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CHEN ET AL.: UNCERTAINTIES QUANTIFICATION IN CLOUD RETRIEVALS

This study proposes a methodology of quantifying uncertainties for cloud
retrievals on model resolution to facilitate the comparison with model out-
puts. Primary component analysis is applied to reduce the dimension of ran-
dom variables (up to a factor of 50) and reveal the cross correlations in the
input data, making large sampling computationally feasible and uncertainty
quantification accurate and reliable. Our approach has the capability of pa-
rameterizing input uncertainties and attributing the uncertainties in the re-
trieval output to each individual source, which allows sensitivity analysis of
cloud retrieval algorithms and provides directions for improving observation
instruments as well as strategies. We applied the method to characterize un-
certainties in cloud ice water content (IWC) retrieved from the DOE Atmo-
spheric Radiation Measurement (ARM) programs baseline cloud microphys-
ical retrieval algorithm (MICROBASE). We test it with a selected ice cloud
case observed on 9 March 2000 at the ARM Southern Great Plains site dur-
ing its 2000 cloud intensive observing period. The test results indicate that
(1) uncertainties in the output retrieved by MICROBASE are comparable
amongst different retrievals; (2) The mean values obtained by our UQ method
are closer to the aircraft data with less errors compared to the direct ensem-
ble average; (3) Ice water path (IWP) generally incurred larger uncertainty
in optically thin ice clouds and there was more variability in vertical in the
retrieved IWC; and (4) Uncertainties in the output are mainly due to the

interactions among different modes of ARM radar profiles.
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X-4 CHEN ET AL.: UNCERTAINTIES QUANTIFICATION IN CLOUD RETRIEVALS

1. Introduction

Cloud properties such as liquid and ice water contents retrieved from ground-based
measurements have been widely used in climate model evaluation, however, earlier stud-
ies have shown that there exist large differences and uncertainties in ground-based cloud
retrievals, (e.g., [Comstock et al., 2007; Turner et al., 2007; Zhao et al., 2012]). They indi-
cated that these differences and uncertainties are primarily from the retrieval theoretical
bases, assumptions, as well as input profiles and constraint parameters. Quantifying the
uncertainty in cloud retrievals has been long desired from the developer and user com-
munities [Xie, 2011]. One way to quantify the uncertainty in a particular cloud retrieval
product is through calculating the variability based on ensemble average of retrieved cloud
properties [Comstock et al., 2007]. Another way is through perturbing input profiles and
several key parameters used in the retrieval algorithm, as demonstrated in [Zhao et al.,
2014], which applied a simple perturbation method to the ARM program baseline retrieval
of cloud microphysical properties (MICROBASE [Dunn et al., 2011]).

However, the classical uncertainty analysis methods for quantifying the uncertainty
in cloud retrieval often suffers from the following limitations: (1) correlations among
various influential factors may not be considered; (2) parametrizing input profiles with
corresponding correlations may not be an obvious task; (3) sampling random variables
amongst various vertical layers may require large number of samples; (4) characterizing a-
priori probability density function still requires some unnecessary statistical assumptions;
and (5) attributing contribution of variability in the retrieved product to each individual

source is not permitted in general. To address these issues, this study aims to establish a
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novel observation-based methodology to generally quantify the retrieval uncertainties for
model evaluation (especially global models) over a typical model temporal resolution, i.e.,
30 minutes. This method is based on Karhunen-Loéve (KL) expansion (KLE) [Kuhunen,
1947; Loéve, 1945] and Central Limit Theorems (CLT) [Ross, 2010] to quantify the uncer-
tainties introduced by potential errors in measurements and uncertainties in parameters
used in cloud retrievals. Our approach takes account for the correlation between vertical
layers in the input profiles and reduces the number of random variables, which renders
large sampling computationally feasible and makes output uncertainty range results ac-
curate and reliable. This approach is to make objective comparison between observations
and model outputs according the formulations of climate models and definition of retrieval
algorithm defined as a space-time average for a specific spatial-temporal domain, such as
1 degree x 1 degree x 30mins. Despite that many existing methods can only estimate
column-integrated uncertainties, our unique method also provides vertically resolved UQ
analysis, which are essential to many topics, such as radiative forcing and climate change.
We also implement the sensitivity analysis of retrieved quantity of interest with respect to
each individual source, which are particularly useful when dealing with highly non-linear
retrieval algorithms, as different error sources are more likely entangled.

