
A Vision for Managing Extreme-Scale Data Hoards

Jeremy Logan†, Kshitij Mehta∗, Gerd Heber‡, Scott Klasky∗†,
Tahsin Kurc∗§, Norbert Podhorszki∗, Patrick Widener¶, Matthew Wolf∗

†The University of Tennessee, Knoxville TN, USA
∗Oak Ridge National Laboratory, Oak Ridge TN, USA

‡The HDF Group, Champaign IL, USA
§Stony Brook University, Stony Brook NY, USA

¶Sandia National Laboratories, Albuquerque NM, USA

ABSTRACT

Scientific data collections grow ever larger, both in terms

of the size of individual data items and of the number and

complexity of items. To use and manage them, it is important

to directly address issues of robust and actionable provenance.

We identify three key drivers as our focus: managing the size

and complexity of metadata, lack of a priori information to

match usage intents between publishers and consumers of data,

and support for campaigns over collections of data driven

by multi-disciplinary, collaborating teams. We introduce the

Hoarde abstraction as an attempt to formalize a way of looking

at collections of data to make them more tractable for later use.

Hoarde leverages middleware and systems infrastructures for

scientific and technical data management. Through the lens of

a select group of challenging data usage scenarios, we discuss

some of the aspects of implementation, usage, and forward

portability of this new view on data management.
Index Terms—data provenance, reproducibility, metadata

management, scientific data management

I. INTRODUCTION

As scientific data sources, whether experimental, observa-

tional, or simulation, have continued to scale, managing the

data life cycle of the primary and derived datasets and data

elements (represented as files or data objects) has also grown

to be a large problem. All practitioners develop some standards

for how to organize their data in order to be able to answer

questions like, ”Which folder, among the hundreds that are

part of this project, has the data that yielded the result in our

most recent paper?” Tools used to address these questions tend

to be coarse-grained (i.e., using ls and grep to find all the files

from September of last year), as well as prone to error (”My

input parameter file for the October data was the good one

from the August runs... or was it the July runs?”).

Here we present an abstraction for collection management

that we call Hoarde; it is a vehicle for taking the large data

pool (your hoard) and turning it into a loosely regimented set

of agents that can get you answers (your horde). Hoarde is an

attempt to formalize a way of looking at collections of data to

make them more tractable for later use. In other words, it seeks

to take a vast collection of piled data (a hoard) and convert

SAND2019-4650C

it into something that can lead to actionable advancements

(a horde). Hence the name – hoard+horde = Hoarde. More

concretely, a Hoarde is a model for representing campaign

metadata that is light-impact, descriptive, highly flexible, uses

existing tools, supports large volumes of data, and is built upon

incorporation of self-describing data.

In particular, however, Hoarde is addressing a particular

rising set of scientific data hoards that are composed of col-

lections of self-describing data. Self-describing data formats

like HDF5, ADIOS, XML, NetCDF, and so on are an integral

part of many existing simulation I/O infrastructures, and their

impact has grown over the years. The advantage of self-

describing data formats is that they provide a vehicle for

later users (potentially the same scientists) to come back and

not only access the raw binary values of the data elements

(variables) but also query and interpret based on the local

context of those variables. For example, I may call pressure

”Pr” in my current code, but I recognize the variable named

”Pressure” as being the same thing.

We build upon a foundation of projects that have explored

aspects of this problem over the years. Ranging from explo-

rations of novel approaches for light-weight self-describing

data formats [1], [2], [3] to extending data sources with

embedded visualization [4] or performance metadata [5], we

have demonstrated a consistent value in maintaining some of

the context provenance of individual data sets as they are

generated. We also have shown the utility of later repurposing

such enhanced data for tasks like automatically generating I/O

performance benchmark codes [6], interfacing to pre-packaged

visualization routines [7], or using it as a building block

for future designs of I/O systems [8]. As valuable as self-

describing techniques have been for maintaining a connection

for individual data items and files, there still remains a problem

of how to deal with large collections (data lakes, data hoards,

piles of files, etc.). Experiences with provenance systems [9],

[10] has shown that there is some redundancy between what

must be manually input by a user for the provenance and what

is available in the self-describing format.

Leveraging this track record of using techniques for real

application scenarios as well as a wealth of related work (§V),

there are three key drivers we have identified as our focus:

Managing the size and complexity of metadata; Lack of a
priori information about what indices or provenance markups

2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)



will be needed; and Support for campaigns over collections

of data driven by multi-disciplinary, collaborating teams. The

context for these is more fully developed in the analysis of

some of the use cases detailed in § II-D.

As our approach, we have targeted finding a minimal

intrusion, without complex runtime and setup dependencies,

that can help support the relevant uses. We are exploring how

to do something with a lighter impact than traditional prove-

nance systems based on the combination of self-describing

data and the context clues that come from data being in a

collection. Much like reflection or introspection can be used in

a programming model to enable interesting new capabilities,

these self-describing collections can be used to enable new

data-centric services.

A richer description of the Hoarde abstraction is in § III; a

key insight is that we want minimal user impact that enables

key operations that align with use case scenarios similar

to those described in § II. To this end, we have focused

on operations of key membership, forward provenance, and

backward provenance, rather than generic, full provenance

views. These operations include, ”is this image from my

paper in this archive” (compare: cmp), ”What collection items

were part of generating this item?” (list: ls), ”What were

the differences between the constituents for generating these

two items” (difference: diff ). The comparisons to traditional

file system operators are not exact; for example, the return

value of an ”ls”-like operator on a collection member is

an annotated provenance graph, rather than a simple name

and modification timestamp. However, it is not a complete

surprise that there are many similar analogies for the basic

functionality from the filesystem community, as that is how

many end users have chosen to create their own ad hoc

collection management systems. In our work, we have built

an infrastructure to understand some of the details of how the

content and presentation would be most useful for these sorts

of queries over collections and to explore the performance

and metadata structure implications of this set of restrictions,

which we discuss in depth in § IV.

We present a few results from the infrastructure, giving

early definition to where we think further work is needed.

For example, longitudinal studies of large data collections are

an important scenario in data-rich environments that our tools

should support. Collection-tracking and automation around

self-describing data is also useful beyond the scenarios de-

scribed in this work. Such tools could be layered on top

of many measurement-driven datasets (e.g., those generated

from Internet of Things, scientific sensors, and performance

quantification studies).

II. MOTIVATING EXAMPLES

For this work, we focus on a different subset of large

data hoards than the cloud-scale data lakes, data warehouses,

etc. We build from experience with large-scale scientific and

technical data sets, but we also are informed by how large,

extremely heterogeneous data collections (like those from

academic libraries or federal process review) have similar

constraints. With the scenarios below, we wanted to capture

a host of such usages. This scenario in II-C specifically is

a useful challenge to our basic assumptions, since much of

the data may have been originally written without a self-

describing format, but light-weight ways for bridging this

divide will hopefully emerge from its exploration. With this

basis of scope, we then discuss the commonalities that the

Hoarde abstraction seeks to address.

A. Performance Optimization at the Exascale

Cooperative design (Co-design) centers that foster a col-

laborative approach between software ecosystems, hardware

technologies, and computational science applications form an

essential part of the Exascale Computing Project (ECP) [11],

[12]. One such co-design center is CODAR (Co-Design Center

for Online Data Analysis and Reduction at the Exascale) [13]

that aims to study performance tradeoffs for offline versus

online analyses of data for different classes of applications.

