2018 IEEE 14th International Conference on e-Science

Coupling Exascale Multiphysics Applications:
Methods and Lessons Learned

Jong Youl Choil, Choong-Seock Chang**, Julien Dominski**, Scott Klasky!l, Gabriele Merlo™, Eric Suchytal,
Mark Ainsworth?, Bryce Allen*, Franck Cappello*, Michael Churchill**,
Philip Davis'f, Sheng Di*, Greg Eisenhauer?, Stephane Ethier**,
Tan Foster*" Berk Geveci®, Hangi Guo*, Kevin Huck™, Frank Jenkoxm, Mark K_im“,
James Kress/, Seung-Hoe Ku**, Qing Liu¥, Jeremy Logan“m, Allen Malony ",
Kshitij Mehta”, Kenneth Moreland”, Todd Munson*, Manish Parashar!’, Tom Peterka*, ,
Norbert Podhorszki”, Dave Pugmire”, Ozan TuglukT, Ruonan Wang”, Ben WhitneyT, Matthew Wolf“, Chad Wood"

*Argonne National Lab., Lemont, IL 60439, USA
TBrown University, Providence, RI 02912, USA
iGeorgia Institute of Technology, Atlanta, GA 30332, USA
§Kitware, Clifton Park, NY 21065, USA

TNew Jersey Institute of Technology, Newark, NJ 07102, USA

lOak Ridge National Lab., Oak Ridge, TN 37831, USA

**Princeton Plasma Physics Lab., Princeton, NJ 08536, USA

Abstract—With the growing computational complexity of sci-
ence and the complexity of new and emerging hardware, it is time
to re-evaluate the traditional monolithic design of computational
codes. One new paradigm is constructing larger scientific compu-
tational experiments from the coupling of multiple individual sci-
entific applications, each targeting their own physics, characteris-
tic lengths, and/or scales. We present a framework constructed by
leveraging capabilities such as in-memory communications, work-
flow scheduling on HPC resources, and continuous performance
monitoring. This code coupling capability is demonstrated by a
fusion science scenario, where differences between the plasma
at the edges and at the core of a device have different physical
descriptions. This infrastructure not only enables the coupling
of the physics components, but it also connects in situ or online
analysis, compression, and visualization that accelerate the time
between a run and the analysis of the science content. Results
from runs on Titan and Cori are presented as a demonstration.

I. INTRODUCTION

Code coupling is widely used in multi-scale and multi-
physics studies. Code coupling, also known as coupled simu-
lation or co-simulation, is a technique in the area of scientific
computing in which multiple models (or applications) are run
concurrently, working together in an orchestrated fashion to
create a unified result. Typically, the applications exchange
data with one another multiple times as the run progresses. The
complexity of coupled applications can vary. Each application
can be as simple as a one-off application (e.g., plotting,
diagnosis, etc.) or as complex as a large-scale multi-process
parallel simulation running on a supercomputer in which data
needs to be exchanged concurrently with many different appli-
cations. Organizing the logistics of such complex data flows

TTRutgers University, New Brunswick, NJ 08901, USA
"Sandia National Lab., Albuquerque, NM 87185, USA
™ Univ. of Chicago, Chicago, IL 60637, USA

} *Univ. of Oregon, Eugene, OR 97403, USA
“Univ. of Tennessee, Knoxville, TN 37996, USA

xiii

Univ. of Texas, Austin, TX 78712, USA

between multiple parallel applications has been a challenging
task for users.

In supporting these coupled workflows, our focus is on run-
ning code coupling in large-scale high performance computing
environments, such as DOE leadership computing facilities
(LCFs) like Titan in ORNL, Cori in NERSC, and Theta
in ANL. Running coupled simulation is non-trivial on those
platforms.

Going forward, the complexities of dealing with the novel
hardware and deep memory and storage hierarchies for exa-
scale and post-Moore’s-Law computing mean that it is even
more important to think about ways to deal with the complex-
ity of the software development process. If the code coupling
paradigm supports flexible and high-performance connections
between independently developed executables, then it allows
for a larger team of specialists to collaborate without everyone
working within a single mammoth code base. This goal, if
achieved, would have a broad impact across in situ analysis
and reduction, online analysis, and the construction of large
coupled-physics science codes.

The ability to run multiple applications cooperatively can
be accomplished in a variety of ways. MPI is the de facto
standard in high performance computing for running multi-
processes/multi-programs. However, enabling communications
between different applications outside of the MPI global
communicator (MPI_COMM_WORLD) needs extra steps; users
need to modify existing code to avoid the use of global
communicators (e.g., by using MPI_Comm_split). If users
want to run an application out of the box which depends
on the use of a global communicator, MPI will be unusable

for code coupling. Extra services, libraries, or extensions like
MPI_COMM_spawn may be required to manage such intra-
communications, such as workflow systems, database services,
or pub-sub systems.

Programming coupled systems is hard enough at current
scales. With increases in hardware and code complexity,
the software development cycle gets even harder. The com-
munity needs tools and practical examples that provide a
separation of concerns between accuracy, correctness, and
performance of the coupling framework.

Our framework provides a state-of-the-art experience for
developing and executing large-scale coupled simulations so
as to directly address this requirement. One highlight of the
framework is relative ease of use. After users have achieved
correctness with basic file-based I/O to couple, we aim at re-
quiring virtually zero effort for users to convert their programs
to the performant, low-latency, in-memory coupling workflow.

Besides the changes in data flows, running coupled work-
flows requires some extra services. For example, users need
to monitor progress and capture performance information to
identify bottlenecks. Data compression may be needed to
help move data around the system efficiently while managing
accuracy. On-line data reduction and visualization mechanisms
are required to extract contents of data while the simulation
is running. It is critical to provide these services without
significantly increasing users’ management burden.

Our framework provides an easy-to-use integrated environ-
ment with extra services users can use: performance monitor-
ing, status updates, and online data analysis. Specifically, we
build our system upon a set of existing technologies developed
to address the complexities of achieving high performance
for modern HPC environments. Leveraging the Adaptable I/O
System (ADIOS), the Savanna/Cheetah runtime from the Exa-
scale Computing Project (ECP), the MGARD and SZ compres-
sion libraries from ECP, the VTK-m visualization toolkit from
the DOE Advanced Scientific Computing Research program
and ECP, and the TAU performance monitoring system, this
state-of-the-art code coupling system and its demonstration
with the Whole Device Modeling fusion application (WDM)
showcases a way forward to address a much wider set of
future scientific code development opportunities. By focusing
on this particular science application that is already a target for
scaling to the future exascale systems, we hope to demonstrate
the programmability and reusability of this approach. We have
highlighted in each section below the capabilities and practical
aspects of the coupling system’s components that can be
used more broadly. This demonstration system has allowed
us to address the software engineering challenges of working
with a diverse set of collaborators and specialists, using well-
defined interfaces and efficient code coupling technologies to
piece together a larger and more comprehensive computational
experiment.

