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Jan Balewski4,e) Satoshi Matsuoka5,1,f) Marc Snir3,g) Peter Nugent4,h) Brian Van Essen2,i)

Abstract: We report our preliminary work on large-scale training of a 3D convolutional neural network model
for cosmological analyses of dark matter distributions. Previous work showed promising results for predicting
cosmological parameters using CNNs trained on a large-scale parallel computing platform. However, due to its
weak scaling nature, there exists a trade-off of training performance and prediction accuracy. This paper extends
the existing work for better prediction accuracy and performance by exploiting finer-grained parallelism in distributed
convolutions. We show significant improvements using the latest complex cosmological dataset with a huge model
that was previously unfeasible due to its memory pressure. We achieve 1.42 PFlop/s on a single training task with a
mini-batch size of 128 by using 512 Tesla V100 GPUs. Our results imply that the state-of-the-art deep learning case
study can be further advanced with HPC-based algorithms.

1. Introduction
Training of Convolutional Neural Networks (CNNs) has been

drastically accelerated by exploiting data-parallelism in the last
decade. “Data-parallel” training in the context of Deep Learning
(DL) means that each processor, such as a CPU or a GPU,
1) holds the same copy of the network parameters and 2)
computes their gradients with respect to a specific set of data
samples, and 3) performs collective aggregation to update the
parameters. Since it only requires coarse-grained inter-processor
communication and has near-perfect load balance, data-parallel
training has been exploited to train many types of CNNs, such
as networks for image recognition [1], [2], [3], [4], [5], action
recognition [6], [7] and physical parameter prediction [8].

However, in extreme-scale training, model-parallelism is
also required for various reasons. In model-parallel (or
“hybrid-parallel” where both strategies are used at the same
time) training, a single independent model is split into multiple
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processors, incurring fine-grained communication to exchange
activations and errors in the middle of the network. One of the
important advantages of model-parallelism over data-parallelism
is that it relives memory requirements for each processor. Hence
it enables one to train a bigger model than what can be
trained under the data-parallel scheme. We demonstrate that
our framework can train a network which cannot fit into the
memory of a single GPU even if the batch size is one. Another
benefit of model-parallelism is that it can increase the amount of
parallelisms under a fixed mini-batch size constraint. It has been
reported that a huge mini-batch size causes considerable accuracy
drop [1], [8], which implies that the mini-batch size limits the
maximum amount of parallelisms in data-parallel training. By
using hybrid-parallelism, however, the amount of parallelisms
can be larger than the mini-batch size; therefore, it can bring
additional speedups.

In this paper, we demonstrate the scaling of the CosmoFlow
network [8], originally proposed in previous work [9], a 3D CNN
to predict cosmological parameters from 3D mass distribution,
using hybrid parallelism in order to utilize 128 GPUs and 64
times larger sample size. We extend our previous work, the
Livermore Big Artificial Neural Network Toolkit (LBANN) [10],
Distconv [11] and Aluminum [12] to perform hybrid-parallel
training of multi-dimensional convolutional neural networks for
GPU clusters. Our framework enables users to use the arbitrary
model partitioning of the sample and of spatial dimensions for
each layer, enabling flexible and efficient load balancing among
GPUs.
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2. Background
2.1 The methodology of data-/model-/hybrid-parallelism

Mini-batch Stochastic Gradient Descent (SGD) is the most 
widely used technique to optimize parameters of a given deep 
neural network:

W (t+1) = W (t) − η(t)
N∑

n=1

∇En

(
xn; W (t)

)
,

Layer

Process

Forward data movement
Backward data movement
Backward grad. movement

Data-parallel (N = 1)
Model-parallel

(spatial partitioning, N = 2)

Hybrid-parallel
(N = 2)

Fig. 1 Three different parallel strategies for deep neural networks. N
denotes the mini-batch size. Note that data movement within a single
process does not cost in most cases.

have to be synchronized with the computation in every
layer. Therefore, model-parallelism has been less studied than
data-parallelism.

For CNNs, there are several strategies to exploit
model-parallelism:
• Spatial partitioning: Since most of the operations for CNN

type layer are layer-wise operations (such as activation
functions) or only require neighbor data to compute each
output element (such as convolution and pooling), a network
can be partitioned in spatial dimension(s) into multiple
GPUs without excessive inter-GPU communication.