The structure of the paper is as follows. In Section 2, the details of KLE-CLT based
uncertainties analysis in cloud microphysical property retrievals are given. In Section 3,
the method is tested with a ice cloud case observed on 9 March 2000 at the ARM SGP
Climate Research Facility to quantify uncertainties of cloud ice water content (IWC)

using MICROBASE as the retrieval algorithm. Results from our uncertainty analysis and
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sensitivity studies are shown in Section 4. Finally, we provide directions in Section 5 for

improving observation instruments as well as strategies.

2. Methodology
KLE is usually used to solve stochastic problem involving large number of random vari-
ables with stable correlation kernel during an observation period, while CLT is generally
used to deal with unknown a-priori probability density functions of random variables.
We will combine KLE and CLT to propagate the uncertainties from ground-based mea-
surements as well as the empirical parameters through MICROBASE retrieval algorithm.
MICROBASE is the ARM baseline retrieval for cloud properties based on the cloud radar
and lidar measurements [Dunn et al., 2011; Zhao et al., 2014]. It derives the liquid and
ice properties using empirical regression equations obtained from in situ aircraft measure-
ments with some assumptions. Liquid water content (LWC) and ice water content (IWC)
are derived from radar reflectivity at 35 GHz and some empirical parameters, where LWC
=

is retrieved by LWC = LW P+—=%—

Z; Ze%iqAZ

, while for pure ice clouds, IWC is retrieved by
IWC = aZeh,,. In the equations above, a, b and g are empirical parameters, and AZ is
the increment in vertical. Uncertainties in its retrieved cloud property comes from three
sources: input profiles, retrieval algorithm, and assumptions as described in [Zhao et al.,
2012, 2014].

To start with, we introduce a temporal-spatial stochastic process Y (x,t,6) to represent
unbiased raw observations (e.g., radar reflectivity profiles to be described in Section 3,
where x denotes the height, ¢ denotes the time, and 6 represents a random event). As

a result, an ensemble of snapshots of the stochastic process Y (x,t,6) observed in the
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analysis time window [0, 7] can be recorded as {y1,¥ya,...,yn}, where y; (x) = y (x,t;),
1 =1,...,n,n is the number of snapshots; and the ensemble average of the snapshots can

be defined as y (x) = £ 3" | y;.
With noises added to unbiased raw stochastic process Y (x,t,6), we have input profiles
Y’ (x,t,0), defined as Y’ (x,t,0) =Y (x,t,0) + noise. Since Y (x,t,0) can be decomposed

into ensemble average ¢ (x) and an unknown random estimation error € (x, t, ), such that

Y (x,t,0) = 7 (x) + €(x,t,0). Therefore, we obtain
Y'(x,t,0)) =7 (x) + €(x,t,0) + noise (1)

The goal of this paper to make objective comparison between observations and model
outputs according the formulations of climate models and definition of retrieval algorithm
defined as a space-time average for a specific spatial-temporal domain such as 1 degree x
1 degree x 30mins. Thus, input profiles Y (x,¢,6) and Y’ (x,¢,6) are transformed to more
smooth statistic Y (x,t,6) and Y (x,t,6) (sample mean of Y (x,t,6) and Y’ (x, ¢, 6) within
the time window), respectively, whose probability density functions are approximately
normal (to be discussed in the subsequent paragraphs).

Due to the high dimensionality of the stochastic space for Y (x,¢,0) (e.g., 512 vertical
layers in ARM radar reflectivity profiles), it is computationally infeasible to sample all the
vertical layers. To reduce the dimensionality, we applied KLE to represent the stochastic
process Y (x,t,6) in terms of eigenfunctions of its correlation kernel assuming it is piece-
wise stable within the analysis time window. The detailed derivations can be found in
Appendix A. The method was originated in [Pearson, 1901]. Hotelling [1933]; Kosambi

[1943] introduced the principal component analysis (PCA) which involves a statistical
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X-8 CHEN ET AL.: UNCERTAINTIES QUANTIFICATION IN CLOUD RETRIEVALS

procedure that transforms a number of possibly correlated variables into a smaller number
of uncorrelated variables called principal components. In practice, the correlation kernel
is approximated numerically by constructing a covariance matrix using the method of
snapshots [Sirovich et al., 1987] within a time window.

