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This work continues a series of papers where we propose an algorithm for quasioptical modeling
of electromagnetic beams with and without mode conversion. The general theory was reported in
the first paper of this series, where a parabolic partial differential equation was derived for the field
envelope that may contain one or multiple modes with close group velocities. In the second paper,
we presented a corresponding code PARADE (PAraxial RAy DEscription) and its test applications
to single-mode beams. Here, we report quasioptical simulations of mode-converting beams for the

first time.

We also demonstrate that PARADE can model splitting of two-mode beams. The

numerical results produced by PARADE show good agreement with those of one-dimensional full-
wave simulations and also with conventional ray tracing (to the extent that one-dimensional and

ray-tracing simulations are applicable).

I. INTRODUCTION

Geometrical-optics (GO) ray tracing has been widely
used to calculate the propagation and absorption of
electron-cyclotron waves (ECWs) in inhomogeneous
magnetized fusion plasmas in many contexts, includ-
ing electron-cyclotron heating, electron-cyclotron current
drive, and electron-cyclotron emission diagnostics [1, 2].
Also, a lot of alternatives [3—13], which take into account
diffraction to describe the beam width of ECWSs near the
focal region, have been proposed as extensions of the GO
approach and have contributed to the improvement of
the wave-power deposition-profile simulations. These ap-
proaches can treat single-mode waves in sufficiently dense
plasmas. However, waves propagating in low-density
plasmas often contain two electromagnetic modes, which
have close refraction indexes and thus can interact effi-
ciently. Specifically, in fusion plasmas, the mode con-
version between the O and X waves that form ECWs is
caused by the magnetic-field shear at the peripheral re-
gion. One of the ways to properly model this process
is to perform one-dimensional full-wave (1IDFW) analy-
sis, such as that carried out in Ref. [14]. However, one-
dimensional analysis becomes inaccurate already when
the wave beams experience substantial bending. This
can be remedied to some extent by applying “extended
geometrical optics” (XGO) [15-19], which is a reduced
theory that describes refraction and mode conversion on
the same footing. However, XGO, as it is formulated
in Refs. [15-19], still does not include diffraction, so the
problem remains open.

The present work continues a series of papers where
we propose how to overcome this problem. Our results
are quite general; in fact, they are not restricted even to
plasma physics, let alone fusion applications. The com-
prehensive theory generalizing XGO to include diffrac-
tion was reported in Paper I of this series [20]. In Pa-
per II [21], we presented a corresponding quasioptical

code PARADE (PAraxial RAy DEscription) in its re-
duced version that can simulate single-mode beams with-
out mode conversion. Here, we present a more general
version of PARADE and report the first quasioptical sim-
ulations of mode-converting beams. We also demonstrate
that PARADEFE can model splitting of two-mode beams.

Although our work was primarily motivated by the
need to improve ECW modeling in fusion plasmas,
PARADE can also be useful for studying related prob-
lems in optics and general relativity [22, 23]. For this
reason, we illustrate the PARADFE’s capabilities below on
basic-physics examples. (Fusion-relevant applications of
PARADE are discussed in Ref. [24]). As seen from these
examples, the numerical results produced by PARADE
are in good agreement with the corresponding results of
ray-tracing and 1DFW simulations to the extent that
those are applicable and such comparison is meaningful.
More generally, PARADE’s simulations surpass ray trac-
ing in that they resolve diffraction and mode conversion.
PARADFE’s simulations can also surpass 1IDFW results in
that they capture the true three-dimensional structure of
wave beams, while the 1IDFW approach is restricted to
straight rays.

Our paper is organized as follows. In Sec. II, we in-
troduce the key equations derived in Paper I and also
adjust them to numerical modeling. In Sec. III, we re-
port simulation results for test problems. In Sec. IV, we
summarize our main conclusions.