• Channel partitioning: Each layer of a CNN has multiple
“channels”, disjointed tensors which are involved only in
convolution or in the first fully-connected layer. As the
typical number of channels in recent CNNs [8], [13] is much
larger than the number of available GPUs on a GPU cluster,
and complexity of each convolution channels are the same,
it is convenient to exploit model-parallelism in the channel
dimension. One of the problems is, however, it requires
global all-to-all communication to exchange each distinct
portion of channels among GPUs.

• Layer-wise partitioning: The computation of ∇En is
composed of hundreds of kernels as well as its derivative,
each of which is derived from each layer of the network.
Thus, pipelining techniques with multiple GPUs can be
applied to the computation.

In this paper, we focus on spatial partitioning, as it
brings better communication-to-computation ratio than channel
partitioning and always brings better load-balance than layer-wise
partitioning.
2.1.3 Hybrid-parallelism

“Hybrid-parallelism” is the combination of data-parallelism
and model-parallelism. The benefit of exploiting

where W (t) are the network parameters on the step t, η(t) is the 
learning rate on the step t, N is the mini-batch size, En is the loss 
function with respect to the n-th sample of the mini-batch, and xn 

the input data of the n-th sample.
2.1.1 Data-parallelism

Since there is no dependency between the computation of 
∇En with different data samples, a most straightforward way to 
parallelize mini-batch SGD is to parallelize the computation of 
∇En with different GPUs, and then aggregate the gradients by 
performing an all-reduce collective operation. This technique, 
called “data-parallel” training (Fig. 1, left), matches with the 
fact that N is typically big enough to parallelize on hundreds 
or thousands of GPUs, and the bandwidth requirement of 
performing the collective operations (O(100 MB)) is smaller 
than computation requirement especially for CNNs. Therefore, 
training of CNNs has been scaled to thousands of GPUs by 
simply exploiting data-parallelism [1], [2], [3], [8].

One of the limitations of data-parallelism is, however, the 
number of processes does not scale beyond the mini-batch size 
N. As it has been reported that too large a mini-batch size 
degrades inference accuracy of trained networks [1], [8], there 
is an inevitable parallelizing limit in data-parallel training. 
2.1.2 Model-parallelism

On the other hand, in “model-parallel” training (Fig. 1, 
right), the computation of ∇En for each data sample is 
parallelized across multiple GPUs. One of the advantages of 
model-parallelism is that it parallelizes the computation of the 
loss function with one data sample with multiple GPUs; hence 
the amount of parallelisms can be set to one larger than the 
mini-batch size.

Another benefit o f m odel-parallelism i s t hat i t r elieves the 
GPU memory requirement by increasing the number of GPUs per 
sample. In data-parallel training, if the memory requirement for 
one data sample exceeds the memory capacity of a GPU, training 
cannot be started. On the contrary, in model-parallel training, 
the memory requirement is nearly in inverse proportion to the 
number of model-parallelisms. Therefore, training is feasible 
when a sufficient number of GPUs are available. This advantage 
is attractive especially for high-dimensional CNNs, which require 
massive GPU capacity to store high-dimensional tensors relative 
to conventional 2D CNNs.

At the same time, model-parallel training requires careful 
design of the underlying deep learning framework, to mitigate 
the overhead of layer-wise communication. While data-parallel 
training only requires a single global collective per iteration 
to aggregate parameter gradients, model-parallel training incurs 
many numbers of communication operations, and the operations



In this paper, we mainly use the “4parE” dataset [14]. It
contains 1,027 universes each of which is composed of four
channels, 5123 voxels in the double-precision floating-point
format, along with four cosmological parameters which were
used to generate each universe. Each universe is split into four
NumPy files in a subdirectory. The dataset size is 1027 × 8 × 4 ×
5123 ∼ 4 TB in total.

We synthesize two datasets of 64 × 4 × 1283 and 8 × 4 × 2563

cubes, where 4 is the number of channels (C), by splitting each
4 × 5123 cubes from the original dataset into subvolumes. The
intuition motivating this technique is that the simulated universes
are sufficiently uniform even in their smaller sub-regions to infer
their cosmological parameters. In this paper, we distinguish the
datasets with the input width W. We split each dataset into
80%, 10%, and 10% as training, validation, and test datasets
respectively.

