
  

 

Capturing provenance as a diagnostic tool for work-
flow performance evaluation and optimization 

  
Line Pouchard 

Computer Science Initiative 
Brookhaven National Labora-

tory 
Upton, NY 

pouchard@bnl.gov 

Abid Malik 
Computer Science Initiative 

Brookhaven National Labora-
tory 

Upton, NY 
amalik@bnl.gov 

Huub Van Dam 
Computer Science Initiative 

Brookhaven National Labora-
tory 

Upton, NY 
hvandam@bnl.gov 

Cong Xie 
Department of Computer Sci-

ence 
Stony Brook University 

Stony Brook, NY 
xiecng@gmail.com 

Wei Xu 
Computer Science Initiative 

Brookhaven National Laboratory 
Upton, NY 

xuw@bnl.gov 

Kerstin Kleese Van Dam 
Computer Science Initiative 

Brookhaven National Laboratory 
Upton, NY 

kleese@bnl.gov 
 

Abstract – In extreme-scale computing environments such as the 
DOE Leadership Computing Facilities scientific workflows are 
routinely used to coordinate software processes for the execu-
tion of complex, computational applications that perform in-sil-
ico experiments.  Monitoring the performance of workflows 
without also simultaneously tracking provenance is not suffi-
cient to understand variations between runs, configurations, 
versions of a code, and between changes in an implemented 
stack, and systems, i.e. the variability of performance metrics 
data in their historical context.  We take a provenance-based 
approach and demonstrate that provenance is useful as a tool 
for evaluating and optimizing workflow performance in ex-
treme-scale HPC environments.  We present Chimbuko, a 
framework for the analysis and visualization of the provenance 
of performance.  Chimbuko implements a method for the eval-
uation of workflow performance from multiple components that 
enables the exploration of performance metrics data at scale. 

Keywords – provenance, performance, scientific workflows, 
workflow performance provenance ontology, WFPP, Chimbuko 

I. INTRODUCTION 
In extreme-scale computing environments such as the 

DOE Leadership Computing Facilities [1] scientific work-
flows are routinely used to coordinate software processes for 
the execution of complex, computational applications that 
perform in-silico experiments.  Workflows enable the orches-
tration of the numerous processes that read, write, and ana-
lyze data and calculate quantities of interest for parallel and 
distributed scientific applications that range from quantum 
chemistry, molecular dynamics (MD), climate modeling, and 
many others.  Important factors for any application running 
in such environments include execution time and perfor-
mance, accuracy of calculations, and the ability to analyze 
results.  Given the limitations of a fixed resource budget 

(number of cores allocated for a specific period of time) and 
with simulations running for several days or weeks, it is im-
portant to determine if a simulation run is progressing as ex-
pected, what variations in performance a run exhibits and 
where they can be attributed. Monitoring the performance of 
workflows in HPC provides insights into this progression, 
how the computational resources are used, and where execu-
tion bottlenecks occur.  But monitoring performance without 
also simultaneously tracking provenance is not sufficient to 
understand variations between runs, configurations, versions 
of a code, and between changes in an implemented stack, and 
systems, i.e. the variability of performance metrics data in 
their historical context.  For gaining this type of insights, the 
provenance of workflow performance is needed.  We define 
the provenance of workflow performance as the provenance 
that captures and correlates traditional provenance character-
istics and performance metrics data.  This type of provenance 
is used for performance analysis in empirical studies on the 
performance of a software or workflow during a development 
phase or in different computational environments. 

Scientific workflows can play an important role in help-
ing scientists coordinate complex tasks and take better ad-
vantage of the computing resources available to them by de-
coupling the composition of tasks from workflow instance 
executions and their actual environment [2,3].  Scientific 
workflows have been extensively studied and numerous 
workflow management systems are in circulation [4].  How-
ever, many research topics remain unexplored, including the 
real-time monitoring of scientific workflow processes to val-
idate performance and support data re-use and reproducibility 
[5].  Defining the appropriate level of abstraction for moni-
toring given the number of components, the complexity of 
the connections and the rate of execution for each component 
remains a challenge that we start addressing here with a 
method and a prototype framework for studying the prove-
nance of workflow performance. 

