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ABSTRACT

When dealing with measured data from dynamic systems
we often make the tacit assumption that the data are
generated by linear dynamics. While some systematic tests
for linearity and determinism are available - for example
the coherence function, the probability density function,
and the bispectrum - further tests that quantify the
existence and the degree of nonlinearity are clearly
needed. In this paper we demonstrate a statistical test for
the nonlinearity exhibited by a dynamic system excited by
Gaussian random noise. We perform the usual division of
the input and response time series data into blocks as
required by the Welch method of spectrum estimation and
search for significant relationships between a given input
frequency and response at harmonics of the selected input
frequency. We argue that systematic tests based on the
recently developed statistical method of surrogate data
readily detect significant nonlinear relationships. The paper
elucidates the method of surrogate data. Typical results are
illustrated for a linear single degree-of-freedom system and
for a system with polynomial stiffness nonlinearity.

NOMENCLATURE

At sampling interval

a,3  parameters of the nonlinear system
wy, resonant frequency (rad/sec)

E[] denotes expected value operation
F force input

Gyxy (f ) autospectral density of input signal

H(f) equivalent linear transfer function

o intermediate variable — fn of input, output DFTs
X0 Fourier transform of input time series

Y Fourier transform of accel. response time series

standard normal random variable

c damping coefficient

In resonant frequency (Hz)

k stiffness

n number pts per discrete Fourier transform block

X,x,x system acceleration, velocity, displacement

1. INTRODUCTION

The standard engineering measure for modeling
experimental data from vibration systems is the transfer
function, which is derived from a spectral ratio. Further
processing of a set of transfer functions yields modal
frequencies and mode shapes. Quite sophisticated modal
models are developed for many systems. The accuracy of
these models rests on the fundamental assumptions
underlying transfer function computation. One of the most
critical assumptions is that of linearity. For a nonlinear
system the transfer function model yields the best
“average” linear properties of the structure. These linear

. properties may or may not be sufficiently accurate to

model system behavior, but in general, more complex and
sophisticated models depend heavily on linearity. With
increasing model complexity, detection of nonlinear
behavior in vibration systems becomes increasingly
important.

Numerous methods are available for the detection of
nonlinearity including use of higher order spectra (Nikias,
1987); time series analysis, (FHunter, 1997); and use of the
coherence function, Wirsching, Paez, and Ortiz (1995).
Each method has advantages. One limitation is the
heuristic manner in which these methods are often applied.
For example, we review a coherence function and decide
that the system is “fairly linear” or “clearly nonlinear.” For
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basic modeling purposes this sort of judgement may be
sufficient, but for sophisticated models, that depend on
subtle data features, a systematic method is required.

In this paper we introduce a systematic method of
detecting nonlinearity from the Fourier transform of blocks
of the time series response. The basic question of
nonlinearity is the focus. ‘The method can readily be
adapted to the systematic dstection of other, more subtle
features of the data. For example, a variation of this
approach would allow validation of complex, higher
frequency mode shapes in a sophisticated experimental
model. Small nonlinearities in data may have surprisingly
large effects on c¢omplex model structures. For such
structures, systematic experimental validation is crucial.
The development of this systematic approach follows.

In Section 2, the Method of Surrogate Data, basic
arguments are developed for construction of surrogate data
sets. The concept of statistical hypothesis testing is
introduced. A step by step swrrogate data procedure is
delineated. Section 3 develops a linearity test using the
definition of the transfer function. The test is based on
considerations of expected interactions between a
frequency and its harmonics. The distribution of a quantity
that involves excitation and response Fourier transforms, a
transfer function, and the response spectral density, is used
to judge system linearity in the method of surrogate data
framework. Section 4, Test Systems, describes the two
systems tested, a linear single degree of freedom oscillator
and an oscillator with a polynomial nonlinearity, and tests
their linearities in an exercise of the current technique.
Finally, conclusions are offered in assessment of the
technique.

2. THE METHOD OF SURROGATE DATA

The method of surrogate data is a technique for testing
hypotheses regarding measured random data and the
physical systems from which they emanate. It has been
developed in a sequence of papers by Tsay (1992) and
Theiler, et al. (1991, 1992, 1992). The method of surrogate
data can use the bootstrap, developed and described by
Efron (1979) and Efron and Tibshirani (1993), or the
Monte Carlo method in hypothesis testing. Some
fundamental aspects of the technique are discussed here.
The problem considered is the testing of the statistical
hypothesis that a mechanical system excited by Gaussian
excitation, and whose response is measured, is linear. For
simplicity the discussion will be presented for the case of a
single measured response.