3. Related work
The concept of model-parallelism has been studied since the

rise of deep learning. One of the most well-known CNNs,
AlexNet [15], was trained on two GeForce GTX580 GPUs, each
of which has 3 GB of memory. The main reason to introduce
model-parallelism for the network was that the GPU memory size
is relatively small for the network, so dividing a single network
into multiple GPUs can relieve memory pressure for each GPU.

Thanks to advances in GPU memory technology, the memory
size per GPU has been increased to more than 10 GB in
recent years. Despite this improvement, however, the memory
requirement to store a single DNN has also been enlarged by
increasing the number of layers and the number of channels of
each layer, to improve the inference performance of the models.
For instance, most of the competition-wining CNNs [13], [15],
[16] in the ILSVRC [17] image recognition competition use
the mini-batch size of hundreds on one or a small number of
GPUs. These networks illustrate the fact that the increase of
GPU memory capacity does not always satisfy the demand for
rapidly-advancing DNNs.

3.1 Deep convolutional neural networks for 3D datasets
3D convolutional neural networks have been proposed for 3D

volume datasets such as cosmological [8], medical image [4], [5],
and action recognition [6], [7] datasets. The most straightforward
way to design a 3D CNN is to replace all of the 2D operations in
a known CNN for 2D images with 3D operations [5].

Similar to 2D convolutional layers, it is regarded that 3D
convolutional layers are capable of extracting the spatial features
of input data with a much smaller number of parameters and
floating-point operations than fully-connected layers. On the
other hand, the memory size to store a 3D CNN is O(n3) while
a 2D CNN is O(n2), which makes it challenging to use a big
mini-batch size or to increase the resolution of input data in
the data-parallel fashion [4], [6], [7]. It is also reported that
careful design of size-reducing operations such as pooling layers
is needed to reduce the memory footprint of 3D CNNs [4], [7].
We discuss the memory issue and the redesign of the CosmoFlow
network in Section 4.3.

hybrid-parallelism is that it can achieve a high degree of 
parallelism by exploiting data-parallelism, and at the same time, 
each data sample is parallelized by using model-parallelism so 
that larger models can be trained with more computing resources. 
It requires careful design of the amount of parallelisms for 
different dimensions to sustain good scalability, as demonstrated 
in Section 5.3.

2.2 Distconv
Distconv [11] is a hybrid-parallel kernel library designed for 

CNNs. Distconv is currently supported by LBANN.
The basic concept of Distconv follows parallelized stencil 

computations. First, convolution is performed to the center part 
of an input tensor, and at the same time a halo exchange is started 
in a different asynchronous CUDA stream among GPUs in the 
same sample group. We repeat the one-dimensional halo 
exchange three times to perform the three-dimensional halo 
exchange. Once halo exchange is completed, convolution is 
performed on the halo region in the stream. We apply the same 
concept for backward-data and backward-filter kernels since 
these kernels are conceptually convolution operations.

When hybrid-parallel training is enabled, we simply 
combine the model-parallel implementation to the data-parallel 
training mechanism. In forward computation, no additional 
communication is introduced as data-parallel training only 
requires all-reduce collectives in backward passes. In backward 
passes, once a backward-filter kernel is completed, parameter 
gradients aggregation is started in another asynchronous stream. 
As convolution channels are not parallelized in this paper, all of 
the GPUs are involved in each all-reduce collectives.

2.3 CosmoFlow
CosmoFlow [8] is a project to estimate the values of important 

cosmological parameters from 3-dimensional universe data by 
using deep learning. In the previous work, the authors first 
conduct thousands of independent N-body simulations with 
varied initial cosmological parameters, and then constructed 
CNN training data set allowing regression of 3D mass 
distribution to ground truth parameters. Due to this, in the dataset 
we use in this paper, the distribution of the parameters is 
normalized to the [−1, 1] uniform distribution in advance. In the 
paper, the authors demonstrated that a CNN is capable of 
predicting 3 such parameters with reasonable accuracy.

The original CosmoFlow network is composed of seven 3D 
convolutional layers, including three average-pooling layers, 
followed by three fully-connected layers with dropout. It outputs 
three scalar variables at the end. Its input size is 1283 in 32-bit 
floats, and the network contains 7 M free parameters and requires 
69.33 GFlops to compute parameter gradients from one sample.