Notice: This manuscript has been authored by employees of 
Brookhaven Science Associates, LLC under Contract No. DESC0012704 
with the U.S. Department of Energy. The publisher by accepting the manu-
script for publication acknowledges that the United States Government re-
tains a non-exclusive, paid-up, irrevocable, world-wide license to publish or 
reproduce the published form of this manuscript, or allow others to do so, 
for United States Government purposes. 



  

 

Specific aims and scope 

Our goal is to show that provenance can be used to im-
prove the performance of workflows in scientific codes and 
facilitate optimization in code development.  We take a prov-
enance-based approach and demonstrate that provenance is 
useful as a tool for evaluating and optimizing workflow per-
formance in extreme-scale HPC environments.  In particular, 
in forensic analysis of workflow performance metrics, we 
aim to elucidate the factors present during certain time peri-
ods of a run when performance does not achieve as expected.  
Sluggish performance can be associated with communication 
between parts of a workflow, data movement, and interde-
pendencies in the sequence of processes related to regions in 
the software code that directs flow and interaction, and many 
other factors.  It can be associated with parts in the system 
architecture, for instance the network interconnect between 
nodes, and with the input and output of data.  By capturing 
metrics related to these factors and correlating them to ver-
sions, configuration parameters, input data, system software 
stacks and other provenance characteristics, we enable com-
parison between runs.  

Fully capturing the runtime environment for a scientific 
workflow or application (i.e. the complete provenance of a 
run) requires the ability to capture system variables at a gran-
ular level not usually available to end users on shared and 
managed systems.  Existing tools for such capture [6,7] are 
developed to support operations of LCF systems, including 
Titan, Cori, and others.  Although it is theoretically possible 
to capture a user runtime environment with these tools by 
querying their databases, access is not always available as 
these data may be deemed too sensitive for open use.  In this 
paper we focus on the provenance metrics and characteristics 
that we can access, such as execution times at the call path 
level and job information.   

We present a method for the evaluation of workflow per-
formance that enables the comparison of performance met-
rics data.  We provide a use case with two different kinds of 
workflows implemented with small modifications in 
NWChem [8].  This is innovative because 1) provenance is 
used in conjunction with performance measuring tools; 2) 
this combination is applied to workflows rather than single 
applications; 3) we provide web-based visualization that en-
ables both high level and detailed visualization of the perfor-
mance data; 4) provenance metadata is linked to performance 
metrics; and 5) we demonstrate that provenance is a critical 
tool for workflow performance evaluation and optimization 
in extreme-scale environments.  This work is part of the Co-
design center for Online Data Analysis and Reduction (CO-
DAR) [9]. 

II. METHODS 
We design and implement Chimbuko, a framework for 

capturing, integrating, and visualizing the provenance of per-
formance that implements our method.  Our method relies 
upon four components each examined in details below: 

1) We present a use case for NWChemEx, the next 
generation of the NWChem computational chemistry and 
materials code currently starting a new release cycle. For this 

use case we instrument NWChem routines run in parallel and 
serial fashions. 

2) We rely on the Workflow Performance Provenance 
ontology (WFPP), an ontology based upon W3C PROV and 
the Open Provenance Model to classify performance and 
provenance metrics [10]. 

3) We use a state-of-the-art performance metrics 
toolkit to instrument our use case [11].  And we extract and 
integrate metrics of interest for the scientific use case. 

4) We display performance metrics with provenance 
for workflows in a visualization environment that scales. 

The Chimbuko framework captures, integrates, analyzes 
and visualizes performance metrics for complex scientific 
workflows and relates these metrics to the context of their 
execution on extreme-scale machines. The purpose of 
Chimbuko is to enable empirical studies of performance anal-
ysis for a workflow during a development phase or in differ-
ent computational environments.  Chimbuko enables the 
comparison of different runs at high and low levels of metric 
granularity.  Chimbuko currently provides this capability in 
offline mode with plans to extend to online (in-situ) modes 
with data reduction.  Chimbuko encapsulates the numerous 
steps in our method and its design highlighted the needs for 
wrappers integrating information between the various com-
ponents of our system. 

