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Abstract—Transactive energy has emerged and gained more 
and more attention in recent years. Electricity pricing 
strategies play a critical role in influencing and shaping the 
customers’ energy load profile. In this paper, we investigate 
the electricity pricing strategy between a distribution system 
operator (DSO) and load aggregators (LAs) by adopting a bi-
level Stackelberg game approach. With the purpose of 
maximizing its own operating revenue as well as better serving 
its customers, the upper level DSO will determine electricity 
prices while considering how lower level LAs will respond to it. 
Peak-to-average ratio of the total demand could be limited by a 
preferred value, and peak load is penalized at the upper 
optimization level. Numerical results demonstrate the 
effectiveness of the proposed game approach in leveraging 
flexible demand potential to benefit both DSO and LAs.  
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I.  INTRODUCTION  

Demand response (DR) is expected to bring significant 
economic value and environmental benefits to the future 
smart grid by effectively adjusting energy usage patterns of 
users from the demand side [1]. Electricity price signals can 
be an efficient market tool for several DR services, e.g. 
critical peak pricing, time-of-use pricing, and real-time 
pricing [2]. Such different pricing strategies have been 
introduced to better leverage response potential in load 
shifting and peak reduction for macro power grid, or to 
improve distributed renewable energy integration by energy 
trading in the local energy transaction market.  

Game theoretic based approaches have been studied 
extensively to generate such pricing strategies. For example, 

the interaction between the electricity retailer and household 
customers has been modeled in [3] as one-leader, N-follower 
Stackelberg game, where the electricity retailer determines 
the retail price, and customers schedule their appliances in 
households to minimize electricity bills. A game-theoretic 
energy schedule method has also been proposed in [4] for the 
two-step game between power companies and its consumers 
with the objective of reducing peak-to-average ratio (PAR). 
Repeatedly, the power company pulls consumers in a round-
robin fashion and provides them energy prices and current 
total consumption; each user then optimizes its own schedule 
and updates it to the supplier. In [5], a time-of-use (TOU) 
pricing between utility companies and customers is 
optimized by a game-theoretic approach, and a backward 
induction method is used to obtain Nash equilibrium. For the 
utility company, energy electricity delivery cost, user 
demand fluctuation cost, and overall user satisfaction cost 
are considered while customers tend to minimize their own 
electricity bill and satisfaction cost. Increased social welfare 
has been shown in multiple user types (residential, 
commercial, industrial) with different price elasticity.  

The interactions between a utility company and multiple 
customers are formulated as one-leader, N-follower 
Stackelberg game in [6], which is aimed at balancing supply 
and demand as well as smoothing the aggregated load. An 
iterative demand response algorithm is proposed to derive 
Stackelberg equilibrium of power generation and power 
demand. In [7], an analytic model of a multi-leader and 
multi-follower Stackelberg game approach is developed for 
an open energy market with the objectives of optimizing 
total energy cost and reducing carbon emissions. To solve 
the resultant bi-level multi-objective optimization problem 
efficiently, a bi-level hybrid multi-objective evolutionary 
algorithm is proposed. In [8], an estimation method is 
proposed for the utility company to infer the energy 
requirement of aggregators based on an inverse optimization 
technique for the purpose of privacy protection.  

Besides the game between utility companies and users, 
the local energy transactions among prosumers have also 
been studied. For instance, an M-leader and N-follower 
Stackelberg game approach is used in [9] to model the 
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interaction in peer-to-peer energy trading among prosumers 
in a community. With multiple leaders and followers, there 
exist two separate competitions during the trading process: 
price competition among sellers which is modeled as a non-
cooperative game, and seller selection competition among 
buyers which is solved by an evolutionary game algorithm. 
To facilitate energy sharing of multiple photovoltaic (PV) 
prosumers, the energy sharing provider (ESP) is assumed to 
be equipped with an energy storage in [10]. Via stochastic 
programming, day-ahead scheduling model of the ESP is 
built to improve the net power profile of an energy-sharing 
network with uncertainties of PV energy, electricity prices, 
and prosumers’ load.  

