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This study proposes a methodology of quantifying uncertainties for cloud3

retrievals on model resolution to facilitate the comparison with model out-4

puts. Primary component analysis is applied to reduce the dimension of ran-5

dom variables (up to a factor of 50) and reveal the cross correlations in the6

input data, making large sampling computationally feasible and uncertainty7

quantification accurate and reliable. Our approach has the capability of pa-8

rameterizing input uncertainties and attributing the uncertainties in the re-9

trieval output to each individual source, which allows sensitivity analysis of10

cloud retrieval algorithms and provides directions for improving observation11

instruments as well as strategies. We applied the method to characterize un-12

certainties in cloud ice water content (IWC) retrieved from the DOE Atmo-13

spheric Radiation Measurement (ARM) programs baseline cloud microphys-14

ical retrieval algorithm (MICROBASE). We test it with a selected ice cloud15

case observed on 9 March 2000 at the ARM Southern Great Plains site dur-16

ing its 2000 cloud intensive observing period. The test results indicate that17

(1) uncertainties in the output retrieved by MICROBASE are comparable18

amongst different retrievals; (2) The mean values obtained by our UQ method19

are closer to the aircraft data with less errors compared to the direct ensem-20

ble average; (3) Ice water path (IWP) generally incurred larger uncertainty21

in optically thin ice clouds and there was more variability in vertical in the22

retrieved IWC; and (4) Uncertainties in the output are mainly due to the23

interactions among different modes of ARM radar profiles.24
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1. Introduction

Cloud properties such as liquid and ice water contents retrieved from ground-based25

measurements have been widely used in climate model evaluation, however, earlier stud-26

ies have shown that there exist large differences and uncertainties in ground-based cloud27

retrievals, (e.g., [Comstock et al., 2007; Turner et al., 2007; Zhao et al., 2012]). They indi-28

cated that these differences and uncertainties are primarily from the retrieval theoretical29

bases, assumptions, as well as input profiles and constraint parameters. Quantifying the30

uncertainty in cloud retrievals has been long desired from the developer and user com-31

munities [Xie, 2011]. One way to quantify the uncertainty in a particular cloud retrieval32

product is through calculating the variability based on ensemble average of retrieved cloud33

properties [Comstock et al., 2007]. Another way is through perturbing input profiles and34

several key parameters used in the retrieval algorithm, as demonstrated in [Zhao et al.,35

2014], which applied a simple perturbation method to the ARM program baseline retrieval36

of cloud microphysical properties (MICROBASE [Dunn et al., 2011]).37

However, the classical uncertainty analysis methods for quantifying the uncertainty38

in cloud retrieval often suffers from the following limitations: (1) correlations among39

various influential factors may not be considered; (2) parametrizing input profiles with40

corresponding correlations may not be an obvious task; (3) sampling random variables41

amongst various vertical layers may require large number of samples; (4) characterizing a-42

priori probability density function still requires some unnecessary statistical assumptions;43

and (5) attributing contribution of variability in the retrieved product to each individual44

source is not permitted in general. To address these issues, this study aims to establish a45
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novel observation-based methodology to generally quantify the retrieval uncertainties for46

model evaluation (especially global models) over a typical model temporal resolution, i.e.,47

30 minutes. This method is based on Karhunen-Loéve (KL) expansion (KLE) [Kuhunen,48

1947; Loéve, 1945] and Central Limit Theorems (CLT) [Ross , 2010] to quantify the uncer-49

tainties introduced by potential errors in measurements and uncertainties in parameters50

used in cloud retrievals. Our approach takes account for the correlation between vertical51

layers in the input profiles and reduces the number of random variables, which renders52

large sampling computationally feasible and makes output uncertainty range results ac-53

curate and reliable. This approach is to make objective comparison between observations54

and model outputs according the formulations of climate models and definition of retrieval55

algorithm defined as a space-time average for a specific spatial-temporal domain, such as56

1 degree × 1 degree × 30mins. Despite that many existing methods can only estimate57

column-integrated uncertainties, our unique method also provides vertically resolved UQ58

analysis, which are essential to many topics, such as radiative forcing and climate change.59