A. Use case: NWChemEx 

NWChemEx [12] is being developed as a set of scientific 
codes for simulating the dynamics of large scale molecular 
structures and materials systems on large atomistic com-
plexes. The final goal is a capability that supports ab-initio as 
well as MD calculations, although phase I of the project fo-
cusses on ab-initio capabilities. For the MD module the aim 
is to calculate trajectories for about a million atoms at a time 
resolution of a few femtoseconds collecting statistics equiva-
lent to a simulation time of at least a microsecond. All codes 
are distributed data parallel programs. The programming par-
adigm is currently envisioned to be MPI/OpenMP exploiting 
shared memory within the node.  NWChemEx provides an 
interesting use case for provenance as it needs to demonstrate 
performance improvements with new code versions and sim-
ilar performance gains on various LCF systems of different 
architectures.  Although NWChemEx is a single application, 
it is expected to provide energy and force calculations for tra-
jectories of interest in molecular dynamics simulations, par-
allelized over many cores and nodes. As a single resulting 
trajectory would generate 32 Terabyte of data even when 
storing only 1 of every 1000 timesteps this is still very large 
to be stored for offline analysis. Therefore, we envision an 
approach where the MD simulation is run, emitting snapshots 
of the protein structure along the trajectory, and where the 
data analysis is run concurrently consuming the data as it is 
produced. Ultimately, such an approach could avoid the need 
for the data to be stored at all.  To demonstrate what is in-
volved in such an approach we ran NWChem molecular dy-
namics on a small protein where we computed the trajectory 
parallelizing each time-step using global arrays, and concur-
rently another NWChem process performed the analysis. For 



  

 

this demonstration a particularly simple analysis option was 
used, namely the root-mean-square deviation of the coordi-
nates with respect to a point.  Our use case is intended to ex-
plore the capture and use of provenance that is of interest to 
NWChemEx while simultaneously highlighting the chal-
lenges of such capture for our intended use.  These challenges 
included instrumenting the code, extracting and compiling 
useful metrics, and visualizing results in usable manner. 

The information needed to track the provenance of per-
formance in NWChemEx includes strictly performance-re-
lated metrics such as the total execution time per workflow, 
per node, and per code region, the call tree, communication 
and interconnect performance, and number and volume of 
I/O reads and writes.  In addition, needed characteristics for 
provenance include the application name, version, name of 
who ran the application, SVN branches and revision num-
bers, time compiled, time started, and wall time and number 
of processors allocated. 

An important component of the NWChemEx project is to 
demonstrate scalability on the future exa-scale platforms as 
well as performance portability and of course efficient use of 
resources. These characteristics will be captured in, so called 
Key Performance Parameters (KPP). The parameters will be 
measured on the current code and on the new NWChemEx 
code and set levels of improvement must be met for the pro-
ject to be successful. Obviously this requires tracking which 
codes are being compared, for which information on the SVN 
branches and revision numbers, time compiled, and time 
started are important. Critical here is that the a test always 
tests the whole system, i.e. the hardware, the compilers, the 
libraries, and the code of your project. As problems can orig-
inate in any of these components it is important to capture 
information not only about the code itself but also infor-
mation that can be correlated with the state of the computing 
platform. In addition to measure the impact of the code de-
velopment work the time taken by different code regions is 
crucial as changes there will be related to changes in the al-
gorithms or their implementations. Even in cases where the 
total volume of compute does not change significantly im-
provements may be obtained by better distributions of the 
workload hence imbalance in the workload is important to 
track. Communication, whether by message passing, through 
files, or yet some other mechanism are always critical to the 
parallel performance of a code. In all these cases it is essential 
to record these performance characteristics in such a way that 
improvements in a code’s performance can be attributed to 
particular coding efforts. This is required to ensure that mod-
ifications that successfully improve the performance are se-
lected and kept on the basis of solid empirical evidence for 
improved performance. 