Such co-design studies involve coupling multiple applica-

tions using an I/O middleware such as ADIOS [1]. Exper-

iments are performed to study the impact of various com-

pression and reduction algorithms under different workflow

configurations. Fig 1 shows a real-world example of the high-

fidelity whole device modeling of magnetically confined fusion

plasmas [14], [15]. Here, XGC and GENE are simulations that

are tightly coupled through the ADIOS middleware. Different

output variables undergo different transformations before some

set of results is written to long-term storage.

Co-design studies typically consist of a large number of

experiments, run by multiple users, on multiple supercomput-

ers, and across different applications in various domains. A

wealth of performance information is needed to understand the

tradeoffs and impact of different choices. Simulation inputs,

outputs, and reduction/analysis results as well as performance

data are captured and stored in self-describing formats.

CODAR developed a tool, called Cheetah, to generate the

campaigns of experiments needed to conduct such parametric

studies. A Cheetah campaign directory consists of separate

sub-directories for each experiment, along with extensive

metadata about the workflow, its orchestration, and simulation

and performance output data. That is, each co-design experi-

ment produces multiple intermediate and final data products.

An interesting aspect of co-design data is that some data

itself forms metadata; metadata does not necessarily exist as

a separate entity. For example, consider a query where the

user wants to know the fidelity of a compression method

as compared to a base case. Here, the base case forms the

metadata; however, it exists as a set of experiments in the

campaign and is not tagged, marked, or stored any differently

from other data. Traditional metadata and provenance systems

fall short here as most of them require metadata to be marked

and stored in a different way from other data.

As a detailed analysis of a campaign is performed, the

following features are highly desired.

• Being able to establish the detailed lineage for various

data products in co-design experiments is important for



Fig. 1. The Whole Device Modeling coupling workflow is a typical co-design
experiment in which two fusion simulations - XGC and GENE, are tightly
coupled together using ADIOS. Multiple diagnostics and analysis executables
are coupled with the running simulations. Co-design experiments that optimize
this workflow and study various tradeoffs involve running a large number of
experiments, thereby generating a large volume of campaign data.

multiple reasons. First, it greatly aids in making data

and processes reproducible. Second, it makes debugging

issues in complex workflows easier. Third, it allows mak-

ing a comparative study of workflows. Questions such as

“what was different between these experiments that led

to this different result?” can be answered effectively.

• Querying large amounts of campaign data for information

is very challenging, as the structure of the data is not

known a priori. This prohibits the use of database systems

that rely of building relational schemas based on well

structured data. Complex queries such as “what operation

in the complex workflow led to this intermediate data

item?”, “what compression scheme leads to at least 50%

reduction in data size?” are highly desired. The best way

to index campaign data automatically is a challenging

question.

• Maintaining historical campaign data facilitates develop-

ment of different machine learning algorithms focused on

optimizing workflows, and also for effective dissemina-

tion of information to the science community.

B. Analysis of Whole Slide Tissue Images

High resolution images of diseased and normal tissue spec-

imens enable quantitative studies of disease state at the sub-

cellular scales [16], [17], [18], [19], [20]. As technology for

scanning whole slide tissue specimens rapidly improves, the

variety and sizes of tissue image datasets and the complexity

of image analyses increase. In most cases, an imaging project

will employ multiple analysis pipelines and improve analysis

results in an iterative process. Consider a study investigating

correlations between tumor morphology and cancer sub-types

or clinical outcome data (see Figure 2). One group of analysis

pipelines in this study processes whole slide tissue images

(WSIs) to classify regions and extract patterns of lymphocytes.

Another set of pipelines segment nuclei in the images and

Fig. 2. An example of analysis methods and workflows to carry correlative
analysis using whole slide tissue images. Tissue images are processed through
groups of analysis pipelines to extract object-level and region-level imaging
features. These features are then processed through another set of pipelines to
compute statistics and summaries. Finally, the summary data are analyzed to
generate patient-level clustering and correlation data to look for relationships
between imagging features and genomics or clinical data. A study like this
will execute multiple variations of individual analysis pipelines, generate a
a large number of derived datasets, and create a complex graph of analysis
operations and datasets. Metadata and provenance information has to be
captured, managed and indexed for the research team to debug the whole
process and produce high quality results for publication.

compute size, shape and texture features for each segmented

nucleus. A third group of analysis pipelines computes spatial

statistics and aggregate features at the image- and patient-level

from lymphocyte patterns and nuclear segmentation results.

The last set of analysis pipelines carries out clustering and

association operations on spatial statistics and aggregated

features to look for correlations between imaging features and

cancer sub-types. Each of these pipelines may be composed

of multiple methods. A nucleus segmentation algorithm, for

example, may consist of a series of operations, including

color normalization, color de-convolution, nucleus detection,

distance transformation, clustering, and mean shift analysis.

In this study, the research team will carry out analyses

multiple times in order to improve the analysis results. In this

process, the team may change the algorithm parameters or

the algorithm stages (e.g., they may use a different clustering

method), or even use new analysis pipelines. Different analysis

runs may be carried out by different members of the research

team. In addition to this metadata, the team has to capture

and manage metadata about a large volume of primary and

derived data. In medical imaging domain, DICOM and its

various extensions [21], [22], [23], [24] as well as vendor

specific formats provide domain specific self-describing data

to capture metadata about images and analysis results. These

formats, however, do not necessarily store provenance infor-

mation. Moreover, WSIs are high resolution images and can

contain tens of billions of pixels. WSIs are often partitioned

into patches for analysis with region classification algorithms.

Nuclear segmentation analyses may segment millions of nuclei

in an image. A single analysis run on a dataset with thousands

of images can generate hundreds of thousands of patches,

segmentation masks and hundreds of millions of segmented

nuclei. As a result, the iterative refinement process can easily

create a large number of analysis runs, a large volume of

derived datasets (analysis results), and a complex, evolving

graph of data analysis operations and datasets.



C. Supporting legacy collections of ad-hoc heterogenous data

Some classes of applications involve long-running efforts

that accumulate vast stores of different but equally important

data over time as artifacts of design, testing, and production.

Design documents include reports, schematics, spreadsheets,

emails, and other notes; these are produced by and manip-

ulated with both widely available commercial productivity

software (such as Microsoft Office) and by special-purpose

software with proprietary storage formats. Testing data adds to

this large amounts of numerical results, test descriptions, and

parameter sets. Production data adds another type of data store

to the problem, as database management software is frequently

used to maintain inventory information. When problems are

detected during testing or production use, answering the ques-

tions that lead to root causes requires a holistic look back at a

large and interrelated data space: What testing regime was used

for the widget in question? Was its design valid? How many

of these widgets are in production? Data that accumulates over

years becomes challenging to manage and query. Techniques

for organizing different heterogeneous data in the right ways

can shorten the iteration time required for such investigations.

These kinds of issues arise in the context of high-

consequence continual experimental activities, such as those

carried out as part of the National Nuclear Security Admin-

istration (NNSA) (a part of the US Department of Energy)

Stockpile Stewardship [25] program. Since the early 1990s,

the US has unilaterally refrained from testing nuclear weapons

through actual explosive tests. Computer simulations are in-

stead used to predict the reliability, safety, and performance

of weapons and weapon components. Models of the various

physical phenomena involved are regularly validated against

historical data collected during previous underground testing,

and are constantly reviewed, updated, and improved as new

data becomes available from laboratory examinations, material

properties experiments, and other evolving simulation results.