Many scientific workflow systems, such as Parsl [1], Ke-
pler [2], Pegasus [3], Swift [4], and Taverna [5], include
direct support for launching multiple applications. However,

in general, these workflow systems do not facilitate commu-
nication between those applications, which is critical in code
coupling to share and synchronize data as the applications
progress. Another available mechanism for coupling multiple
applications is to use a messaging system, such as pub-sub
systems, ActiveMQ, ZeroMQ, etc. These systems are tuned
for increasing network performance. Our solution allows both
file and network 1/O, enabling the seamless transition between
disk-based I/O and memory-/network-supported I/O for the
best software engineering experience. Users can start develop-
ment with file I/O for debugging and verification and switch
to a code coupling workflow instantaneously when they need
to perform large-scale multi-scale/multi-physics studies. In
addition, our framework provides an integrated environment to
optimally utilize available resources in HPC environments and
to perform other data related operations such as compression
and analysis.

In this paper, we present techniques for supporting science
use cases involving coupled simulations, and share our expe-
riences in the development of needed tools and the integration
of those tools for use for scientists. In summary, the paper
makes the following contributions:

o Methods for the easy coupling of different executables
(services) along with plug-ins that provide state-of-the-art
I/O techniques. Especially, supporting transparent switch-
ing of data flows from file-based I/O, including NVMe
and burst buffers, to memory-based data exchange, such
as RDMA.

o The ability to allow for both large-scale, data-intensive
computations running at scale and large-scale collabora-
tive experiments/observations.

o The ability to compose and execute end-to-end, large-
scale analysis for near-real-time feedback using ADIOS
services.

o The capability to transparently reduce the amount of data
output from a simulation and check its accuracy.

o The ability to compose multiple services on a HPC
resource and place the right processing at the right place.

« The ability to provide performance feedback, so we can
understand the cost of the LCF simulations.

The technical achievements described are driven by both the
computational fusion science requirements and the changing
nature of the HPC software development process. A preview of
how these technologies interoperate can be seen in the desktop
shot in Fig. 1. In order to fully describe the set of innovations,
we start by discussing the motivating challenges of simulating
a complete fusion Tokamak device in § II. Then we present
more technical depth on the components of the code coupling
infrastructure in § III, including discussions of lessons learned
in § IV. Finally, we conclude in § V with a look toward the
next steps for the fusion application and for broader impact
on computational science at scale.

Growh Rate K1z

RERRN]

Total FLOPS ‘

:.:: Core: GENE Edge: XGC-1 Coupling Region
F a -
L ' -
' -
- | |
A p
%\\\\\\\‘\
Fig. 1. A dashboard style visualization of the online information produced

during a representative run, including the raw outputs from applications,
physics diagnostics, performance and data compression monitoring, and
physics data visualization.

II. BUILDING A MODERN FUSION SIMULATION
ENVIRONMENT

In this section, we consider code coupling applied to
cutting-edge fusion science simulations. Examples of this kind
are the primary motivation for the work presented in this
paper. Such simulations have diverse requirements on both
the domain science and computer science sides. In § II-A,
we contextualize the fusion science application, then provide
further details about the physics applications in § II-B. Finally,
in § II-C, we present the concrete set of coupled fusion
simulations we have worked to support.

A. Using Code Coupling to Support Whole Device Modeling

For decades, scientists and engineers have been striving to
use tokamak reactors to harness fusion energy. Tokamaks use
strong magnetic fields to confine plasmas, creating conditions
where temperature and density are high enough for nuclei to
fuse and release energy. ITER! will be the largest fusion device
ever built, with the goal of demonstrating net power output
from a fusion reactor for the first time. However, for ITER or
other future tokamaks to be successful, there is a growing
urgency for a framework to predict with high fidelity the
fusion performance of such machines. These simulations guide
how tokamaks should be designed and operated to maintain
energy confinement and maximize the life of the machine.
Unfortunately, computational whole device modeling is very
challenging. The interplay of several different length and time
scales makes simulating the entire tokamak computationally
demanding, even in high-performance environments.

Code coupling is an appealing strategy to address these
challenges. Coupling separate codes that have been specially
optimized for specific spatial regions or for specific types of
physical phenomena could provide a more performant tool
than a single code simulating the physics of the whole device.
The High-Fidelity Whole Device Modeling program within the
Exascale Computing Project (ECP) is pursuing an approach of
this kind. The first physics coupling under investigation by the

Uhttps://www.iter.org/

team is a spatial core-edge coupling, where two independent
applications are run and tightly coupled. Though both are gy-
rokinetic applications for simulating tokamak microturbulence,
one has been optimized for the central core region of the
device and the other has been optimized for the outer edge
of the tokamak. As the WDM project matures and the physics
of core-edge coupling is better understood, other multi-physics
codes will be coupled-in to complete the whole-device model,
such as components for modeling high-energy particles, radio
frequency heating, magneto hydrodynamics, etc.

There are numerous technical mathematical issues in whole
device modeling that will need to be tested and verified for
stability. One is interpolation between different grid types. The
core region of a tokamak is well-suited to be modeled on a
regular grid, but this is not true at the edge. Similarly, certain
Fourier-space representations are valid in the core, but not
appropriate for the edge. Rather than needing to adopt a single
large code base to support the various modules, it is often
more convenient to use a service-focused environment, with
well-defined interfaces used to couple the components, so each
individual service can be developed and debugged more or less
independently.

Coupled modules need not be limited to physics-motivated
ones. A coupling-based framework is also useful for enabling
supporting technologies that help scientists understand their
applications. For example, alongside the simulations, one can
deploy visualization services or in situ analysis to study how
the coupling is progressing or services to monitor whether
good performance is being achieved. These are especially
useful in debugging phases during early studies of a new
coupling’s stability.

Critical Observation: Using different, specialized codes in
regions may give better performance, but the representation
differences (real-space vs Fourier, alternate meshing, etc.) can
cause stability difficulties, both mathematically and computa-
tionally.

In Practice: In contrast to the points below, solutions for
these issues will be problem-dependent, and thus are beyond
the scope of our middleware implementations. For subsequent
sections we will highlight the specific technologies employed
and provide pointers for prospective users.

B. Modeling and Implementing the Coupled Physics

The first two applications to be coupled in the WDM
project are GENE [6] for the core and XGC [7] for the
edge. Both codes solve for the evolution of the distribution
function f of each plasma species according to the same
5D gyrokinetic Boltzmann equation. Brief descriptions that
explain each code and offer an introductory sense of their
differences are included in § II-B1 and § II-B2, with comments
regarding their coupling in § II-B3; readers are referred to the
provided GENE and XGC publications for thorough details
concerning the codes.

for step in time steps:

for stage in Runge—Kutta stages:

Core Edge
1
'
Self-consistent solve !
'
Core

Charge density
(ADIOS)

Global field
(ADIOS)

Edge

Fig. 2. Prescription for kinetic strong coupling of core and edge fusion
simulation applications, using a self-consistent global field solve, with needed
communication facilitated through our ADIOS-based framework. Here, GENE
is the core executable and XGC is the edge executable. See § II for further
physics details.