In the original paper, it was reported that training with the 
mini-batch size of 8,192 did not converge to the same rate as 
training with the mini-batch size of 2,048, possibly due to a 
decrease of stochasticity of mean parameter gradients. Hence it is 
essential to introduce model- and hybrid-parallelism to keep the 
mini-batch size from such statistical limitations under large-scale 
training environments.
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Fig. 2 Time to perform convolution kernels of the CosmoFlow network for
the CosmoFlow dataset on a Tesla V100 GPU. We use the mini-batch
size (N) from 1 to 16. We use cuDNN 7.5.0.

Table 1 The number of operations (in GFlops) of each convolutional layer
for the CosmoFlow dataset We change the padding width to 1.

Name Forward Backward data Backward filter
conv1 1.81 1.81 1.81
conv2 7.25 7.25 7.25
conv3 3.62 3.62 3.62
conv4 0.03 0.03 0.03
conv5 0.91 0.91 0.91

conv6,7 1.81 1.81 1.81

4.3 Network
Table 2 shows the CosmoFlow network architecture we use.

We have applied the following changes to the original network
[8]:
• Adding pooling layer(s): We add up to two additional

pooling layers, “pool6” and “pool7”, to keep the output
size of the last convolutional layer, “conv7”. Since a large
portion of the number of parameters of a CNN comes from
its first fully-connected layer, this change fixes the number
of parameters regardless of the input size.

• Applying “same” padding with odd-size filters: We
add padding width of 1 for all convolutional and pooling
layers which have 33 filters. This “same” padding policy
prevents the output sizes from being reduced more than their
corresponding input sizes, hence each layer size is always a
power of two. Therefore, this change enables ideal model
partitioning for any number of layers and any number of
processes. For the same reason, we change the filter sizes
to 33.

• Removing biases from convolutional layers: The
backward bias kernel of convolutional layers computes
the sum of elements of each feature map across all of the

Table 2 CosmoFlow network architecture. Unless it is explicitly
mentioned, we use stride width of 1 for convolutional layers and
2 for pooling layers. We use padding width of 1 for all the layers.

Layer Output size
Name Filters /Weights W = 128 W = 256 W = 512
conv1 16 × 33 1283 2563 5123

pool1 16 × 33 643 1283 2563

conv2 32 × 33 643 1283 2563

pool2 32 × 33 323 643 1283

conv3 64 × 33 323 643 1283

pool3 64 × 33 163 323 643

conv4
128 × 33

83 163 323

(stride of 2)
pool4 128 × 33 43 83 163

conv5 256 × 33 43 83 163

pool5 256 × 33 23 43 83

conv6 256 × 33 23 43 83

pool6 256 × 33 N/A 23 43

conv7 256 × 33 23 23 43

pool7 256 × 33 N/A N/A 23

fc1 2048 × 2048 2048 2048 2048
fc2 2048 × 256 256 256 256
fc3 256 × 4 4 4 4

# conv. ops. [GFlops/sample] 55.55 443.8 3550
(Forward) 18.52 147.9 1183

Memory [GiB/sample] 0.824 6.59 52.7
# parameters

[
106

]
9.44 9.44 9.44

In this paper, we break the memory limitation problem of 3D 
CNNs in the existing work by building a flexible hybrid-parallel 
training software. To best of our knowledge, our work is the first 
attempt to train a 3D CNN with the CosmoFlow dataset whose 
input size is 5123 voxels without partitioning the data samples.

4. Implementation details
In this section, we introduce the details of our implementation 

as well as some technical difficulties and discuss how to perform 
large-scale training of 3D CNNs.

4.1 The notation of tensor dimensions
In this paper, we adopt cuDNN’s notation of N, C, D, H and 

W, which means samples, channels, depth, height, and width 
respectively. Unless it is explicitly mentioned, we assume all 
of the tensors are “fully-packed”, whose width-, height-, depth-, 
channels-, samples-strides are products of widths of previous 
dimensions. Specifically, i n t his p aper, w e o mit C  a s w e do 
not split the channel dimension among {GPUs as}explained in 
Section 1. We also adopt the notation of Dp, Hp to represent 
the amount of parallelisms for depth- and height-dimensions. We 
also omit N when the amount of parallelisms is the quotient of 
the number of GPUs and the product of other dimensions. For 
example, if the total number of GPUs is 16, {2, 1} means there are 
16/(2 × 1) = 8 groups each of which split a data sample into two 
GPUs in the depth dimension.