In [11], an improved game-theoretic demand side 
management framework is proposed for a neighborhood area 
to provide cost savings for consumers and to reduce the PAR 
for the neighborhood. A novel real-time price tariff model is 
established, and a Nash-game-theoretic-based optimization 
model is developed to minimize consumers’ cost while 
maintaining an optimal comfort level and satisfying peak 
reduction constraints. Instead of a conventional non-
cooperative game based approach, energy trading among 
demand aggregators and a distribution company is 
formulated as a bargaining based cooperative model in [12], 
where the energy trade amount is collaboratively decided 
upon. The bargaining-based model could allocate collective 
benefits fairly among participants and a distributed solution 
approach is utilized to protect privacy. 

In this paper, we address and investigate the pricing 
game between a distribution system operator (DSO) and 
several load serving entities/aggregators (LAs), where the 
DSO broadcasts the price, and LAs send back load 
adjustments in response to the price. Utility functions are 
designed for both DSO and LAs, where electricity sales 
revenue, electricity generation/marginal cost, LAs’ overall 
satisfaction, as well as preferred PAR are taken into account 
for the DSO, while LAs minimize their own dissatisfaction 
and bill payment. 

The remainder of this paper is structured as follows. 
Section II presents the bi-level game theoretic optimization 
model for the transactive control electricity pricing between 
a DSO and multiple LAs. Simulation results are presented in 
Section III to demonstrate the performance of the proposed 
Stackelberg game approach. Finally, Section IV provides the 
summary and conclusion. 

II. GAME MODEL AND BACKWARD INDUCTION 

In this section, we will develop the Stackelberg game 
framework for the bi-level transactive optimization 
electricity pricing between a DSO and several LAs. In most 
electricity markets, individual customers (i.e. load) located in 
a distribution system do not directly participate in the 
electricity wholesale market to purchase electricity. Instead, 
a LA, which represents a group of customers, manages the 
electric energy transactions for customers and delivers 
electric power to them.  

Generally, load at a given time is determined by 
customers and is inelastic to price except while considering 
DR. In some DR programs, load might be controlled 
(curtailed) during some periods of time by system operator 
or customers might adjust their demand in response to real-
time electricity price. The later DR case is considered in this 
paper. There are several advantages to consider load 
aggregators instead of individual customers, for example, the 
dynamics of an aggregated load are slower and therefore 
more predictable, also, the communication burden at the 
distribution system will be reduced. The focus in this paper 
is the pricing problem between DSOs and LAs. The problem 
of how the committed aggregated demand response can be 
allocated to each individual customer will be explored in a 
future paper. The DSO is modeled as a leader while LAs are 
modeled as followers in a Stackelberg game model. All 
notations used in this paper are listed in Table I. 

The optimization formulation for the DSO (upper level) 
is given by the following model, where 𝑈  is the total utility 
value to be maximized for the DSO.  

 

max
, ,

𝑈 = ∑ 𝑝 ∙ 𝑙 ,, − ∑ 𝐶 ∙ 𝑙 , + 𝜔 ∙,

∑ 𝑆 𝑙 ,, − 𝜃 ∙ 𝑚  
(1) 

s.t.  𝐶 ≤ 𝑝 ≤ 𝑃, ∀𝑡 (2) 

𝑚 ≥ ∑ 𝑙 , , ∀𝑡  (3) 

The objective function (Eq. (1)) has four terms. The first 
term is the total revenue from sold electricity. The second 
term is the cost of electricity to the DSO, different cost 
function could be used, e.g. quadratic function [3], [13], [14]. 
The third term is the overall satisfaction value coming from 
LAs (in lower level). The fourth term is the penalty for peak 
demand. Note that 𝜔 and 𝜃 are weight factors for customers’ 
satisfaction and peak demand, respectively. The constraint in 
Eq. (2) gives upper and lower limits to electricity price, 
while the constraint in Eq. (3) makes sure the peak demand 
𝑚 = max ∈ ∑ 𝑙 ,  is greater than the total load at all times. 
The peak-to-average ratio could be calculated by Eq. (4). 
 