As the results of the Stockpile Stewardship program are

regularly reported to the US Congress, the organization of this

data environment must satisfy rigorous audit and verification

requirements.

Another example of such large, increasingly voluminous,

heterogeneous data comes from academic libraries that are in-

creasingly being tasked with campaign-scale data management

for experimental research across multiple research disciplines.

In this capacity, they are seeking to provide not only basic

hardware and software solutions for data storage, but also

advanced features and capabilities requested or required by

faculty, researchers, and other stakeholders1. Notable among

these capabilities is the ability to flexibly reconstruct previous

experimental results on demand. The cross-disciplinary service

orientation of academic libraries frequently means that they

cannot dictate data storage formats, archival strategies, and

”build-vs-buy”-style policies about storing data versus regen-

1At American universities, these can include Federal, state and local
government agencies, private funding organizations, and community interest
organizations.

erating it. More often, the opposite is true: librarians have to

accommodate researchers whose experimental data collection

practices and ideas on appropriate data management can differ

significantly. Issues which must be addressed here include:

which data should be stored, at what availability and cost?

When does it make more sense to store/tag a data generator

rather than the data itself? How can new workflows incorporate

data previously stored in a library’s data management system

in order to generate new derived data, and how should those

associations themselves be recorded?

D. Discussion

An overarching commonality amongst all the use cases de-

scribed above is that they have strong requirements for manag-

ing provenance and metadata; however, no single provenance

system meets the requirements of all the use cases. There is no

’one-size-fits-all’ solution, but it would be highly beneficial if

there were a high-level abstraction that could provide a generic

solution, or which could be used as a baseline to design an

ad-hoc solution. We identify three important features that are

common across the use cases that influence the design of an

abstraction such as Hoarde.

First, all use cases described involve managing large hoards

of complex, heterogeneous data sets and annotations. For co-

design experiments, this involves a combination of simulation

data, analysis data, application and workflow provenance,

workflow orchestration information, and performance informa-

tion, stored across self-describing binary files, json documents,

text files etc. For the image analysis use case, analyses per-

formed over large amounts of tissue images generates a large

volume of intermediate data products with important metadata

that describes the workflow. The collections of data that need

to be handled by the NNSA include documents that describe

metadata about a variety of processes, accumulated over a

period of many years. In all of these use cases, experiments,

analyses and data capture processes can rapidly evolve. In

the image analysis use case, for example, the structure of the

analysis workflows and types of derived datasets can quickly

change as the team seeks to iteratively do quality assessment

and improve analysis results. This dynamic, rapid evolving

nature of data collection and analysis necessitates flexible

absractions and frameworks that have minimal impact on a

research team’s workflow and that can capture metadata in a

self-describing format which can later be parsed, indexed, and

managed.

Secondly, the distinction between data and metadata can be

blurry, which is a hindrance for using traditional provenance

systems. As described for co-design experiments, data or

experiments that form baseline runs are considered to be

metadata for later analysis and comparison across experiments.

This classifies some data items as more reusable and add more

weight to them in the hoard, and also has a strong effect

on the quality of service requirements of an application. For

example, what if a query does not return a data product that

should have been returned if the data product were classified

differently? As machine learning algorithms are expected to



play a strong role in the characterization of complex data in a

large hoard, this is an important consideration. So, how should

Hoarde automatically associate data with metadata to capture

both data and processes?

Thirdly, collection-tracking and (automated) metadata cap-

ture and management around self-describing formats provides

an effective means of packaging and disseminating not only

data but also relevant metadata context. In addition to being

vital for reproducibility and dissemination to the scientific

community, this is critical in multi-disciplinary and multi-

institutional research where team work is not necessarily

closely coupled and synchronized (e.g., the image analysis use

case).

Finally, from a functional perspective, building and main-

taining the tooling for any automated extraction is very chal-

lenging. Although one could implement the necessary features

with a sufficiently complicated database infrastructure and

clever schema, we want to look at what can be achieved with

the most minimal extension/addition that still supports these

requirements. We take these insights in order to propose our

new abstraction for a collection of metadata-rich items, as you

will see in the following section.

III. THE HOARDE ABSTRACTION

We envision Hoarde to be both an organizational convention

around a dataset and its metadata, as well as the software

mechanisms which support and leverage those conventions.

These pieces will work together to address the common

features summarized in § II-D. To characterize the Hoarde

abstraction, we approach it from several perspectives in the

remainder of this section.

A. Purpose / Objective

The main purpose of Hoarde is to support the manage-

ment of campaign life cycles in HPC environments. Hoarde’s

descriptive approach attempts to create a useful metadata

abstraction for managing data related to an HPC campaign,

which consists of all data related to a set of workflow

executions performed over a number of weeks or months.

Based on our experiences with the science cases described

in Section II and other science applications, we believe we

have identified a critical set of behaviors and functionality that

a metadata management system would need to support. This

functionality includes provenance for reproducibility, dataflow

debugging and execution support, as well as support for

rich queries involving combinations of data and metadata.

Whatever the subject, the underlying campaigns are driven by

inquiry, which typically includes false starts, dead ends, and

often unpredictable dynamics. Hoarde is an attempt to have a

stabilizing effect on campaign data life cycles much like the

scientific method and judicious applications of logic have on

the process of scientific discovery.

B. Data

Self-describing data formats such as ADIOS, HDF5, and

NetCDF already play a significant role in managing scientific

data collections, particularly those that form coherent cam-

paigns or chains of experiments. The goal of Hoarde is to be

a minimal extension that will enhance those community prac-

tices. Although there is some similarity to existing provenance

systems that depend on external databases and infrastructures

to maintain the connections and context, we focus instead

on the use of self-describing data formats which can support

embedding metadata alongside the data.

It is important to note that for the vision we lay out below

that the contents we envision in a Hoarde are more than just the

immediate binary data files associated with the experimental

data. It is important to include a complete repository within

the campaign archive: source code for executables, python

analysis scripts, output from std.out of the run, input files,

and so on, as well as image files, analysis results, and other

scientific output files. It is this richer context of the data setting

within the data hoard that enables the inference of a set of

provenance and connectedness properties.

With that in mind, the main relationship between datasets

in a Hoarde is a simple derivation relation. A source dataset
refers to a dataset that was not produced by a campaign

but rather introduced as an input to the campaign. This is

in contrast to a derived dataset, which is produced as a

result of an operation on one or more inputs. We also define

metadata broadly as any information added to a dataset to

provide additional context, leaving the user free to establish

connections to any of the relevant contexts.

A Hoarde consists of datasets and supports certain oper-

ations on the metadata of those datasets. By ‘metadata’ we

mean any information which documents the derivation rela-
tionship between datasets: As shown in Fig. 3, some datasets

are the result of executing certain commands, of applying

processing steps to other datasets. (See similar concepts in [26]

or [27].) A command can be a complex workflow or a single

processing step.

Fig. 3. A dataset is produced from an operation on zero or more existing
datasets.