4.2 Extending Distconv for 3D CNNs
All of the spatial sizes of layers of a network cannot necessarily 

be divided by the number of processes. For instance, in many 
CNNs, the spatial size of each layer decreases by applying 
pooling layers, because this technique is considered to efficiently 
summarize spatial features into smaller domains. In Distconv, 
if a spatial size is not a multiple of the number of processes, 
we gather valid data to a part of the process. Even though this 
technique makes some GPUs idle during the computation of the 
latter part of a CNN, this does not spoil the performance of GPUs 
for 3D CNNs, as the former part of a 3D CNN has much greater 
complexity than others (Fig. 2, Table 1).
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Fig. 3 Overview of hybrid-parallel LBANN training. Each node contains four processes which partition
a single data sample.

samples of the input tensor. In cuDNN [18] 7.5.0, however,
we found that the kernel takes considerably more time than
other backward kernels, even though its complexity is much
smaller than others (Fig. 2). Therefore, we remove biases
from convolutional layers to eliminate this inefficiency. As
seen in Table 3, we do not observe any accuracy degradation
by removing the biases.

The rest of the details of the network follow the original
model: We apply leaky ReLU after every convolutional and
fully-connected layer except for the last layer, apply dropout
before every fully-connect layer with the keep probability of 0.8,
and adopt the mean squared error as the loss function. We use the
Adam [19] optimizer with β1 = 0.9, β2 = 0.999, and ε = 10−8.
We perform exhaustive search for the initial learning rate α for
each network.

Table 3 summarizes preliminary training results of our
CosmoFlow network variant using the “2parB” dataset [14]. In
Table 3, our network achieves better accuracy than the baseline
model, and hence we use this network throughout this paper.
In addition, the test loss of the original network is degraded
by increasing the mini-batch size, even if the learning rate is
increased in the same proportion to the mini-batch size to keep
the stochasticity of parameter gradients [1], [8], as shown in the
previous work [8]. This result implies that there is a hidden
scaling limit for this network in the data-parallel scheme around
hundreds of GPUs. Our hybrid-parallel scheme can accelerate
training by using hundreds of GPUs while keeping the same
mini-batch size in Section 5.2.

Table 3 Training results of our CosmoFlow network variants. We train each
network for 130 epochs.

Network
Number of

N α
Minimum loss

nodes Training Test
Original 8 512 0.0001 0.0041 0.0051
Original 32 2,048 0.0002 0.0110 0.0077
Original 128 8,192 0.0005 0.0241 0.0184
Proposal 32 1,024 0.0002 0.0062 0.0041

As shown in Table 2, the per-sample memory requirements
for the W = 128 and W = 256 are under the memory size
of the latest GPUs: For instance, an NVIDIA Tesla V100 GPU
has 16 GB memory which is capable of holding one or more
samples of the datasets. Thus, data-parallel training is the most
efficient way to train the networks as it only requires a global
collective communication in an iteration. For W = 512, however,
the memory requirement exceeds the memory size. Hence it is
not feasible to perform data-parallel training. Our framework
resolves this problem by introducing hybrid-parallel scheme:
LBANN successfully train the network by splitting it among
4 or more distinct GPUs in the “depth” (D) dimension or the
combination of D and “height” (H) dimensions. This ability
has a significant advantage for high-dimensional CNNs as their
memory requirements are cubic of dimension size.

4.4 I/O performance optimization
We study the performance of two different data sample readers:

The “Direct” data reader loads data samples from the file system
directly, or from a node-local SSD where the entire dataset is
preloaded in advance of training. The “Conduit” data reader
uses Conduit [20] as an I/O backend. Conduit is an open source
data exchange library that provides efficient ways of exchanging
scientific data between applications, exchanging data between
different processes within a single MPI-based application, and
managing in-memory data movement within a single process.
Our Conduit data reader preloads the entire dataset from the file
system into CPU memory before training starts. The process that
performs the read thereafter “owns” the data. Subsequently, prior
to each minibatch, we employ an MPI-based data exchange to
shuffle the data to the process that requires it. After a mini-batch
is loaded, the MPI processes perform a data shuffle operation to
exchange the desired spatial parts of the mini-batch.
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Fig. 4 Weak scaling of the CosmoFlow network. We use GPU batch sizes of 8 and 1 for the W = 128 and
W = 256 datasets, and 1 for each GPU group for the W = 512 dataset respectively. We perform
several epochs of training and use the minimum iteration time of the last epoch.