PAR = 
∙∑ ,,

 (4) 

  

TABLE I.  LIST OF PARAMETERS AND VARIABLES. 

Parameters Definition 
𝑇 Total hours with index 𝑡 
𝑁 Total aggregators with index 𝑛 

𝐷 ,  Nominal demand of LA 𝑛 
𝐿 ,  Minimum demand limit for LA 𝑛 
𝐿 ,  Maximum demand limit for LA 𝑛  
𝐶  Incremental marginal cost of electricity 
𝑃 Maximum possible price reference 

𝛼 ,  Preference satisfaction coefficient for LA 𝑛 
Variables Definition 

𝑝  Unit sale price of electricity 
𝑙 ,  Actual load for LA 𝑛 in response to price 



The optimization formulation of each aggregator (lower 
level) is modeled as in Eq. (5) and Eq. (6), where 𝑈  is the 
total utility value to be maximized for LAs. 

max
,

 𝑈 = ∑ 𝑆(𝑙 , ) − ∑ 𝑝 ∙ 𝑙 ,   (5) 

s.t.       𝐿 , ≤ 𝑙 , ≤  𝐿 , , ∀𝑛 (6) 

where the final actual load 𝑙 ,  will be restricted between 
minimum and maximum demand limits.  𝑆(𝑙 , ) = 𝐿 , ∙ 𝑃 ∙

(1 − 𝑒
, ∙(

,

,
)
)  is used to represent monetary value of 

satisfaction, 𝑃 is a constant price reference as a price upper 
limit. This exponential utility function 𝑓(𝑥) = 1 − 𝑒 ∙  is a 
concave increasing function which is commonly adopted in 
utility theory to model users’ preference [4]. Its value trend 
is illustrated in Fig. 1 with different preference coefficients 
𝛼 ∈ [0.5, 4]. The parameter 𝛼 could be treated as sensitivity 
towards energy consumption curtailment, for instance, the 
utility value of a relatively large value of 𝛼 = 4  reaches 
about 0.8 when 𝑙 , = 0.5 ∙ 𝐷 , , while it is only 0.2 for 𝛼 =
1 . 𝐷 ,  is the nominal demand of LA n, which can be 
obtained as a reference from historical energy load profiles. 
Note that we use satisfaction here as a positive gain, i.e., the 
larger 𝑆(𝑙 , )  is, the more satisfaction is achieved. While 
different satisfaction cost representations can also be found 
in [5], [15], where the less the satisfaction cost is, the more 
satisfaction is achieved.  Both satisfaction representations are 
acceptable as long as several properties are fulfilled.  

A classical backward induction method is used to solve 
for the equilibrium solution of the bi-level Stackelberg game 
(Eqs. (1)-(6)) by following the next two steps:  

1.   Derive optimal demand response to price. 
Assume the electricity price is provided as a parameter 

from DSO, then the best load response 𝑙 ,
∗  can be obtained 

by the first-order derivative of LAs’ objective functions.  

𝑑𝑈

𝑑𝑙
= −𝑝 + 𝛼 , ∙ 𝑃 ∙ 𝑒

, ∙
,

, = 0 (7) 

𝑝 = 𝛼 , ∙ 𝑃 ∙ 𝑒
, ∙

,

,  (8) 

𝑙 ,
∗ =

𝐷 ,

𝛼 ,

∙ ln
𝛼 , ∙ 𝑃

𝑝
 (9) 

2.   Derive optimal price based on user response. 
After the optimal load is obtained, it can then be plugged 

into the optimization model of the DSO. The pricing 
problem then becomes the following model (Eqs. (10)-(14)). 
Since Eq. (8) is a decreasing function of 𝑙 , , the constraints 
of Eq. (6) can be written as in constraint Eq. (12).  