1) GENE: GENE is an Eulerian gyrokinetic code that
solves the Boltzmann equation using the method of lines.
The distribution function is first discretized on a fixed grid
in phase space and then numerically integrated. To exploit
the anisotropy of the fluctuations, GENE employs a magnetic
field-aligned coordinate system to represent the fluctuation
fields in configuration space. The binormal direction y is
Fourier transformed and because of the tokamak axisymmetry,
linear modes have fixed Fourier mode k,, which is related to
the toroidal mode number n. GENE makes use of the so-
called 6f splitting technique, expressing the actual distribution
as the sum of an equilibrium part f; (a local Maxwellian is the
XGC-coupled context) and a fluctuating component f;, which
is numerically evolved by the code.

2) XGC: XGC is a full-f/total-f/ f Particle-in-Cell (PIC)
code that can simulate the whole plasma volume, including
the region near the outside of the tokamak volume where the
magnetic field lines are open instead of closed like in the
core. Since this region is included in the calculation, magnetic
field-aligned coordinates cannot be used due to singularities at
a location called the X-point. Instead cylindrical coordinates
are used to allow for a general representation. The torus is
discretized along its axis of rotation into poloidal planes, using
the same unstructured triangular mesh for each plane. This
meshing allows for the representation of complex diverted
geometries and wall structures. The node points of the poloidal
mesh follow the magnetic field lines to minimize interpolation
errors. In general, XGC’s background distribution function
slowly evolves over time, but the evolution can be forced to
zero for consistency with GENE’s f;.

3) GENE-XGC Coupling: An important aspect of the code
coupling between XGC and GENE concerns the consistency of
the fields with respect to the particle charge density. To ensure
consistency, the coupling must be made at the level of the
gyrokinetic distribution function, not only the charge or only
the fields. Details of the kinetic coupling are beyond the scope
of this paper but are fully detailed in Dominski et al. [8]. The
computational aspects of coupling were implemented using
two independent XGC executables: one for the core and one
for the edge. The kinetic turbulence coupling model in the
XGC-XGC study is general (except that grid interpolation was

WDM Coupling Workflow

ADIOS-DataSpaces

|
GENE |+

interpolator

UiedA3
YiedA3

ADIOS-
DataSpaces

SOS Flow
Performance
ADIOS Monitoring

1
i
i
1
1
i
i
]
]
i
i
i
i MGARD
1
i
i
]
1
1
1
i
i
1
1
1
i

VTK-M feature

Zchecker ADIOS-DataSpaces Zchecker

ADIOS-

VTK-M physics
DataSpaces

VTK-M performance
plots

plots

ADIOS
DataSpaces [

VTK-M
reduction
plots

VTK-M
reduction
plots

VTK-M image |
plots

Lustre

Fig. 3. The Whole Device Modeling fusion application (WDM) workflow.

not needed), and the same kind of approach is now being used
in XGC-GENE coupling, which we present in this paper. Fig. 2
shows the data flow between the applications, implemented
in our framework. At each stage of the Runge-Kutta time
integrator, charge density information is exchanged between
the codes with ADIOS, prior to solving and sending-back
the global field equation self-consistently. Similar ADIOS-
based data movement between executables will be exemplified
and further explained in § IIT along with the connection to
other support services with our framework, such as in situ
visualization and analysis.

C. Assembling the Components

Fig. 3 is the workflow of a representative live demonstration.
We ran the coupled XGC-GENE simulations on the OLCF’s
supercomputer Titan, along with 9 other online analysis and vi-
sualization applications in parallel, using 3,072 MPI processes
for XGC, 1,024 MPI processes for GENE, and 1 process
for each analysis/visualization service. and fuller descriptions
will be given in § III, where we focus on the details of the
framework used for the demonstration.

All applications were independently developed and first
tested with file-based data transport, then switched to use
memory-based I/Os during the demonstration for better perfor-
mance. The framework enables a transparent transition from
one to the other and also provides performance monitoring ca-
pabilities to users in either case. Fig. 1 demonstrates the online
information produced during a representative run. Though ex-
haustive performance studies are not the focus of this paper, we
will make a few brief comments. We compared the approach
of writing everything to the parallel file system versus using
in-memory coupling. For an average total computation time
of 680s, writing files took an average of just shy of 7s (a
little more than 1% of total time) with substantial variability.
In-memory coupling, without any additional tuning, reduced
this to 1.7s (or a 0.25% decrease in run time).

Critical Observation: The software framework allows for
the rapid integration of different software components through
well-defined interfaces, with communication costs comparable
to what would be expected for raw rewrite as a monolithic
code.

ADIOS

‘ - Write
. DataSpaces ADIOS
Comp- —
ea -
1ossed szMGARD Wiite
28 ZChecker
DataSpaces
ADIOS Staging Service
Wiite Read
VTK-m FlexPath
XGC

E'

GENE

Images i Read

Fig. 4. ADIOS service composition. Taking a deeper look at some of the spe-
cific connections in Fig. 3, we see how the ADIOS read and write invocations
can be connected by a number of different service implementations.

In Practice: All components leverage the ADIOS API to
obtain easily switchable access to different communication and
I/O transports through a common interface. ADIOS is mature
software available for download at https://www.olcf.ornl.gov/
center-projects/adios/.

III. COUPLING FRAMEWORK AND IN SITU PROCESSING

Many HPC scientific applications involve complex work-
flows. The workflow we have presented in Fig. 3 and orches-
trated using our framework is built upon several technologies.
Here we describe those technologies and their interactions in
our environment. Our goal is to create an HPC environment
that is both flexible and performant for scenarios with many
coupled components. Our implementation is able to run the N
applications in parallel, with flexible I/O abstractions provided
by ADIOS as a backbone for moving data between them. We
leverage state-of-the-art HPC staging software, parallel visu-
alization infrastructure, compression kernels, and performance
monitoring tools, as well as compose the workflow within a
runtime system that allows one to deploy the job in different
configurations.

The section is organized as follows. In § III-A we discuss
our use of ADIOS for data movement, with the supported
staging services highlighted in § III-B. § III-C focuses on the
visualization technology and § III-D turns to the compression
algorithms used in the workflow. Supported performance mon-
itoring is described in § III-E. Finally, § III-F concludes with
the workflow composition and runtime deployment software.

A. Leveraging Flexible I/O Abstractions

Our approach for supporting code coupling relies on three
primary functionalities related to the I/O software:

1) an abstract interface so users can easily switch between
file-based (for persistence when debugging/checking) and
staging-based (for higher throughput) I/O,

2) services to manage the staging areas,

3) online analysis routines to apply to the data in motion.

We leverage diverse ADIOS 1/O capabilities to help satisfy
these needs. ADIOS [9] is an I/O framework designed primar-
ily for scalable and portable performance on high performance
computing platforms. As detailed by the authors of [9], there
is a layered software stack internal to ADIOS that allows a
user to be isolated from the details of a particular memory-to-
memory or storage optimization technique. As seen in Fig. 4,
the connections between the components occurs at different

scales and frequencies, using different transport properties,
but always using the same read and write interface in the
exectuables. For example, when users need to run on a
parallel Lustre file system, they can leverage a file-based
method optimized for Lustre. If users want to run multiple
applications in a synchronized fashion, they can easily select
a memory-based staging method. Staging is a technique used
to buffer data in memory alongside application data, or to
move data to an additional set of staging nodes. It can provide
a performance improvement compared to the use of files to
hold intermediate data, which can incur high costs associated
with I/O operations. The ADIOS file vs. staging abstraction
provides a convenient way to develop and run coupled simula-
tions. Once each application can independently read and write
ADIOS files, users can seamlessly switch to using one of the
staging methods in the coupled application, without changing
the interface (i.e., without any code rewriting).