B. Workflow Performance Provenance Ontology (WFPP) 

WFPP [9] aims to inventory all possible metrics needed 
for relating provenance to workflow performance.  Different 
metrics are needed for different scientific applications and 
purposes of capturing performance provenance.   Metrics re-
lated to communication time and volume, FLOPS per pro-
cess, wait in barrier, energy usage, memory usage, cache ac-
cess and misses, page faults, I/O number of reads and writes 

and volume of data moved are of interest for NWChemEx.  
On GPUs, divergence of conditional statements will be 
needed and pose additional challenges.  Our experiment fo-
cuses on execution times, location and call paths as a starting 
point.  In addition, provenance characteristics included in job 
submission scripts and user profiles is collected and related 
to workflow execution. 

The use of WFPP to specify provenance is crucial to de-
termine both the required metrics and the level of granularity 
for these metrics.  Taking into account that users may pursue 
different performance optimization goals WFPP entities 
specify characteristics allowing them to study trade-offs be-
tween different goals.  For instance, quality-related measures 
such as accuracy or adaptability are included along perfor-
mance metrics such as total execution time of a workflow in-
stance, allowing a user to prioritize their optimization goals.  
In our use case, WFPP allows a detailed exploration of the 
needed metrics (execution time and communication) by 
providing an explicit structure for specifying them in details 
and extracting them and their meaning from the performance 
tools, as well as highlighting the gaps in the tools. 

C. Performance tools 

While numerous performance tools for single applica-
tions exist, the ability to easily and comprehensively measure 
the performance of workflow instances and components at 
appropriate levels of details for the exascale is lacking, and 
no existing utility monitors the performance of workflows.  
In this study, we evaluated ScoreP and TAU (Tuning and 
Analysis Utilities), two state-of-the-art performance tool 
suites for their ability to extract performance for our use case 
and their potential development for monitoring the perfor-
mance of workflows.  Tools for distributed and parallel prob-
lems such as the TAU (Tuning and Analysis Utilities) em-
phasize flexibility in the empirical methods chosen for per-
formance instrumentation and portability across platforms 
and programming models for single applications [10]. TAU’s 
flexibility makes it a good choice for instrumenting NWChe-
mEx while its design for portability makes it a good candi-
date to demonstrate performance monitoring across plat-
forms.  The new developments for TAU to support work-
flows are described in Findings. 

D. Chimbuko Provenance Framework 

We designed Chimbuko as a multi-view, provenance 
framework to capture, integrate, and persist workflow perfor-
mance in the context of their provenance at the exascale.  
Chimbuko allows different perspectives on the performance 
of workflow components that can be harnessed by scientific 
users and by runtime systems developers.  The Chimbuko 
framework is illustrated in Figure 1.  Chimbuko includes the 
performance analysis tools (TAU in our implementation), the 
ProvEn provenance framework, visualization and analysis 
modules.  Figure 1 shows the basic layout of the Chimbuko 
Framework. The framework can be coupled with a number 
of performance analysis tools. The workflow application can 
be instrumented manually or automatically using a perfor-
mance tool. For the off-line mode, information is collected 
during a run of a workflow and analyzed when the execution 



  

 

is over.  Performance analysis tools dump information in var-
ious format for profiling and tracing. The information man-
agement unit of the framework makes sure that the infor-
mation is stored in the central databases in the same format.  
The information management system consists of various 
scripts that help a user transfer the collected data into the 
JSON format.  Section III.B talks about the information man-
agement system in more details. The collected information is 
stored in hybrid databases maintained by the ProvEn [13].  
ProvEn consists of a harvester, a triple store, and a time series 
database [14].   The visualization component of the frame-
work provides the spatial and temporal resource utilization 
feedback to the user. The feedback helps improve both the 
computational and resource efficiency of a given workflow 
application. Section III.C provides details about the visuali-
zation component.  The data analysis part of the framework 
is used to analyze computational and communication patterns 
in a given scientific workflow. These patterns can be used to 
improve the performance of workflow. Currently, we are us-
ing this component for a data reduction problem. 

 

E. Visualization 

In order to enable a comprehensive understanding of per-
formance for heavy computational applications with prove-
nance, especially in terms of workflows, performance visual-
ization is essential and facilitates the following aspects [15]: 
1) visualizing different types of performance data such as 
counters, traces, profiles and call paths, 2) satisfying the re-
quirements of performance analysis with different goals such 
as global comprehension, problem detection and diagnosis, 
and 3) supporting various performance contexts such as hard-
ware (cluster node or network), software (trace, call graph or 
source code structure), and others. 

