance tier. For further longer-term
data retention, these datasets should survive various capacity
constraints, including file system quota and data purge cycles.

Analysis input: A target storage tier of a data analysis job
(e.g., burst buffer) may differ from a tier where the input
dataset already resides (e.g., archival storage). This implies
that an extra process of preparing the input data is likely
to become required, which can be costly for large datasets.
Moreover, conflicts between performance requirements of
users and a limited capacity of each storage tier exacerbate
the complexity of such data preparation processes.

Scientific workflows: Scientific workflows deal with large
amounts of data that have different I/O characteristics. Man-
aging such large amounts of data across a multi-tiered storage
system requires workflow specific data management. For in-
stance, users may want to move the input datasets to a fast
storage tier like burst buffer, store and delete intermediate
data as the workflow executes, and copy final outputs to a
persistent store for further analysis. Currently, users explicitly
move these datasets between the storage tiers before, after and
during the execution of a workflow.

III. DATA JOCKEY

A. Goals

Data Jockey is designed and implemented to automate
manual data management tasks for HPC users that have large
datasets and complex workflows.

Batch-oriented, workflow-aware: Data Jockey targets
batch-oriented HPC use cases where bulk data movement and
access are driven by scientific workflows. Such workflows can
either be an ad-hoc sequence of jobs submitted by a human or
a graph of tasks that a workflow management system submits.
To achieve this target, Data Jockey coordinates with existing
job schedulers and workflow managers.

Consolidated data management: Data Jockey aims to be
a consolidated data management system that accommodates
center-wide data management needs. Data Jockey should deal
with the heterogeneity of scientific workflows and the re-
sources since data management can vary between scientific

TABLE I: Data Jockey Overview

Challenge Approach Related

Catalog
manage-

ment

A unified catalog that tracks
datasets and their copies as well
as associated data movers and

data stores

Resource
management

Storage tier
selection

User policy-driven dynamic
selection of storage tiers

transparent to users

Data policy
support

Data
movement
orchestra-

tion

A generic orchestration engine
that automatically programs

low-level data movement from a
high-level declarative description
of a desired “goal-state” of data

Goal-driven
data

management

Capacity
manage-

ment

Data movement scheduler that
automatically moves datasets

based on its knowledge of
governing workflows

Workflow-
aware

scheduling

Coordinate
data

movement
and access

Transparent systematic guarantees
of non-interference designed to
coordinate bulk data movement

and bulk data access

I/O interface
layer

U
ser

D
om

ain
Storage

D
ata Jockey Service

Storage2Storage0 Storage1

Dataset A Dataset B

Data
Mover

Data
Mover

Data Stores

Data Job
Declarative
Data Policy
Statement

User goal driven
autonomous

data management

Orchestration

App.

Compute Cluster

I/O Interface

Storage0 Storage1 Storage2

Data
Mover

Data
Mover

App.

Compute Cluster

User
Automation
Imperative
data mgmt

scripts

a) Users handle the complexity of
 data management

b) Data Jockey alleviates the complexity
 of data management

Work-
space

Fig. 2: Architectural Overview

domains. Also, Data Jockey should be scalable enough to
accommodate data orchestration requests from many users.

User-centric: Due to the user-centric nature of scientific
workflows, Data Jockey aims to provide a user-centric data
management scheme, which differs from existing policy-driven
automation systems [11], [12]. While other policy-driven au-
tomation systems are mainly for administrators that implement
few system-wide policies, Data Jockey aims to serve many
data requirements (policies) directly from the users.

Integrates with HPC data centers: As a data management
system, Data Jockey aims to integrate with existing HPC com-
ponents such as schedulers, workflow managers, file systems,
storage systems, and various data movers. Instead of replacing
such components, Data Jockey focuses on implementing min-
imal wrappers to make such resources accessible to the upper
orchestration components.

B. Overview

Data Jockey is a consolidated data management system
that solves data management challenges (Table I). This con-
solidation replaces ad-hoc workflow specific user automation

scripts related to data movement orchestration that users have
to write otherwise. Figure 2 depicts the high-level architectural
overview of Data Jockey.

Data job submission: Users or workflow managers submit
“data jobs,” which are similar to “compute jobs” (i.e., jobs for
a batch job scheduler). These data jobs specify high-level goal
states (i.e., pre-staged, persisted, replicated, safe) of datasets
as a scientific workflow progresses or even beyond a single
workflow. While batch jobs are submitted to the job scheduler
service (i.e., PBS, Torque/Moab, LSF, Slurm), data jobs are
submitted to Data Jockey through an independent data job
queue manager that interacts with the job scheduler.

Data orchestration pipeline: Data Jockey implements a
new data orchestration scheme called “goal driven data man-
agement” when handling each data job submitted into the data
job queue. By going through multiple stages, high-level data
requirements described in the data jobs are translated into low-
level data movements. While doing so, Data Jockey performs
dataset shuffling based on the future timeline of data usage.
Soon to be used datasets are promoted to a closer storage tier
while datasets to be used later are demoted to a further storage
tier.

Resource manager: Data Jockey actively tracks and modi-
fies the state of user data and the underlying storage infrastruc-
ture (data storage and movers) by maintaining an information
base as well as implementing an API that provides a unified
interface towards these resources. We introduce high-level
abstractions such as data jobs, datasets, data movers and
data storage (shown in Figure 2) to generalize various data
management interactions.

I/O interface: To coordinate I/O and data movement, Data
Jockey introduces an I/O interface layer that implements an
isolated virtual namespace local to each compute job. This
I/O interface prevents collision between data movement and
access while providing redirection to the appropriate tier.

C. Using DataJockey (Use-cases)

1) Automatic data staging and de-staging: The primary
use-case of Data Jockey is to automate data staging and de-
staging in the context of multi-tiered storage systems. Running
a job atop a multi-tiered storage system requires some form
of capacity management for datasets due to the capacity
limitations usually enforced on tiers that are directly available
to applications (i.e., tier one). Manual data movement might be
preferable and straightforward for rigid shallow storage hier-
archies but quickly becomes unmanageable when the number
of storage tiers and the number of datasets increase. In-house
automation of such data movements is prone to errors since
users are not trained software engineers, and this eventually
leads to human intervention.

Data Jockey provides automatic dataset promotion based
on priority and coordinates with the job scheduler. Victim
selection and eviction are automated to prepare space for input
or output datasets, all accompanied with transparent out-of-
band bulk data movement. For users, such automation comes

at the minimal cost of a one-line directive in-line to the job
script per dataset.

2) Automatic data preservation: With Data Jockey, users
can specify policies on user datasets to preserve unused
datasets in the face of unexpected events such as dataset purge
cycles or job failures. For example, under circumstances where
the human in the loop is absent (i.e., out for a conference),
Data Jockey provides an integrated solution for automatic
data preservation. With a specified timeout of inactivity on a
dataset, datasets can be left on higher tiers until it is mandatory
for the dataset to be moved into safer storage. Additionally,
target destinations can be arbitrary where users can set policies
of multiple safe locations to preserve datasets.