Application of the method of surrogate data requires

execution of the following steps.

1. Measure random data. In the present application it is
assumed that a mechanical system is excited at a

single point, and the system response at a single point
is measured. The excitation is assumed to be a zero
mean, normal random process. The characteristics of
the response will be used to judge the system linearity.

2. Specify a hypothesis concerning the random source.
The hypothesis must be specified in sufficient detail to
generate data that satisfy the hypothesis. These are the
surrogate data.

3. Specify statistics (measures) of the data (measured or
generated surrogate data) that may distinguish
measured from generated data if the hypothesis is not
satisfied by the measured data.

4. Generate n realizations of data from the hypothetical
source. ’

® Use Monte Carlo approach, if possible.
® Use the bootstrap when Monte Carlo is not

feasible.

5. Compute data statistics (from Step 3 above) for each
realization of the generated data.

6. Approximate the sampling probability distribution of
the data statistics using, for example, the kemel
density estimator (Silverman, 1986). Infer the (1-
o)x100 percent confidence region for the joint
realization of the data statistics.

7. Compute data statistics from measured data. Observe
where joint realization of statistics falls relative to (1-
a)X 100 percent confidence region.

e  If measured-data-statistics fail outside confidence
region, then reject the hypothesis at the a level of
significance.

e  If measured-data-statistics fall inside confidence
region, then do not reject hypothesis. (Strictly
speaking, we do not “accept” the hypothesis
because other statistics may lead to rejection.
However, in a practical sense our confidence in a
model may be augmented if we consider the
statistical criteria to be well chosen and robust.)

Implementation of the method of surrogate data is
completely arbitrary in the sense that the data measured,
the hypothesis specified, and the statistics chosen to test
the hypothesis are completely arbitrary. However, a key
point is that the use of the Monte Carlo method or
bootstrap to generate data realizations and the use of the
kernel density estimator to characterize the sampling
distribution of the data statistics make it possible to
consider complicated measures of behavior in judging the
measured data. For the present application this means that
any reasonable measure of system excitation and response
can be used to judge system linearity.

3. TEST OF SYSTEM LINEARITY

Though the method of surrogate data permits the testing of
arbitrary hypotheses from the very specific to the very




general, our objective here is to identify a test that can be
used on a wide variety of systems to judge their linearity.
The test of linearity specified assumes that a single wide-
band input excites a mechanical system and that a single
output is measured. Spectral statistics of the measured
signals are used to judge the linearity of the system. In
particular, spectral statistics that relate to the generation of
‘harmonics in the responses of nonlinear systems are ‘to be
considered. Linear systems do not generate harmonics.
Therefore, our scheme will be to (1) develop an hypothesis
that the measured data come from a linear system, (2)
establish the sampling distribution of spectral statistics that
come from a linear system, then (3) test the estimated
statistics of the measured data to determine whether or not
they can be rejected as realizations of the sampling
distribution related to the linear system data. The responses
of a linear system excited by a single input are governed by

¥(r)=H(r)x(r)

where Y(f) is the Fourier transform of the response, H(f) is
the system frequency response function, X(f) is the Fourier
transform of the excitation, and f denotes cyclic frequency.
Another relation can be developed from (1) by evaluating
the expression at a frequency 3/, multiplying both sides by
the complex conjugate of X{f), and dividing through by
H(3f). The result is
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where i is the imaginary unit and, on the second line, each
complex quantity on the right-hand side has been replaced
by its real and imaginary parts.

