

HA
UCRL-ID-126923

RECEIVED
JUL 11 1997
OSTI

Estimation of I^{131} Levels in Milk (Salt Lake City Milkshed): Cabriolet Event Fired in Summer

H. A. Tewes

April 6, 1966

Lawrence
Livermore
National
Laboratory

This is an informal report intended primarily for internal or limited external distribution. The opinions and conclusions stated are those of the author and may or may not be those of the Laboratory.

Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

~~SECRET~~

Howard Tewes

2219

COPKG-66-9 18A

A 24-JUN-67 COOK TEWES HOWARD A

LIV-PM Lawrence Radiation
Laboratory L-41

6 April 1966

DOC 111111 MAR 20 COPKG-66-9

M E M O R A N D U

TO: Distribution

FROM: Howard A. Tewes

SUBJECT: Estimation of I^{131} Levels in Milk (Salt Lake City Milkshed):
Cabriolet Event Fired in Summer

This document consists of 5 pages.
No. 18 of 20 Series A

**DECLASSIFICATION
STAMP ON REVERSE.**

APR 12 1966

COPKG
INDEXED

The attached graph (Figure 1) was prepared in order to achieve a rough predictive capability for estimating I^{131} in milkshed milk for the case of Cabriolet fired under summer conditions (i.e., all cows grazing). The following inputs and assumptions have been used in the preparation of the figure:

- a) I^{131} concentrations measured on Palanquin for single cows were halved to approximate milkshed conditions.
- b) I^{131} concentrations resulting from complete rainout of Palanquin and Sedan cloud burdens were assumed to be a factor of ten larger than for the case of dry deposition. This roughly corresponds to complete deposit of the clouds, but without "hot spot" formation. The calculation is roughly confirmed by dry deposition vs. rainout results observed from tower shots.
- c) Data from tower shots (both dry deposition and rainout) were obtained from A. Tamplin's memo of March 31, 1966 (COVV-33); however, data from only those clouds having a north-easterly trajectory were included. In order to apply tower shot data to a cratering event, it was conservatively assumed that 20% of the I^{131} produced in a cratering event is present in the cloud, whereas 100% of the I^{131} from a tower shot is in the cloud. Thus, the I^{131} concentrations

~~SECRET~~

RESTRICTED DATA

This document contains restricted data as defined in the Atomic Energy Act of 1954. Its transmission or the disclosure of its contents in any manner to an unauthorized person is prohibited.

GROUP 1: Excluded from Automatic Downgrading
And Declassification.

SEARCHED
SERIALIZED
INDEXED
JAMES E.

COPKG-66-9 18A
SEARCHED
SERIALIZED
INDEXED
MAY-89

Classification (Declassification/Review Date) Changed to:

UNCLASSIFIED

(Insert appropriate classification level or indicate Unclassified)

2/29/86
(date)

by authority of

R2D2-COPKG-66-9

(Authority for change in classification, e.g. the memorandum number.)

by

Stephen J. Hall

1/22/87
(date)

(Signature of person making the change)

verified by

Beverly J. Babcock

1-23-97
(date)

(Signature of person verifying this is the correct document or model)

~~SECRET~~

Estimation of I^{131} Levels in Milk...

~~COPKG 66-9~~

page 2.

given in COVV-33 were divided by five; to convert the deposition per square meter to concentration in milkshed milk, deposition per square meter was divided by the usual factor of six.

Using Figure 1 to predict possible I^{131} concentrations in milk from the Salt Lake City milkshed leads to the results summarized in Table I.

It will be noted that predictions of I^{131} concentrations in milk have been largely based on Palanquin data which has been appropriately scaled, rather than on observations obtained on tower shot fallout. The primary reasons for this choice are:

- 1) Palanquin is the only cratering event for which several observations of I^{131} concentrations in the milk from grazing cows are available. Thus, despite the atypical venting mechanism of this event, it represents the closest available approximation to Cabriolet.
- 2) Tower shot fallout data (with the exception of Smallboy) consist exclusively of gross beta activity per unit area; converting these observations to I^{131} levels in milk involves several assumptions, including: no fractionation of fallout, known availability of I^{131} to cows, and normal secretion by cows of I^{131} in milk. Thus, these data are inherently more uncertain than are directly measured concentrations of I^{131} in milk.