3) Multi-cluster workflow: Another compelling use-case is
to automate bulk data movement in the context of multi-job
workflows that span across multiple compute clusters or even
different HPC facilities (Figure 1). For such use, Data Jockey
is used as a shared data supply substrate that is aware of the
use of multiple storage tiers. Data Jockey employs a resource
management scheme that manages storage systems and data
transport methods as a network of data stores and data movers.
This network is shared by multiple end-points (i.e., multiple
compute clusters or storage archives) where storage hierarchies
are dynamically computed based on proximity to such end-
points.

With the same directives in the job scripts, Data Jockey
provides automatic point-to-point dataset movements tightly
integrated with the automated capacity management mentioned
in Section III-C1. For example, datasets move closer to the
target storage tier available to the target cluster as the associ-
ated job is soon to be executed. In the process, lower priority
datasets are automatically pushed to alternative storage tiers
according to the storage hierarchy dynamically computed with
respect to their target clusters.

In the following sections, we discuss how the aforemen-
tioned use-cases are realized using Data Jockey’s design and
implementation.

IV. DESIGN

A. Abstractions for data management

1) Data job: The primary purpose of a data job is to specify
and trigger bulk data movement that prepares or post-handles
datasets for/from compute jobs (i.e., jobs for schedulers such
as PBS, Torque/Moab, LSF and Slurm). Data jobs are defined
to have one-to-one relationships with compute jobs and are
submitted in parallel, triggering data movements before and
after the execution of the associated compute job. By doing so,
a data job deports in-line ad-hoc data staging and de-staging
scripts to outside of the compute job context and replaces such
scripts with directives for extended data orchestration that are
not limited to data staging and de-staging. To support such
automation, Data Jockey provides a stand-alone orchestration
engine that interacts with the job scheduler to coordinate
data job and compute job execution. When replacing the
in-line scripts, data jobs are specified using a declarative
specification method (detailed in Section V-A) to simplify data

layout operations. In a data job, users describe an array of
<dataset, goal state, policy, mountpoint> tuples (detailed in
the following sections).

2) Dataset and their replicas: Rather than relying on
storage system abstractions such as files or objects, Data
Jockey introduces a high-level abstraction called a “dataset”
that is defined as a collection of dataset replicas placed in the
storage hierarchy. These replicas are a collection of individual
files or objects. This coarsely defined abstraction enabled us
to mitigate the cognitive burden of handling tens of thousands
or millions of files which does not necessarily reflect the user
view of data, enabling us to reflect user data management
workflows or policies that are often at a much higher level than
files. Within a dataset, each replica can have different attributes
(i.e., location, stripe size, state) but the data itself (collection
of files) remains identical. These replicas are organized to have
‘master’ and ‘slave’ relationships where the ‘master’ replica
is handled to be the primary replica.

3) Goal state of a dataset: In a data job, the goal state of
a dataset is assigned to the datasets, representing the desired
physical shape of the datasets requested by the users. By
providing such information, users can control where and how
datasets are prepared for a compute job. To capture such
information, we define states as a set of attributes (i.e., lo-
cation, stripe size, encryption, compression) used to configure
replicas, canonically named (buffered, staged, archived). For
example, a “staged” dataset state ready on a parallel file system
(i.e., Lustre) with a particular stripe size can be materialized
with two key-value pairs of <location, lustre> and <stripe size,
128> under the name “staged”. At system design time, admins
(or power users) are expected to define such states, where users
refer the states by name upon job submission. When submitted
via data jobs, Data Jockey supplies such attributes into low-
level “data actuators (data stores and data movers)” that are
used to prepare datasets.

4) Dataset policies to handle events: In data jobs, dataset
policies are also assigned to the datasets. Policies are used to
handle events like job failures, timeouts, and cancellations.
Policies are structured like a try-catch (or except) block
seen in modern programming languages. There is a primary
directive (try block) being executed, but when an exception
happens, exception blocks (catch / except) are executed. Such
conditional structure of policies is similar to rule-based action
policies implemented by other systems. However, Data Jockey
differs on how actions are described. To limit the complexity
of programming actions of such rules, goal states are used
in place of the actions. When exceptions happen, actions are
parsed as “apply state X to dataset Y” instead of performing
a sequence of actions. Similar to goal states, policies are also
expected to be defined at system design time, later referred
by name in data jobs with canonical names like “default” or
“auto-backup”.

5) Mountpoints for dataset consumption: Mountpoints are
locations in the application storage namespace (i.e., filesystem)
where applications can consume the designated datasets. Such
mountpoints are passed to the I/O redirection component that

(a) Control loop

(b) Workflow and Data jobs

(c) Resource graphs (d) Read-modify-write

(e) Programming

Controller
Data
set

Monitor
D

at
a

Jo
b

Cmp
Measured
Difference

Observed State

Desired
State

Low-level
data shaping
operations

Data controller

State
Observation

Consumed
when
ready

A: location
B: location

A > Tier0Data job (goals)
(Dataset>location)

D
at

a
se

ts

B > Tier0 A, B > Tier1 C > Tier1
C > Tier1

C: location

S0

A, B > Tier3

Workflow
stage / phase S1 S2 S3

Tier0
Tier0

Tier1
Tier1
Tier1

Tier3
Tier3
Tier1

Tier1 Tier1 Tier1 Tier2
N/A N/A
Tier3 Tier3 Tier3 Tier1 Tier1

Tier2Tier2

Intermediate Intermediate IntermediateS0State S1 S2 S3

TierA0
Tier:1 MoverCMoverA

TierC0
Tier:1

TierB0
Tier:1

TierS1
Tier:2 TierS2

Tier:2

TierS3
Tier:3

ClusterA ClusterC

ClusterB

MoverB

MoverD
MoverE

DomainB

DomainA

DomainC

DomainS

S0 S1

ModifyRead Write
Data Mover

Data
source

Data
sink

Desired
State

Source
State

SA

SB

S1

SC

SD SE

Goal
State

Source
State Unknown

States

Ta1

Tb1

Tc1

Td1 Te1

State
Transitions

Fig. 3: Goal driven data management scheme

Tier0
Tier1
Tier2

S0 SgS0 Sg S0 SgS0 Sg

MoveMigrate Copy
(Eager)

Copy
(Lazy)

S0 Sg S0 Sg

Only Alloc

S0 Sg

FreeS0 Sg

Before After

Master Replica
Slave Replica
Allocation

Fig. 4: State transition methods (replica handling)

translates access to mountpoints on the physical location of the
datasets. This I/O redirection component is configured after
a data job prepares a replica with the desired state pinned
in place. Later, after compute jobs have finished executing,
datasets are unmounted, redirection component is torn down,
and datasets are unpinned.