Based on Central Limit Theorems [Ross, 2010], random variables appeared in the KL
expansion of Y (x,t, #) approximately follow student or normal distribution when sample
size is large enough (large number law). By truncating KL expansion of Y (x,t, ) to the

order of M and adding white noises, we obtain the corresponding Y (x,t, ) that can be

written as
M hy 0 ’ Z
Y (x,t,0) = Ry 0| == 2
(x.t,0) “;d’\/n \ = & (2)
where z = [z, 29, ... ,ZM]T, z ~ N (0,I)) and I, is a M x M identity matrix. The

detailed proof is given in the Appendix B. To simplify, other than observation-based
input profiles, uniform distributions are applied for perturbing algorithm and assumption
parameters of the retrieval. We will apply Sobol’ [Sobol, 1993] method to derive global
sensitivity analysis of microphysical properties retrieved by MICROBASE. Sobol” method
is a variance-based sensitivity analysis method, which divides the variance of the output
into fractions attributed to each input (first-order indices) and their interactions (second-
or higher-order indices). The fractions measure the contribution to the output variances
of each input variable, including all interactional variances with any other input variables
in all the orders. Also, Latin Hypercube Sampling (LHS) procedure is used to draw

samples in the designed space for input profiles and parameters. LHS is an effective
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stratified sampling approach in a high-dimensional space ensuring that all portions of a

given partition are sampled [McKay et al., 1979].

3. Application

To demonstrate the value of the proposed uncertainty analysis method, we apply it to
quantify uncertainty in MICROBASE retrieved ice properties for high cirrus cloud case
observed on 9 March 2000 at the ARM SGP site during the 2000 cloud intensive observ-
ing period (IOP). The cirrus cloud case has been studied comprehensively in [Comstock
et al., 2007] to examine the ability of 15 state-of-art cloud retrievals to retrieve ice cloud
properties. As described in [Comstock et al., 2007] , the cirrus cloud observed on 9 March
2000 formed as a weak upper-level disturbance and propagated over the SGP region in a
strong southwesterly flow. The initial cloud formation occurred as the weak disturbance
passed over the mountains of central New Mexico during the local morning of 9 March.
The clouds thickened into a series of bands oriented along the wind as the disturbance
moved northeastward. The visible optical depth varied by two orders of magnitude over
the 3.5-hour time period, which is typical for midlatitude synoptically generated frontal
cirrus clouds that tend to be initially optically thin and increase in optical thickness as
the cloud system passes overhead. The majority of the cloud observed during the 9 March
2000 case falls into this optically thick category. Optically thin ice clouds only occurred
during the (1900-1915UTC, 22:00-2230 UTC) period displayed in Figure 1 (a).

Comstock et al. [2007] has shown large uncertainties in the retrieved ice cloud properties
among the tested algorithms for both optically thin (7 < 0.3) and thick (0.3 < 7 < 5.0)

cirrus clouds. The measurement error oy of radar reflectivity profiles in equation (2) is
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X-10 CHEN ET AL.: UNCERTAINTIES QUANTIFICATION IN CLOUD RETRIEVALS

about 0.5 dBZ, which is the instrument error. The empirical parameter a is assumed to
follow uniform distribution in the range of 0.03 to 0.22 with the unit (g/m?) /dBZ, while
the empirical parameter b is assumed to be a dimensionless number defined as 0.59.

The spatial-temporal image of radar reflectivity profiles observed on 9 March 2000 at
the ARM SGP is plotted in the Figure 1 (a). Using KL expansion, we reduce the dimen-
sions (e.g., 512 layers to 10 modes observed at 22:00UTC at 90% variance truncation)
for radar reflectivity profiles and extracts at most 10 uncorrelated, independent random
variables. Thus, the normally distributed perturbation is added on the modes of sample-
mean of radar reflectivity profiles based on the equation (2). We utilize Problem Solving
environment for Uncertainty Analysis and Design Exploration toolkit (PSUADE)[Tong,
2009] to provide spatial and temporal UQ results for MICROBASE. Comparison of mean
values and standard deviation of our UQ results (5000 runs) with the ensemble average of
original MICROBASE simulation results is displayed in Figure 1 (b) — (d). It shows that
mean values of our UQ results is similar to the direct ensemble average with the same
degree of magnitude. The standard deviations of IWC in our UQ results is around 1/5 of
the corresponding mean values during the IOP on 9 March 2000.