In the case of Smallboy I^{131} in milk data, there appears to be some question as to the contribution of the rainout mechanism to the high concentrations observed.

It is interesting to note that Nerva tests run to date have been expelling I^{131} equivalent to that resulting from a few tenths of tons to a few tons of fission. The numbers shown in Table I appear to be consistent with very preliminary observations of I^{131} levels in milk which have resulted from Nerva clouds

HAT:ca

Distribution: (20 copies, Series A)

1A: M. May	11A: J. Gofman
2A: G. Higgins	12A: A. Biehl
3A: D. Sewell	13A: M. Johnson
4A: A. Haussmann	14A: B. Shore
5A: J. Rosengren	15A: A. Tamplin
6A: R. Goeckermann	16A: R. James
7A: R. Batzel	17A: J. Miskel
8A: G. Werth	18A: H. Tewes
9A: C. Van Atta	19A: O. DeLalla
10A: T. Merkle	20A: file

~~SECRET~~

~~SECRET~~

Estimation of I^{131} Levels in Milk.....

~~GORKG 66-9~~

~~page 3~~

TABLE I

	Cloud Trajectory	Venting Mode	Meteorology ⁽¹⁾	I^{131} in Milkshed Milk ⁽²⁾ (pCi/l)	Comments
1. ⁽³⁾	Not over milkshed	--	---	Background (10-20)	(10-13)
2. ⁽³⁾	Partially over milkshed	Normal Cratering	Dry - Normal	6 - 24 ⁽⁵⁾	(10-13)
3. ⁽³⁾	Over milkshed	"	Dry - Normal	30 - 300	(10-13)
4. ⁽³⁾	Over milkshed	"	Scattered showers - Normal	150 - 1000	(10-13)
5. ⁽³⁾	Over milkshed	"	Widespread rain - normal	300 - 2000	(10-13)
6.	Over milkshed	"	Rain - abnormal	1000 - 6000	(11)
7.	Over milkshed	Stemming failure	Dry - normal	100 - 600	(12)
8.	Over milkshed	"	Scattered showers - normal	500 - 3000	(8)
9. ⁽³⁾	Over milkshed	"	Widespread rain - normal	1000 - 6000	(10,13)
10.	Over milkshed	"	Rain - abnormal	3000 - 20000	(11)

(1) Normal meteorology is defined as those meteorological conditions which lead to normal diffusion of the vented radioactivity. An abnormal condition is one in which the diffusion rate is unusually small, leading to conditions favorable for "hot spot" formation.

(2) Travel time of the cloud to the Salt Lake City milkshed area has been assumed to be 18-24 hours. I^{131} concentrations in milk at H+18 hrs. have been taken, and appropriate ranges of values assumed. Note: Present standards assume 4,200 pCi/l of I^{131} in milk will deliver 0.5 rad to a 2 gram infant thyroid.