6) Data stores and data movers: In Data Jockey, data
stores are data sources and sinks for datasets, and data movers
are the data pipes in between. Data stores represent logical-
physical (also geographical) locations that are regions (subtree)
of an underlying storage system storing user datasets, typically
implemented using a “container” abstraction (i.e., directories
in POSIX) provided by the underlying storage system. Data
movers represent data moving methods that exist between
or within storage systems that can be a simple UNIX “cp”
command or a sophisticated parallel copy method or a file
transfer method between distant geographic locations.

B. Goal Driven Data Management

Figure 3-(a) shows the concept of the “goal driven data
management” scheme proposed in this work. The main idea
of this scheme is to maintain a control loop that modifies the
state of user datasets laid out across the storage infrastructure.
The goal of this control loop is to ensure that a replica that
matches the user goal exists in the system when requested.

Upon executing a compute job, this control loop accepts
the desired state (i.e., desired storage tier) of datasets (data
job) as the reference input and compares it to the current
state of the replicas Data Jockey already has. Such comparison

is performed by comparing metadata attributes that represent
the state at the level of replicas (collection of files). If there
is a difference, this loop computes the necessary low-level
movements required to prepare a replica that has the desired
properties. Afterward, the prepared replica is consumed by
the associated computer job. This concept of a control loop
is inspired by cluster management systems such as Kuber-
netes [13], Ansible [14] and Puppet [15]. In the case of Data
Jockey, such control is applied by managing the state of user
datasets instead of infrastructure.

1) Scientific workflows and data jobs: In the context of
scientific workflows, the control loop accepts multiple data
jobs that describe the state of datasets required by each
compute job or workflow stage as the workflow progresses
(Figure 3-(b)). While data jobs only describe the desired state
of datasets required during the execution of a compute job,
the intermediate states are actively tracked by Data Jockey.
For Data Jockey, the sequence of data jobs is a constantly
shifting system goal that the control loop has to reconcile. For
this sequence of data jobs, Data Jockey provides the necessary
synchronization with the associated compute jobs.

2) Dataset state interpolation: To support such dynamic
control on user datasets, Data Jockey maintains a catalog
of the required data management resources in the form of
a graph (Figure 3-(c)). In particular, Data Jockey maintains
information about the topology of data management resources
such as data stores and data movers, each translated into a
vertex (data store) and an edge (data movers). Data stores
represent individual storage tiers (i.e., file systems, archival
storage) while data movers represent the data paths in between
(i.e., POSIX cp tool, parallel copy, archival storage backup
tool). Here, Data Jockey considers ‘location’ as a primary
attribute for a dataset and uses the graph representation to
compute the necessary steps (multiple source-to-destination
copies) to reconcile the state of a dataset. Also, Data Jockey
dynamically extracts the storage hierarchy from the graph and
applies it to data movement.

3) Dynamic storage hierarchy: Data Jockey dynamically
extracts the storage hierarchies based on a coarsely grained
‘tier number’ given by the users that hint the orientation
of the data stores, influencing data movement within the
resource graph (Figure 3-(c)). In the resource graph, storage
tiers with higher tier numbers are peaks of a landscape where
user datasets either climb towards a higher tier (promote) or
descend to a lower tier (demote), all using the data pathways
(edges) between the data stores (vertices). This design is to
support multiple compute clusters in an HPC center (multiple
peaks) that are designed for specific tasks (e.g., compute, sim-
ulation, analytics) since storage hierarchies can vary from the
perspective of two different clusters due to the diversification
of storage tiers (i.e., SSD based performance tier dedicated to
a certain cluster).

4) Shaping datasets from state to state: When enforcing
state transformation of each dataset, Data Jockey uses a
sequence of read-modify-write of a replica (Figure 3-(d)).
If a replica of a desired set of properties does not exist,

Data Jockey reads a replica (read from a storage tier or
a compute job) and creates (write) a new replica with the
desired set of properties (modify). During these replica level
read-modify-write operations, Data Jockey guarantees that no
other I/O accesses are performed on the replicas involved to
maintain data integrity. Data Jockey achieves this by owning
the replicas in a managed space where no third-party I/O
is allowed except for the ones that are explicitly allowed.
Since such a read-modify-write cycle always introduces a new
replica, Data Jockey implements several methods that control
the number of replicas in the system (Figure 4). Stale or
excessive replicas produced during the process are invalidated
and garbage collected (i.e., a new allocate invalidates all
existing replicas).

5) Impact on programming: Goal driven data management
significantly reduces the amount of information required from
the users in order to automate data orchestration. Figure 3-(e)
depicts a simple model that quantifies this impact. With Data
Jockey, it is sufficient for users to specify the destination state
since the transitions between the current state is automatically
inferred. Without Data Jockey, assuming the primary attribute
of a state is a location, a user might have to prepare multiple
source (source state) to destination (destination state) copy
statements (state transitions) for all known data paths and
implement a mechanism that is capable of selecting proper
data paths based on the current location of a particular dataset.

V. IMPLEMENTATION DETAILS

A. Data job specification

1) Multi-level abstraction: Data job specifications are
structured to have multiple levels of abstractions. This struc-
ture is to limit the complexities being exposed to the end-
users but also to be powerful enough for power users. Data
job specifications are composed using two key components.
One is the “library” and the other is the “directives” used in
job submission scripts. Libraries define the vocabulary of data
jobs, and directives use the vocabulary to compose and submit
a data job.

2) System administrators, users and power users: At
system design time, system administrators are expected to
define the library of possible dataset goal states and policies
when they setup available data stores and data movers. Later in
normal operations, users interact with Data Jockey by referring
to this pre-defined library of goal states and policies by their
name. In doing so, the pre-defined library serves as the system
default. Power users may choose to override or customize
existing elements in the library. In general, average users may
end up writing one-line directives that refer to entities in the
library. Advanced users would customize the library.

3) Library: Libraries provide the vocabulary of data man-
agement operations, defining the goal states and the dataset
policies. Data Jockey uses YAML [16] to define a library,
exploiting the hierarchical structure of YAML that scopes key-
value pairs (Figure 5-upper). Under the block “policy”, a “de-
fault” dataset policy is defined that handles three exceptions.
Also, under the block “placement”, four possible goal states

library.yml
policy:
default:
main: { default: ’ready’, timeout: 13d, max_replica: 3 }
on_evict: { apply: ’safe’ }
on_timeout: { apply: ’safe’ }
on_error: { apply: ’persist’ }

placement:
burst_sink: { storage: [’bb’], method: ’allocate’ }
ready: { storage: [’bb’, ’pfs_scratch’], method: ’clone’ }
persist: { storage: [’pfs_project’], method: ’migrate’ }
safe: { storage: [’hpss’], method: ’migrate’ }

#!/bin/bash
simulation.pbs
#PBS -A pjt000 -N test -lwalltime:1:00:00,nodes=1500

#DJ "ds://pjt000/dataset0,./analysis/input,analysis"
#DJ "ds://pjt000/burst0,./output,dump"

mpirun -n 1500 ./a.out # Executing the main application

Fig. 5: Data job specification

are defined. Each of these policies or goal states (placements),
are then defined with a set of key-value pairs accepted by the
orchestration engine. Libraries have a hierarchical structure
where higher level entities are built by composing multiple
low-level constructs. A “policy” is built on top of multiple
relevant “placements” (goal states) referred within the catch
blocks. Also, entities in the libraries have a layered structure
where each key-value pair is an override of the defaults.