The visualization challenge is to accommodate large 
amount of information into limited display resolution, while 
still enabling detailed exploration of interesting pieces of 
data. We solve that issue by designing a visualization tool 
enabling level-of-detail exploration and user interaction that 

is an integral part of Chimbuko.  The purpose of the tool is 
not to cover every detailed functionality of existing tools in 
the TAU analysis suite (e.g. Vampir, ParaProf or Jumpshot). 
But instead, we enable what is missing – the capability to vis-
ualize and analyze the performance of the workflow execu-
tion for multiple applications. 

III. FINDINGS 
In instrumenting NWChem and visualizing workflow 

performance in its provenance context we encountered chal-
lenges related to the usability of the performance tools 
(choosing the appropriate instrumentation for this scientific 
application, the configuration of the performance tool to ob-
tain meaningful output, and attributing metrics to their 
source), and given the volume of traces, the selection of ap-
propriate resolution for the visualization. Our Chimbuko 
framework that includes new developments for integrating 
information produced by TAU attempts to answer these chal-
lenges. 

A. Usability of Output: Traces and Profiles 
We address the issue of usability for the performance 

tools by collaborating closely with the TAU team, producing 
agreed upon design documents and work plans, and repeated 
iterations of the experimental design.  Our experiment 
demonstrated that capturing provenance is a very useful di-
agnostic tool for the chosen use case as it highlighted perfor-
mance variations between different calculations.  Capturing 
application or workflow traces is not sufficient in itself to un-
derstand problem locations in hardware or software and re-
late them to specific runs.  Only when provenance is included 
with performance metrics can traces be compared in their his-
torical and execution context.  The need to understand trade-
offs in execution highlights requirements for persisting prov-
enance leads to the development of a data model to translate 
WFPP entities into queriable and extractable elements. 

Obtaining meaningful output from the TAU performance 
tool with the given NWChem runs proved challenging be-
yond expectations, in spite of the availability to us of the 
TAU development team to answer questions.  TAU outputs 
2 kinds of files, a trace file monitoring execution of code re-
gions on nodes and a profile file summarizing this infor-
mation and displaying the call tree.  New developments in 
Chimbuko were needed to make use of the performance met-
rics output by TAU and attribute them to their source func-
tion. These metrics were obtained by executing the dynamics 
and analysis concurrently for an NWChem MD calculation 
in an attempt to simulate a concurrent workflow situation.  
The MD calculation loops until a trajectory file appears.  At 
that point the analysis workflow is started.  One major chal-
lenge encountered for provenance in this scenario is to attrib-
ute the metrics output by the tool to its origin.  For instance, 
while a simple subtraction allows to extract execution time 
for an MPI call on a node, one still needs to know what MPI 
call we are reading.  A trace file was also obtained; the size 
of this Trace file is 224MB in binary format, 812MB in text 
format, and represents a classical MD run of 320 timesteps 
on 4 cores as well as the corresponding analysis of 100 
timesteps on 1 core.  From start to finish the MD run took 
38.0 seconds wall clock time. In addition, the program was 

Figure 1: Components of the Chimbuko framework 



  

 

compiled to suppress the instrumentation of all subroutines 
apart from the main MD and analysis routines.  

B. The Chimbuko Information Management System: Relat-
ing Metrics to Meaning 
Chimbuko is collecting and summarizing fine level infor-

mation while preserving the ability to query at the fine gran-
ular-level.  Figure 3 presents the collection of workflow per-
formance metrics for each component C in the Chimbuko in-
formation management system. A typical scientific workflow 
consists of a number of components/applications which in-
teract with each other for data management and communica-
tion. In the current implementation, Chimbuko uses the TAU 
infrastructure to collect information. Currently, TAU is ap-
plication specific. Each component is compiled and instru-
mented using wrappers designed with information extracted 
from metrics. When the instrumented code is run during the 
workflow execution, the profile and trace information is col-
lected. TAU provides runtime variables that can be used to 
collect information in separate directories for each compo-
nent. The profile information is dumped in a tabular text for-
mat, and the trace information is collected using Open Trace 
Format (OTF).  To facilitate the visualization and data anal-
ysis components, new wrappers are developed to manipulate 
the collected data.  