Using our UQ methodology, the average (min, max) values of the IWP retrieved by MI-
CROBASE (unit: g/m?) are 21.9 (2.4, 54.5). These numbers fall into the range of results
from 14 different retrievals shown in Table 2 in [Comstock et al., 2007] (average numbers
are 16.4 (0.076, 63.3)), indicating that the uncertainties quantified in both studies are con-
sistent. It highlights the fact that propagating the uncertainties in the input data as well

as the parameters through a single retrieval (i.e., MICROBASE) leads to the uncertainties
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in the output comparable to the differences amongst different retrievals as discussed in
[Comstock et al., 2007], many of which are rooted from different theories/hypotheses and
even based on different instruments. This implies that it might be possible to partly rec-
oncile different algorithms by understanding the causes of the uncertainty in one of them.
For instance, the uncertainty in the IWP retrieved by MICROBASE is mainly attributed
to radar reflectivity profiles in this one-day case (see the Sobol’ sensitivity analysis below).
Thus, the retrieval differences may be largely caused by how differently radar reflectivity
profiles is utilized by different algorithms.

Comparisons with independent observations (e.g., aircraft) provide another way to in-
terpret our method. Figure 1 (e) compares the IWP from the counterflow virtual impactor
(CVI) ([Twohy et al., 1997], black line) observation on the aircraft, original MICROBASE
(red line), and our results (blue line). In general, the average of in situ CVI measurements
are greater than both retrievals and they agree within a factor of two. The differences
between observations and retrievals are partly due to different sampling volumes, instru-
ment uncertainties, sensitivities, and limitations ([ Comstock et al., 2007] ). In addition, we
note that our average values are closer to the CVI probe than the original MICROBASE,
which suggests the possibility of using our method to improve the retrievals. This improve-
ment is probably mainly because our methodology parameterizes the input measurements
based on the facts that (1) KLE constructs uncorrelated orthogonal bases and the auto-
correlation kernel is relatively stable; and (2) sample mean is a more smooth statistical

variable and follows normal distribution per CLT. In other words, we replace the model

DRAFT August 15, 2014, 10:26am DRAFT



185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206
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input of finite observations with infinite random fields. Therefore, our expectations of
model output are likely closer to the reality than the original algorithm.

The vertical bars in Figure 1 (e) are defined differently. The CVI bars (black) represent
the standard deviations (STDs) of the mean IWP of the 2-min observations when the
aircraft flew over the SGP site. The raw MICROBASE bars (red) depict the standard
error of the mean (SEM) in 0.5 hour, while those of our results (blue) represent the STD
of sample mean in 0.5 hour. It would be better to plot the same quantity for comparison.
We opt to use different quantities because we do not have access to the number of CVI
observations to calculate its SEM. The bars of CVI and raw MICROBASE generally
overlap, which is consistent with results found in [Comstock et al., 2007]. The uncertainties
quantified by our method are much smaller because (1) it estimates the uncertainty for the
sample mean which smooths out the uncertainties; (2) the IWC retrieval formula above
is quite simple and hence we cannot perturb all the uncertainty sources; and (3) the bars
of CVI and raw MICROBASE denote the variability of limited realizations rather than
the uncertainty.

Figure 2 (a) displays the PDF of IWC at 8km within different time windows. The
retrievals exhibit larger spread in the probability distribution of ice water path (IWP)
for the optically thin clouds as shown in Figure 2 (b) and (c¢). In particular, mean value
and standard deviation of IWP at 21:00UTC is around 50.8 and 1.1, respectively, while
mean value and standard deviation of IWP at 22:00UTC is 2.8 and 0.13, respectively.
So the coefficient of variance defined as fraction of standard deviation over mean is 0.02

and 0.05 for IWP at 21:00UTC and 22:00UTC, respectively. Therefore, IWP retrieved
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by MICROBASE incurred more than twice of coefficient of variance in optically thin ice
clouds (22:00UTC) compared with the one in optically thick ice clouds (21:00UTC) due
to uncertainty in observations and key parameters. On the other hand, IWC retrieved by
MICROBASE at 8km has larger standard deviation at 21:00UTC than the one obtained

in 22:00UTC, which suggests large variability in vertical in the retrieved IWC.