We also implement the sensitivity analysis of retrieved quantity of interest with respect to60

each individual source, which are particularly useful when dealing with highly non-linear61

retrieval algorithms, as different error sources are more likely entangled.62

The structure of the paper is as follows. In Section 2, the details of KLE-CLT based63

uncertainties analysis in cloud microphysical property retrievals are given. In Section 3,64

the method is tested with a ice cloud case observed on 9 March 2000 at the ARM SGP65

Climate Research Facility to quantify uncertainties of cloud ice water content (IWC)66

using MICROBASE as the retrieval algorithm. Results from our uncertainty analysis and67
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sensitivity studies are shown in Section 4. Finally, we provide directions in Section 5 for68

improving observation instruments as well as strategies.69

2. Methodology

KLE is usually used to solve stochastic problem involving large number of random vari-70

ables with stable correlation kernel during an observation period, while CLT is generally71

used to deal with unknown a-priori probability density functions of random variables.72

We will combine KLE and CLT to propagate the uncertainties from ground-based mea-73

surements as well as the empirical parameters through MICROBASE retrieval algorithm.74

MICROBASE is the ARM baseline retrieval for cloud properties based on the cloud radar75

and lidar measurements [Dunn et al., 2011; Zhao et al., 2014]. It derives the liquid and76

ice properties using empirical regression equations obtained from in situ aircraft measure-77

ments with some assumptions. Liquid water content (LWC) and ice water content (IWC)78

are derived from radar reflectivity at 35 GHz and some empirical parameters, where LWC79

is retrieved by LWC = LWP
ZegLiq

n∑
i=1

ZegLiq∆Z
, while for pure ice clouds, IWC is retrieved by80

IWC = aZebIce. In the equations above, a, b and g are empirical parameters, and ∆Z is81

the increment in vertical. Uncertainties in its retrieved cloud property comes from three82

sources: input profiles, retrieval algorithm, and assumptions as described in [Zhao et al.,83

2012, 2014].84

To start with, we introduce a temporal-spatial stochastic process Y (x, t, θ) to represent85

unbiased raw observations (e.g., radar reflectivity profiles to be described in Section 3,86

where x denotes the height, t denotes the time, and θ represents a random event). As87

a result, an ensemble of snapshots of the stochastic process Y (x, t, θ) observed in the88

D R A F T August 15, 2014, 10:26am D R A F T



CHEN ET AL.: UNCERTAINTIES QUANTIFICATION IN CLOUD RETRIEVALS X - 7

analysis time window [0, T ] can be recorded as {y1, y2, . . . , yn}, where yi (x) = y (x, ti),89

i = 1, . . . , n, n is the number of snapshots; and the ensemble average of the snapshots can90

be defined as ȳ (x) = 1
n

∑n
i=1 yi.91

With noises added to unbiased raw stochastic process Y (x, t, θ), we have input profiles

Y ′ (x, t, θ), defined as Y ′ (x, t, θ) = Y (x, t, θ) + noise. Since Y (x, t, θ) can be decomposed

into ensemble average ȳ (x) and an unknown random estimation error ε (x, t, θ), such that

Y (x, t, θ) = ȳ (x) + ε (x, t, θ). Therefore, we obtain

Y ′ (x, t, θ)) = ȳ (x) + ε (x, t, θ) + noise (1)

The goal of this paper to make objective comparison between observations and model92

outputs according the formulations of climate models and definition of retrieval algorithm93

defined as a space-time average for a specific spatial-temporal domain such as 1 degree ×94

1 degree × 30mins. Thus, input profiles Y (x, t, θ) and Y ′ (x, t, θ) are transformed to more95

smooth statistic Y (x, t, θ) and Y ′ (x, t, θ) (sample mean of Y (x, t, θ) and Y ′ (x, t, θ) within96

the time window), respectively, whose probability density functions are approximately97

normal (to be discussed in the subsequent paragraphs).98

Due to the high dimensionality of the stochastic space for Y (x, t, θ) (e.g., 512 vertical99

layers in ARM radar reflectivity profiles), it is computationally infeasible to sample all the100

vertical layers. To reduce the dimensionality, we applied KLE to represent the stochastic101

process Y (x, t, θ) in terms of eigenfunctions of its correlation kernel assuming it is piece-102

wise stable within the analysis time window. The detailed derivations can be found in103