 
Figure 1.  Utility value for different user preferences. 
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, ,

 𝑈 = 𝑝 ∙ 𝑙 ,
∗

,
− 𝐶 ∙ 𝑙 ,

∗

,

+ 𝜔 ∙ 𝑆(𝑙 ,
∗ )

,
− 𝜃 ∙ 𝑚 

(10) 

s.t. 𝐶 ≤ 𝑝 ≤ 𝑃, ∀𝑡 (11) 

max
∈

(𝛼 , ∙ 𝑃 ∙ 𝑒
, ∙

,

, ) ≤ 𝑝 ≤

max
∈

(𝛼 , ∙ 𝑃 ∙ 𝑒
, ∙

,

, ) , ∀𝑡  

(12) 

PAR = 
∙∑ ,

∗
,

 (13) 

𝑚 ≥ 𝑙 ,
∗ , ∀𝑡 (14) 

where 𝑙 ,
∗  is a function of price (Eq. (9)); this nonlinear 

model has only variable 𝑝 , and it can be solved by any 
general nonlinear solution method. In addition, if fixed price 
structure is adopted, an additional constraint 𝑝 = 𝑝 , 𝑡 ≥
2 should be added to the above model. 

III. NUMERICAL EXPERIMENT 

A. Data Setting 

In this experiment, a day-ahead hourly optimization is 
considered with three aggregators (n1, n2, n3). The nominal 
demand 𝐷 , , 𝛼 ,  in the satisfaction function, and marginal 
cost 𝐶  are plotted in Figs. 2-4, respectively. And the 
parameter 𝑃 is assumed to be constant equals to 30.  
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Figure 2.  Nominal demand of aggregators. 
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Figure 3.  User preference in satisfaction. 
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Figure 4.  Incremental marginal cost of electricity. 

B. Experimental Results 

The developed model is solved by a non-commercial 
nonlinear solver called Solving Constraint Integer Programs 
(SCIP) [16]. Several groups of experiments are conducted 
for different price structures (fixed price and TOU price) and 
weight combinations, relative gap of 0.01 is set for all 
experiments. Here, we assume all aggregators have the same 
price determined by the DSO.  

Two sets of prices as well as different weight preferences 
on customers’ satisfaction cost and peak load cost are tested, 
see Table II. All results of prices and demand responses are 
shown in Figs. 5-10. In Fig. 5, the resulted fixed price 
slightly increases from structure F1 to F2 as a larger penalty 
is put on aggregated peak load, and then drops to F3 due to a 
higher weight on user’s satisfaction value. It can also be 
observed that under TOU pricing in Fig. 6, the price follows 
the same pattern as in Fig. 5, P3 is the lowest with a higher 
weight on overall satisfaction. It is noted that P1 overlaps 
with P3 before time point 11 and then overlaps with P2 for 
the rest of time. When 𝜃 = 15 in TOU price P2, the resulted 
peak demand for each aggregator has been shaved or shifted 
in Figs. 7-9, and for the aggregated demand in Fig. 10. On 
contrast, when  𝜔 = 5  in TOU price P3 with minimum 
penalty on peak demand and maximum weight on 
satisfaction value, the demand of each aggregator tends to 
increase following the nominal demand patterns, which 
results in higher energy consumption. The detailed revenue 
and cost data for the different pricing schemes are compared 
and summarized in Table III. 

 
 

TABLE II.  DIFFERENT PRICE STRUCTURE AND WEIGHT PREFERENCES 

F1: Fixed price, 𝜔 = 0.1, 𝜃 = 0.1 P1: TOU price, 𝜔 = 0.1, 𝜃 = 0.1 
F2: Fixed price, 𝜔 = 0.1, 𝜃 = 15 P2: TOU price, 𝜔 = 0.1, 𝜃 = 15 
F3: Fixed price, 𝜔 = 5, 𝜃 = 0.1 P3: TOU price, 𝜔 = 5, 𝜃 = 0.1 
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Figure 5.  Fixed prices for different preferences. 
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Figure 6.  TOU prices for different preferences. 