This relationship leads to a simple categorization of datasets,

which are illustrated in Fig. 4. A dataset which is not derived

from other datasets (in the same Hoarde) is called a source
dataset. All non-source datasets in a Hoarde are referred to

as derived datasets. It is sometimes convenient to further

divide derived datasets into intermediate and product datasets.

Product datasets are derived datasets that have additional

metadata, such as a goal, an intended audience, a release date,

etc.

For example, performance studies described in section

II-A involve generating a large number of experiments in a

campaign. Each experiment consists of a set of simulations

running concurrently and coupled together to produce a set

of raw, binary output data. These simulations are controlled



Fig. 4. Types of datasets

by input datasets and parameters described in parameter files.

Application parameters, workflow orchestration options are

maintained in separate files. Multiple analysis applications

may be run over the simulation output (FFT calculation,

probability distribution function generation etc.) to further

generate data products. These are followed by plotting scripts

written in languages such as Python and R to generate a set

of images. In a Hoarde, the input data files form the source

datasets, whereas the simulation outputs form the intermediate

datasets. They further lead to another set of intermediate

datasets (output of the FFT calculations), which then lead to

the final data products - the images. The parameter files that

can be read and ingested by Hoarde form the core metadata,

and a combination of parameters with applications that are run

on intermediate datasets form the enactments or commands.

Users should be able to store arbitrary metadata as needed

for an application, but there is a minimal collection of informa-

tion we would like to capture for every dataset. Generally this

consists of the information needed to allow the user to recreate

the steps that produced the dataset in question. For a particular

dataset, this might include details of the program that produced

it (including, for instance, a link to a particular commit in

a source repository), command line arguments, input files,

etc. In general, results are not always produced from a single

workflow specification processed by a workflow engine. For

non-trivial workflows, we would expect a final product to have

a tree of metadata leading back through multiple program

executions to leaf nodes consisting of external source datasets.

Some or all of the data may be produced by manual steps, or

by multiple workflow descriptors, so some care is required to

insure that enough information is captured to describe all of

the necessary steps to reproduce a particular data set.

A longer term goal is to have an automated mechanism

that could, from the stored metadata, reproduce the workflow

in question without user intervention. However, this is a much

more challenging goal, as it would require a full accounting of

the system software on the machine, and a sufficiently adroit

mechanism to build an arbitrary software stack on demand.

There are a number of options for organizing metadata,

and a given choice will have significant impact on system

performance. Fig. 5 illustrates three possible choices. In Fig.

5a, all campaign metadata is stored and maintained in a single

location. Keeping metadata together simplifies maintenance

of indices as new metadata is added to a Hoarde. However,

scalability may become an issue as the campaign grows larger.

Another strategy, shown in Fig. 5b, is to keep shadow meta-

data. In this scheme, separate metadata files are kept for each

dataset and each operation. At the other end of the spectrum,

Fig. 5c shows the use of self describing data files to store

metadata alongside data. A full fledged implementation would

potentially use a combination of all three of these strategies

to juggle different concerns, switching between strategies to

facilitate creation of query indices and support tightly-coupled

metadata, while allowing arbitrary file formats.

The advantages and disadvantages of these organizational

options become clearer as we begin to examine some com-

mon operations we expect Hoarde to perform. The insertion

operation, for instance, is impacted by the choice of metadata

organization. This is likely an insignificant cost for insertion

of a single data object, but it becomes more of a concern when

we consider ”bulk import” of existing project data, which may

consist of large numbers of individual data files.

Another axis in the design space relates to how Hoarde

controls access to data. Regardless of metadata organization,

the system will rely on links between metadata and corre-

sponding data. Unregulated, users would be able to move or

delete files from their known locations, resulting in broken

metadata links. How should a system like Hoarde handle this

issue? One option would be to do nothing, allowing the user

to move files and break links between metadata and associated

data. At a minimum, a system like this ought to allow the user

to update and repair these links. However, this is probably

not an acceptable strategy as we begin to rely more on these

systems for accountability and reproducibility, as there would

be little to insure that metadata remains correct after such

manipulations. At the other extreme, our system could strongly

limit access to all data and metadata, requiring a user to access

all data and metadata through a system API that hides data

and metadata locations, and limits changes that can be made

by users. Exploring this design space and understanding the

many trade-offs is a part of the goal of our initial experiments

described in the next section.

C. Behavior / Functionality

Hoarde behavior can be broken into three groups of func-

tions to facilitate:

1) Data provenance capture for reproducibility

2) Data- and workflow debugging, and (re-)execution

3) Combined queries of data and metadata.

Provenance for reproducibility: Full reproducibility of

workflows is a challenging goal, and one that is beyond the

scope of this work. However, we believe that a key ingredient

of this reproducibility is the availability of appropriate prove-

nance metadata. For a particular data product, this metadata

should include a tree of operations and intermediate data

products that are part of the campaign and leading back to

any source (external) datasets that the product relies upon.

Metadata for each operation should include source code or



(a) Single metadata: All campaign
metadata is encoded in a single meta-
data repository.

(b) Shadow metadata: Metadata for
each pipeline element is kept in a
separate file, with links that define
the connections.

(c) Embedded Meta-
data: Self-describing
data files store both
data and metadata.

Fig. 5. Metadata Organization: Each figure illustrates a possible arrangement of metadata for a simple image processing pipeline. Green indicates external
source data, operations on the data are shown in red, derived data files are in yellow, and blue indicates corresponding metadata.

version information, along with input parameters, dependency

versions, system information, etc., that would allow the op-

eration to be performed again in a new workflow designed

to reproduce the original computations. This collection of

provenance information can also be leveraged to provide

correct attribution of the source datasets that contribute to a

published data product.

Executing and debugging dataflows: Working with a cam-

paign involving a large set of runs that are performed over a

long period of time tends to become more difficult as time

passes, as memory of which workflows were performed, and

what options were used, and how codes were changed fades

from memory. To assist with these types of campaigns, a meta-

data management tool should answer questions about what

steps were involved in generating a particular data product,

and how the provenance of similar data products differ. It is

critical that such a tool provide clear and concise answers

to these questions, rather than exhaustive textual output that

requires intense scrutiny by a scientist managing the campaign.

Metadata Versioning. Consider a use case of trying to track

the relationship of a particular jpeg graph in a publication to

the data sets and intermediate results that generated it. In terms

of the data set derivation relationship maintained in a Hoarde,

a publication is a product. This begs the question where the

product’s provenance and the provenance of all the other

sources and intermediate datasets are tracked and maintained.

To make matters worse, it would be unrealistic to assume that

there is only one chain of versions, one provenance trail.

Campaigns are driven by inquiry, and false starts and dead

ends are encountered regularly on many a campaign trail.

Furthermore, most campaigns are team (multi-user) efforts,

and different team members will explore different avenues

simultaneously, learn from each other, and re-use each others

results. While there appears to be a strong versioning com-

ponent to this picture, it is the fundamental non-linearity of
progress that must be handled in some way. Further, with

the periodic export of parts of the Hoarde collection for use

by remote collaborators and the occasional reintegration of

their results, this non-linearity becomes even more evident.

On the one hand, it is crucial that items in a Hoarde and

their derivation are immutable (no backsliding, history can’t be

destroyed). On the other hand, it must be possible to “weave”

results from different lines of inquiry into new products and

further inquiry. This capability requires support for functional

data structures [28]: “A functional data structure is essentially
an immutable data structure: its values never change. ...,
functional data structures do support operations like insertion
or deletion, they are just not in-place. Instead these operations
are handled by creating an entirely new updated structure.”