Appendix A. The method was originated in [Pearson, 1901]. Hotelling [1933]; Kosambi104

[1943] introduced the principal component analysis (PCA) which involves a statistical105
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procedure that transforms a number of possibly correlated variables into a smaller number106

of uncorrelated variables called principal components. In practice, the correlation kernel107

is approximated numerically by constructing a covariance matrix using the method of108

snapshots [Sirovich et al., 1987] within a time window.109

Based on Central Limit Theorems [Ross , 2010], random variables appeared in the KL

expansion of Y (x, t, θ) approximately follow student or normal distribution when sample

size is large enough (large number law). By truncating KL expansion of Y (x, t, θ) to the

order of M and adding white noises, we obtain the corresponding Y ′ (x, t, θ) that can be

written as

Y ′ (x, t, θ) = ȳ +
M∑
i=1

ψi

√
λi
n

√√√√√1 +

 σ0√
λi
n

2

zi√
n

(2)

where z = [z1, z2, . . . , zM ]T, z ∼ N (0, IM) and IM is a M × M identity matrix. The110

detailed proof is given in the Appendix B. To simplify, other than observation-based111

input profiles, uniform distributions are applied for perturbing algorithm and assumption112

parameters of the retrieval. We will apply Sobol’ [Sobol , 1993] method to derive global113

sensitivity analysis of microphysical properties retrieved by MICROBASE. Sobol’ method114

is a variance-based sensitivity analysis method, which divides the variance of the output115

into fractions attributed to each input (first-order indices) and their interactions (second-116

or higher-order indices). The fractions measure the contribution to the output variances117

of each input variable, including all interactional variances with any other input variables118

in all the orders. Also, Latin Hypercube Sampling (LHS) procedure is used to draw119

samples in the designed space for input profiles and parameters. LHS is an effective120
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stratified sampling approach in a high-dimensional space ensuring that all portions of a121

given partition are sampled [McKay et al., 1979].122

3. Application

To demonstrate the value of the proposed uncertainty analysis method, we apply it to123

quantify uncertainty in MICROBASE retrieved ice properties for high cirrus cloud case124

observed on 9 March 2000 at the ARM SGP site during the 2000 cloud intensive observ-125

ing period (IOP). The cirrus cloud case has been studied comprehensively in [Comstock126

et al., 2007] to examine the ability of 15 state-of-art cloud retrievals to retrieve ice cloud127

properties. As described in [Comstock et al., 2007] , the cirrus cloud observed on 9 March128

2000 formed as a weak upper-level disturbance and propagated over the SGP region in a129

strong southwesterly flow. The initial cloud formation occurred as the weak disturbance130

passed over the mountains of central New Mexico during the local morning of 9 March.131

The clouds thickened into a series of bands oriented along the wind as the disturbance132

moved northeastward. The visible optical depth varied by two orders of magnitude over133

the 3.5-hour time period, which is typical for midlatitude synoptically generated frontal134

cirrus clouds that tend to be initially optically thin and increase in optical thickness as135

the cloud system passes overhead. The majority of the cloud observed during the 9 March136

2000 case falls into this optically thick category. Optically thin ice clouds only occurred137

during the (1900–1915UTC, 22:00–2230 UTC) period displayed in Figure 1 (a).138

Comstock et al. [2007] has shown large uncertainties in the retrieved ice cloud properties139

among the tested algorithms for both optically thin (τ < 0.3) and thick (0.3 < τ < 5.0)140

cirrus clouds. The measurement error σ0 of radar reflectivity profiles in equation (2) is141
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about 0.5 dBZ, which is the instrument error. The empirical parameter a is assumed to142

follow uniform distribution in the range of 0.03 to 0.22 with the unit (g/m3) /dBZ, while143

the empirical parameter b is assumed to be a dimensionless number defined as 0.59.144