 
Figure 2: Workflow performance metrics capture 

The wrappers designed can be used: 

• To coalesce the information dumped in separate directories 
from each component. This helps in comparing and visual-
izing the performance of different components in the same 
temporal window. 

• To convert the profile tabular text format into JSON for-
mat. 

• To convert the OTF into JSON format. 
• To summarize the information at the workflow level. 

Chimbuko collects a comprehensive list of performance 
metrics which can be used for various performance analysis 
problems, e.g. performance scalability, resilience, better 
memory management, and runtime optimizations. Figure 3 
shows a subset of these features. 

 
Figure 3: Subset of performance metrics one can collect with 

Chimbuko 

 

C. Visualization Results 
In this work, we aim to visualize the measurements of in-

strumentation on our use case -- a parallel workflow designed 
with NWChemEX. Our acquired data are individual trace and 
profile files capturing the execution of independent workflow 
components. It includes several types of data: 1) event table 
listing the start and end time of all function calls, 2) the mes-
sages passing among functions, 3) profiling of certain metrics 
for time spent in each code region on each computing 
node/thread, and 4) the call path for each node/thread. In or-
der to connect them together, we devise a data model for each 
workflow that includes the following information: 1) the 
overall structural description of the workflow, 2) the 
metadata about the workflow, 3) the connected trace events 
of the entire workflow, and 4) the connected profiling of the 
entire workflow. Thus, in order to explore all the above in-
formation, we devise and develop a level-of-detail multiple 
channel visualization framework with front-end plotting of 
the data and back-end performing of the necessary analysis 
and computation.  

Visualization for the Chimbuko framework includes four 
major components: overview, detailed view, statistical view, 
and profile view that together establish an interactive analysis 
platform to visually explore and analyze the performance of 
a workflow. Overview shows the summary of the whole 
workflow execution as in Figure 4 (top).  

 



  

 

 
Figure 4: Visualization of trace performance for our use case:  the overview panel (top) and the detailed view of the selected region (bottom) 

 
    Figures 5a and 5b: Visualization of trace performance for our use case: (a) zoom-in effect, (b) enhance the stroke of rectangles. 

 

 

  



  

 

There are two parts in the Overview: the trace events, and 
the message counts. The trace events indicating the start and 
end time of each function call are shown as timeline. We use 
intensity to indicate the depth of the call path. A darker color 
represents a more nested function call. For each node/thread, 
the trace events are plotted separately. Above the timelines, 
we also visualized the message counts (sent or received) in a 
separate histogram view along the timeline. For the interac-
tion, it allows the user to select a time range of interest and 
see more details in the detailed view panel. In this example, 
we visualized a parallel workflow running on five 
nodes/threads.  

The detailed view shows the function calls and the mes-
sages in the selected time range as in Figure 4 (bottom). Each 
function call is visualized with a rectangle whose color rep-
resents a different call group. The functions are visualized 
with nested rectangles that indicate their depths in the call 
path. This fashion is similar to what Jumpshot utilized. In this 
view, users can still zoom in to explore more details by se-
lecting a smaller time range (Figure 5a). When there are 
many short function calls in a nested call structure, it can be 
difficult to observe small events and differentiate each call. 
Therefore, we designed two features for that issue. First, we 
use different transparency to enhance the visibility of over-
lapping functions. Second, when zooming in, we add the 
stroke of the rectangle to enhance the separation of different 
functions (Figure 5b). 

For the message visualization, we visualized the message 
passing (send and receive) between functions as straight 
black lines (Figures 4 and 5). As being organized in a time-
line, the line direction is ignored since the message is always 
passing from left to right. Additionally, when hovering over 
each rectangle, detailed function name can be seen in text. 

The statistical view summarizes the time spent for each 
function call in the selected region. In this aggregated visual-
ization, it is easier to compare the time difference side by 
side. We also adjust the text display in order to avoid clutter 
issue. In the Profiles view, with the selected metric (time or 
counter), we visualize the percentage spent on each function 
for each node/thread.  