4) Job script in-line directives: With the vocabulary de-
fined in the library, users submit data jobs with a set of
directives embedded in a job script. Data Jockey provides a job
submission wrapper that submits a data job from the directives
while submitting the main compute job to the job scheduler
(detailed in Section V-B). These directives are used to produce
an array of tuples, consisting of 1) a reference to a dataset, 2)
desired namespace mount location, 3) a reference to the goal
placement (goal state), 4) a reference to a placement policy,
and 5) a list of optional constraints such as the deadline for the
data job to reach the “goal state”, making datasets available
to the compute job.

The lower part of Figure 5 is an example of such directives
used in a job script formatted in PBS (Portable Batch System).
The directives are embedded with the # DJ prefix while other
implicit settings are imported from the environment. In the
example, Data Jockey prepares an input dataset at path ./input
using the ‘analysis’ goal state in the current work directory.
Also, an empty dataset is created to dump output at a path
./output using the ‘dump’ goal state. Preparation of two such
datasets, one existing and one to be created is achieved with
two lines of such directives.

In-line embedding of directives is not limited to one job script format.
Support for other types of job scripts is a matter of having another job submit
wrapper tool for another scheduler.

B. Scheduler Integration

Data Jockey loosely integrates with job schedulers in order
to coordinate the execution of data jobs and their associated
compute jobs. When integrated with Data Jockey, job sched-
ulers are not aware of data jobs. Data Jockey behaves as if a
user submits a job and monitors the queue for further control.
To achieve this, Data Jockey provides a job submit wrapper
tool and a job queue control service. We chose such loose
integration as a default to enable Data Jockey to be integrated
with broad types of job schedulers.

1) Job submit wrapper tool: Job submit wrapper tools
are provided to perform parallel submission of compute jobs
and the embedded data jobs. Such tools are provided as a
wrapper CLI tool that accepts stdin or filenames of job
scripts (Figure 5). Data jobs are extracted and submitted from
in-line Data Jockey directives (Section V-A4) and the compute
job is submitted to the job queue control service.

2) Job queue control service: When data jobs and compute
jobs are submitted, the job queue control service ensures that
the execution of data jobs do not overlap with the execution
of compute jobs. This service ensures compute jobs are not
executed until the data jobs finish preparing the requested
datasets. Such control is achieved by monitoring the progress
of data jobs and also monitoring and controlling the status of
the compute job using integration methods (i.e., wrapping job
scheduler CLI tools).

C. Data Orchestration

The data orchestration pipeline implements the proposed
“goal driven data management” scheme. This pipeline imple-
ments the core part of the control loop.

1) Data placement resolution: Goal state of a dataset for
dataset requests are represented as “placement” components
implemented as a set of attributes that describe the goal state
of a particular dataset. Such attributes include destination
storage (i.e., burst buffer, parallel file system, archival) and
methods (Figure 4). “Goal states” placements are canonically
named by users or administrators to represent the desired state
of datasets (i.e., ready, persist, safe). These canonical names
form a user-friendly vocabulary when defining a higher order
“policy” component that enables users to define a goal for the
system to pursue. With such policies, users state a primary
goal placement where there are optional goals that should be
pursued upon system exceptions such as job failures, evictions,
timeouts, and errors.

2) Data movement planning: After the placement for a
dataset is resolved, a data placement request is issued to a data
movement planning stage. The target of the data movement
planner is to place the replica to the designated storage tier
even if it requires evicting existing replicas. To facilitate the
decision of what stays and what leaves, Data Jockey uses the
priority property which was given to the data jobs. With the
current implementation, the submission wall clock time is used
as the priority.

Tight integration with job schedulers (dataset and data job aware schedul-
ing) are left for our future work.

Phase1 - Nearest replica and promote location: For each
dataset request, the planner asks the resource manager for the
nearest replica (in the resource graph) in the dataset that can
reach the goal. Next, the tier to get closer to the goal tier is
inferred by the resource manager and the request is placed in
a waiting queue on the tier.

Phase2-A - Placement requests: Then, the storage planner
iterates through the storage tiers from top to bottom to process
the placement request assigned to each tier. In this process, the
planner attempts to place the replicas in the tier but also tries
to find victim replicas it can ‘demote’. Here, requests that can
fit without evictions are marked actionable.

Phase2-B - Handling evictions: The requests that require
demotions are temporarily marked dependent on the victims.
For these victims, the planner gets a demotion location from
the resource manager. When victims are placed to a demotion
storage tier, the request inherits the priority of the root
placement request that caused the eviction. This action can
be chained throughout multiple storage tiers and are triggered
to be ‘actionable’ when the demotion of the furthest victim
can be fulfilled (enough quota), otherwise canceled.

Phase3 - Reap actionable: After the planner determines the
fate (actionable, non-actionable) of each placement request,
the planner reaps the chain of actionable requests starting
from the bottom tier to up. Here, a convoy of data movements
is issued starting when an evicted victim is finally marked
actionable. For example, simple space allocation for a replica
on the top tier that required a cascade eviction down two
tiers would result in three actions where the bottom tier data
movements are fulfilled first, followed by the upper tier data
movement and finally the actual allocation operation the user
wanted. In the sequence of actions, the planner guarantees
that the storage quota consumed by the convoy is locked from
subsequent planner iterations.

3) Resource manager support: To support the planner, the
resource manager maintains the graph-based dynamic storage
hierarchy mentioned in Section IV-B3. Queries such as finding
the nearest replica towards a goal storage tier is a matter of
evaluating the cost (e.g., bandwidth of edges) of shortest paths,
and finding a data movement plan towards a goal location (i.e.,
promotion) is a matter of translating the paths to a series of
source-to-destination data movement steps.

In this graph, data stores are labeled with tier numbers that
define the altitude of their position in the storage hierarchy,
influencing replica demotion. For demotion, a lower altitude
neighbor that has the shortest path towards the goal location
is selected. Since the planner performs the scan starting from
above (higher tiers), the demoted replicas generally flow
towards lower altitude storage (valleys in the graph) when
evicted by higher priority replicas.

4) Data movement scheduling execution: After the plan-
ning stage, the data movement execution stage dispatches the
queued actionable data movements. Data Jockey implements
a low-level scheduler that selects eligible data movements
and assigns them to the resource agents that are available.
The progress of these data movements are then tracked and

C
LI

 to
ol

s

REST API
Worker
Pool

Websocket
Worker Pool

…

Data job Handling Worker pool
…

Broker RDBMS

App.App. StorageStorage MoverMoverData
MoverApp. Data

Store
StorageStorageData

Store

Distributed Data Plane Resources (Storage Infrastructure)

Data Plane
HPC Users

I/O

In
te

rfa
ce

Control
(HTTP)

Bulk Data
Movement

Resource Agents

Internal Comm.