We also leverage ADIOS plug-ins for online data trans-
formations. For example, users can compress their data and
collect statistics about compression performance while data
is in motion and before it is written to disk. Compression
methods implemented in ADIOS include lossy compression
algorithms such as MGARD, SZ, and ZFP, and lossless
techniques such as LZ4, GZIP, and SZIP. The Z-checker [10]
system provides for collecting compression-related statistics
and other diagnostics.

B. Staging services

ADIOS currently supports a wide range of staging ser-
vices. However, here we focus on two main staging services,
called DIMES and FlexPath. While DIMES [11] is a method
for memory-to-memory data transfer based on the hardware
supported remote direct memory access (RDMA) protocol,
FlexPath [12] is based on a general-purpose event transport
middleware layer called EVPath [13]. Further descriptions for
each follow below.

The best choice for users will depend on various factors
in the workflow. DIMES will perform well in systems with
RDMA-based interconnects, though it provides a fall-back
mechanism using a general-purpose protocol (TCP/IP) when
RDMA is not available. FlexPath supports a wide-range of
protocols, which can be used easily for remote site connections
(e.g., off-site remote visualization). While DIMES is based
on a client/server model that requires extra server services to
coordinate data flows, FlexPath uses conventional peer-to-peer
style communications with no extra processes or management
services.

1) DIMES: DIMES [11] is built on an RDMA-based
asynchronous memory-to-memory data transport layer called
DART [14]. DART includes a predefined set of communication
primitives that takes advantage of RDMA [15] technology and
the underlying interconnect network to provide low-latency
and high-throughput data transfer capabilities. Through pro-
viding high-level data write/read abstractions, DIMES lever-
ages DART and its capability of memory-to-memory coupling,

to create a coordination framework that allows different HPC
application codes to exchange data asynchronously at runtime.

The DIMES framework is built on a peer-to-peer (P2P)
model, where writers hold their data in their own buffer area
(i.e., in writer’s memory space) and then readers connect to
read data directly from the writer’s memory. Before establish-
ing such P2P connections, they need to consult with the servers
which maintain only meta data (i.e., the location of data). The
DIMES server processes are executed on a staging area that
is built using a set of dedicated computing nodes, separate
from where workflow computations are performed. In order
to ensure data consistency, locking mechanisms are provided.
DIMES provides infrastructure for the various simulation,
analysis, and visualization components to share their data and
allows data access in an asynchronous manner.

2) FlexPath: The FlexPath tranport [12] in ADIOS takes
the I/O interface offered to the application and implements
process-to-process connections using a Publish/Subscribe
paradigm. In practice, this means that read and write op-
erations in the two applications are treated as message ac-
cess or submission (respectively). FlexPath is built upon
the EVPath [13] library, which offers an infrastructure for
constructing advanced messaging services, including data type
management, dynamic routing overlays, and the ability to
multiplex over different types of interconnect and networks.

As a result, FlexPath is a very configurable, peer-to-peer
system for ADIOS that can leverage both RDMA interconnect
transports and IP-based networking protocols (TCP, reliable
UDP, multicast, etc.). There is an initial rendezvous operation
that must occur so that the readers and writers can find one
another; the EVPath-level connection token allows for both
sides to advertise all of their available connection opportunities
on systems where there are multiple options. Once connected,
all subsequent configuration and decisions, such as different
selection criteria within ADIOS read operations, are handled
through a scalable peer-to-peer protocol.

Critical Observation: Leveraging staging technologies makes
it easier for an end user to gain access to advanced networking
and interconnect technologies such as RDMA.

In Practice: FlexPath and DIMES enable easy-to-use interap-
plication communication. The ADIOS Manual (available at
https://www.olcf.ornl.gov/center-projects/adios/) contains ex-
tensive information about enabling these staging services.
Once enabled, codes using the ADIOS API can be switched
to use these transports by a simple modification to the ADIOS
configuration file.

C. Visualization

Visualization plays an important role in both post-hoc un-
derstanding of the science and in runtime physics diagnostics
for the coupled science simulation. Visualizing data while it is
in memory, called in situ visualization [16], [17], allows users
to display these diagnostics and to monitor simulation data
without interfering with the running simulation. In situ visual-
izations are performed for a number of different components

Additional

Services

Visualization Service

VTKm VTKm
DataSet DataSet

i i Reader or Vis Schema
S i SCI

Memory Hierarchy

Fig. 5. Overview of the construction of a third party visualization service
using ADIOS interfaces.

of our coupling demonstration including: derived physical
quantities like flux, simulation mesh data, system performance
data, and compression performance/statistics. Examples of
these were shown in Fig. 1.

The key aspect of in situ visualization is to maintain a low
profile in I/O for accessing data during a running simulation
and to perform visualization functions as efficiently as possi-
ble. As shown in Fig. 5, we integrate these service interfaces
directly with ADIOS to achieve efficient I/O performance for
accessing data from simulation. In addition, users can make
use of the ADIOS VisSchema [18] to provide data model
semantics describing the ADIOS data stream.

For high performance visualization, these visualization ser-
vices are built using the Visualization Toolkit for multi- and
many-core architectures (VTK-m) [19]. VTK-m provides the
analysis and rendering for our workflow. Originally created
to address feature gaps in the well-used VTK library [20],
VTK-m primarily provides visualization algorithms with a
fine degree of concurrency that behave well on modern pro-
cessor architectures like multi-core CPUs and GPUs. Like
its namesake, VITK-m provides both a collection of ready-
to-use visualization algorithms and a framework to simplify
the addition of new algorithms, port these algorithms across
various devices, and integrate these algorithms together. VTK-
m’s flexible data models and portability simplify its integration
into the workflow.

Critical Observation: All simulation output requires some
analysis and visualization. Accelerating the time to delivery
of these results can be made cheap, thereby enabling higher
quality runtime diagnostics and faster time to science.

In Practice: VTK-m is available for download at http://m.vtk.
org. Flexible and reusable visualization and analysis compo-
nents built with VTK-m can be easily connected to an ADIOS-
based workflow using the ADIOS VisSchema mechanism.

D. Compression

To handle large volumes of data, data compression is an
active research and development area in scientific data. Unlike
the traditional lossless data compression, lossy compression is
getting attention, specifically, but not restricted to, to handle
data streams for online processing while data is in memory.
We integrate state-of-the-art lossy compression algorithms,
MGARD and SZ, with ADIOS and provide an integrated
environment to compress data while data is in memory.