The spatial-temporal image of radar reflectivity profiles observed on 9 March 2000 at145

the ARM SGP is plotted in the Figure 1 (a). Using KL expansion, we reduce the dimen-146

sions (e.g., 512 layers to 10 modes observed at 22:00UTC at 90% variance truncation)147

for radar reflectivity profiles and extracts at most 10 uncorrelated, independent random148

variables. Thus, the normally distributed perturbation is added on the modes of sample-149

mean of radar reflectivity profiles based on the equation (2). We utilize Problem Solving150

environment for Uncertainty Analysis and Design Exploration toolkit (PSUADE)[Tong ,151

2009] to provide spatial and temporal UQ results for MICROBASE. Comparison of mean152

values and standard deviation of our UQ results (5000 runs) with the ensemble average of153

original MICROBASE simulation results is displayed in Figure 1 (b) – (d). It shows that154

mean values of our UQ results is similar to the direct ensemble average with the same155

degree of magnitude. The standard deviations of IWC in our UQ results is around 1/5 of156

the corresponding mean values during the IOP on 9 March 2000.157

Using our UQ methodology, the average (min, max) values of the IWP retrieved by MI-158

CROBASE (unit: g/m2) are 21.9 (2.4, 54.5). These numbers fall into the range of results159

from 14 different retrievals shown in Table 2 in [Comstock et al., 2007] (average numbers160

are 16.4 (0.076, 63.3)), indicating that the uncertainties quantified in both studies are con-161

sistent. It highlights the fact that propagating the uncertainties in the input data as well162

as the parameters through a single retrieval (i.e., MICROBASE) leads to the uncertainties163
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in the output comparable to the differences amongst different retrievals as discussed in164

[Comstock et al., 2007], many of which are rooted from different theories/hypotheses and165

even based on different instruments. This implies that it might be possible to partly rec-166

oncile different algorithms by understanding the causes of the uncertainty in one of them.167

For instance, the uncertainty in the IWP retrieved by MICROBASE is mainly attributed168

to radar reflectivity profiles in this one-day case (see the Sobol’ sensitivity analysis below).169

Thus, the retrieval differences may be largely caused by how differently radar reflectivity170

profiles is utilized by different algorithms.171

Comparisons with independent observations (e.g., aircraft) provide another way to in-172

terpret our method. Figure 1 (e) compares the IWP from the counterflow virtual impactor173

(CVI) ([Twohy et al., 1997], black line) observation on the aircraft, original MICROBASE174

(red line), and our results (blue line). In general, the average of in situ CVI measurements175

are greater than both retrievals and they agree within a factor of two. The differences176

between observations and retrievals are partly due to different sampling volumes, instru-177

ment uncertainties, sensitivities, and limitations ([Comstock et al., 2007] ). In addition, we178

note that our average values are closer to the CVI probe than the original MICROBASE,179

which suggests the possibility of using our method to improve the retrievals. This improve-180

ment is probably mainly because our methodology parameterizes the input measurements181

based on the facts that (1) KLE constructs uncorrelated orthogonal bases and the auto-182

correlation kernel is relatively stable; and (2) sample mean is a more smooth statistical183

variable and follows normal distribution per CLT. In other words, we replace the model184
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input of finite observations with infinite random fields. Therefore, our expectations of185

model output are likely closer to the reality than the original algorithm.186

The vertical bars in Figure 1 (e) are defined differently. The CVI bars (black) represent187

the standard deviations (STDs) of the mean IWP of the 2-min observations when the188

aircraft flew over the SGP site. The raw MICROBASE bars (red) depict the standard189

error of the mean (SEM) in 0.5 hour, while those of our results (blue) represent the STD190

of sample mean in 0.5 hour. It would be better to plot the same quantity for comparison.191