Rich queries of data and metadata: Since science appli-

cations are primarily concerned with advancing science, we

would also like to be able to provide a range of query

capabilities that support access to both data and metadata, as

well as combinations of the two.

Given the varied needs of our science use cases, it is also

important to consider how the Hoarde implementation will

need to support several types of queries. A Hoarde instance,

for example, should be able to answer queries like, ”Which

folder, among the hundreds that are part of this project, has

the data that yielded the result in our most recent paper?”

Simply using file system tools to answer queries like this

tend to be coarse-grained (i.e., using ls and grep to find all

the files from September of last year) and prone to error

(”My input parameter file for the October data was the good

one from the August runs... or was it the July runs?”).

Much like the use of grep and ls in command line scripts

enable functionality, albeit at a cost, the Hoarde abstraction

is intended to define (and provide tools to define) useful sets

of primitives that can be composed together to support simple

and complex queries. We envision future systems providing

pluggable query mechanisms that will enable science domain

users to design efficient domain-specific queries that, once

added to the system, can be accessed through the front-end

Hoarde mechanism. In the meantime though, we are focusing

on a family of general queries that relate to common metadata

that will be available regardless of application domain. Table I



Command Description
includes <dataset> Returns (Boolean) if a dataset is part

of a Hoarde
describe <dataset> Returns a description of a dataset
ancestors <dataset> Returns the ancestors of a dataset
descendants <dataset> Returns the descendants of a dataset
sources Returns all sources of a Hoarde
sources <dataset> Returns the sources of a given dataset
products Returns all products of a Hoarde
products <dataset> Returns the products that a given

dataset influences
cmd <dataset> Returns the command (parameters) that

produced a given (derived) dataset
list <dataset> Lists the lineage of a dataset
find <predicate> Finds all datasets that satisfy a certain

predicate
diff <dataset1> <dataset2> Compares the lineage of two datasets
union <dataset1> ...
<datasetN>

Returns a derived dataset that repre-
sents the union of certain datasets

TABLE I
HOARDE QUERY COMMANDS.

provides a listing of the core Hoarde queries on data and

metadata. Supporting these types of queries will require the

ability to build custom indices on-demand. In a distributed

setting, the cost of building such indices for distributed, self-

describing metadata as compared to centralized metadata is a

key consideration.

D. Interfaces and Measuring Performance

There are additional perspectives on Hoarde which should

be mentioned but which are still part of open exploration.

The first one is the question of the form of delivery; in

other words, in what form does Hoarde get used by an end

consumer? Is it a framework? A set of services? A library?

An interface? A collection of tools? At the core is a need to

quantify the usability of the resulting implementation of the

abstraction for the end user. Usability is notoriously difficult

to measure, as it has many aspects that are highly subjective.

However, taking an approach where we can explore over sev-

eral related implementations to provide similar capabilities but

in different formats for end users will likely be an important

component of the future vision. In this view, a goal for the

future of the Hoarde abstraction is a shared lingua franca for

distributed data engineering. End users should be able to use

whatever sort of interface would best fit the local idiom; there

is no global best framework or mechanism.

The second one is the development of policies for measuring

performance of a Hoarde implementation. We describe in § IV

a particular implementation choice, but the core of the work as

we see it is in developing the policies of this data engineering

environment and not in the particular idioms of the mechanism

to enable it. Specifically, a key component of these policy

decisions will have to be a quantification of metrics to assess

the quality of the information extracted from the collection

as a function of the efficiency of delivery. Here the efficiency

is not necessarily about raw performance, but it also includes

quantifying how many times a user needs to iterate on a set

of queries to extract their desired result.

IV. PROTOTYPE AND EVALUATION

In this section, we report on what we have learned from

trying to apply the Hoarde abstraction to the co-design and

image use cases described in Section II. We describe a proof-

of-concept based on Emacs Org mode, batch and python

scripting, and Git, as well as analyse its limitations.

Our target platform was OLCF Titan. Since both use cases

had been well underway for some time, it was also clear that

this was not a “green field” exercise. We had to make do with

the tools (mostly standard UNIX tools and scripting language)

available on Titan and the digital artifacts from campaigns in

progress.

A. Applying Hoarde ideas to Exascale Co-Design

A prototype implementation for this abstraction was made

using fundamental concepts provided in the git revision control

system. We use the git branching and commits model to

provide a sample implementation for the performance studies

for exascale described in section II-A. Recall that these co-

design studies are composed of campaign of experiments, with

a variety of data products in each experiment. To manage this

Hoarde, we associate each atomic data item in the Hoarde

with a Research Object (RO). These are unique ids that

identify objects in the Hoarde. We generate a unique id

for the campaign using UUIDs, and append the experiment

number to generate a unique ID for an experiment as a simple

illustration of creating uniquely IDs for ROs. Experiment ROs

are maintained in a separate directory, which contains a full

set of metadata to describe and compose the experiment.

We utilize git SHA-1 hashes to generate IDs for datasets

involved in the experiment. We use git commits and branches

to form the association between the various datasets in the RO,

where a branch represents the lineage of a RO, and the commit

order identifies the evolution of the workflow. The top-level

commit represents a source dataset, whereas the leaf commits

form the final dataset products. Experiment run parameters

are extracted from input files, and automatically ingested in

the RO for the experiment and stored separately as metadata.

A query that inquires for the lineage of an image file would

then involve calculating the SHA-1 hash of the image file and

looking for it in the Hoarde. A successful match would then

look up the git commits and the associated branch to post the

full lineage of run parameters and input datasets that lead to the

generation of the image. The lineage could be a simulation that
read a parameter file and produced output files, on which an

FFT application was run to generate data, which was analyzed

using a Python script to generate the final image in question.

B. Versioning and Queries

As we observed in the introduction to Section III, research

studies can have false starts, dead ends, and are increasingly

team efforts which may explore multiple avenues concur-

rently. This nature of research studies requires a means of

handling versioning through a functional data structure. One

of our favorite tools, Git [29], implements just such a data

structure [28]. The appeal and practicality of using Git in



some form for provenance tracking was demonstrated in [30].

While Git alone is not sufficient for Hoarde, it is an excellent

tool for exploring the implementation of some of the Hoarde

operations.
1) Using Git for Prototyping: For our prototype, we chose

to implement three operations:

• includes
• diff
• cherry-pick
With a Git command namesake, the third operation is

the most straightforward. In the tissue image analysis, for

example, it is common practice to combine results (datasets)

from different analysis runs into a combined result set that

is not itself the direct result of an image analysis run, but

represents the best judgement of domain experts. Assuming

that the granularity of the commits is such that it facilitates

this kind of “cherry-picking”, there is a direct mapping with

the required Hoarde functionality
The includes operation tests the affiliation of a dataset

/ digital artifact with a Hoarde. Users who are familiar with

Git internals [29] know that Git maintains an internal object

database in which byte copies of all versions of a repository’s

files are stored. The files are named or (content-)addressed

essentially by their SHA-1 hash. An important advantage of

this approach is that an item can be identified even if it

was moved or renamed in a (location-based) file system. The

calculation of SHA-1 hashes can take a substantial amount

of time if it needs to be performed over large collections

as is the case for the tissue image analysis. For our test

collection of ∼115,000 artifacts, using a single processor, this

took about an hour to calculate the SHA-1 hashes (including

directory traversals, etc.). Fortunately, this operation can be

easily parallelized and does not present a real bottleneck. The

lookup of SHA-1s can be made more effective, by training a

Bloom filter to quickly rule out the association of an artifact

with a Hoarde. The Bloom filter for our sample collection was

just a few MB. Finally, we maintained a sorted list of SHA-1

hashes to perform a binary search, if the Bloom filter test was

inconclusive.
Implementations of a diff operation are highly dependent

on representations and the complexity of the derivation rela-

tionships. In the co-design application, a campaign instance

was represented as a DataFrame, where columns represent

input parameters or (output) metrics and rows represent in-

dividual experiments. Here, diff can be reduced to the

comparison of (potentially sparse) vectors and DataFrames.