In summary, we devised a visualization platform for 
workflow performance evaluation. We utilized nested bar 
charts and stacked graphs to represent events in terms of 
timeline. We also connect that to profile in the form of 
stacked bar graphs to reveal the corresponding statistics of 
the chosen metric. In order to support the scalability, we im-
plemented a few types of visualization with different levels 
of details -- overview, zoom-in with transparency, and zoom-
in with separation enhancement. The message communica-
tion is also visualized by line connections and message count 
histograms. 

D. Future Work 
In-situ analytics has been shown to be an effective ap-

proach to reduce both I/O and storage costs for scientific an-
alytics. Developing an efficient in-situ implementation, how-
ever, involves many challenges, including parallelization, 
data movement or sharing, and resource allocation.  We aim 
to overcome these challenges using our framework. 

Many large-scale scientific applications are usually con-
structed as workflows due to large amounts of interrelated 
computation and communication. Workflow scheduling has 
long been a research topic in parallel and distributed compu-
ting. However, most previous research focuses on single 
workflow scheduling. As cloud computing emerges, users 
can now have easy access to on-demand high performance 
computing resources, usually called HPC cloud. Since HPC 
cloud has to serve many users simultaneously, it is common 
that many workflows submitted from different users are run-
ning concurrently. Therefore, how to schedule concurrent 
workflows efficiently becomes an important issue in HPC 
cloud environments. We are aiming to extend the framework 
to optimize the scheduling strategy for concurrent work-
flows. 

The performance portability is a big issue for scientific 
workflows.  A given workflow has portable performance if 
in addition to running on diverse platforms it exhibits similar 
accuracy, stability, and reliability across these platforms for 
a given configuration. Moreover, the time to solution should 
reflect efficient utilization of available computational re-
sources on each platform. We plan to extend the framework 
to include an adaptive runtime system that will help ensure 
performance portability of scientific workflows across differ-
ent computing frameworks. 

For visualization, we will implement a Sankey diagram to 
show data I/O between workflow components. Then, we will 
redesign the Chord diagram to support message communica-
tions between threads. Finally, we will improve the scalabil-
ity with data reduction and try more complicated workflow 
types. 

IV. CONCLUSION 
Our method marshals in data from different sources re-

quired to identify barriers, compare seemingly alike execu-
tions, and enable visualization of workflow performance 
trace.  Integration of provenance with performance analysis 
tools brings elements of response to questions related to the 
resources needed to complete a workflow in time and the 
trade-offs between workflows.  As our experiment develops 
to address increasingly complex workflows, the use of a 
workflow management system may be needed to manage the 
workflow graph.  In the future, we will also enhance the ca-
pability with the help of advanced analysis routines in the 
back-end. 

 

ACKNOWLEDGEMENT 
This research was supported by the Exascale Computing Pro-
ject (ECP), a collaborative effort of two DOE organizations 
– the Office of Science and the National Nuclear Security 
Administration.  The Project Number for the Co-design cen-
ter for Online Data Analysis and Reduction (CODAR) that 
supported this research is 17-SC-20-SC. 

 



  

 

REFERENCES 
[1]  US Department of Energy Advanced Scientific Compu-
ting Research: Leadership Computing Facilities.  Available 
from https://science.energy.gov/ascr/facilities/.   

[2]  Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jae-
ger, E., Jones, M., Lee, E.A., Tao, J., and Zhao, Y.: ‘Scien-
tific workflow management and the Kepler system’, Concur-
rency and Computation: Practice and Experience, 2006, 18, 
(10), pp. 1039-1065 

[3]  Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, Y., 
Kesselman, C., Mehta, G., Vahi, K., Berriman, G.B., and 
Good, J.: ‘Pegasus: A framework for mapping complex sci-
entific workflows onto distributed systems’, Scientific Pro-
gramming, 2005, 13, (3), pp. 219-237 

[4] Garijo, D.: ‘AI buzzwords explained: scientific work-
flows’, AI Matters, 2017, 3, (1), pp. 4-8 