We opt to use different quantities because we do not have access to the number of CVI192

observations to calculate its SEM. The bars of CVI and raw MICROBASE generally193

overlap, which is consistent with results found in [Comstock et al., 2007]. The uncertainties194

quantified by our method are much smaller because (1) it estimates the uncertainty for the195

sample mean which smooths out the uncertainties; (2) the IWC retrieval formula above196

is quite simple and hence we cannot perturb all the uncertainty sources; and (3) the bars197

of CVI and raw MICROBASE denote the variability of limited realizations rather than198

the uncertainty.199

Figure 2 (a) displays the PDF of IWC at 8km within different time windows. The200

retrievals exhibit larger spread in the probability distribution of ice water path (IWP)201

for the optically thin clouds as shown in Figure 2 (b) and (c). In particular, mean value202

and standard deviation of IWP at 21:00UTC is around 50.8 and 1.1, respectively, while203

mean value and standard deviation of IWP at 22:00UTC is 2.8 and 0.13, respectively.204

So the coefficient of variance defined as fraction of standard deviation over mean is 0.02205

and 0.05 for IWP at 21:00UTC and 22:00UTC, respectively. Therefore, IWP retrieved206
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by MICROBASE incurred more than twice of coefficient of variance in optically thin ice207

clouds (22:00UTC) compared with the one in optically thick ice clouds (21:00UTC) due208

to uncertainty in observations and key parameters. On the other hand, IWC retrieved by209

MICROBASE at 8km has larger standard deviation at 21:00UTC than the one obtained210

in 22:00UTC, which suggests large variability in vertical in the retrieved IWC.211

4. Discussions and Conclusions

Many previous studies aim to understand and quantify the uncertainties in cloud re-212

trievals (e.g., [Comstock et al., 2007; Turner et al., 2007; Zhao et al., 2014]). The primary213

purpose of this study is to establish a novel observation-based methodology to generally214

quantify the retrieval uncertainties for model evaluation (especially global models). De-215

spite that many existing methods can only estimate column-integrated uncertainties, our216

unique method also performs vertically resolved UQ analysis. The vertical UQ structure217

is often more desirable for model evaluation as vertical structures of clouds are essential to218

many topics such as radiative forcing and climate change. To reduce the dimensionality of219

random inputs, our method takes into account the correlation between vertical layers in220

the input data by adopting the KL expansion. Moreover, by eliminating the assumption221

that different layers are uncorrelated, the output uncertainty range becomes more accurate222

and reliable. Besides means and standard deviations, this method also quantifies the full223

probabilistic distribution functions (PDFs) of retrieved quantities. This observation-based224

PDFs information can be used as the a-priori for the Bayesian approach (e.g., [McFarlane225

et al., 2002; Posselt et al., 2008]) so as to avoid the subjective error introduced by assum-226
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ing a priori PDF (usually uniform), and hence the results from such Bayesian studies will227

be improved and more meaningful.228

Besides propagating uncertainties in the input data and the parameters, this UQ ap-229

proach has the capability of attributing the output uncertainties to individual error source.230

This capacity is particularly useful when dealing with highly non-linear retrieval algo-231

rithms, as different error sources are more likely entangled. Figure 3 (a)–(d) show the232

results of Sobol’ first and group sensitivity analysis for IWC at 8 km (left column) and233

IWP (right column) on March 9, 2000. No main-effect is found from the perturbation234

of each single mode of radar reflectivity profiles and the parameter a (see Figure 3 (a)235

and (c)). However, the contributions from the entire group of radar reflectivity profiles236

modes are added up to almost one (see Figure 3 (b) and (d)). These results suggest237

that the uncertainties in the IWC and IWP are mainly due to the interactions of differ-238

ent modes of radar reflectivity profiles. The Sobol’ second sensitivity analysis of IWP239

at 21:00-21:30 UTC and 22:00-22:30 UTC (see 3 (d) and (f)) confirms this finding. In240

particular, the mode interaction of radar reflectivity profiles is stronger for the optically241

thin clouds observed at 22:00-22:30 UTC than other periods such as at 21:00-21:30 UTC.242

Such quantitative knowledge about the relative contribution of individual error source243

to the output uncertainties provides valuable insights and clues to improve the retrieval244

algorithm and measurements.245

Despite of the above advantages, this framework does not cover all the aspects of UQ246

analysis. For example, it cannot quantify systematic biases and the structure uncertainty247