Because of the (non-trivial) graph structure of the image

analysis workflow, to compare two such graph graph instances

is less straightforward. A practical approach to arrive at an

intuitive difference is not to treat this as a general graph

comparison problem, but to reduce it to a largest common

subsequence (LCS) problem as implemented, for example, in

noWorkflow[31].
2) Why Git alone is not enough: Git served us well to

explore some of the ideas related to functional data structures

and versioning. However, it is clear that this is not exactly for

what it was made. The most obvious shortcoming is the by

comparison limited number of objects (a few million?) Git can

handle. With respect to the derivation relationship, it is unclear

where the command(s) would fit. Candidates would be the

commit message or one of the Org documents in the commit,

but there are plenty of other issues. As we mentioned earlier,

the smallest unit of change in Git is the commit. Unfortunately,

there is no evidence to assume that the evolution of many

campaigns has a “natural” commit granularity. Even if it exists,

it might hardly be known when a campaign gets underway, and

it might change.

Another set of concerns is the semantic gap between the

primitives of a given tool or technology and the domain

concepts of a campaign. It’s a non-trivial task for campaign

planners to map domain concepts (e.g., representations of

fields, calibrations, invariants, protocols, data documentation,

etc.) onto the primitives offered by self-describing file formats.

Note that the difficulty is not in the direction from the domain

science to the technical primitives. Reduction is easy! The

problem is in the reverse direction, when domain concepts

need to be recovered from complex patterns of technical

primitives. A Git commit that is part of multiple branches has

a different domain-level context in each branch of which it is a

part (it is “transcluded”). How is that context to be recovered,

and where is the protocol that makes that recovery possible

documented? (When artifacts are reduced to SHA-1 hashes, a

“phantom multi-presence” can happen when, unbeknownst to

the committer(s), two artifacts happen to be bytewise identical.

When implemented this way, some Hoarde operations are in

trouble immediately because the context is ambiguous.) This

problem is not specific to Git: If we’d chosen a (functional)

graph database, the problem would have been very much the

same. The only difference would be in the low-level primitives

(nodes, edges, and properties instead of commits, branches,

tags, etc.).

Rather than trying to eliminate ambiguity (probably futile),

to embrace it and to make the semantic gap manageable is

perhaps the biggest challenge for Hoarde.

V. RELATED WORK

There is a large body of research in provenance and re-

producible analysis workflows. Simmhan et al. [32] provide a

survey of methods, representations, and tools for data prove-

nance in scientific research. Moreau et al. [33] organized a

provenance challenge to evaluate provenance systems in terms

of provenance capture, management, query and expressiveness

of provenance representations. The challenge identified a set

of common queries against provenance data. These queries

include those for tracking how a result item was generated,

searching provenance data based on (key,value) metadata, and

comparing provenance data for two runs. Moreau et al.[34]

proposed in 2011 a provenance model specification to support

exchange of provenance models, a common representation

upon which to build provenance tools, represent provenance

for any data whether it was generated through a computer algo-

rithm or another mechanism, and rules for making inferences



on provenance information. Gil et al. [35] describe an ontology

for capturing metadata about scientific software. Oliveira et

al. [36] propose a framework for analysis of data provenance.

The framework provides support for provenance data capture,

storage and inference, graph analysis, and visualization. Gil

et al. [37] describe a software metadata registry so that

scientists can identify, understand, assess software of interest,

and can execute and update the software. Miao et al. [38]

present a provenance and metadata management framework

for collaborative data science workflows. This framework is

designed to capture version lineages of artifacts (data, scripts,

and results), workflow provenance, context metadata about

artifacts, and data provenance. A prototype of the framework

is implemented using git and Neo4j. The prototype provides

tools for collecting provenance and metadata and for querying

the provenance information.

Murta and Pimentel et al. [31], [39] describe a tool that

captures provenance information from python scripts. The tool

can capture different types of provenance using software engi-

neering techniques such as syntax tree analysis and profiling. It

provides support for graph-based and query-based analysis of

provenance information. McPhillips et al. [40] propose a tool

that allows users to annotate scripts so computational modules

and workflow are explicitly represented. The tool captures

the workflow by analyzing the annotations and facilitates a

workflow-like visualization of the scripts.

There also has been work on methods and systems for meta-

data management and versioning. Scott et al. [30] describe an

architecture to manage key-value metadata for data elements

in a revision control system. They store and manage metadata

and data files in a git repository. They use a separate branch

for metadata files, allowing decentralized edits to metadata

without touching data files. They define a set of rules for

commits, branching, and merging to capture and propagate

changes in metadata. Prabhune et al. [41] present a metadata

management system designed to handle heterogeneous meta-

data models using a NoSQL database and RDF triple store.

The system implements a metadata schema registry, workflow

provenance management using ProvONE provenance model,

and mechanisms for metadata quality control, and handling of

dynamic metadata entries and changes in metadata. Bhardwaj

et al. [42], [43] present a platform that allows users to version,

split/merge, search and difference collections of datasets and

carry out collaborative data analysis. Their system incorporates

methods to handle large volumes of datasets and dataset

versions and query support for analyzing differences between

dataset versions and search for dataset versions of interest.

Maddox et al. [44] propose a relational database branching

system, called Decibel, to support versioning of datasets

for concurrent analysis, integration, processing, and curation

across teams. Decibel implements a relational database storage

system with version control capabilities. Chavan et al. [45]

present a system for versioning and provenance management

in studies where data are collected or generated from different

sources and by different teams (or sub-teams). They propose

a query language to enable queries on versioning and prove-

nance information. Bhattacherjee and Deshpande [46] describe

a system for storage and query of versions of a dataset.

Their system implements optimizations to efficiently store and

query a large collection of versions of documents/records in a

distributed environment.

VI. CONCLUSION

Starting from a set of experiences with building and manag-

ing collections of self-describing data sets, we have motivated

a different abstraction layer for collection and managing

provenance and associated metadata. Moving from “piles of

files” to a coherent collection access interface is intended to

give users access to richer sets of provenance and context

information, without the additional time investment associated

with populating most existing provenance systems.

We have introduced the Hoarde abstraction as a way to

envision constructing such a thin layer for dealing with large

collections of data. Although our broad vision is still in its

early stages, we have drawn a few key conclusions from our

early work: provenance tracking by itself (and its associated

system implementation) is not sufficient to answer all of

the interesting questions that arise, and embedding metadata

alongside data in self-describing formats offers a strong ad-

vantage for later reuse, validation, and accessibility of data.