4. Discussions and Conclusions

Many previous studies aim to understand and quantify the uncertainties in cloud re-
trievals (e.g., [Comstock et al., 2007; Turner et al., 2007; Zhao et al., 2014]). The primary
purpose of this study is to establish a novel observation-based methodology to generally
quantify the retrieval uncertainties for model evaluation (especially global models). De-
spite that many existing methods can only estimate column-integrated uncertainties, our
unique method also performs vertically resolved UQ analysis. The vertical UQ structure
is often more desirable for model evaluation as vertical structures of clouds are essential to
many topics such as radiative forcing and climate change. To reduce the dimensionality of
random inputs, our method takes into account the correlation between vertical layers in
the input data by adopting the KL expansion. Moreover, by eliminating the assumption
that different layers are uncorrelated, the output uncertainty range becomes more accurate
and reliable. Besides means and standard deviations, this method also quantifies the full
probabilistic distribution functions (PDF's) of retrieved quantities. This observation-based
PDF's information can be used as the a-priori for the Bayesian approach (e.g., [McFarlane

et al., 2002; Posselt et al., 2008]) so as to avoid the subjective error introduced by assum-
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ing a priori PDF (usually uniform), and hence the results from such Bayesian studies will
be improved and more meaningful.

Besides propagating uncertainties in the input data and the parameters, this UQ ap-
proach has the capability of attributing the output uncertainties to individual error source.
This capacity is particularly useful when dealing with highly non-linear retrieval algo-
rithms, as different error sources are more likely entangled. Figure 3 (a)—(d) show the
results of Sobol’ first and group sensitivity analysis for IWC at 8 km (left column) and
IWP (right column) on March 9, 2000. No main-effect is found from the perturbation
of each single mode of radar reflectivity profiles and the parameter a (see Figure 3 (a)
and (c)). However, the contributions from the entire group of radar reflectivity profiles
modes are added up to almost one (see Figure 3 (b) and (d)). These results suggest
that the uncertainties in the IWC and IWP are mainly due to the interactions of differ-
ent modes of radar reflectivity profiles. The Sobol” second sensitivity analysis of IWP
at 21:00-21:30 UTC and 22:00-22:30 UTC (see 3 (d) and (f)) confirms this finding. In
particular, the mode interaction of radar reflectivity profiles is stronger for the optically
thin clouds observed at 22:00-22:30 UTC than other periods such as at 21:00-21:30 UTC.
Such quantitative knowledge about the relative contribution of individual error source
to the output uncertainties provides valuable insights and clues to improve the retrieval
algorithm and measurements.

Despite of the above advantages, this framework does not cover all the aspects of UQ
analysis. For example, it cannot quantify systematic biases and the structure uncertainty

(i.e., the model formula). The parameters of the retrieval algorithm may not be inde-
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pendent as assumed in this approach, for instance, a and b in the formula IWC = aZe®
[Matrosov, 1999]. In addition, some retrievals (e.g., [McFarlane et al., 2002; Turner,
2005; Posselt et al., 2008]) already apply the uncertainty estimation theory, and thus our

approach may not be able to be directly applied to such algorithms.

5. Future Outlook

The case study in this paper mainly demonstrates the capacities of this newly developed
UQ methodology. We will expand the UQ analysis to long-term ARM observations to
include different seasons, locations, cloud types, etc. Such comprehensive knowledge
about retrieval uncertainties will facilitate the application of retrieval products in model
evaluation and can be used to improve instruments, observation strategies as well as
retrieval algorithms. We also plan to exploit the uncertainties of other retrieval algorithms.
Using multi-retrieval and global model observations, we can further apply multi-model

calibration technique to mitigate the uncertainty estimated by each retrieval algorithm.
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Appendix A
Subtracting ensemble mean ¢ (x) from each snapshot, we obtain a zero-mean N x n
snapshot matrix
Y=[—0y—0. Y7 (A1)
It should be noted that we take snapshots of relative error for radar reflectivity profiles and
LWP, i.e., the snapshot matrix above is divided by ¥, for which corresponding formulas
can be derived similarly.

Without loss of generalization, the following

‘I’:{wl,%,...,w} (AQ)

of order M < n provides an optimal representation of the ensemble data in a

M —dimensional subspace by minimizing the averaged projection error

. 1 < _ 2
_E i — 1) — 11 ; —
{whﬁ?%m n ‘= Iy =) vt (45 =9l
st () =6y =4 L 1= (A3)
-Le (AR ] LY 0 i7éj

where (-,-) represents an inner product, Iy = Zf\il (y; — 7, 1) s is the projection

operator onto the M-dimensional space spanned by W.
To compute the KLE modes 9; € RY satisfying Eq. (A3), one solves an N —dimensional
eigenvalue problem