Control Plane
HTTP Websocket

Connection

HTTP
REST API

Calls

Fig. 6: Data Jockey implementation

managed. It is guaranteed that the progress falls into discrete
atomic states such as ‘queued,’ ‘pending,’ ‘error’ and ‘done’.
Underneath, resource agents encapsulate the invalid states by
performing automatic cleanup. This stage ensures that low-
level data movements that have dependencies adhere to the
correct sequence by honoring the dependency chain (convoy)
assigned by the planner.

5) I/O session: After the data preparation stage is finished,
the replica is pinned and an I/O session is opened to give
access to the application. Within the I/O session window, a
special resource agent instance that is run in-situ of the context
of a compute job configures the I/O interface layer to provide
access to the application. Currently, Data Jockey uses symbolic
links to set up an I/O path towards a managed replica but can
be extended with sophisticated I/O interposing mechanisms.

D. Data Jockey Implementation

Data Jockey was implemented to have a control plane, a data
plane and a set of tools to provide a user interface (Figure 6).
Data Jockey was implemented with approximately 15K lines
of Python 3.6 [17] code that leverage a message broker
(RabbitMQ 3.6 [18]) for internal communications and an
RDBMS for metadata persistence (MariaDB 5.5.56 [19]). For
the control plane’s external communication with the resource
agents and CLI tools, Data Jockey uses HTTP based REST
APIs and WebSockets. Job scheduler integration was done
with Torque 6.0.2 / Moab 9.1.1.

1) Control plane - Web application: The control plane
implements data job processing, automatic replica placement,
and orchestration. To interact with the users, the control plane
exposes multiple REST API [20] endpoints that enable users
to manipulate the state of data jobs, datasets, and resource
agents. Manipulation of certain resources via the API (i.e., data
job submission) triggers a cascade of operations backed by
multiple stages of worker processes that pick up the necessary
state to handle a certain stage, eventually leading to the issuing
of low-level operations towards the data plane.

2) Data plane - Resource agents: Resource agents are
agent daemon processes that form the communication back-
bone of the data plane. When deployed on a node, agents
announce the capability of a particular node (i.e., mountpoints,
data movement tools) to the control plane via a WebSocket
connection and subscribe for low-level data management tasks.
Within the control plane, such announced capabilities are used

to construct a resource graph by connecting data stores and
data movers based on available interfaces (POSIX, object store
or other) and reachability domains (network).

3) Concurrency model and coordination: Data Jockey has
been implemented in an asynchronous event-driven architec-
ture backed by a shared pool of stateless worker processes and
a common persistent layer. In Data Jockey, each data object
related to a data job is implemented as a state machine where
the states are persisted as database records. State manipulations
are handled by any process available in the pool when an event
occurs. This architecture was implemented using the RDBMS
to persist state manipulations while using the message broker
to maintain and coordinate the worker pool. Data Jockey
heavily relies on the transactional guarantees of the RDBMS
to make consistent updates of flags and state fields of multiple
objects.

4) Fault tolerance and scalability: The architecture de-
scribed in Section V-D3 makes Data Jockey relatively easy
to scale and be tolerant to failures. When worker processes
fail to handle an event, the message broker guarantees a retry
while the atomicity of a state manipulation is guaranteed by
the RDBMS backend. Also, scaling the control plane is a
matter of increasing the number of workers in the pool. In
this design, the backend RDBMS is the bottleneck, but this
issue can be addressed with database sharding techniques. Data
Jockey relies on a project-oriented resource model that can
better support such partitioning techniques.

VI. EVALUATION

In this section, we present the evaluation results for the Data
Jockey, seeking to answer the following questions.
• What is the impact of Data Jockey in terms of user

experience?
• Can Data Jockey be deployed as a center-wide data

management service for HPC facilities?
• How well does Data Jockey integrate into HPC environ-

ments?
To answer these questions, we evaluated a prototype of

Data Jockey that implements the key features described in
Section V. Our prototype has been deployed and evaluated
in two separate environments, a small-scale testbed, and a
mid-scale HPC production environment. We have obtained 18
months worth of operational scheduler logs from OLCF and
used the analysis of these logs to guide our evaluations.

A. Quantifying the Impact of Data Jockey on User Experience

We measured Data Jockey’s usability on how much it
reduces the complexity of data movements from a user per-
spective. Considering system states and transition paths as
vertices and edges in a state diagram (Figure 3-(e)), we
measured the complexity of a workflow as the total number
of vertices/edges that users need to account. In a conventional
script, such elements translate into branches of if-else control-
statements. For Data Jockey, these elements translate into
object definitions within the data job specification.

0 50000 100000 150000 200000 250000
Workflow

0.80

0.85

0.90

0.95

1.00

C
o
m

p
le

x
it

y
 R

e
d
u
ct

io
n

worst case
best case

Fig. 7: Complexity reduction of Data Jockey on workflows in
the OLCF operational log

0 20 40 60 80 100
repeated writes

0.5

0.6

0.7

0.8

0.9

1.0

C
o
m

p
le

x
it

y
 R

e
d
u
ct

io
n

Varying D

1 2 3 4 5 6 7 8 9 10
tiers

0.5

0.6

0.7

0.8

0.9

1.0
Varying T

Fig. 8: Complexity reduction of Data Jockey on workflows by
varying parameters

For a workflow on a multi-tiered storage system with T
storage tiers, assume the workflow produces datasets with the
same write pattern D times, each time generating a single
aggregate dataset. In the system, T storage tiers are connected
by V paths; datasets can be transferred from one tier to another
by the data movers in between; in the data-movement process,
E failures may occur on storage tiers or data movers before
a data transfer succeeds.

Thus, when a workflow owner designs data movements on a
multi-tiered storage system, in the worst case, D×T ×V ×E
if-else design cases should be considered. In the best case,
the user can specify tiers and paths and we can consider a
smaller set of design cases: D × E′, where E′ is the error
on the specified tiers and data movers. Thus, with the use of
Data Jockey, the system-side complexity is reduced (V × T).
To measure the efficiency of Data Jockey, we estimated the
complexity reduction by: 1 − D×E

D×T×V×E for the worst case
and 1− D×E′

D×E′×V×T for the best case.
We analyzed the complexity reduction due to Data Jockey

based on OLCF operational logs collected from January 2017
to August 2018. In this study, we considered the jobs under
the same project ID as a workflow. The OLCF data includes
243,265 workflows, each workflow having 1—158,582 com-
putational jobs and one analytic job; each computational/ana-
lytic job produced a single dataset. Figure 7 reports the results.
It suggests that for workflows in the OLCF storage systems,
Data Jockey attained 85.7%—99.9% complexity reduction,
with 216,151 workflows (88.85%) having a single compu-

TABLE II: Performance goals

1) Job processing performance (unit: jobs/min)

Mean Max Goal

Arrival rate 2.29 423 -
Start rate 2.1 36 >36
Completion rate 1.97 290 -

2) In-flight jobs (unit: jobs)

Mean Max Goal

Waiting 1.15 300 >300
Running 1.03 29 >29

tational job and a single analytic job. Specifically, for these
simple workflows, Data Jockey achieved the lowest complexity
reduction with 85.7% for the best case and 95.1% for the worst
case, respectively; with the increase in numbers of jobs, the
complexity reduction increased.