II. THEORETICAL MODEL
A. Basic equations

Here, we outline how the general theory developed in
Paper I can be applied, with some adjustments, to de-
scribe mode-converting wave beams. The general idea
is similar to that presented in Paper II for single-mode



waves. We assume a general linear equation for the elec-
tric field E of a wave,

DE =0, (1)

where D is a linear dispersion operator. We also assume
that this field can be represented in the eikonal form,

E= 1/’6i97 (2)

where 1) is a slow complex vector envelope and 6 is a
fast real “reference phase” to be prescribed. The wave is
considered stationary, so it has a constant frequency w;
then v and 6 are functions of the spatial coordinate x.
Correspondingly, the envelope 1 satisfies
Dy =0, D=e 9D, (3)
where D serves as the “envelope dispersion operator”
(= denotes definitions). We introduce k = V6(x) for
the local wave vector, A = 2w /k for the corresponding
wavelength, L for the inhomogeneity scale of 1 along
the beam, and L for the minimum scale of ¥ across the
beam. The medium-inhomogeneity scale is assumed to
be larger than or comparable with L, and we adopt
e = ALy,

e, =AML, €HN€3_<<1. (4)

Then, Eq. (3) becomes
D + Letp =0, (5)

where D serves as the “effective dispersion tensor” found
from D and the operator £, = O(e_ ) is specified in Pa-
per I (also see below). We suppose the following ordering:

Dy =0(1), Da=O0(e), (6)
where the indices H and A denote the Hermitian and
anti-Hermitian parts of D, respectively. Assuming that
the spatial dispersion is weak, D can be replaced with
the homogeneous-plasma dispersion tensor,

c? 1

D(x,p) = 15— PP — (P P)I] + 1 —e(x,p),  (7)
where 1 is a unit matrix and € is the homogeneous-plasma
dielectric tensor [25]; its dependence on w is assumed but
not emphasized, since w is constant. (Here, p denotes
any given wave vector, as opposed to k, which is the
specific wave vector determined by 6; see above.) Note
that Eq. (7) assumes the Euclidean metric. Although we
shall also use curvilinear coordinates below, expressing D
in those coordinates will not be necessary as explained in
Sec. VID of Paper 1.

With D = D and D given by Eq. (7), Eq. (6) implies
€4 = O(¢)|). Hence, Dy is the dominant part of D, and
Eq. (5) yields

Dy = O(ey). (8)

Since the Hermitian matrix Dy = O(1) is the dominant
part of D and has enough eigenvectors n, to form a com-
plete orthonormal basis, it is convenient to represent the
envelope v in this basis,

P =mnya®, (9)

where a® are the complex amplitudes. [Summation over
repeating indices is assumed. For all functions derived
from D, such as 1, the notation convention f = f(x) =
f(x,k(x)) will also be assumed by default.] Then,
DH¢ = TISASG‘S’ DHns = ASns7 (10)
where A, are the corresponding eigenvalues. Due to
Eq. (8) and the mutual orthogonality of all n, this
means that Asa® is small for every given s individually;
hence, either a® is small or A, is small. In the latter
case, 1, approximately satisfies the eigenmode equation,
Dpyn, = Asm, = 0, so it can be viewed as the local po-
larization vector of a GO mode. Then, the corresponding

a® can be understood as the local scalar amplitude of an
actual GO mode, and a® = O(1) is allowed.

B. Polarization matrices

In this paper, we consider the situation when there
are two modes, henceforth called O and X modes, whose
eigenvalues A, ~ A, are both small within the region of
interest. (This assumption is specified in Sec. IID. Also
note that the single-mode case is discussed in Paper II.)
In other words, the two modes are approximately in res-
onance with each other. Then,

Y = n,a® + na* +na, (11)

where 1, and 1, are the O- and X-mode polarization vec-
tors, 1 is some third eigenvector of D that is orthogonal
to both of them, and

a=0(ey). (12)

The small amplitude a can be easily calculated as a per-
turbation and is included in our theory [20] but does not
need to be considered below explicitly. Instead, we intro-
duce a two-dimensional amplitude vector

a= (1) (13)

and the 3 x 2 “polarization matrix” E that contains the
vectors 11, and 7, as its columns,

= ( No N« ) . (14)
Then, 1 can be expressed as follows:

Y =Ea+0(c,) (15)



We also introduce the dual basis vectors n° and n* and
an auxiliary polarization matrix

BT = ("z ) . (16)

n

As seen easily, this matrix satisfies 272 = 1, and

D= = Ao O
A:JDsz( 0 Ax>' (17)

Also, one can express the amplitude vector as
a=E"y (18)

[here, there is no O(e ) correction, unlike in Eq. (15)],
whose squared length |a|? = |a°|? + |a*|? satisfies

lal* = |9 = [v°[* + [p¥]* + |97 (19)

up to O(¢). Since we consider the beam dynamics in co-
ordinates that are close to Euclidean, it will be sufficient,
within the accuracy of our model, to adopt [20]

n°~=n, NN, (20)

Then, E* is simply the Hermitian conjugate of Z.