For discrete signals the continuous Fourier transform is
replaced by the discrete Fourier transform (DFT). The n-
point DFT corresponding to X(f) is X(fk),k =0,.,n/2.
(The DFT is actually defined at » points, but half the
information is redundant.) When the input excitation is a
zero-mean, stationary random process with one-sided
spectral  density G)Q((f),—oo<f<oo, then an
approximate relation between the spectral density and the
DFT is

G (fi) =25 [{X(fj] k=0,.,n/2
(3)

where At is the time increment, and E[.] denotes the
operation of mathematical expectation. When the

excitation is a zero-mean, normally distributed random

process, then the real and imaginary parts of the DFT,
X (f k),k =0,..,n/2, form zero-mean, normally

distributed random processes. When the excitation is a
wide-band random process, then the following correlations
between random variable pairs from the DFT random
processes hold (asymptotically).
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Further, the variances of the real and imaginary parts of the
DFT random processes are

EL\’ (fk] EL\’ () ]—_GXX(fk) )

4Ar
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In view of these facts and accepting the assumptions
offered above, we can divide both sides of Eq. (2) by the
standard deviation of Xp (fk) {or Xy (fk)) and the

standard deviation of X g (f3k) (or X;(f3¢)) to obtain

(£ )X (fe)
(f3k)_\/G)0((fk)G)O(.f3k)

=Z1Z3+2Z9Zy +

i~21Z4 +2,25]
(6)

where Z joJ =1,2,3,4 are uncorrelated, standard normal

random variables. Each of the Zs corresponds to a
normalized real or imaginary part of X(3/)} or X{f) in Eq.
(2). The index k is limited to »/6 here because the index
three times k cannot exceed »/2. Based on the same
reasoning and assumptions as above, we can also write

|X(fk]2

EG)O((fk)

=z2+22  k=0..n/2 (7)

The relation in Eq. (6) holds for any pair of frequencies f}
and f3; (or, in fact, for any pair of frequencies f; and
fm» Where k= m); however, it is particularly difficult for
a system to satisfy Eq. (6) when fj is a modal frequency.

The quantities on the left-hand side of Eqgs. (6) and (7) are
relatively easy to estimate from measured excitation and
response data, so we use the relations in Egs. (6) and (7) to
develop a surrogate data linearity test. The fundamental
concepts underlying the developments summarized in Eqgs.




(6) and (7) are presented in Wirsching, Paez, and Ortiz
(1995).

The surrogate data generated come from a source whose
magnitude is equal to the right-hand side of Eq. (6) divided
by the right-hand side of Eq. (7). This quantity is denoted
Oy , and we plot these surrogate data as a function of the
right-hand side of Eq. (7). We denote this quantity Oy .

Two thousand realizations of these quantities were
generated and are shown with points in Figure 1.

10°
FoL
10' .
% 10

ax

Figure 1. Two thousand surrogate data realizations of Oy
versus Oy .

Any mechanical system that is linear and excited by a zero
mean, stationary, wide-band random excitation, and for
which we compute the quantities on the left-hand sides of

Eqgs. (6) and (7) and plot

)
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where G yy(f) is the spectral density estimator for the

input random process, and H ( f ) is the frequency

response function estimator, should yield a realization that

comes from the same random source as the data in Figure

1. Our linearity test compares a function of the left sides of

Egs. (6) and (7) to a collection of realizations of the same -
function of the right sides of Egs. (6) and (7).

To simplify the testing of a statistical hypothesis in this
framework, we use the logarithms of the data in Figure 1 to
form (1-a)x100 percent upper confidence intervals on Oy
given a particular value of Qy . These intervals are plotted

for three confidence levels in Figure 2. They were formed
by writing the joint kernel density estimator for the

-logarithms of the data in Figure 1, then using this to

estimate the conditional cumulative distribution function
(CDF) of Qy given Qy . (The kemel density estimator is

described in Silverman, 1986.) Specific percentiles of the
conditional CDF were identified via inversion of the
approximate CDF, and these are plotted in Figure 2, along
with the data upon which they are based.
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Figure 2. Upper confidence intervals on Qy , given Qy at

90 percent level (lowest curve), 95 percent level (middle

curve), and 99 percent level (highest curve).

4. TEST SYSTEMS

The method of surrogate data technique for testing the
linearity of systems is exercised in this section on two
structures. The first is a simple linear system. The second
is a nonlinear system whose response is simulated on an
analog computer. The specific approach to the performance
of the test of linearity hypothesis is demonstrated.