Moreover, to understand the complexity reduction due to
Data Jockey in different settings, we studied the performance
by varying the number of repeated writes (D) and the number
of storage tiers (T). Specifically, we simulated the behaviors
of users and Data Jockey based on these varying parameters.
At the start point, we assumed that the workflow produces a
single dataset running on a single-tier system .

Figure 8 reports the results. By varying D, Data Jockey
attained the same complexity reduction ranging from 35.45%
to 72.54%; by varying T , Data Jockey attained a reduction
ranging from 35.45% to 99.21%. It suggests that when the
system-side complexity grows (D, T), Data Jockey reduced
more complexity from users. In the extreme cases (e.g., T =10
in Figure 8), Data Jockey can achieve > 99% complexity
reduction.

B. Feasibility as a Center-wide Data Management Service

Since data jobs are issued to prepare data for compute jobs
and are executed in parallel, data job processing rate of Data
Jockey should keep up with the compute job scheduler when
deployed. For this reason, the performance goal for processing
data jobs were set to exceed the maximum job start rate and
the maximum number of in-flight jobs observed waiting or
running (Table II).

For this evaluation, we set up a controlled testbed (Figure 9-
(a)). In this testbed, we employed eight x86 nodes each
equipped with one AMD EPYC 7351 16-core processor that
is capable of 32 H/W threads (2.40Ghz 6MB Cache) and 128
GB of main memory. Compared to a real HPC environment,
this environment lacks access to real storage tiers and bulk
data movement used in production.

To load the control plane, we implemented a workload
driver that can mimic the data job submission behavior under
a fixed workflow depicted in Figure 9, (b) and (c). Under
this workflow, the dataset placement planner acknowledges

In the simulations, we assumed that relative paths (V) and data movement
errors (E) are dependent parameters and vary according to D and T on
Weibull distributions [21].

(b) Workflow setup per client

1. Allocate replica on Storage1

S W I/O F

2. Summon the replica on Storage2

S W I/O F

3. Archive a replica for safety

S W F

(c) Resource cfg.

S W I/O F

Storage 1 Storage 2

Archival

Movers

Datajob
Submission

Wait for
pending
Datajob

Perform
I/O on
replica

Datajob finished
(replica released)

Node 0 Node 1

RDBMS
Buffer pool: 100GB
Storage: 256GB SSD

Control Plane
REST API workers: 64
Scheduler workers: 1
Message broker: 1

(a) Testbed setup Node 2 ~ 4 Node 5 ~ 7

Data Plane 0 ~2
Resource Agent
Workers: 1 ~ X
User Clients: 1 ~ Y

Data Plane 3 ~ 5
Resource Agent
Workers: 1 ~ X
User Clients: 1 ~ Y

Fig. 9: Testbed setup

0

200

400

600

800

1 2 4 8 16 32 64 128 256 512

DA
TA

JO
BS

 /
 M

IN

CONCURRENT USERS

16 RA 32 RA 64 RA 128 RA

Fig. 10: Impact of concurrent users and resource agents: 16
to 128 RAs (resource agents)

the size of each replica but the resource agents were set up to
move zero bytes of data even though they receive commands
to allocate, move and delete entries. Also, we fixed the size
of the replicas being allocated to have a constant flow of data
jobs being processed.

Figure 9-(a) shows data job processing throughput of a
single-node control plane under a varied number of users and
resource agents (Figure 10). The control plane was able to
scale up to approx 70 data jobs per minute but required more
resource agents to achieve more. With enough resource agents
(128 RA), the control plane was able to process more than
600 data jobs per minute. This data job processing rate was
enough to accommodate the job burst (36 jobs per minute -
Table II) of our load. The control plane was able to sustain
such performance over 512 concurrent jobs which was also
enough to accommodate a maximum burst of 300 pending
computational jobs submitted to our clusters.

We also evaluated the performance of a single data move-
ment planner instance mapped for a single project under a
varied number of storage tiers and datasets per workflow iter-
ation (Figure 11). The performance of a single data movement
planner was mainly impacted by the total number of datasets
with performance degradation down to 18 data jobs per minute
with 2,048 datasets. We assumed 1,024 – 2,048 active datasets
(collection of files) were enough for a group of users in a single
project.

With the results, we conclude it is possible to deploy
Data Jockey serving large HPC clusters like Titan [22] or
Summit [2]. A single node deployment with a single database
instance was enough to accommodate the peak load.

0

1

2

3

4

5

6

256 512 1024 2048

LA
TE

NC
Y

(S
EC

)

TOTAL DATASETS

4 tiers

8 tiers

16 tiers

(a) Latency

0

200

400

600

800

256 512 1024 2048

DA
TA

JO
BS

 /
M

IN

TOTAL DATASETS

4 tiers

8 tiers

16 tiers

(b) Throughput

Fig. 11: Impact of the number of storage tiers and user datasets
(256 concurrent users, 128 resource agents)

InterimCompute

Compute
Partition

Compute
PartitionHPSS

Analysis

Analysis
Partition

Compute
Partition

Analysis
Partition

HPSS

Interim

Analysis
Partition

Compute
Partition

HPSS

Fig. 12: Possible data paths that a dataset will follow during
the course of the evaluation campaign.

C. Feasibility of Integration with HPC environments

In order to gauge the feasibility of integrating Data Jockey
into HPC environments, we conducted experiments utilizing
synthetically generated workflows with Data Jockey and com-
pared the results against the same workflows managed by a
user-like entity. These workflows are based on the analysis
of production scale jobs of two distinct supercomputers. A
workflow consists of multiple phases where each phase con-
sists of a set of computational jobs and a single analysis
job. Every computational job requires an independent input
dataset and produces an output dataset. These output datasets
are utilized as the input datasets for the analysis job that in
turn generates a finalized, resultant dataset. The next phase
cannot commence until the analysis job of the current phase
has completed. Therefore, there is an explicit job and data
dependency among not just the set of jobs within each phase
but between the phases as well. This dependency chain closely
resembles observed data patterns at OLCF.

For the HPC environment, we used 16 nodes from the
Rhea cluster at OLCF with 14 of the nodes serving as virtual
computational nodes and 2 as analysis nodes. Each physical
node operated as a set of virtual nodes with each node scaling
to 1,334 and 256 virtual computational and analysis nodes,
respectively. By utilizing job packing, we were capable of
handling a large number of jobs allowing us to integrate
Data Jockey with the PBS scheduler on Rhea. Since each job
performed no actual computation and very little I/O, utilizing
ftruncate to create the dataset, we do not believe that the virtual
scaling introduced an issue. These nodes also functioned as
resource agents to manage the movement of the datasets.