C. Reference ray and new coordinates

We consider the wave evolution in curvilinear coordi-
nates that are linked to a “reference ray” (RR), which is
governed by

dXe Ve dK, 1 0H,
= L - (21)

¢~ V. d¢  V, 8Xe

Here, ( is the path along the ray, X and K are the RR
coordinate and wave vector,

. OH(X,K)

VRO = (22)

is the group velocity, Vi = |V,/|, and the index * denotes
that the corresponding quantity is evaluated on (X, K).
In particular, H, = H(X,K), and H is defined as follows:

Hop) = 3 [Molep) + A (23)

We require H, to be exactly zero initially, which is en-
sured by choosing an appropriate K; then, H, remains
zero at all ¢, as seen from Eqgs. (21).

The RR-based coordinates are introduced as = =
{¢, 0%, 0°}, where g7 are orthogonal coordinates trans-
verse to the RR as specified in Paper II. (Here and fur-
ther, the indices ¢ and & span from 1 to 2; other Greek
indices span from 1 to 3.) The basis vectors €, of the
new coordinates (dx = €,dz") are defined such that

[0e,(%)/807], = 0. (24)

€xp v = 5/wa

Then,
_ ot
x~ X(()+ (€an e*g)<§2>. (25)
For the transformation matrices defined as
«a . axa ~ \«
X%, = Ok = (e#) ) (26)
- oM
Kby = o = (XM, 27
=) (27)
this leads to
X%~ X+ [(840)] 07, (28)
XY = XY, (29)
X = (&)™ (30)

The specific choice of &, is described in Paper II.

We shall use tilde to denote the components of vectors
and tensors measured in the RR-based coordinates z.
These components can be mapped to those in the labo-
ratory coordinates using the standard formulas [21]. For
example, for any vector or covector A, one has

A = X2 AF A, = A X0, (31)

We also introduce first-order partial derivatives

. 0f(xk) lo - 0f(x,k)

f\a - oz’ f = 8k‘a ’ (32)
and the second-order derivatives are denoted as follows:
f - an(X7k) f|aﬂ - an(X7k) fla - an(X5 k)

8 = D dah T OkaOky ' 1B T Oka0xP

Accordingly, flu = 0f(x,k)/0z", and so on.

D. Quasioptical equation

Let us split the matrix (17) into its scalar part H and
its traceless part M; this gives A = H1+ M. We assume
M(x,k(x)) < O(er) and M, < O(¢)); then,

M(x,k(x)) = M, + M, |,8° + M7, +o(e), (33)

where 7, = ku(x) — K,(¢) is given by 7, =

—0"H, |, Vi /V2 [21]. We can also rewrite this as
M(X7 k(X)) = M* + M*|a9a + MLﬁﬂ-B + O(GH)v (34)
0" = X207, = —0"H,oVap/ VY (35)

*

This leads to

A(x,k(x)) ~ H1 + M, + M, 57,
M,y = (Mo — MU H, | Vis/VE)XS,.  (36)



Let us also introduce the matrices u® = M!® < O(e_),
1% = X7 ,u® ~a? = X7 M, (37)
and a rescaled amplitude vector
¢ =+/V,ia. (38)

By combining the results of Papers I and II, one readily
finds that ¢ is governed by the following parabolic partial
differential equation, which is the main “quasioptical”
equation used in PARADE:

~0

~0 9° ~5 19*0
Vioep = — (0] +9,507)0,¢ — T¢

+5870%,¢+T0
— i(L40507 0" + M0d” + M, —U,)p. (39)
Here, we introduced the notation

3 ) )
56 % =g =55 (40)

aC = aQ‘T s 8@‘7

and the following coeflicients:
877 = X7, X7, HI'1
*  oadty gllx )
I =E/Da(X + o K+mE,,

o logt+m =t =
x H, = =x|a + =, | DHH*|a)A~

(As a reminder, the index A in the latter formula denotes
the anti-Hermitian part.) Also,

9o = [H]

1y = (Viy /V2) HY H, ) X7 (X0 51

- (;V*y*&jf'*v*)ay (41)

the matrix {9:0 is obtained from here by setting ¢ = o
and summing over o accordingly, and