A = Nl (A4)

where A = YYT is the spatial correlation matrix.
Since in practice the number of snapshots is much less than the the state dimension,

n << N, an efficient way to compute the reduced basis is to introduce a n—dimensional
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matrix K = YTY and compute the eigenvalues \; > Xy > ... > A\, > 0 of K with its
corresponding eigenvectors ¢q, ..., ¢,. The corresponding KLE modes are thus obtained

by
1

hi=

Yo, i=1,....M (A5)

where (1, 1) = d;.
One can define a relative information content to choose a low-dimensional basis of size

M << n by neglecting modes corresponding to the small eigenvalues. We define

IDYaipy
=S o

and choose M such that M = argmin{/ (m): I (m) > v}, where 0 < v < 1 is the
percentage of total information retained in the reduced space and the tolerance v must
be chosen to be close unity in order to capture most of the energy of the snapshots basis.

To sum up, we obtain that each one observation g; can be expanded in terms of M

numbers of KLE modes written as

M N,
vi :y+;wi\/;vi (A7)

where modal coefficients V; computed by V; = ¢ Ty, x and (V;, V;) = d;;.
Since mean is subtracted from each snapshots, it can be shown that %Z?zl (Vi;) =0,

where Vj; corresponds to the observation y; — ¢ projected onto the mode ;.

As a result, Y (x,t,6) can be approximated by KLE to the order of M as

M
=1

such that £ (&) = 0 and E(§€) = 65, @ = 1,..., M, and §; follows some unknown

distribution.
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Appendix B
w  Let w = [wy,wy, ... ,wN]T be a time independent spatial Gaussian noises injected into
» each one observation y;, such that w follows a multivariate normal distribution defined as
2w~ N (0,08Iy) and Iy is a N x N identity matrix. Since ¥ is orthogonal transformation,
2 Ww follows the same distribution as w, i.e., Yw ~ N (0,02Iy). Therefore, without loss of
w1 generalization, adding Yw to the Equation (A8) and truncating it to the order of M, we

2 obtain that

Y'(x,t,0) =Y (x,t,0) + Yw

M 5y M
g"_zwi\/%fi‘i‘zwiwi
i=1 i=1
al Ai w;
y+izl¢i\/; £i+\/¥ , (B1)

»s where Y’ (x,t,0) is a stochastic process representing noisy observations, w; is the i-th

» component of the truncated random vector Ww.

Let (; be (; =& + \7—2, we obtain

M
[ Ai
Y (x,6,0) =7+ > = (B2)
=1

2
25 where F ((;) =0 and Var(¢;) =4/1+ (\7—%) .

Taking average on both sides, it can be rewritten as

M

_ [N —

Y’ (X, t, 9) =y+ E ¢Z ZCZ (B3)
=1
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Finally, based on CLT, we have

M
— )\z o) Zi
Y'(x,t,0) =1y irl— |1 B4
(x.1.0) *“;‘”Vn + NG (B4)

where z; ~ N (0, 1).

References

Comstock, N. M., R. D. Entremont, D. Deslover, and C. G. Mace (2007), An intercom-
parison of microphysical retrieval algorithms for upper tropospheric ice clouds, Bull.
Am. Meteorol. Soc, 88, 191-204.

Dunn, M., K. L. Johnson, and M. P. Jensen (2011), The microbase value-added product:
A baseline retrieval of cloud microphysical properties, Tech. rep., DOE ARM.

Hotelling, H. (1933), Analysis of a complex of statistical variables into principal compo-
nents, Journal of Educational Psychology, 24 (1), 417-441,498-520.

Kosambi, D. D. (1943), Statistics in function space, J. Indian Math. Soc., 7(1), 559-572.

Kuhunen, K. (1947), Uber lineare methoden in der wahrscheinlichkeitsrechnung, Am.
Acad. Sci., 37, 3-79.

Loéve, M. (1945), Fonctions aleatoires de second ordre, C. R. Acad. Sci.

Matrosov, S. Y. (1999), Retrievals of vertical profiles of ice cloud microphysics from radar
and IR measurements using tuned regressions between reflectivity and cloud parameters,
J. Geophys. Res., 104(D14), 16,741-16,753, doi:10.1029/1999JD900244.