[5] Deelman, E., Peterka, T., Altintas, I., Carothers, C.D., 
Kleese van Dam, K., Moreland, K., Parashar, M., Ramakrish-
nan, L., Taufer, M., and Vetter, J.: ‘The future of scientific 
workflows’, The International Journal of High Performance 
Computing Applications, 2017, pp. 1094342017704893 

[6]  Agrawal, K., Fahey, M.R., McLay, R., and James, D.: 
‘User environment tracking and problem detection with 
XALT’, in Editor (Ed.)^(Eds.): ‘Book User environment 
tracking and problem detection with XALT’ (IEEE Press, 
2014, edn.), pp. 32-40 

[7]  Huang, R., Xu, W., and McLay, R.: ‘A web interface for 
XALT log data analysis’, in Editor (Ed.)^(Eds.): ‘Book A 
web interface for XALT log data analysis’ (ACM, 2016, 
edn.), pp. 31 

[8]  M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. 
Straatsma, H.J.J. van Dam, D. Wang, J. Nieplocha, E. Apra, 
T.L. Windus, W.A. de Jong, ‘NWChem: a comprehensive 
and scalable open-source solution for large scale molecular 
simulations’ Computer Physics Communications 181, 1477 
(2010) doi:10.1016/j.cpc.2010.04.018 

[9] Foster, I., Ainsworth, M., Allen, B., Bessac, J., Cappello, 
F., Choi, J.Y., Constantinescu, E., Davis, P., Di, S., Di, W., 
Guo, H., Klasky, S., Dam, K.K.V., Kurc, T., Malik, A., Me-
hta, K., Mueller, K., Munson, T., Ostouchov, G., Parashar, 
M., Peterka, T., Pouchard, L., Tao, D., Tugluk, O., Wild, S., 
Wolf, M., Wozniak, J., Xu, W., and Yoo, S.: ‘Computing Just 
What You Need: Online Data Analysis and Reduction at Ex-
treme Sca’. Proc. EuroPar2017 

[10]  Kleese van Dam, K., Stephan, E.G., Raju, B., Altintas, 
I., Elsethagen, T.O., and Krishnamoorthy, S.: ‘Enabling 
Structured Exploration of Workflow Performance Variability 
in Extreme-Scale Environments’. Proc. 8th Workshop in 
Many-Task Computing on Clouds, Grids, and Supercompu-
ters (MTAGS) collocated with SC 2015, Austin, TX2015 

[11]  Shende S, Malony A. Using TAU for performance eval-
uation of scientific software. In: Allen G, Carver J, Choi SCT, 
Crick T, Crusoe MR, Gesing S, et al., editors. Workshop on 
Sustainable Software for Science: Practice and Experiences. 
No. 1686 in CEUR Workshop Proceedings. Aachen; 2016. 

Urn:nbn:de:0074-1686-8. Available from: http://ceur-
ws.org/Vol-1686/WSSSPE4_paper_12.pdf. 

[12] ‘Launching a New Era for NWChem’ 
https://www.pnnl.gov/science/highlights/high-
light.asp?id=4411 [Accessed May 11, 2017] 

[13] Elsethagen, T., Stephan, E., Raju, B., Schram, M., 
MacDuff, M., Kerbyson, D., van Dam, K.K., Singh, A., and 
Altintas, I.: Data provenance hybridization supporting ext-
reme-scale scientific workflow applications, in Book: Data 
provenance hybridization supporting extreme-scale scientific 
workflow applications (IEEE, 2016), pp. 1-10 

[14] Stephan, E., Raju, B., Elsethagen, T., Pouchard, L., and 
Gamboa, C.: ‘A Scientific Data Provenance Harvester for Di-
stributed Applications’. IEEE Proc. New York Scientific 
Data Summit, New York, NY2017 

[15] Isaacs, K.E., Giménez, A., Jusufi, I., Gamblin, T., 
Bhatele, A., Schulz, M., Hamann, B., and Bremer, P.-T.: 
‘State of the art of performance visualization’, EuroVis 2014, 
2014 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

View publication statsView publication stats

https://www.researchgate.net/publication/320751056