[(€x0)'] 0 0
Vo = [(é*g)Q]’ 00|. (42)
[(€x0)?] 0 0
Finally,
~ 1 2V, |
Lioz = 5 (H*Iaﬁ — 5 Hijolls
+ Vi Vs HJ‘*H*WH*W) X, X0 .1, (43)

Vi

Note that the structure of the two-mode quasioptical
equation (39) is the same as that of the single-mode equa-
tion in Paper II except for the following: (i) there are ad-
ditional terms ., M., and M,; and (ii) the coefficients
are matrices rather than scalars. In particular, U and
T are generally non-diagonal and thus can cause mode

FIG. 1: Explanation of the polarization angles a and f.
Specifically, o denotes the rotation angle of the major axis
of the polarization ellipse, and  determines the ellipticity.

conversion. Also note that, like in Paper II, one finds the
following corollary:

dP ; .
e 2 / (a'Ta) d*p, (44)

where P = [ |¢|? d*g equals, up to a constant coefficient,
the energy flux carried by the beam. This shows that the
total energy flux of the beam is conserved when I' = 0.

E. Polarization angles

To facilitate benchmarking of PARADE, we also intro-
duce the electromagnetic-field parametrization in terms
of the polarization angles [26] used in the 1IDFW code
presented in Ref. [14]. The two components of the field
envelope 1 projected on the transverse space {g*, 3°} can
be expressed as follows:

(1/:11):|¢*|(cosacosﬂ—isinasinﬁ). (45)

)2 sin v cos 3 + i cos asin 3

The geometrical meaning of the polarization angles o and
[ can be understood from Fig. 1. Explicitly, these angles
can be expressed through ) as [26]

a=—tan"! M cosd |, (46)
2 il = [F[?

1 2 11,72
8= 3 sin™! (|1/~)i|772[}*—i|-|1|z]7232 sin 5) (47)

(note the difference in the signs in the denominators),
where § = arg(¢)?) — arg(¢}). In the following PARADE
simulations, the initial a is prescribed by prescribing «
and f. Specifically, « and 8 determine ¥* via Eq. (45),
and Eq. (18) yields a® = ns*a)(o‘uz/;“.



III. SIMULATION RESULTS

Here, we present PARADE simulations of mode-
converting wave beams with the focus on two effects:
(i) the mode-amplitude transformation during the O-X
conversion caused by the magnetic-field shear and (ii)
splitting of beams that consist of multiple modes. The
simulation algorithm is the same as the one used in
PARADE for single-mode waves in Paper II. Also like in
Paper 11, all simulations were done on a laptop with Intel
Core™ i7-7660U processor and took only a few seconds
to run, as further specified in the figure captions. For
D, we assume the dispersion tensor of collisionless cold
electron plasma for simplicity, so there is no dissipation.

A. Mode conversion in a sheared magnetic field
1. Comparison with uncoupled-mode simulations

As mentioned in Sec. II D, mode conversion in the vec-
tor equation (39) is governed by non-diagonal matrices
U, and I'. In the cold-plasma model, T" is zero but U,
is generally non-negligible. In order to illustrate the ef-
fect of U, on the polarization state of wave beams in
low-density plasmas, we compared PARADFE simulations
using Eq. (39) with those using the single-mode scheme.
This scheme is described in Paper II, and it is also simi-
lar to other existing quasioptical models [3-13] in that it
ignores the coupling between the electromagnetic modes.

As an example, we chose the initial wave to be a pure O
mode. Also, the assumed geometry is as follows. We in-
troduce the standard notation {z,y, z} for the laboratory
coordinates. The origin is chosen to be the RR starting
point, and e,, which is the unit vector along the z axis,
is chosen to be the orientation of the RR initial wave
vector. Then, we assume a slab geometry with electron
density

n

ne(z) = ng exp <Z£ ZO) (48)

and magnetic field

B,(z) sin 6, cos (05 + 2mz/Ly)
By(z) | =By | sinb, sin(0s +27z/Ly) |. (49)
B, cos b,

The parameters are ng = 1.0 x 10'® m™3, z; = 0.9 m,
L, =09m, Bp =04T, 6, =80.0° 6, = 80.0°, and
Ly = 0.9 m. The polarization angles are chosen to be
a = 80.0° and 8 = —27.0°. We also adopt the initial
beam profile as Gaussian [21, 27] with the focal lengths
Z1 = Z5 = 4.0 m and waist sizes wp1 = wp2 = 5.0 cm.
The wave frequency is f = 77.0 GHz, which corresponds
to the vacuum wavelength Ao ~ 4 mm.