CosmoFlow network has 9.44 M parameters and requires 18.5
GFlops for forward computation, while ResNet-152 [13] has
O(10 M) parameters and 1.13 GFlops for computation. This
characteristic makes it easy to scale in data-parallel training.

With W = 512, however, it is infeasible to perform
data-parallel training since the model is too huge to fit into
GPU memory as shown in Table 2. With our implementation,
however, we achieve 111x of speedup over 1 node by
exploiting hybrid-parallelism (even if layer-wise communication
is introduced). In the experiment with the W = 512 dataset,
we use the minimum number of nodes for the batch size of one,
and then increase the number of nodes in weak scaling fashion.
Thus, on 128 nodes, we use a mini-batch size of 128 for {4, 1} and
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Fig. 5 Visualization of the GPU kernel timeline of a single iteration of
training on two different weak scale configurations for the W = 512
dataset on 64 nodes. The “Main” stream orchestrates the main
computation kernels the “DC” (Distconv) and “NCCL” streams are
used for asynchronous communication. We merge NCCL’s multiple
CUDA streams to a single stream for simplicity as each GPU kernel
do not overlap to each other.

5. Evaluation
5.1 Evaluation environment

We use Lassen, a GPU cluster at Lawrence Livermore National 
Laboratory which is composed of 666 computing nodes. Each 
node has two IBM Power9 CPU chips with 256 GB memory 
and four NVIDIA Tesla V100 GPUs with 16 GB memory and 
NVLink links. GPUs on each node achieve 56 single-precision 
TFlop/s. Lassen adopts 6 NVLink links between GPU-GPU and 
GPU-CPU with 300 GB/s total bandwidth, and 100 Gb/s EDR 
InfiniBand among computing nodes. Each node is equipped with 
a 1.6 TB NVMe SSD.

We use GCC 7.3.1, CUDA 9.2, cuDNN [18] 7.5.0, NCCL 
2.4.2 and IBM Spectrum MPI 10.2.0.11rtm2. All experiments 
are performed on Red Hat Enterprise Linux Server 7.5. We 
use the single-precision format for computation and data storing 
throughout the experiments.

5.2 Weak scaling
Fig. 4 shows the weak scaling of our implementation with three 

different datasets.
For the W = 128 and W = 256 configurations, we use GPU 

batch sizes of 8 and 1 respectively. For W = 512, we use a 
per-node batch size of 1, and split each data sample evenly in 
each node. We run the framework for few epochs with a subset 
(8192, 1024, and 128 samples from W = 128, W = 256, and 
W = 512 respectively) of each dataset, and show the minimum 
iteration time of the last epoch. We use the full dataset on 128 
nodes for better stability. In this experiment, we also measure 
the performance with a “Synthetic” dataset configuration, where 
the I/O process is skipped so that the pure computation and 
communication performance is measured.

In all of the cases, our implementation achieves nearly linear 
speedup up to 128 compute nodes. We achieve 119x and 120x 
of speedup on 128 nodes compared to 1 node with the W = 
128 and W = 256 datasets respectively. With these datasets, 
this result is convincing as the network has a high computation 
(Flops) to communication (the number of parameters) ratio 
compared to other conventional 2D CNNs which are used in 
recent large-scaling precedents. In fact, our variant of the
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Fig. 6 Strong scaling of the CosmoFlow network. We use global mini-batch
sizes (N) of 1 or 8 for the W = 512 dataset.

{2, 2}, but 64 for {8, 1}. Even though this configuration degrades
per-sample computation efficiency for {8, 1}, it also introduces the
possibility of parallelizing the computation on each data sample
among more GPUs. Indeed, when the mini-batch size is 64, the
computation speed with {4, 1} (on 64 nodes) is 218.3 samples/s,
while it is 260.0 samples/s with {8, 1} (1.19x of {4, 1}), even if
inter-node layer-wise communication is required.

It achieves 1.42 PFlop/s on 128 nodes with the {2, 2}
configuration and the synthetic data reader, and 289 TFlop/s
without the synthetic data reader. The former achieves 20% of
the peak computational performance.