1) MGARD: MGARD is a lossy data compression algo-
rithm for multidimensional scientific data inspired by multigrid
methods [21], [22], which frequently occur in the solution of
differential equations on regular domains and in timestepping
applications [23]. In particular, the approach permits the use
of nonuniformly spaced grids, which can prove problematic
for many types of data reduction methods. Such grids arise,
for example, in the simulation of turbulent flows, where
Chebyshev nodes are often used.

2 Quu
URN
= Apu, Qr_iu a
: AN
é Aru, Ap_qu, Qp_su %
S
4 : 5
I
Apu, Ap_qu, -+ Agu, 0=Q_ju v

Fig. 6. Recursive decomposition and recomposition steps in MGARD.

An important feature of MGARD’s approach is the provi-
sion of guaranteed, computable bounds on the loss incurred
by the reduction of the data. Many users are leery of lossy
algorithms, and will only consider using them provided that
numerical bounds on the pointwise difference between the
original and the reduced datasets are given. Accordingly,
MGARD provides the user with techniques for bounding the
loss measured in the max norm [24]. These bounds are realistic
in the sense that they do not significantly overestimate the
actual loss. The resulting loss indicators are used to guide the
adaptive reduction of the data so that the reduced dataset meets
a user-prescribed tolerance or memory constraint.

In addition to providing realistic error bounds, MGARD
also provides the user with the possibility of generating
partial decompressions. This is illustrated in Fig. 6, where the
decomposition step consists of successively splitting the input
w into Ayu and Q—1u where ¢ € [0, L]. Here L corresponds
to the maximum number of refinements (levels), and Qy is
the projection operator to level ¢. The decomposition then
continues by splitting QQ,—1u while A,u can be sent to storage.
Recomposition in MGARD mirrors the decomposition, so Qu
is repeatedly constructed from Ayu and (¢ u. Hence the user
can choose to perform a partial decompression by deciding
on the number of decomposition cycles. This is possible as
(qu)f:[) is a sequence of representations of u with increasing
fidelity.

2) SZ: SZ [25], [26] is a state-of-the-art, error-bounded
lossy compressor for significantly reducing the data size of
extreme scale scientific simulations. SZ compression contains
three fundamental steps: (I) value prediction on each data
point for the sake of decorrelation (as illustrated in Figure 7),
(IT) linear-scaling quantization surrounding the predicted value
with equal-sized bins (as illustrated in Figure 7), and (III)
variable-length encoding used to encode the integer indices
of the bins. In step I, SZ performs a single-dimensional or
multi-dimensional prediction for each data point based on its

Layer-1 2D prediction formula

X(ij) = x"(-1,j) + x"(3,j-1) - x"(i-1,j-1) s o
=7 © © N
" + \
/ \
booo. i o)
\ RIS
IS \ 7>§ -~ Preellcted value
Q9 O
¢ < i .
O N [_tde value
,,,,, S =T At
8

Bin: -1

O Current data to compress
X Predicted data value

Fig. 7. Illustration of Step I and II in SZ compression for 2D data.
neighbor data points (the dimension of the prediction depends
on the dimension of the data set). A set of consecutive bins
with each twice the error bound in length are constructed in
Step II, and the index of the bin containing the real value
of the data point (called the located bin) are encoded by a
customized Huffman encoding in step III. Steps I and III
are both lossless procedures, which means that these two
steps will not introduce data loss during their corresponding
decompression steps.

In order to guarantee that the difference between the original
data value and the decompressed value is always bounded
within the user-specified error bound, SZ performs the data
prediction based on the decompressed values instead of the
original data values. As shown in Figure 7, in order to
strictly respect the error bound for the compression of data
point (4,7), we need to predict its value by the decompressed
values z''(i—1,5), z''(1,j—1), and x”(i—1,5—1) rather than
the original values x(i — 1,j), x(i,j — 1), (i — 1,5 — 1).
If the predicted values are too far from their real values,
they are treated as unpredictable data points and compressed
by truncating the insignificant bits of their IEEE 754 binary
representations according to the required error bounds.

SZ provides multiple ways to control the lossy compression
errors for users on demand: (1) absolute error bound is a
constant value uniformly applied onto each data point; (2)
relative error bound is a ratio value compared with each data
point’s value for the error control (i.e., the larger the value,
the larger the compression error of that data point); (3) peak
signal-to-noise ratio (PSNR) is a statistical metric to evaluate
the overall compression error and SZ allows users to compress
data by a given PSNR. SZ also allows combining the above
different types of error bounds in the compression to fit diverse
data sets more flexibly.

3) Z-checker: Z-checker [10] is an efficient toolkit/library
for assessing the lossy compression quality of specific datasets.
Compared to the previous version of Z-checker [10] that can
only work with an offline mode (performing offline analyses
based on existing data files), the new version coupled with
the ADIOS framework supports an online execution mode.
The complete design framework of Z-checker is illustrated
in Figure 8. With online execution support, users can run Z-
checker with HPC simulations in parallel, such that the com-
pression quality of each snapshot/timestep can be dynamically

| Data Visualization Engine |

| Output Engine |
Execution mode 5
|On\ine interfacel |Offlir|e commandsl %
a
s
Analysis Kernel =
Data Property Compression g,
Analyzer Checker =
<}
3rd-part ©

; rd-party
RUIERIRE Connecter|

Data Source (stream, file, etc.) || 3rd-party
with formats (HDF5, NetCDF, Library
ADIOS, binary data format, etc) | |(R, FTTW)

Fig. 8. Design framework of Z-checker with online execution mode.

observed at runtime. It can help compression developers and
application users deeply understand the impact of data changes
on compression quality.

By integrating the online interface of Z-checker, our cou-
pling framework supports a rich set of parallel analysis met-
rics related to lossy-compression quality, including 1D auto-
correlation, 3D auto-correlation, distribution of compression
errors, spectrum analysis based on Fast Fourier Transform
FFT), structural similarity index (SSIM), KS-test, peak signal-
to-noise-ratio (PSNR), compression/decompression rate, com-
pression ratio, entropy, etc.

Critical Observation: In lossy compression, there is trade-off
between the fidelity of the reconstructed data and the degree
of compression. Users need detailed diagnostic information to
understand these choices between methods and parameters in
order to achieve their overall goal.

In Practice: A variety of compression routines have been
incorporated into the ADIOS Transformation Layer. Users
should follow the ADIOS build instructions to link specific
compression routines for use at runtime. The Z-checker toolkit
is available at http://github.com/CODARcode/Z-checker.

E. Performance monitoring

One of the goals of the coupled application was to provide a
performance “dashboard” for the user, in order to monitor the
distribution and general characteristics of the overall workflow.
Through such an interface, the user could identify whether the
allocation was being used efficiently and/or identify potential
problems such as out-of-memory errors or load imbalances,
address them if possible, and potentially correlate those be-
haviors with the runtime state. To provide application per-
formance measurement, we integrated the TAU Performance
System [27], which contains a broad set of utilities and mea-
surement libraries for parallel applications. Global, runtime
access to performance information from multiple distributed
codes requires an aggregation infrastructure, and for this
project we integrated SOSflow [28], [29] — a flexible, scalable,
and programmable framework for observation, introspection,
feedback, and control of HPC applications.