McFarlane, S. A., K. F. Evans, and A. S. Ackerman (2002), A bayesian algorithm for

the retrieval of liquid water cloud properties from microwave radiometer and millimeter

DRAFT August 15, 2014, 10:26am DRAFT



312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

X-20 CHEN ET AL.: UNCERTAINTIES QUANTIFICATION IN CLOUD RETRIEVALS

radar data, J. Geophys. Res., 107(D16), 4317, d0i:10.1029/2001JD001011.

McKay, M. C., R. Beckman, and W. Conover (1979), A comparison of three methods
for selecting values of input variables in the analysis of output from a computer code,
Technometrics, 21(2), 239-245.

Pearson, K. (1901), On lines and planes of closest fit to systems of points in space,
Philosophical Magazine, 2(1), 559-572.

Posselt, D. J., T. S. L’Ecuyer, and G. L. Stephens (2008), Exploring the error character-
istics of thin ice cloud property retrievals using a Markov chain Monte Carlo algorithm,
J. Geophys. Res., 113(D24), D24,206, doi:10.1029/2008JD010832.

Ross, S. (2010), A first course in probability, Pearson.

Sirovich, L., J. L. Lumley, and G. Berkooz (1987), Turbulence and the dynamics of co-
herent structures, part iii: dynamics and scaling, Quarterly of Applied Mathematics,
45(3), 583-590.

Sobol, 1. (1993), Sensitivity estimates for nonlinear mathematical models, MMCE, 1(4),
407-414.

Tong, C. (2009), PSUADE User’s Manual (Version 1.2.0), Lawrence Livermore National
Laboratory, ILNL-SM-407882.

Turner, D. D. (2005), Arctic mixed-phase cloud properties from AERI lidar observa-
tions: Algorithm and results from SHEBA, J. Appl. Meteor., 44(4), 427-444, doi:
10.1175/JAM2208.1.

Turner, D. D., S. A. Clough, J. C. Liljegren, E. E. Clothiaux, K. Cady-Pereira, and

K. L. Gaustad (2007), Retrieving liquid water path and precipitable water vapor from

DRAFT August 15, 2014, 10:26am DRAFT



334

335

336

337

338

339

340

341

342

343

344

345

346

CHEN ET AL.: UNCERTAINTIES QUANTIFICATION IN CLOUD RETRIEVALS X-21

atmospheric radiation measurement (arm) microwave radiometers, IEEE Trans. Geosci.
Remote Sens., 45(11), 3680-3690.

Twohy, C. H., A. J. Schanot, and W. A. Cooper (1997), Measurement of condensed
water content in liquid and ice clouds using an airborne counterflow virtual impactor,
J. Atmos. Oceanic Technol., 14(197-202).

Xie, S. (2011), Focus group proposal whitepaper: Asr quantification of uncertainty in
cloud retrievals (quicr) focus group, Tech. rep., DOE coud retrievals focus group.

Zhao, C.; S. Xie, and K. A. Stephen (2012), Toward understanding of differences in
current cloud retrievals of arm ground-based measurements, J. Geophys. Res. Atmos.,
117(D10), 1-21.

Zhao, C., S. Xie, X. Chen, M. P. Jensen, and M. Dunn (2014), Quantifying uncertainties
of cloud microphysical property retrievals with a perturbation method, J. Geophys. Res.

Atmos., 119, 1-11.

DRAFT August 15, 2014, 10:26am DRAFT



X-22 CHEN ET AL.: UNCERTAINTIES QUANTIFICATION IN CLOUD RETRIEVALS
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Figure 1. (a) MMCR reflectivity (dBZ); (b) Ensemble average of raw MICROBASE retrieved
IWC; (c) Mean values, and (d) standard deviations of applying our UQ method to IWC, re-
spectively; (e) Comparison of 0.5-hour mean/standard deviations of IWP by applying our UQ

method, 0.5-hour mean/standard error of raw MICROBASE retrieved IWP, and in-situ (CVI)
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Figure 2. (a) Box-plot of IWC at 8km, and probability density function plot of IWP observed

at (b) 21:00UTC and (c) 22:00UTC on 9 Mar 2000, respectively.
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IWC (g/m®) at 8km
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Figure 3. Sobol’ first-order sensitivity analysis of (a) IWC at 8km and (b) IWP, respectively;
Sobol’ group sensitivity analysis of (¢) IWC at 8km and (d) IWP, respectively; Sobol’ second-
order sensitivity analysis of IWP at (e) 21:00UTC and (f) 22:00UTC, respectively; Figures (a) -

(f) are plotted between 21:00UTC and 22:00UTC on 9 Mar 2000.
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