We utilized three storage tiers for this evaluation, an archival
HPSS tier and two Lustre PFS tiers provided by Spider II.
The compute and analysis elements do not possess a shared

Fig. 13: Job wait time grouped by data transfer requirements.

PFS backplane, therefore, requiring that data be moved across
to be accessible. Figure 12 illustrates the potential paths that
a dataset may traverse during a workflow. Depending upon
the size of the initial input dataset for a job, it may reside
on either HPSS or the two PFSs with more massive datasets
being initially located on HPSS. By the time of execution, Data
Jockey has to relocate the dataset onto a PFS that the compute
nodes can access. In the interim, between computation and
analysis work, Data Jockey may migrate the input and output
datasets among the three tiers as needed. However, Data
Jockey must ensure that before the analysis job was released
from the scheduler, it delivered the corresponding datasets onto
the analysis PFS partition. After a workflow phase, the datasets
were released and could be migrated back to the HPSS tier
as Data Jockey deemed necessary for capacity reasons. Much
of the data shuffling between the filesystems and HPSS is
mandated by filesystem quota limits and purge policies. Work
areas on Lustre are 10 to 100 TB and can be purged within 14
to 90 days. Without Data Jockey, users have to be cognizant
about these policies or risk job stalls and even data loss.

Based on an analysis of the OLCF scheduler logs and per
job I/O data from Lustre for three months, a driver script
stochastically generated the workflows from two multivariate
empirical CDFs, one for the computational stage and the other
for the analysis stage. For the computational stages (first CDF),
the number of concurrent jobs and per job node size, runtime,
input dataset size, and output dataset size are randomly chosen.
For the analysis stages (second CDF), only the node size,
runtime, and output dataset size are generated. Further, for
the analysis stages, the number of jobs is fixed at 1, and the
computational stage’s output determined the input datasets.
Collectively, we have set the number of concurrent workflows
to 4, twice the number typically witnessed in practice.

Beyond just demonstrating the feasibility and benefits of
Data Jockey, the crux of the evaluation is proving that Data
Jockey does not negatively impact the execution of the work-
flows. We executed several runs over multiple days resulting
in over a hundred job runs and over twice that number of data
jobs transferring data for the jobs. There were also several
involuntary evictions as completed datasets were migrated
from working to permanent storage on HPSS.

Figure 13 provides a breakdown of the latency introduced
by Data Jockey. The results are grouped into three distinct
boxplot graphs by the type of job and data transfer required
for execution. The queued column provides the total time

jobs spent waiting in the scheduler queue (excluding job
dependency time), and the DJ column has the fraction of that
queue time spent waiting on DJ decision-making and data
transfer.

For datasets already existing on the proper tier where no
data movement is required, Data Jockey adds no more than
a mean of 7.9 seconds as shown in the leftmost graph. The
time spent should provide the expected overhead of setup,
tear-down, and decision-making for all Data Jockey jobs.
Additionally, as those jobs are already queued, that latency
may be entirely masked by the work of the scheduler.

The second and third graphs in Figure 13 illustrate the
effects when data movement is required. Most of the time
spent by Data Jockey is triggered by moving the datasets, and
in the case where there are ample compute resources, as in
the middle graph, the scheduler can release the job almost
immediately. Where resources are constrained due to lack of
nodes for analysis, as in the rightmost graph, we can see
the entirety of Data Jockey masked by resource contention.
Although Data Jockey extended the queue time for the middle
graph, without Data Jockey the user would have had to execute
the transfer before scheduling the job. The combined time of
manually transferring the data and then submitting the job
should be equal to or greater than with Data Jockey.

We implemented a user emulation script that simulates un-
coordinated, multiple users executing their workflows. These
users are ideal in that they perform constant monitoring of their
jobs and data movements. The script is similar to the Data
Jockey driver script; however, each workflow must manage
their datasets as well as scheduling jobs. Lacking information
about when their datasets will arrive, jobs cannot be submitted
until after the datasets have been placed. Furthermore, work-
flows only transfer data to HPSS when there is an explicit need
and not opportunistically, potentially introducing workflow
stalls.

While conducting this evaluation, we experienced scheduler
reservation issues that adversely affected the queue time of
jobs emanating from Data Jockey. The mean job throughput
was 3.7 jobs per hour for the user script and 2.9 jobs for
Data Jockey. Closer examination revealed that this was due to
the prolonged time that jobs were blocked by the scheduler.
The mean times for dataset movement were essentially the
same, but the queue time was 1,441 versus 468 seconds for
the Data Jockey and the user scripts, respectively. Even though
the overall result is subpar, an important caveat is that the user
script is constantly monitoring and updating their jobs. Adding
less than 5 minutes of user "think" time per job causes Data
Jockey to be more performant. This result leads us to expect
that Data Jockey would improve system utilization despite
these initial results.

VII. RELATED WORK

Managing data on HPC systems in the context of scien-
tific workflows gives rise to several data management chal-
lenges [23]. Current workflow management systems provide
different solutions for managing workflow data. Pegasus [5]

uses replica catalogs that map logical file identifiers to their
physical locations. However, these catalogs do not support any
policy-based data placement and access capabilities as pro-
vided by the Data Jockey. Swift [6] is a workflow language that
implicitly manages data across multiple tasks and nodes. Swift
is capable of utilizing the underlying data transfer protocols
for efficient data distribution, but it does not allow users to
manage workflow data based on the storage properties of a
hierarchical storage system. An alternative way is to use in-situ
workflows that minimize the cost of data transfers [24], [25].
But with complex workflows that need to manage data across
multiple storage layers, a workflow-aware data management
service is required. Different data management strategies are
proposed based on the network and storage properties for
efficiently transferring data over wide-area networks [26], [27].
Data Jockey is capable of integrating such data management
strategies to define policies for efficient data migration across
a hierarchical storage system.

VIII. CONCLUSIONS

In this work, we have presented Data Jockey to offload the
burden of data management from users in HPC environments
with a multi-tiered storage architecture. With Data Jockey, we
have proposed a new data management scheme called “goal
driven data management.” By maintaining a view of the current
system state and automatically inferring source to destination
data movements, Data Jockey allows users to provide only the
goal destination of datasets. This scheme eases the complex-
ity of orchestrating data across complex storage hierarchies
compared to prior methods where users have to explicitly
reason and control the source and destination of datasets.
By relieving the user from the programming complexity of
tiers, data paths and error handling, our projections show a
complexity reduction of 85.7 to 99.9%.

To ascertain whether Data Jockey can be integrated into
HPC facilities, we evaluated a prototype implementation in a
real HPC environment. Using job and I/O logs from the OLCF,
we conducted realistic, synthetic workflows over the course
of several days. Aside from mandatory data movements,
negligible impact and overhead were observed while Data
Jockey was running at scale. Furthermore, by co-scheduling
dataset movement and jobs, the combined latency is reduced
than when managed independently. Our initial results suggest
that Data Jockey would be capable of serving as a center-wide
data orchestration service.