The TAU (Tuning and Analysis Utilities) Performance
System gathers performance data from parallel applications

through several methods, including source instrumentation,
binary instrumentation, profiling interfaces, runtime callbacks,
and periodic sampling. For the purposes of the integrated
performance monitoring, the XGC and GENE applications
were each linked with the TAU measurement library — no
other modification to the binaries was necessary. TAU uses
the MPI standard profiling interface [30] to provide instru-
mented measurement of communication events within each
of the applications. In addition, version 1.13 of the ADIOS
library provides a callback API to allow development tools
to monitor ADIOS calls without the need to instrument or
modify the ADIOS library. TAU has integrated support for
the ADIOS callback API and can measure the communication
between XGC and GENE as the interpolation boundary is
exchanged between the applications, as well as when each
of the applications writes out checkpoint data, analysis data
or any other output using the ADIOS library. TAU is also
integrated with PAPI [31], which provides portable access to
hardware counters. The measurement was configured to cap-
ture time spent in application code, floating point operations,
and monitor the memory high water mark (HWM) and resident
set size (RSS). TAU was also configured to integrate with
SOSflow.

The Scalable Observation System (SOS) performance model
used by SOSflow allows a broad set of online and in situ capa-
bilities including remote method invocation, data analysis, and
visualization. SOSflow can couple together multiple sources
of data, such as application components and operating envi-
ronment measures, with multiple software libraries and perfor-
mance tools, efficiently creating holistic views of performance
at runtime. For this integration, SOSflow was configured to
aggregate data from all of the application processes over a
network of listener and aggregator daemons organized as a
broad, shallow tree. For the large scale execution, 256 listeners
and 4 aggregators were used to collect the TAU performance
data. An analysis client was launched on the same node as
one of the aggregator processes. This client queried each of
the aggregator daemons to extract the performance data from
the most recent time period, as it became available. This data
was then staged as ADIOS data to be visualized in the user’s
performance desktop, as shown in Fig. 1.

Critical Observation: Having performance information en-
ables detecting and identifying runtime problems which typ-
ically are difficult to anticipate or to observe in a complex
computing environment with coupled applications.

In Practice: TAU is well-established, and available for
download at http://www.cs.uoregon.edu/research/tau/home.
php. SOSFlow may be found at https://github.com/cdwdirect/
sos_flow. We recommend that users contact the authors of [28]
for assistance in integrating SOSFlow with existing workflows.

E Scalable workflow management

Managing the runtime execution of coupled workflows can
become quite burdensome. Several applications may need

to be launched, each with its own input parameters and
parallelization setup. Different architectures or schedulers may
require different submission syntaxes. Resource provisioning
between the applications may have a significant impact on
performance, and how to achieve the best load balance is not
necessarily obvious.

We leverage the Savanna runtime infrastructure [32] in our
experiments to orchestrate the complete workflow consisting
of the two simulation applications and multiple analysis and
visualization components. Savanna provides a way to manage
complex workflows consisting of multiple coupled compo-
nents, with the objective of exporting a comprehensive list of
data events and associated actions that can be taken dynami-
cally. Savanna provides a Python-based specification that can
be used to define an experiment. An experiment specification
consists of a definition of all application components, how to
launch them, and the dependencies between them. Savanna
works on several leadership class supercomputers, including
Titan. Performance of the runtime components was generated
at runtime using the SOSflow library and visualized using
VTK-m.

Application scientists can use Savanna to create an abstract
workflow specification that is independent of the underlying
system. The specification describes the different codes that
compose the workflow and how they interact with each other.
Savanna provides native support for all the tools we have
described in this paper including ADIOS, DIMES, FlexPath,
TAU, and SOSflow. Different I/O options can be explored such
as turning on transforms or staging. Parallelization settings (the
number of MPI processes, threads, etc.) can be adjusted and
nodes can be configured to co-located multiple applications
if desired. Savanna automates actions such as spawning the
correct number of DIMES servers and SOSflow daemon
processes depending on the configuration of all these workflow
components and determining the minimum number of nodes
to run the job.

Critical Observation: Executing coupled applications and
analysis components requires more sophistication than launch-
ing a monolithic MPI code. Support from workflow environ-
ments to make composition and deployment easier for end
users is a requirement for broader adoption.

In Practice: The Savanna runtime is currently packaged to-
gether with the Cheetah exascale codesign testing framework.
It is available at https://github.com/CODARcode/cheetah.

IV. RESULTS AND DISCUSSION

We present here some of the performance details from the
runs described in § II-C. Each piece represents a specific set
of performance measurements on either the science data or
on the infrastructure of the framework. Other than the staging
performance survey, the others are drawn from Fig. 1.

Staging performance: Given the emphasis in this work
on using memory-to-memory coupling technologies within the
ADIOS I/O framework, it is natural to ask what the perfor-
mance comparison is between traditional ADIOS files and an

ADIOS memory-based method, DIMES. By using the XGC-
GENE coupling case, presented in § II-C, we measured the I/O
time spent in XGC for writing field data and reading density
data from GENE and compared i) the file-based method
(i.e., writing/reading file objects through parallel filesystem)
and ii) in-memory coupling with the DIMES method (i.e.,
writing/reading in process memory) on Titan at ORNL. We
also performed the same experiment on Cori at NERSC, where
we could also evaluate file coupling by way of the DataWarp
Burst Buffer system [33].

Stage Write Stage Read

1,400 2,500

1,200

1,000 2,000
~ 800 1,500
£ 600 é1,000

400

200 500

0 - | 0 - -
Titan Cori Titan Cori

= File =Burst Buffer =In-Memory = File =Burst Buffer =In-Memory

Fig. 9. Comparison of the performance improvements with different coupling
methods, normalized against the file-based method which appears at 100%.
On Cori, we also measured the relative improvement of file-based coupling
with the DataWarp system.

In Fig. 9, we present the percent improvement in I/O
time relative to the file-based methods on Titan and Cori. We
observed about 3.8x and 12.7x writing performance improve-
ment and 5.7x and 21.5x reading performance improvement
with the in-memory method on Titan and Cori, respectively.
We also observed 9.4x and 19.7x improvement with the file-
based method on the Cori DataWarp system, which is a clear
improvement over the parallel file system but still less than
the in-memory based method. These performance gains open
the door to higher fidelity coupling at an increased frequency.

Memory high-water mark: TAU integration with ADIOS
can provide an option to easily turn on performance moni-
toring of the applications’ I/O usage through ADIOS, just as
the PMPI tool interface allows for MPI. Users can monitor at
runtime application’s memory usage, CPU performance, MPI
communications, etc.

In the demo, we built XGC and GENE with ADIOS and
TAU integration. During execution, we captured a set of
performance numbers at every second (which is about 3-4
simulation time steps). Fig. 10 shows one of those performance
numbers captured during the run. In Fig. 10, (a) high-water
memory usage and (b) total flops are plotted at each rank. The
first 3,072 ranks represent XGC processes and the last 1,024
ranks are for GENE. In the plot, we identified an unusual
memory usage pattern; memory usage in XGC is not well
balanced, which might affect performance in the later time
steps. Developers can pay attention for this memory issues in
the next development step.

