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Progress Summary: Solid-state NMR experiments have been developed to probe
crystallization behavior fluoropolymers (H. Mason, mason42@Ilinl.gov)

Motivation: The FK-800 fluoropolymer elastomer is being developed as a replacement material
for the Kel-F 800 binder in the plastic bonded explosive PBX-9502. These polymers are a
random co-polymer of poly-vinylidene fluoride (PVDF) and poly-chlorotrifluoroetheylene
(PCTFE) in nominal 1:3 ratio. Initial characterizations of the FK-800 replacement show similar
characteristics as the legacy Kel-F 800. However, differences in bulk crystallinity and
crystallization kinetics have been observed. These differences may be driven by small
differences in the distribution of the monomers on the polymer backbone (sequence
distribution).

Significance: Solid-state NMR spectroscopy can access detailed information about the
development of crystallinity in semi-crystalline polymers. Information about crystallite
abundance, morphology, and size can be obtained using NMR spin diffusion measurements.
The rates of spin diffusion are well known for protonated polymers such as HDPE and
polystyrene, but 1°F spin diffusion rates in polymers are still unknown. We are using careful
measurements of 1°F spin diffusion of model fluoropolymers to determine these rates.

Progress: We have successfully implemented a spin diffusion sequence that utilizes a dipolar
filter to obtain phase
amorphous phase contrast between
crystalline and amorphous
domains in a partially
crystalline sample of
PCTFE. Using Fast Magic
Angle Spinning (MAS) we
can collect well resolved
19F NMR spectra that
show that peaks
associated with crystalline
phases are suppressed
effectively (Figure 1
bottom spectrum) but
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the signal intensity is also
observed for the amorphous peaks as well. Measuring this intensity decline as a function of the
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domain size as the Figure 2. Intensity changes for the amorphous peaks as a function of spin
crystallinity increases. diffusion time and crystallinity. The crystallinity ratio for each sample is
Combining these results provided in the Figure legend

with those from small

angle x-ray scattering (SAXS), we can develop a method to determine crystalline domain sizes in
more complex fluoropolymer formulations such as Kel-F or FK 800.
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