(i.e., the model formula). The parameters of the retrieval algorithm may not be inde-248
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pendent as assumed in this approach, for instance, a and b in the formula IWC = aZeb249

[Matrosov , 1999]. In addition, some retrievals (e.g., [McFarlane et al., 2002; Turner ,250

2005; Posselt et al., 2008]) already apply the uncertainty estimation theory, and thus our251

approach may not be able to be directly applied to such algorithms.252

5. Future Outlook

The case study in this paper mainly demonstrates the capacities of this newly developed253

UQ methodology. We will expand the UQ analysis to long-term ARM observations to254

include different seasons, locations, cloud types, etc. Such comprehensive knowledge255

about retrieval uncertainties will facilitate the application of retrieval products in model256

evaluation and can be used to improve instruments, observation strategies as well as257

retrieval algorithms. We also plan to exploit the uncertainties of other retrieval algorithms.258

Using multi-retrieval and global model observations, we can further apply multi-model259

calibration technique to mitigate the uncertainty estimated by each retrieval algorithm.260

Acknowledgments. This work is mainly supported by the DOE Atmospheric Radia-261

tion Measurement program, the Atmospheric System Research Quantification of Uncer-262

tainty in Cloud Retrieval session, and partially supported by the Chinese program for New263

Century Excellent Talents in University (NCET) and the Fundamental Research Funds264

for the Central Universities. This work was performed under the auspices of the U.S.265

Department of Energy by Lawrence Livermore National Laboratory under Contract No.266

DE-AC52-07NA27344. The authors would like to thank the help from Michael Jensen,267

Matthew Macduff, Laura Riihimaki, Chitra Sivaraman, Timothy Shippert, and Charles268

Tong.269

D R A F T August 15, 2014, 10:26am D R A F T



X - 16 CHEN ET AL.: UNCERTAINTIES QUANTIFICATION IN CLOUD RETRIEVALS

Appendix A

Subtracting ensemble mean ȳ (x) from each snapshot, we obtain a zero-mean N × n

snapshot matrix

Y = [y1 − ȳ, y2 − ȳ, . . . , yn − ȳ] (A1)

It should be noted that we take snapshots of relative error for radar reflectivity profiles and270

LWP, i.e., the snapshot matrix above is divided by ȳ, for which corresponding formulas271

can be derived similarly.272

Without loss of generalization, the following

Ψ = {ψ1, ψ2, . . . , ψM} (A2)

of order M ≤ n provides an optimal representation of the ensemble data in a

M−dimensional subspace by minimizing the averaged projection error

min
{ψ1,ψ2,...,ψM}

1

n

n∑
i=1

‖(yi − ȳ)− ΠΨ,M (yi − ȳ)‖2

s.t. 〈ψi, ψj〉 = δij =

{
1 i = j

0 i 6= j
(A3)

where 〈·, ·〉 represents an inner product, ΠΨ,M =
∑M

i=1 〈yi − ȳ, ψi〉ψi is the projection273

operator onto the M -dimensional space spanned by Ψ.274

To compute the KLE modes ψi ∈ RN satisfying Eq. (A3), one solves an N−dimensional

eigenvalue problem

Aψi = λiψi (A4)

where A = YYT is the spatial correlation matrix.275

Since in practice the number of snapshots is much less than the the state dimension,

n << N , an efficient way to compute the reduced basis is to introduce a n−dimensional

D R A F T August 15, 2014, 10:26am D R A F T



CHEN ET AL.: UNCERTAINTIES QUANTIFICATION IN CLOUD RETRIEVALS X - 17

matrix K = YTY and compute the eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 of K with its

corresponding eigenvectors φ1, . . . , φn. The corresponding KLE modes are thus obtained

by

ψi =
1√
λi

Yφi, i = 1, . . . ,M (A5)

where 〈ψi, ψj〉 = δij.276

One can define a relative information content to choose a low-dimensional basis of size