As storage tiers continue to deepen and diversify, we believe
that systems like Data Jockey will be required to enable
scientific progress while not inhibiting system designers from
utilizing sophisticated storage architectures.

ACKNOWLEDGEMENTS

This work was supported by, and used the resources of,
the Oak Ridge Leadership Computing Facility, located in the
National Center for Computational Sciences at ORNL, which
is managed by UT Battelle, LLC for the U.S. DOE, under the
contract No. DE-AC05-00OR22725.

REFERENCES

[1] J. Lujan et al., “Apex workflows,” Technical report, LANL, NERSC,
SNL, Tech. Rep., 2015.

[2] S. S. Vazhkudai et al., “The Design, Deployment, and Evaluation of
the CORAL Pre-exascale Systems,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and
Analysis (SC’18), 2018.

[3] “National Enery Research Scientific Computing Center - Cori,” http:
//www.nersc.gov/users/computational-systems/cori/.

[4] I. Altintas, B. Ludaescher, S. Klasky, and M. A. Vouk, “Introduction to
scientific workflow management and the kepler system,” in Proceedings
of the 2006 ACM/IEEE Conference on Supercomputing (SC’06), 2006.

[5] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good et al., “Pegasus: A
framework for mapping complex scientific workflows onto distributed
systems,” Scientific Programming, vol. 13, no. 3, pp. 219–237, 2005.

[6] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and
I. Foster, “Swift: A language for distributed parallel scripting,” Parallel
Computing, vol. 37, no. 9, 2011.

[7] E. Kakoulli and H. Herodotou, “OctopusFS: A distributed file system
with tiered storage management,” in Proceedings of the 2017 ACM
International Conference on Management of Data (SIGMOD’17), 2017.

[8] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and L. Zhuang,
“Nectar: Automatic management of data and computation in datacen-
ters,” in Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI’10), 2010.

[9] “Oak Ridge Leadership Computing Facility,” https://www.olcf.ornl.gov/.
[10] “Data Management Policy,”

https://www.olcf.ornl.gov/kb_articles/data-management-policy/.
[11] “iRODS Technical Overview,” https://irods.org/uploads/2016/06/

technical-overview-2016-web.pdf.
[12] “Robinhood Policy Engine,” https://github.com/cea-hpc/robinhood/wiki.
[13] “Kubernetes - Automated container deployment, scaling, and manage-

ment,” http://kubernetes.io.
[14] “Ansible - Automation for everyone,” http://www.ansible.com.
[15] “Puppet - Automation for the modern enterprise,” http://puppet.com.
[16] YAML Ain’t Markup Language, http://yaml.org.
[17] “Python,” http://www.python.org.
[18] “RabbitMQ,” http://www.rabbitmq.com.
[19] “MariaDB Server,” https://mariadb.com/products/technology/server.
[20] R. T. Fielding and R. N. Taylor, Architectural styles and the design of

network-based software architectures. University of California, Irvine
Doctoral dissertation, 2000, vol. 7.

[21] D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai,
D. Oliveira, D. Londo, N. DeBardeleben, P. Navaux et al., “Under-
standing GPU errors on large-scale HPC systems and the implications
for system design and operation,” in Proceedings of the 21st IEEE
International Symposium on High Performance Computer Architecture
(HPCA’15), 2015, pp. 331–342.

[22] “Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini
interconnect, NVIDIA K20x | TOP500 Supercomputer Sites,” http:
//www.top500.org/system/177975.

[23] E. Deelman and A. Chervenak, “Data management challenges of data-
intensive scientific workflows,” in Proceedings of the 8th IEEE Inter-
national Symposium on Cluster Computing and the Grid (CCGrid’08),
2008.

[24] M. Romanus, F. Zhang, T. Jin, Q. Sun, H. Bui, M. Parashar, J. Choi,
S. Janhunen, R. Hager, S. Klasky, C.-S. Chang, and I. Rodero, “Persis-
tent data staging services for data intensive in-situ scientific workflows,”
in Proceedings of the ACM International Workshop on Data-Intensive
Distributed Computing DIDC’16, 2016.

[25] F. Zhang, C. Docan, M. Parashar, S. Klasky, N. Podhorszki, and
H. Abbasi, “Enabling in-situ execution of coupled scientific workflow on
multi-core platform,” in Proceedings of the 26th International Parallel
Distributed Processing Symposium (IPDPS’12), 2012.

[26] C. Jin, S. Klasky, S. Hodson, W. Yu, J. Lofstead, H. Abbasi, K. Schwan,
M. Wolf, W. Liao, A. Choudhary et al., “Adaptive io system (adios),”
Cray User’s Group, 2008.

[27] M. Tanaka and O. Tatebe, “Pwrake: A parallel and distributed flexible
workflow management tool for wide-area data intensive computing,”
in Proceedings of the 19th ACM International Symposium on High
Performance Distributed Computing (HPDC’10), 2010.

http://www.nersc.gov/users/computational-systems/cori/
http://www.nersc.gov/users/computational-systems/cori/
https://www.olcf.ornl.gov/
https://www.olcf.ornl.gov/kb_articles/data-management-policy/
https://irods.org/uploads/2016/06/technical-overview-2016-web.pdf
https://irods.org/uploads/2016/06/technical-overview-2016-web.pdf
https://github.com/cea-hpc/robinhood/wiki
http://kubernetes.io
http://www.ansible.com
http://puppet.com
http://yaml.org
http://www.python.org
http://www.rabbitmq.com
https://mariadb.com/products/technology/server
http://www.top500.org/system/177975
http://www.top500.org/system/177975

	Introduction
	Background and Motivation
	Multi-tiered Storage in HPC

	Data Jockey
	Goals
	Overview
	Using DataJockey (Use-cases)
	Automatic data staging and de-staging
	Automatic data preservation
	Multi-cluster workflow

	Design
	Abstractions for data management
	Data job
	Dataset and their replicas
	Goal state of a dataset
	Dataset policies to handle events
	Mountpoints for dataset consumption
	Data stores and data movers

	Goal Driven Data Management
	Scientific workflows and data jobs
	Dataset state interpolation
	Dynamic storage hierarchy
	Shaping datasets from state to state
	Impact on programming

	Implementation Details
	Data job specification
	Multi-level abstraction
	System administrators, users and power users
	Library
	Job script in-line directives

	Scheduler Integration
	Job submit wrapper tool
	Job queue control service

	Data Orchestration
	Data placement resolution
	Data movement planning
	Resource manager support
	Data movement scheduling execution
	I/O session

	Data Jockey Implementation
	Control plane - Web application
	Data plane - Resource agents
	Concurrency model and coordination
	Fault tolerance and scalability

	Evaluation
	Quantifying the Impact of Data Jockey on User Experience
	Feasibility as a Center-wide Data Management Service
	Feasibility of Integration with HPC environments

	Related Work
	Conclusions
	References