1 3 5 7 9 11 13 15 17 19 21 23
20

40

60

80

100

120

hours

n1
, k

w
h

 Nominal Load  P1  P2  P3

 
Figure 7.  Demand response of n1 under TOU price. 
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Figure 8.  Demand response of n2 under TOU price. 
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Figure 9.  Demand response of n3 under TOU price. 
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Figure 10.  Total demand under TOU price. 

TABLE III.  PROFIT AND COST IN SUMMARY (PRICE: CENT, 
COST/REVENUE/SATISFACTION: $). 

DSO Level F1 F2 F3 P1 P2 P3 

Peak Load 375.61 369.82 416.53 375.00 306.16 435.25 

PAR Value 1.30 1.32 1.24 1.41 1.18 1.26 

Total Satisfaction 2208.69 2187.79 2332.77 2165.92 2143.1 2347.69 

DSO Revenue  873.40 869.63 887.39 920.35 913.46 882.58 

DSO Gen. Cost  265.92 260.36 305.22 224.46 219.11 313.08 

DSO Profit  607.48 609.27 582.17 695.89 694.35 569.49 

Aggregator Level F1 F2 F3 P1 P2 P3 

n1 Average Price  12.68 12.93 11.03 14.29 14.62 10.70 

n2 Average Price  12.68 12.93 11.03 14.23 14.54 10.70 

n3 Average Price 12.68 12.93 11.03 14.69 15.11 10.72 

n1 Bill Payment  225.41 224.45 228.96 239.49 237.66 227.44 

n2 Bill Payment  333.86 332.95 336.05 347.56 344.53 333.45 

n3 Bill Payment 314.11 312.22 322.37 333.29 331.26 321.68 

n1 Satisfaction 607.44 602.43 636.16 608.78 603.66 639.10 

n2 Satisfaction 816.57 809.65 858.53 792.55 783.67 863.22 

n3 Satisfaction 784.68 775.71 838.08 764.59 755.77 845.37 

 

It is observed in Table III that for a fixed price structure, 

PAR value and average price (
∑ ∙ ,

∗

∑ ,
∗ ) for aggregators are 

decreasing/increasing at the same time since the load for all 
hours behaves similarly due to the fixed price. In other 
words, the fixed price structure does not support load shifting 

ability. In contrast, the flexibility of TOU price structure can 
shave/shift the peak load and reshape the load profile, for 
instance, P2 has the lowest aggregated peak load of 306.16 
kW and PAR of 1.18, meantime it has the highest average 
prices for aggregators as indicated in Fig. 6 and Table III. 
Comparing F1 to P1 and F2 to P2, when the weight on 
satisfaction is low, the profit of DSO increases while all 
customers pay more, and their overall satisfaction decreases. 
On the other hand, when satisfaction is over weighted, then 
customers tend to increase their demand following their 
nominal patterns, for example, comparing F3 to P3, DSO 
makes less profit and customers have the lowest average 
price, more consumption, and highest satisfaction value. 
Therefore, the tradeoff between DSO and aggregators should 
be balanced in actual implementation of DR. 

IV. CONCLUSION 

In this paper, a Stackelberg game is adopted to model the 
pricing game between a DSO and LAs, where different 
utility functions are designed for the leader and followers. In 
the upper level, total profit, social obligation, and PAR are 
optimized for the DSO, while LAs minimize their 
dissatisfaction and bill payment at the lower level. With 
different weighting combinations and different pricing 
structures, optimal prices and load responses are obtained. In 
addition, the tradeoff between DSO and LAs are analyzed. In 
the future, the load commitment of aggregators will be 
addressed by allocating the allotted energy among different 
buildings. In addition, more practical conditions such as 
larger scale analysis and distributed algorithms will be 
developed.  
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