Entropy and compression ratio: In the XGC-GENE
simulations, plasma turbulence is modeled, and the coupled
application outputs data to monitor the turbulence’s behavior.
This output is saved at high frequency, and lossy data reduction
was tested, with statistics about the reduced data’s properties

Memory High-water Mark Total FLOPS

0.150 150

0.125 P L
Q)

& 0.100 & 100

e E 75
0.075 s

0.050 20

25

0.025
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Rank Rank

Fig. 10. Performance information captured by TAU during the XGC-GENE
coupling performed on Titan. The memory high water mark and total FLOPS
measurements of each MPI rank for XGC (rank < 3,072) and GENE (rank
> 3,072) were captured. These measurements are at about timestep 2,000.

Timestep: 200

Timestep: 2000
0.5 Entropy: 6.59 4.6 0.5

Entropy: 3.80 1.2

Eo3{, 7 o 0.0 Eo03 Y 0.0
S W Wil
02 . 02 p N
N Z. us
0.1 e 0.1 >
«— 46 = 12
59 1.8 2.0 2.2 B 1.8 2.0 22
R(m) R(m)
(@) (b)
9.0
701 \@ 280
. g
6.0 g
g €60
5.0 g
S50
2.0 (b) i

0 1000 2000 3000 0 1000 2000 3000
Timestep Timestep

© (d)

Fig. 11. Compression ratio and entropy results for early (a) and late (b)
timesteps. Panels (c) and (d) show the changes in the quantities as a function
of time. MGARD and SZ were used for data compression. (SZ plots are
shown in the figure.)

collected in transit. Here, we focus on the compression ratio
and entropy measurements collected by Z-checker.

The online compression and analysis was performed at each
time step, applying SZ and MGARD to the appropriate data
through Z-checker. Fig. 11 shows the results. Panels (a) and
(b) visualize the evolution of the plasma: (a) is an early
step (timestep 200) and (b) shows a later timestep (timestep
2000). Panels (c) and (d) show the changes of the entropy and
compression ratios with time.

Qualitatively, the trends are plausible. The simulations are
seeded with random variations, which is why the entropy starts
the highest. Over time, the fluctuation become more correlated.
Compression ratios decrease because the fluctuations grow in
magnitude, which is harder to compress under the constraint
of point-wise error limits.

Physics Diagnostics: Several of our in-situ visualizations
(Fig. 1) were diagnostics to help study the stability of the
coupling. Though explaining the physics content of all of
these is beyond the scope this paper, panels (a) and (b)
of Fig. 11 themselves offer a simple qualitative check. The
dashed boundary is the coupling region between GENE and
XGC in which data is exchange. If there were numeric
instabilities or other problems with the coupling algorithm,
a likely outcome would be discontinuities or suppression of

the features in this region. No such issues appear. Other
diagnostics compared the results from the coupled runs to
results from reference simulations, to confirm that both indeed
converged to the same answer.

V. CONCLUSIONS

With the growing computational complexity of science as
well as that of new and emerging hardware, it is time to re-
evaluate the traditional monolithic design of computational
codes. Code coupling, also known as coupled simulation or
co-simulation, is widely used in multi-scale and multi-physics
studies. However, the complexity of code coupling frameworks
and of the novel hardware and deep memory and storage
hierarchies for future computing (exascale and post-Moore’s-
Law) poses a huge burden to users.

To address these concerns, we present a new framework
that is constructed by leveraging high performance capabilities
such as in-memory communications, workflow scheduling
on HPC resources, and continuous performance monitoring.
Specifically, we utilize a combination of the Adaptable I/O
System (ADIOS), the Savanna/Cheetah runtime, the MGARD
and SZ compression libraries, the VTK-m visualization toolkit,
and the TAU performance monitoring system. Evaluated at
several leading computing facilities, this framework has been
applied to solve a complex multi-physics simulation of Toka-
mak fusion devices.

Through this effort we have collected a large number of
critical observations on the requirements of any such frame-
work when working with real scalable science simulations.
Of these, the key overall observation is that integrative science
teams need new support and computational services in order to
function effectively. Balancing the productivity requirements
and the science complexity that comes with a push towards
exascale science is difficult for a single research team or
monolithic code base to achieve. However, with attention to
management of the interfaces between collaborating compo-
nents, exascale-ready frameworks can offer both performance
and the runtime diagnostic capabilities that make full use of
the promise of extreme scale platforms today and tomorrow.

ACKNOWLEDGEMENT

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National
Nuclear Security Administration and by the U.S. Department
of Energy, Office of Science, Advanced Scientific Comput-
ing Research and Office of Fusion Energy Sciences under
Contracts DE-AC02-06CH11357, DE-AC02-09CH11466, and
DE-ACO05-000R22725.

This work used resources of the Argonne Leadership Com-
puting Facility at Argonne National Laboratory, the National
Energy Research Scientific Computing Center, and the Oak
Ridge Leadership Computing Facility, which are DOE Office
of Science User Facilities supported under Contracts DE-
AC02-06CH11357, DE-AC02-05CH11231, and DE-ACO0S-
000R22725, respectively.

(1]

[2

(3]

(4]

(5]

[6

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

REFERENCES

Y. Babuji, A. Brizius, K. Chard, I. Foster, D. S. Katz, M. Wilde, and
J. Wozniak, “Introducing Parsl: A Python Parallel Scripting Library,”
Aug. 2017. [Online]. Available: https://doi.org/10.5281/zenodo.891533
B. Ludischer, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E. A. Lee, J. Tao, and Y. Zhao, “Scientific workflow management and the
kepler system,” Concurrency and Computation: Practice and Experience,
vol. 18, no. 10, pp. 1039-1065, 2006.

E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. F. da Silva, M. Livny et al., “Pegasus, a work-
flow management system for science automation,” Future Generation
Computer Systems, vol. 46, pp. 17-35, 2015.

M. Wilde, M. Hategan, J. Wozniak, B. Clifford, D. Katz, and I. Fos-
ter, “Swift: A language for distributed parallel scripting,” Parallel
Computing, vol. 37, no. 9, pp. 633-652, 2011.

D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R. Pocock, P. Li,
and T. Oinn, “Taverna: a tool for building and running workflows of
services,” Nucleic acids research, vol. 34, no. suppl_2, pp. W729-W732,
2006.

T. Gorler, X. Lapillonne, S. Brunner, T. Dannert, F. Jenko, F. Merz, and
D. Told, “The global version of the gyrokinetic turbulence code gene,”
Journal of Computational Physics, vol. 230, no. 18, pp. 7053-7071,
2011.