Adding semantics to data collections is a useful step, but

we want classes of semantics so that we aren’t creating

specialized, bespoke approaches for each data collection. This

can be extended in many ways depending on whether the

relevant focus is bringing existing data collections into an

active form, or if it is capturing online and traditional workflow

provenance for future reuse and categorization of intermediate

results. In either case, turning the data hoard into a horde of

opportunities for getting your questions answered lies at the

core of exploiting the extreme scale data of the present and

the future.

ACKNOWLEDGMENT

Without the continued support from the Department of En-

ergy’s Office of Advanced Scientific Computing Research, the

projects upon which this future vision rests, including SIRIUS,

MONA, and SENSEI, would not be possible. Additionally,

support from the DOE computing facilities in Oak Ridge and

NERSC, as well as the National Science Foundation, was also

critical.

This work was also supported in part by 1U24CA180924-

01A1, 3U24CA215109-02, and 1UG3CA225021-01 from

the National Cancer Institute, R01LM011119-01 and

R01LM009239 from the U.S. National Library of Medicine.

REFERENCES

[1] Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y.
Choi, S. Klasky, R. Tchoua, J. Lofstead, R. Oldfield, M. Parashar,
N. Samatova, K. Schwan, A. Shoshani, M. Wolf, K. Wu, and W. Yu,
“Hello ADIOS: the challenges and lessons of developing leadership
class I/O frameworks,” Concurrency and Computation: Practice and
Experience, vol. 26, no. 7, pp. 1453–1473, may 2014. [Online].
Available: http://doi.wiley.com/10.1002/cpe.3125



[2] G. Eisenhauer, M. Wolf, H. Abbasi, S. Klasky, and K. Schwan, “A type
system for high performance communication and computation,” in 2011
IEEE Seventh International Conference on e-Science Workshops, Dec
2011, pp. 183–190.

[3] P. Widener, G. Eisenhauer, K. Schwan, and F. E. Bustamante,
“Open metadata formats: Efficient XML-based communication for high
performance computing,” Cluster Computing, vol. 5, no. 3, pp. 315–324,
Jul 2002. [Online]. Available: https://doi.org/10.1023/A:1015637623058

[4] R. Tchoua, J. Choi, S. Klasky, Q. Liu, J. Logan, K. Moreland, J. Mu,
M. Parashar, N. Podhorszki, D. Pugmire, and M. Wolf, “Adios visual-
ization schema: A first step towards improving interdisciplinary collabo-
ration in high performance computing,” in 2013 IEEE 9th International
Conference on e-Science, Oct 2013, pp. 27–34.

[5] C. Wood, S. Sane, D. Ellsworth, A. Gimenez, K. Huck, T. Gamblin, and
A. Malony, “A scalable observation system for introspection and in situ
analytics,” in 2016 5th Workshop on Extreme-Scale Programming Tools
(ESPT), Nov 2016, pp. 42–49.

[6] J. Logan, S. Klasky, J. Lofstead, H. Abbasi, S. Ethier, R. Grout, S.-H.
Ku, Q. Liu, X. Ma, M. Parashar et al., “Skel: generative software for pro-
ducing skeletal I/O applications,” in e-Science Workshops (eScienceW),
2011 IEEE Seventh International Conference on. IEEE, 2011, pp. 191–
198.

[7] U. Ayachit, B. Whitlock, M. Wolf, B. Loring, B. Geveci, D. Lonie,
and E. W. Bethel, “The SENSEI generic in situ interface,” in
Proceedings of the 2Nd Workshop on In Situ Infrastructures for
Enabling Extreme-scale Analysis and Visualization, ser. ISAV ’16.
Piscataway, NJ, USA: IEEE Press, 2016, pp. 40–44. [Online]. Available:
https://doi.org/10.1109/ISAV.2016.13

[8] S. Klasky, M. Wolf, M. Ainsworth, C. Atkins, J. Choi, G. Eisenhauer,
B. Geveci, W. Godoy, M. Kim, J. Kress, T. Kurc, Q. Liu, J. Logan,
A. B. Maccabe, K. Mehta, G. Ostrouchov, M. Parashar, N. Podhorszki,
D. Pugmire, E. Suchyta, L. Wan, and R. Wang, “A view from ORNL:
Scientific data research opportunities in the big data age,” in 2018
IEEE 38th International Conference on Distributed Computing Systems
(ICDCS), July 2018, pp. 1357–1368.

[9] M. Pierre, M. Vouk, S. A. Klasky, R. B. Tchoua, and N. Podhorszki,
“Tracking files using the Kepler provenance framework,” 1 2009.

[10] M. A. Vouk, I. Altintas, R. Barreto, J. Blondin, Z. Cheng, T. Critchlow,
A. Khan, S. Klasky, J. Ligon, B. Ludaescher, P. A. Mouallem, S. Parker,
N. Podhorszki, A. Shoshani, and C. Silva, “Automation of network-based
scientific workflows,” in Grid-Based Problem Solving Environments,
P. W. Gaffney and J. C. T. Pool, Eds. Boston, MA: Springer US,
2007, pp. 35–61.

[11] “The Exascale Computing Project - co-design is key,”
https://www.exascaleproject.org/co-design-is-key-to-ecps-holistic-
approach-to-capable-exascale-computing/.

[12] A. Almgren, P. DeMar, J. Vetter, K. Riley, K. Antypas, D. Bard,
R. Coffey, E. Dart, S. Dosanjh, R. Gerber et al., “Advanced Scien-
tific Computing Research Exascale Requirements Review. an Office
of Science review sponsored by Advanced Scientific Computing Re-
search, September 27-29, 2016, Rockville, Maryland,” Argonne National
Lab.(ANL), Argonne, IL (United States). Argonne Leadership , Tech.
Rep., 2017.

[13] I. Foster, M. Ainsworth, B. Allen, J. Bessac, F. Cappello, J. Y. Choi,
E. Constantinescu, P. E. Davis, S. Di, W. Di et al., “Computing just
what you need: online data analysis and reduction at extreme scales,”
in European Conference on Parallel Processing. Springer, 2017, pp.
3–19.

[14] J. Y. Choi, C.-S. Chang, J. Dominski, S. Klasky, G. Merlo, E. Suchyta,
M. Ainsworth, B. Allen, F. Cappello, M. Churchill et al., “Coupling
exascale multiphysics applications: Methods and lessons learned,” in
2018 IEEE 14th International Conference on e-Science (e-Science).
IEEE, 2018, pp. 442–452.

[15] J. Dominski, S.-H. Ku, C.-S. Chang, J. Choi, E. Suchyta, S. Parker,
S. Klasky, and A. Bhattacharjee, “A tight-coupling scheme sharing
minimum information across a spatial interface between gyrokinetic
turbulence codes,” arXiv preprint arXiv:1806.05251, 2018.

[16] P. W. Hamilton, P. Bankhead, Y. Wang, R. Hutchinson, D. Kieran, D. G.
McArt, J. James, and M. Salto-Tellez, “Digital pathology and image
analysis in tissue biomarker research,” Methods, vol. 70, no. 1, pp. 59–
73, 2014.

[17] A. Madabhushi, “Digital pathology image analysis: opportunities and
challenges,” Imaging in Medicine, vol. 1, no. 1, p. 07, 2009.