The simulation results are presented in Fig. 2. It is
seen that, when the vector model (39) is used (solid lines),
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FIG. 2: Simulations of the vector-beam propagation paral-
lel to the density gradient in cold electron plasma with a
sheared magnetic field [Egs. (48) and (49)]. The parame-
ters are as specified in Sec. III A 1. The solid lines show the
PARADE predictions based on Eq. (39), which resolves mode
conversion. The dashed lines show the PARADE predictions
based on the single-mode scheme (Paper II). (a) shows the key
frequencies on the RR trajectory, namely, the upper-hybrid
frequency fun, the right-cutoff frequency f.c, the electron cy-
clotron frequency fce, and the plasma frequency fpc, all in
units f. (b) shows the components of the magnetic field
(B, By, B>) in units of its local strength |B|. (c) shows the
absolute values of the individual components of ¢ on the RR.
(d) shows the polarization angles o and 8. (e) shows the
relative intensities of the O and X waves [Eq. (50)]. The com-
puting time is approximately 4.5 s.

the variation of the polarization angles is slow and overall
small [Fig. 2(d)], because the plasma density is low (fpe <
0.2 in units f). Correspondingly, the relative intensities
of the O and X waves, which are defined as

oo Jle*Pd?o

pe =21 =8
[lal? @26’

(50)

vary rapidly [Fig. 2(e)], because of the strong shear of
the magnetic field with scale length L, = 0.9 m. This
variation illustrates the shear-driven mode conversion.
In contrast, in the single-mode scheme (dashed lines),
where the mode conversion is not taken into account, the
initially-excited O mode remains pure. Then, h® are fixed
and, accordingly, the polarization angles vary rapidly, al-
though the ambient plasma has low density.

2. Comparison with the 1IDFW code

As the second example, we compared predictions of
PARADE with predictions of the 1IDFW code presented
in Ref. [14], so as to verify that the shear-driven mode
conversion and smooth variation of the polarization state



1
0.8 (a) f]yh
g 06 -
= 0.4 _
0.6 —
v 05 —
= 0 _
@ 05
- Oli [ (c).. - i : [

s 8 ; e
* 05 : | 1%
=\ i—d— i
13 E(d) o a
= o =4 p-

3 -0.

-1

: : : h)<

2 08— ‘ ‘ B =
< 0.4 -

0.2

0
0 0.3 0.6 0.9 1.2 1.5 1.8

Distance along the RR, ¢ [m]

FIG. 3: Comparison of the simulation results produced by
PARADE (solid lines) and the 1DFW code (dashed lines).
The parameters are the same as in Fig. 2 except a = 35.0°,
B = —10.0°, np = 3.0 x 10*®* m™2, and L, = 5.4 m. The
computing time is approximately 4.5 s.

are modeled accurately. Here, the initial polarization an-
gles are chosen to be « = 35.0° and = —10.0°. The sim-
ulations are performed in a slab geometry [Egs. (48) and
(49)] with ng = 3.0x 10'® m~2 and L;, = 5.4 m; the other
parameters are the same as in Sec. III A 1. The compar-
ison shows good agreement of the two codes (Fig. 3).

8. Parameter scan

As another example, we consider how the mode con-
version is influenced by the magnetic-field shear and by
the plasma density. For simplicity, we adopt that the
magnetic field is given by Eq. (49), as earlier, whereas
the density is constant, n = ng. First, the O—X mode
conversion is simulated with fixed ng = 1.0 x 10'® m—3
and different scales of the shear, ranging from L, = 0.3 m
to Ly = 3.6 m (Fig. 4). The parameters other than ng
and L; are kept the same as in Sec. III A 2. Since the
low density is assumed (fpc < 0.2 in units f), the polar-
ization state does not change notably with L; [Figs. 4(c)
and (d)]. However, the relative intensities of the O and
X waves [Eq. (50)] do, because a® are defined as the pro-
jections of 4 on the polarization vectors [Eq. (18)] that
are linked to B. As seen in Figs. 4(e) and (f), smaller
Ly, corresponds to shorter periods of the energy exchange
between the O and X waves. Specifically, the mode con-
version occurs twice per rotation of the magnetic field in
the (z,y) plane.