M << n by neglecting modes corresponding to the small eigenvalues. We define

I (m) =

∑i=m
i=1 λi∑i=n
i=1 λi

(A6)

and choose M such that M = arg min {I (m) : I (m) > γ}, where 0 ≤ γ ≤ 1 is the277

percentage of total information retained in the reduced space and the tolerance γ must278

be chosen to be close unity in order to capture most of the energy of the snapshots basis.279

To sum up, we obtain that each one observation yi can be expanded in terms of M280

numbers of KLE modes written as281

yi = ȳ +
M∑
i=1

ψi

√
λi
n
Vi (A7)

where modal coefficients Vi computed by Vi = ψT
i yi
√

n
λi

and 〈Vi, Vj〉 = δij.282

Since mean is subtracted from each snapshots, it can be shown that 1
n

∑n
j=1 (Vij) = 0,283

where Vij corresponds to the observation yj − ȳ projected onto the mode ψi.284

As a result, Y (x, t, θ) can be approximated by KLE to the order of M as

Y (x, t, θ) = ȳ +
M∑
i=1

ψi

√
λi
n
ξi (A8)

such that E (ξi) = 0 and E (ξiξj) = δij, i = 1, . . . ,M , and ξi follows some unknown285

distribution.286
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Appendix B

Let w = [w1, w2, . . . , wN ]T be a time independent spatial Gaussian noises injected into287

each one observation yi, such that w follows a multivariate normal distribution defined as288

w ∼ N (0, σ2
0IN) and IN is a N×N identity matrix. Since Ψ is orthogonal transformation,289

Ψw follows the same distribution as w, i.e., Ψw ∼ N (0, σ2
0IN). Therefore, without loss of290

generalization, adding Ψw to the Equation (A8) and truncating it to the order of M , we291

obtain that292

Y ′ (x, t, θ) = Y (x, t, θ) + Ψw

= ȳ +
M∑
i=1

ψi

√
λi
n
ξi +

M∑
i=1

ψiwi

= ȳ +
M∑
i=1

ψi

√
λi
n

ξi +
wi√
λi
n

 , (B1)

where Y ′ (x, t, θ) is a stochastic process representing noisy observations, wi is the i-th293

component of the truncated random vector Ψw.294

Let ζi be ζi = ξi + wi√
λi
n

, we obtain

Y ′ (x, t, θ) = ȳ +
M∑
i=1

ψi

√
λi
n
ζi (B2)

where E (ζi) = 0 and V ar (ζi) =

√
1 +

(
σ0√
λi
n

)2

.295

Taking average on both sides, it can be rewritten as

Y ′ (x, t, θ) = ȳ +
M∑
i=1

ψi

√
λi
n
ζi (B3)
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Finally, based on CLT, we have

Y ′ (x, t, θ) = ȳ +
M∑
i=1

ψi

√
λi
n

√√√√√1 +

 σ0√
λi
n

2

zi√
n

(B4)

where zi ∼ N (0, 1).
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Figure 1. (a) MMCR reflectivity (dBZ); (b) Ensemble average of raw MICROBASE retrieved

IWC; (c) Mean values, and (d) standard deviations of applying our UQ method to IWC, re-

spectively; (e) Comparison of 0.5-hour mean/standard deviations of IWP by applying our UQ

method, 0.5-hour mean/standard error of raw MICROBASE retrieved IWP, and in-situ (CVI)

2-min mean/standard deviations of IWP as aircraft passed over the SGP CRF.
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Figure 2. (a) Box-plot of IWC at 8km, and probability density function plot of IWP observed

at (b) 21:00UTC and (c) 22:00UTC on 9 Mar 2000, respectively.
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Figure 3. Sobol’ first-order sensitivity analysis of (a) IWC at 8km and (b) IWP, respectively;

Sobol’ group sensitivity analysis of (c) IWC at 8km and (d) IWP, respectively; Sobol’ second-

order sensitivity analysis of IWP at (e) 21:00UTC and (f) 22:00UTC, respectively; Figures (a) -

(f) are plotted between 21:00UTC and 22:00UTC on 9 Mar 2000.
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