With the W = 256 dataset, the slowdown of the CosmoFlow
data reader and the Conduit data reader are 2.43x more than
the synthetic data reader respectively on 128 nodes. In this
configuration, the data reader loads 2563 × 4 × 2 × 4 = 512 MiB
of data from each SSD in each iteration, but in both data readers,
data samples have to go through a PCIe bus or InfiniBand, whose
one-side bandwidth is 32 GB/s or 2 × 12.5 GB/s respectively. In
addition, it is required to perform a memory copy multiple times
in or between CPUs and GPUs to perform the data shuffle and
type conversion. Even if Conduit is introduced to eliminate I/O,
the data reader still needs to perform inter-node communication
as the entire dataset does not fit into the CPU memory of a single
node. Therefore, the data load takes O(10 ms) while the iteration
time of the synthetic data reader is around 70 ms.

Fig. 5 shows the GPU kernel timeline of a training iteration
for each configuration. Distconv invokes packing/unpacking
and P2P communication kernels on the main stream as well
as on its dedicated stream asynchronously, as mentioned in
Section 2.2. From the beginning of back-propagation, NCCL
starts to communicate computed parameter gradients among
processes asynchronously to the main (computation) stream.
Note that there are explicit barriers to preserve the correctness of
the computation, which are not shown in the figure. For instance,
the reason why the main stream is idle at the end of the last two
timelines for around 20 ms is that it has to wait for NCCL to
complete gradient aggregation to update the weights.

As shown in Fig. 4 and Fig. 5, there are two clear reasons why
{8, 1} on 64 nodes achieves less computation speed than {4, 1}:
• Since the batch size per GPU is halved, the computation

efficiency per sample is degraded. The former takes about
200 ms in the main stream while the latter takes about 350
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Fig. 7 Breakdown of the strong scaling experiment with N = 1. “seq.
I/O” represents time to perform asynchronous data scatter from the
root process to other processes that cannot be hidden by computation
time.

ms.
• Due to this computational inefficiency, part of the all-reduce

cannot be hidden in the main stream, especially at
communication for the fully-connected layers whose
communication intensity per operations is much higher than
convolutional layers, and at the end of back-propagation
where all communication have to be completed before
updating the weights.

This communication inefficiency is, however, not the main
bottleneck of scaling from 64 nodes to 128 nodes, as seen in
the middle and the bottom of Fig. 5. It is also observed that
the overhead introduced by Distconv (colored in blue) is nearly
negligible compared to the computational kernels (red) in any
configurations in Fig. 5.

5.3 Strong scaling
Fig. 6 shows the strong scaling performance of our

implementation with the W = 512 dataset. We use global
mini-batch sizes of 1 or 8. We use the same methodology in
Section 5.2 to measure the performance.

{
Dp, 1

}
in the figure

represents that the entire network is divided on the number
of processes in the “depth” dimension, and if possible, the
samples are also parallelized among processes following the
data-parallel fashion.

{
Dp,Hp

}
means that we use the same

amount of parallelisms (Dp = Hp) for both “depth” and “height”
dimensions.

In Fig. 6, even when the mini-batch size is one, it achieves
2.28x of speed up on 4 nodes (16 GPUs) compared to one node.
In this experiment, the scalability limit is 8 GPUs, and the main
bottleneck is input data loading, as shown in Fig. 7. As we do not
adopt splitting each data sample in advance, this is unavoidable
overhead in the current implementation. Similarly, it achieves
2.25x of speedup on 32 nodes (128 GPUs) when the mini-batch
size is 8.

6. Conclusions
In this paper, we demonstrated that our framework successfully

accelerates training of the CosmoFlow network by introducing
hybrid-parallelism, achieving 171 TFlop/s on 128 Tesla V100
GPUs. Our experimental results showed the performance

7



possibility of hybrid-parallelism for high-dimensional 
convolutional neural networks.

This case study implies the possibility that training of 
high-dimensional CNNs can be accelerated by exploiting 
model-parallelism on HPC infrastructure while the mini-batch 
size (i.e., the computation semantics) is unchanged. We also 
demonstrated that one of the main bottlenecks of such training is 
I/O, as the data size is O(n3). To relieve this overhead, I/O has to 
be also parallelized among multiple nodes, so that each process 
loads the part of a single sample that is needed by its GPU.
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