~~SECRET~~

~~SECRET~~

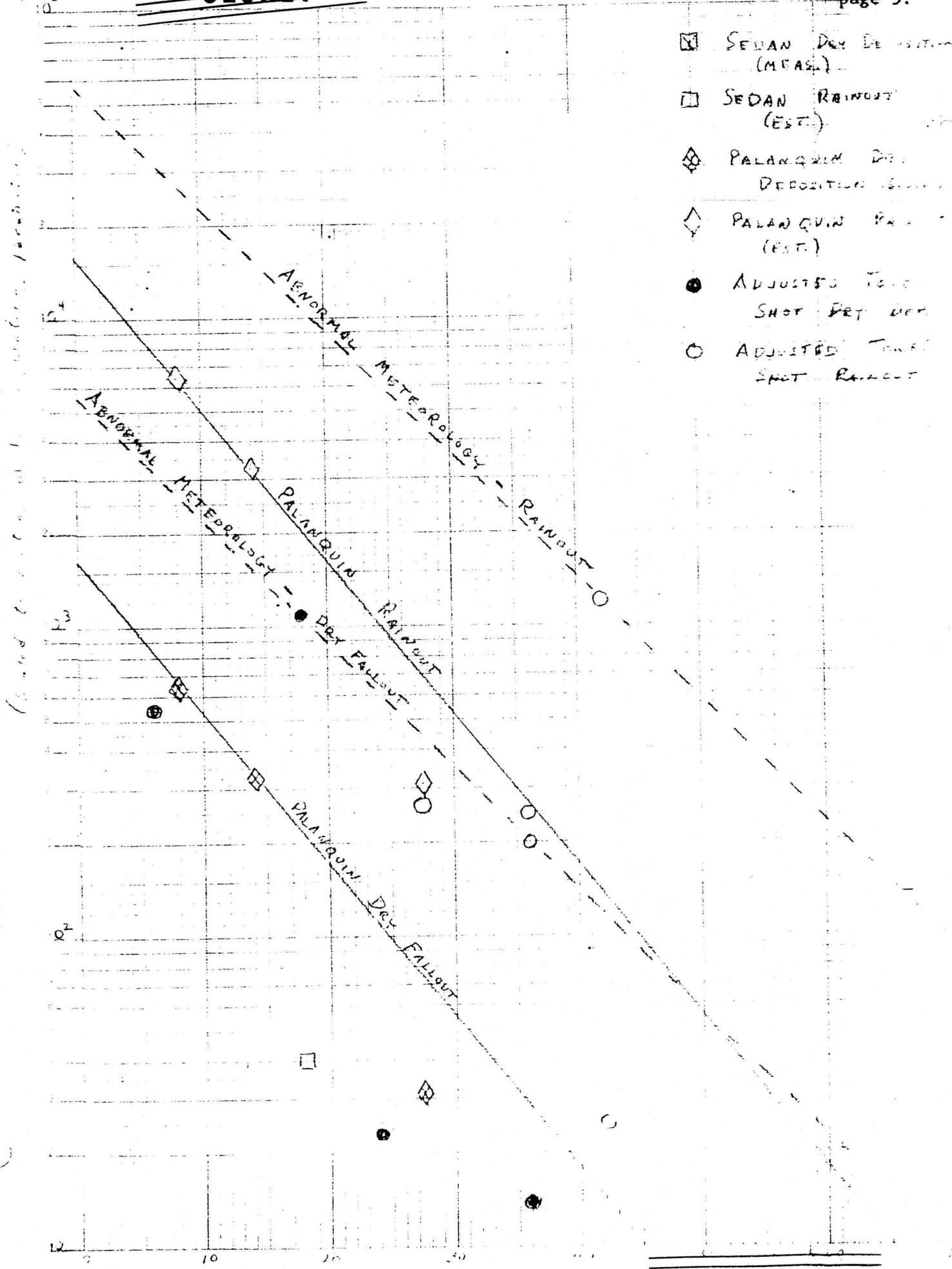
Estimation of I^{131} Levels in Milk....

COPKG 66-9

page 4.

(Table I continued)

- (3) These values were quoted to Mr. John Kelly in the telephone conversation of April 5, 1966.
- (4) Although it is possible that the Cabriolet cloud will miss the Salt Lake City milkshed area, desirable firing conditions for Summer indicate a 70 - 80% probability that the cloud will pass over the area in question.
- (5) Above background.
- (6) Scaled directly from Sedan observations (See UCRL-7716). Presumably, the Sedan cloud did not pass directly over Salt Lake City milkshed area.
- (7) For the normal cratering cases, Palanquin observations have been divided by a factor of three.
- (8) Scattered showers have been assumed to scavenge only half of the I^{131} from the cloud; hence, the milk concentration is only five times the dry deposition value.
- (9) Expected values.
- (10) Complete rainout of the I^{131} leads to the number quoted here.
- (11) Abnormal rainout conditions (as observed in the case of Diablo) are assumed to lead to "hot spots" which are roughly a factor of three higher than is the case for normal rainout.
- (12) For the stemming failure cases, Palanquin observations have been scaled directly.
- (13) Maximum credible values.


~~SECRET~~

~~SECRET~~

FIGURE 1

—СОПКЕ-66-

—page 5.

SEARCH