4.1 LINEAR OSCILLATOR

The first system is a linear single degree-of-freedom
oscillator. This system is illustrated in Figure 3. The
equation for this force-excited oscillator is

i+2€oxtoix=FIM

©)
£ =002, o,=2(00)
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Linear Single Degree-of-Freedom System
Figure 3

The parameters C and K are chosen to produce a resonant
frequency of 100 Hz with an effective damping of 2%.
The system is excited by band limited random process. The
effective sample rate is 1000 Hz. A fourth order Runge-
Kutta ODE solver simulates the system. The acceleration
response of the mass is used for this analysis.

1.5

0.5}F

log(QY)

0.5¢F o

2 -1.5 -1 0.5 o] 0.5 1
log(QX)

Figure 4. Realizations of Oy versus Qy based on the
linear system data and the confidence limits from Figure 2.

The number of points in the generated excitation and
response time series used in the linearity assessment was
8192. Each collection of points was separated into 64
blocks of 128 points each. The DFTs of the excitation and
response were computed and used to estimate the input
autospectral density and the system linear frequency
response function. The results were used to form 64 joint
realizations of Oy and Qy in Eq. (8) at frequency lines
corresponding to = 100 Hz. These realizations are plotted
in Figure 4 along with the confidence limits from Figure 2.
The interpretation of confidence limits indicates that
approximately ax100 percent of realizations that satisfy a
hypothesis will fall outside the (1-0)x100 percent
confidence interval, and the remainder will fall inside the
interval. Based on this criterion, the linearity hypothesis
should not be rejected for these data.

4.2 NONLINEAR OSCILLATOR

The nonlinear oscillator is identical in general form to the
linear oscillator of Figure 3, though the system is base
excited by the acceleration ¥ rather than force excited, as

the linear oscillator. The nonlinear hardening oscillator is
illustrated in Figure 5.
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A Nonlinear Hardening Oscillator
Figure 5

Equation 10 describes the system dynamics in detail.

Fg + 20w, (kg — %1 )+ (xy —x; )+

aw2(xy —x1)? + Boi(xy —x Jxz —x| =0

a =3000 (IO)
B =3500

0, =2r(11.5)

£ =0.04

The 2{w,, term is equal to the damping coefficient divided
by the upper mass, Cj /M7, and the terms that multiply

the relative displacement (x2 —xl) are equal to the
nonlinear stiffness K,. At low relative displacements the
quadratic terms are small, and the resonant frequency is
close to 100 Hz. At larger relative values of (x2 —xl), the

nonlinear terms dominate. The effective resonant
frequency increases dramatically with increasing test level.
The system is simulated using an analog computer. The
mean square input acceleration is adjusted to produce
approximately equal mean square levels for the linear and
combined nonlinear responses. For positive excursions of
(x2 —x1) the quadratic and absolute value nonlinear terms
add, whereas for negative values of (x ~x1), they
subtract. Since $>a the net stiffness K, increases for both
positive and negative relative displacements (x, —x; ), but
less stiffness increase occurs for negative relative
displacements. The system is driven well into the nonlinear
range, but responses are not chaotic. Response is sampled
at 1000 samples/second for 8192 acceleration response
points.




Each collection of points was separated into 64 blocks of
128 points each. The DFTs of the excitation and response
were computed and used to estimate the input autospectral
density and the system linear equivalent frequency
response function. The results were used to form 64 joint
realizations of Oy and Oy in Eq. (8) at frequency lines
corresponding to f= 100 Hz. These realizations are plotted
in Figure 6, along with the confidence limits from Figure 2.
We interpret the confidence intervals as above to reject the
hypothesis that the system is linear.
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Figure 6. Realizations of Qy versus Qy based on the
linear system data and the confidence limits from Figure 2.

CONCLUSIONS

A technique for the assessment of system linearity has
been developed. It is based on an analysis of data
generated using the method of surrogate data. Its use
depends upon the availability of spectral measures of
experimentally collected time series of excitation and
response. Because these quantities are usually obtained in
the analysis of experimental data, it should be a very direct
matter to perform the present test. Results from the
examples performed here indicate that this approach can
reliably judge the linearity of a system. In fact, it may be
that the relative location of statistics Qy within or outside
the various confidence intervals reflects, in a sense, the

degree of nonlinearity of a system. Testing of other
nonlinear systems may confirm this.

Other statistics like the ones in Eq. (8) can be used, along

with the method of surrogate data, to assess not only
system linearity but also other system characteristics.
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