[18] L. A. Cooper, A. B. Carter, A. B. Farris, F. Wang, J. Kong, D. A.
Gutman, P. Widener, T. C. Pan, S. R. Cholleti, A. Sharma et al., “Digital
pathology: Data-intensive frontier in medical imaging,” Proceedings of
the IEEE, vol. 100, no. 4, pp. 991–1003, 2012.

[19] J. Saltz, R. Gupta, L. Hou, T. Kurc, P. Singh, V. Nguyen, D. Sama-
ras, K. R. Shroyer, T. Zhao, R. Batiste et al., “Spatial organization
and molecular correlation of tumor-infiltrating lymphocytes using deep
learning on pathology images,” Cell reports, vol. 23, no. 1, p. 181, 2018.

[20] P. Mobadersany, S. Yousefi, M. Amgad, D. A. Gutman, J. S. Barnholtz-
Sloan, J. E. V. Vega, D. J. Brat, and L. A. Cooper, “Predicting cancer
outcomes from histology and genomics using convolutional networks,”
Proceedings of the National Academy of Sciences, p. 201717139, 2018.

[21] M. Mustra, K. Delac, and M. Grgic, “Overview of the DICOM standard,”
in ELMAR, 2008. 50th International Symposium, vol. 1. IEEE, 2008,
pp. 39–44.

[22] D. A. Clunie, DICOM structured reporting. PixelMed Publishing, 2000.

[23] R. Singh, L. Chubb, L. Pantanowitz, and A. Parwani, “Standardization
in digital pathology: Supplement 145 of the DICOM standards,” Journal
of pathology informatics, vol. 2, 2011.

[24] S. Jodogne, E. Lenaerts, L. Marquet, C. Erpicum, R. Greimers, P. Gillet,
R. Hustinx, and P. Delvenne, “Open implementation of DICOM for
whole-slide microscopic imaging,” in Proceedings,-12th International
Joint Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications (Volume 6), 2017, pp. 81–87.

[25] “FY 2018 Stockpile Stewardship and Management Plan,”
https://www.energy.gov/nnsa/downloads/stockpile-stewardship-and-
management-plan-ssmp.

[26] S. Panda, M. Rao, P. Thenkabail, and J. E. Fitzerald, Remotely Sensed
Data Characterization, Classification, and Accuracies. CRC Press, 10
2015.

[27] M. Wolf, H. Abbasi, B. Collins, D. Spain, and K. Schwan, “Service
augmentation for high end interactive data services,” in 2005 IEEE
International Conference on Cluster Computing, Sep. 2005, pp. 1–11.

[28] P. Nillson, “Git is a purely functional data structure,”
https://blog.jayway.com/2013/03/03/git-is-a-purely-functional-data-
structure/, 2013.

[29] B. Lynn, “Git magic,” 2007, [Online; accessed 20-March-2018]. [On-
line]. Available: http://www-cs-students.stanford.edu/∼blynn/gitmagic/

[30] M. Scott, S. J. Johnston, and S. J. Cox, “Metagit: Decentralised metadata
management with git,” Information Systems, vol. 65, pp. 78–92, 2017.

[31] L. Murta, V. Braganholo, F. Chirigati, D. Koop, and J. Freire, “noWork-
flow: capturing and analyzing provenance of scripts,” in International
Provenance and Annotation Workshop. Springer, 2014, pp. 71–83.

[32] Y. L. Simmhan, B. Plale, and D. Gannon, “A survey of data provenance
in e-science,” ACM Sigmod Record, vol. 34, no. 3, pp. 31–36, 2005.

[33] L. Moreau, B. Ludäscher, I. Altintas, R. S. Barga, S. Bowers, S. Calla-
han, G. Chin Jr, B. Clifford, S. Cohen, S. Cohen-Boulakia et al., “Special
issue: The first provenance challenge,” Concurrency and computation:
practice and experience, vol. 20, no. 5, pp. 409–418, 2008.

[34] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwas-
nikowska, S. Miles, P. Missier, J. Myers et al., “The open provenance
model core specification (v1. 1),” Future generation computer systems,
vol. 27, no. 6, pp. 743–756, 2011.

[35] Y. Gil, V. Ratnakar, and D. Garijo, “Ontosoft: Capturing scientific
software metadata,” in Proceedings of the 8th International Conference
on Knowledge Capture. ACM, 2015, p. 32.

[36] W. Oliveira, L. M. Ambrósio, R. Braga, V. Ströele, J. M. David, and
F. Campos, “A framework for provenance analysis and visualization,”
Procedia Computer Science, vol. 108, pp. 1592–1601, 2017.

[37] Y. Gil, D. Garijo, S. Mishra, and V. Ratnakar, “Ontosoft: A distributed
semantic registry for scientific software,” in e-Science (e-Science), 2016
IEEE 12th International Conference on. IEEE, 2016, pp. 331–336.

[38] H. Miao, A. Chavan, and A. Deshpande, “ProvDB: Lifecycle manage-
ment of collaborative analysis workflows.” in HILDA@ SIGMOD, 2017,
pp. 7:1–7:6.

[39] J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire, “noWorkflow:
a tool for collecting, analyzing, and managing provenance from python
scripts,” Proceedings of the VLDB Endowment, vol. 10, no. 12, pp. 1841–
1844, 2017.

[40] T. McPhillips, T. Song, T. Kolisnik, S. Aulenbach, K. Belhajjame,
K. Bocinsky, Y. Cao, F. Chirigati, S. Dey, J. Freire et al., “YesWorkflow:
a user-oriented, language-independent tool for recovering workflow
information from scripts,” arXiv preprint arXiv:1502.02403, 2015.



[41] A. Prabhune, R. Stotzka, V. Sakharkar, J. Hesser, and M. Gertz, “Meta-
Store: an adaptive metadata management framework for heterogeneous
metadata models,” Distributed and Parallel Databases, vol. 36, no. 1,
pp. 153–194, 2018.

[42] A. Bhardwaj, S. Bhattacherjee, A. Chavan, A. Deshpande, A. J. El-
more, S. Madden, and A. G. Parameswaran, “DataHub: Collaborative
data science & dataset version management at scale,” arXiv preprint
arXiv:1409.0798, 2014.

[43] A. Bhardwaj, A. Deshpande, A. J. Elmore, D. Karger, S. Madden,
A. Parameswaran, H. Subramanyam, E. Wu, and R. Zhang, “Collabora-
tive data analytics with DataHub,” Proceedings of the VLDB Endowment,
vol. 8, no. 12, pp. 1916–1919, 2015.

[44] M. Maddox, D. Goehring, A. J. Elmore, S. Madden, A. Parameswaran,
and A. Deshpande, “Decibel: The relational dataset branching system,”
Proceedings of the VLDB Endowment, vol. 9, no. 9, pp. 624–635, 2016.

[45] A. Chavan, S. Huang, A. Deshpande, A. Elmore, S. Madden, and
A. Parameswaran, “Towards a unified query language for provenance
and versioning,” arXiv preprint arXiv:1506.04815, 2015.

[46] S. Bhattacherjee and A. Deshpande, “RStore: efficient multiversion
document management in the cloud,” in Proceedings of the 2017
Symposium on Cloud Computing. ACM, 2017, pp. 658–658.