We also simulated the O-X mode conversion for ng
scanned in the range between 1.0 x 10'® m~3 to 5.0 x
10'® m™3 at fixed Ly = 0.9 m. The other parameters
were kept the same as in Sec. IIT A 2. As seen in Fig. 5,
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FIG. 4: PARADE simulation results of the O—X mode con-
version in a slab geometry with constant density n = no
and magnetic field given by Eq. (49). The density is fixed,
no = 1.0 x 108 m*:"7 and L is scanned in the range between
0.3 m and 3.6 m. The other parameters are the same as in
Fig. 3. (a) and (b) show the absolute values of the two com-
ponents of . (c) and (d) show the polarization angles o and
B. (e) and (f) show the relative intensities of the O and X
waves [Eq. (50)].

larger ng corresponds to stronger variations of the polar-
ization angles [Figs. 5(c) and (d)] and slower variations
of the relative intensities [Figs. 5(e) and (f)]. This ten-
dency predicted by PARADE is anticipated, because the
two electromagnetic eigenmodes are nonresonant at suf-
ficiently dense plasma but become resonant at low densi-
ties, where they both have the refraction indexes close to
unity. The influence of the shear [Figs. 4(e) and (f)] and
plasma density [Figs. 5(e) and (f)] on the relative inten-
sities is particularly relevant in practice due to the fact
that magnetically-confined fusion plasmas have inhomo-
geneous shear and nonzero inhomogeneous density even
outside the edge. Specific applications of PARADE and
comparison with 1IDFW simulations (where refraction is
neglected) are reported in Ref. [24].

B. Weak splitting of mode-converting beams

PARADE is also advantageous in that it can efficiently
model splitting of multi-mode beams. To demonstrate
this capability, we performed numerical simulations in a
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FIG. 5: Same as in Fig. 4 except Ly, = 0.9 m is fixed and ng is
scanned in the range between 1.0 x 10® m =3 t0 5.0x 10'® m =3
with the increment 1.0 x 10'® m~3.

slab geometry with

n—noexp{(x;g‘ﬂ, (51)
poemen[- 2]

Here, ng = 1.0 x 10 m™3, 2y = 4.0 m, L,, = 4.0 m,
By =10T, Ly = 4.0 m, and e, is the unit vector along
the z axis. (The orientation of the magnetic field B/|B| is
chosen to be constant here to suppress the shear-driven
mode conversion.) The origin is chosen to be the RR
starting point, and {z,y, 2z} = {1.0,0.0,0.2} m is chosen
to be the target point, which is used to fix the orienta-
tion of the RR initial wave vector. The initial polariza-
tion angles are o = 10.0° and S = —30.0°. Also, for the
initial beam profile, we adopt a Gaussian profile [21, 27]
with the focal lengths Z, = Z; = 3.0 m and waist sizes
wo,1 = wo,2 = 5.0 cm. The wave frequency is chosen

to be f = 77.0 GHz. Figure 6 shows the evolution of
the transverse profile of |a| at different locations along
the RR. One can see the gradual splitting of the origi-
nal beam into O-mode and X-mode beams propagating
along separate ray trajectories. (Note that a single RR
is used for this simulation, in contrast to single-mode
simulations, where each mode would have its own RR.)
Figure 7 shows the trajectories of the locations of the am-
plitude maxima. For comparison, this figure also shows
the trajectories obtained from ray-tracing simulations,
where O and X waves are modeled as independent. It
is seen that PARADFE’s quasioptical simulations are in
good agreement with conventional ray tracing. Impor-
tantly, such quasioptical modeling of a two-mode beam
is adequate only as long as the group velocities of the O
and X waves remain close enough to each other; otherwise
the ordering (4) cannot be maintained. (That is why we
consider only weak splitting here.) However, by the time
the two group velocities become very different, the O and
X waves also become nonresonant and thus independent.
Such waves can also be modeled with PARADE, except
the single-mode algorithm [21] must be used instead.

IV. CONCLUSIONS

This work continues a series of papers where we pro-
pose a new code PARADE for quasioptical modeling of
electromagnetic beams with and without mode conver-
sion. The general theoretical model underlying PARADE
and its application to single-mode beams were presented
earlier [20, 21]. Here, we apply PARADE to produce the
first quasioptical simulations of mode-converting beams.
We also demonstrate that PARADE can model splitting
of two-mode beams. The numerical results produced
by PARADE show good agreement with those of one-
dimensional full-wave simulations and also with conven-
tional ray tracing to the extent those are applicable.
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