S. Ku, R. Hager, C.-S. Chang, J. Kwon, and S. E. Parker, “A new hybrid-
lagrangian numerical scheme for gyrokinetic simulation of tokamak edge
plasma,” Journal of Computational Physics, vol. 315, pp. 467-475, 2016.
J. Dominski, S. Ku, C.-S. Chang, J. Choi, E. Suchyta, S. Parker,
S. Klasky, and A. Bhattacharjee, “A tight-coupling scheme sharing
minimum information across a spatial interface between gyrokinetic
turbulence codes,” Physics of Plasmas, vol. 25, no. 7, p. 072308, 2018.
Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y.
Choi, S. Klasky, R. Tchoua, J. Lofstead, R. Oldfield, M. Parashar,
N. Samatova, K. Schwan, A. Shoshani, M. Wolf, K. Wu, and W. Yu,
“Hello ADIOS: the challenges and lessons of developing leadership
class I/0O frameworks,” Concurrency and Computation: Practice and
Experience, vol. 26, no. 7, pp. 1453-1473, may 2014. [Online].
Available: http://doi.wiley.com/10.1002/cpe.3125

D. Tao, S. Di, H. Guo, Z. Chen, and F. Cappello, “Z-checker: A
framework for assessing lossy compression of scientific data,” The
International Journal of High Performance Computing Applications,

vol. 0, no. O, p. 1094342017737147, 0. [Online]. Available:
https://doi.org/10.1177/1094342017737147
F. Zhang, T. Jin, Q. Sun, M. Romanus, H. Bui, S. Klasky,

and M. Parashar, “In-memory staging and data-centric task place-
ment for coupled scientific simulation workflows,” Concurrency and
Computation: Practice and Experience, vol. 29, no. 12, 2017.

J. Dayal, D. Bratcher, G. Eisenhauer, K. Schwan, M. Wolf, X. Zhang,
H. Abbasi, S. Klasky, and N. Podhorszki, “Flexpath: Type-based pub-
lish/subscribe system for large-scale science analytics,” in Cluster, Cloud
and Grid Computing (CCGrid), 2014 14th IEEE/ACM International
Symposium on. IEEE, 2014, pp. 246-255.

G. Eisenhauer, M. Wolf, H. Abbasi, and K. Schwan, “Event-based
systems: opportunities and challenges at exascale,” in Proceedings of
the Third ACM International Conference on Distributed Event-Based
Systems. ACM, 2009, p. 2.

C. Docan, M. Parashar, and S. Klasky, “Dart: a substrate for high
speed asynchronous data io,” in Proceedings of the 17th international
symposium on High performance distributed computing. ACM, 2008,
pp. 219-220.

J. Pinkerton, “The case for RDMA,” RDMA Consortium, May, vol. 29,
p. 27, 2002.

J. Kress, S. Klasky, N. Podhorszki, J. Choi, H. Childs, and D. Pugmire,
“Loosely coupled in situ visualization: A perspective on why it’s here
to stay,” in Proceedings of the First Workshop on In Situ Infrastructures
for Enabling Extreme-Scale Analysis and Visualization. ACM, 2015,
pp. 1-6.

D. Pugmire, J. Kress, J. Choi, S. Klasky, T. Kurc, R. M. Churchill,
M. Wolf, G. Eisenhower, H. Childs, K. Wu et al., “Visualization and
analysis for near-real-time decision making in distributed workflows,” in
Parallel and Distributed Processing Symposium Workshops, 2016 IEEE
International. IEEE, 2016, pp. 1007-1013.

R. Tchoua, J. Y. Choi, S. Klasky, Q. Liu, J. Logan, K. Moreland,
J. Mu, M. Parashar, N. Podhorszki, D. Pugmire, and M. Wolf, “Adios

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

visualization schema: A first step towards improving interdisciplinary
collaboration in high performance computing,” pp. 27-34, 10 2013.

K. Moreland, C. Sewell, W. Usher, L. ta Lo, J. Meredith, D. Pugmire,
J. Kress, H. Schroots, K.-L. Ma, H. Childs, M. Larsen, C.-M. Chen,
R. Maynard, and B. Geveci, “Vtk-m: Accelerating the visualization
toolkit for massively threaded architectures,” IEEE Computer Graphics
and Applications, vol. 36, no. 3, pp. 48-58, May/June 2016.

W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit:
An Object Oriented Approach to 3D Graphics, 4th ed. Kitware Inc.,
2004, ISBN 1-930934-19-X.

M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, “Multilevel
Techniques for Compression and Reduction of Scientific Data—The
Univariate Case,” Comput. Vis. Sci., vol. submitted, 2017.

——, “MGARD: A multilevel technique for compression of floating-
point data,” in DRBSD-2 Workshop at SuperComputing 2017, Colorado,
USA, 2017.

M. Ainsworth, S. Klasky, and B. Whitney, “Compression Using Lossless
Decimation: Analysis and Application,” SIAM J. Sci. Comput., vol. 39,
pp. B732-B757, Aug. 2017.

M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, “Multilevel
Techniques for Compression and Reduction of Scientific Data—The
Multivariate Case,” SIAM J. Sci. Comput., vol. submitted, 2018.

S. Di and F. Cappello, “Fast error-bounded lossy HPC data compression
with SZ,” in 2016 IEEE International Parallel and Distributed Processing
Symposium, IPDPS 2016, Chicago, IL, USA, May 23-27, 2016, 2016,
pp. 730-739.

D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving lossy
compression for scientific data sets based on multidimensional prediction
and error-controlled quantization,” in 2017 IEEE International Parallel
and Distributed Processing Symposium, IPDPS 2017, Orlando, Florida,
USA, May 29-June 2, 2017, 2017.

S. S. Shende and A. D. Malony, “The tau parallel performance system,”
The International Journal of High Performance Computing Applications,
vol. 20, no. 2, pp. 287-311, 2006.

C. Wood, S. Sane, D. Ellsworth, A. Gimenez, K. Huck, T. Gamblin,
and A. Malony, “A scalable observation system for introspection and in
situ analytics,” in 2016 5th Workshop on Extreme-Scale Programming
Tools (ESPT), Nov 2016, pp. 42-49.

C. Wood, M. Larsen, A. Gimenez, C. Harrison, T. Gamblin, and
A. Malony, “Projecting performance data over simulation geometry
using SOSflow and ALPINE,” in 4th International Workshop on Visual
Performance Analysis (ESPT), 2017.

The MPI Forum, MPI: A Message Passing Interface Standard, Version
3.1. University of Tennessee, Knoxville, Tennessee, 2015.

S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci, “A scalable
cross-platform infrastructure for application performance tuning using
hardware counters,” in Supercomputing, ACM/IEEE 2000 Conference.
IEEE, 2000, pp. 42-42.

I. Foster, M. Ainsworth, B. Allen, J. Bessac, F. Cappello, J. Y. Choi,
E. Constantinescu, P. E. Davis, S. Di, W. Di et al., “Computing just
what you need: Online data analysis and reduction at extreme scales,”
in European Conference on Parallel Processing. Springer, 2017, pp.
3-19.

W. Bhimji, D. Bard, M. Romanus, D. Paul, A. Ovsyannikov, B. Friesen,
M. Bryson, J. Correa, G. K. Lockwood, V. Tsulaia et al., “Accelerating
science with the nersc burst buffer early user program,” Lawrence
Berkeley National Lab.(LBNL), Berkeley, CA (United States), Tech.
Rep., 2016.

