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Model-Based Localization in a Shallow Ocean Environment:
A Sequential Bayesian/Optimization Approach

J. V. Candy

The shallow ocean is a dynamically changing medium leading to nonstationary statistical
behavior when subjected to temperature, wind, surface variations, bottom interactions, noise
and extraneous disturbances as well as other conditions that render it a uniquely challenging
environment — especially from a signal processing perspective. Processors must account for
and adapt to such instantaneous changes in order to be effective. Thus, a processor is required
to “adapt” to these environmental variations while simultaneously providing meaningful
estimates that are necessary for such applications as detection, localization, inversion and
enhancement. In this paper, we develop a parametrically adaptive, sequential Bayesian
processor capable of jointly estimating both modal functions and environmental parameters
to provide enhanced estimates for a focused optimizer capable locating a target in the noisy
shallow ocean environment.

1 INTRODUCTION

The shallow ocean environment presents a formidable challenge to many processing prob-
lems ranging from the simple enhancement of noisy measurements to detection, localization,
inversion and source tracking [1]-[4]. This ever-changing, uncertain medium is caused by
a variety of both inherent effects such as temperature variations altering the sound-speed
profile leading to a highly dispersive medium inhibiting sound propagation. Correspond-
ing to this fundamental effect are surface effects caused by the wind leading to undesirable
wave motion routinely present. Internal disturbances abound created by a wealth of random
biologics including high-frequency snapping shrimp to whale soundings as well as ambient
noise from distant shipping in heavily occupied transportation channels [1]. Coupling this
with the usual instrumentation noise and uncertainty creates a difficult acoustic problem to
unravel especially for that of locating a quiet target hiding in a shallow ocean channel. All in
all, the shallow ocean presents, perhaps one of the most challenging environments to extract
meaningful information from noisy acoustic measurements. With all of these uncertainties
and instantaneous changes, statistically, the underlying problem is clearly nonstationary re-
quiring a sequential approach capable of incorporating these complex interactions along with
the inherent variations and uncertainties that evolve.

One suite of methods that attack this complexity problem is model-based, that is, the in-
corporation of ocean acoustic models into the processing scheme [5]. Model-based techniques
offer high expectations of performance, since the processor incorporates phenomenological
information that has generated the measured data. But model inaccuracies can lead directly
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to erroneous results, especially if the varying spatial/temporal nature of this environment
is not taken into account. Therefore, all of these constraints require a sequentially adaptive
processing scheme that must be able too cope with and extract both the signals of interest
as well as their embedded parameters. Adaptive processing for the varying shallow ocean
environment can be accomplished in a number of different ways. Here we concentrate on
the “parametrically adaptive” approach, that is, a processor that embeds an ocean acoustic
model into its framework and sequentially estimates both the modal functions as well as
their embedded physical parameters [6], [7]. Thus, the processor must solve a joint modal
enhancement and parameter estimation problem. As a solution to this problem, we develop
a Bayesian processor capable of providing a joint solution to the modal function tracking
and environmental adaptivity problem. The posterior distribution required is multi-modal
(multiple peaks) requiring a sequential approach. Bayesian sequential processing that in-
corporates both a propagation model along with its inherent parameters offers a robust,
parametrically adaptive solution that can cope with this instantaneously varying medium.
Sequential Bayesian techniques enable a class of processors capable of performing in an un-
certain, nonstationary, non-Gaussian, instantaneously changing, shallow ocean environment
[7].

We select the normal-mode (shallow ocean) propagation model with inherent modal
functions and pressure-field measurements as the signals of interest along with a set of
modal coefficients as the parameters to be jointly estimated [7]. Here we concentrate on the
parametrically adaptive approach, that is, a processor that incorporates an ocean acoustic
model into its framework and sequentially estimates both the signals of interest as well as
its embedded physical parameters. Bayesian sequential processing incorporating propaga-
tion models along with their inherent environmental parameters as well as measurement and
noise models offers a robust, parametrically adaptive solution to signal processing problems
in such a nonstationary environment [3]. Sequential Bayesian techniques enable a class of
processors capable of performing in an uncertain, nonstationary (varying statistics), non-
Gaussian, variable shallow ocean environment. Here we address the problem of estimating
or tracking modal functions in a noisy shallow ocean while jointly adjusting (adaptively)
the inherent propagation model parameters [3], [6], [7]. Using this information, we address
the problem of localizing the position of an acoustic target from noisy hydrophone measure-
ments gathered from a vertical sensor array. By simultaneously enhancing the measured
pressure-field and estimating the corresponding modal functions, we can provide parametric
(modal coefficients) estimates to a focused localizer. The localizer then enables an implicit
position solution using a nonlinear cost function, while jointly adjusting (adaptively) the
inherent propagation model parameters. In this manner, the combined model-based process-
ing/optimization technique is able to extract the target range and depth location. Initially,
incorporating a propagation model into a signal processing scheme to solve the source lo-
calization problem was initiated by matching a modal function of an acoustic waveguide to
estimate source depth [8], [9]. The concept of matched-field processing (MFP), that is, com-
paring the measured pressure-field to that predicted by a propagation model was introduced
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[8] and applied to a variety of problems. It provided a solution to the localization problem
by repeated model predictions at the array for various assumed source positions enabling a
search for not only the target of interest but also all other possible acoustic sources in the
search region. Derivative techniques have evolved by matching modal functions demonstrat-
ing an improvement in performance [8]-[17]. Many papers have been written exploiting and
improving on the MFP [8]. Other statistical approaches to solve the localization problem
have also evolved again illustrating well-founded enhanced performance [19]-[22]. However,
in this paper, we investigate the state-space forward propagation scheme of Refr. [6] and
apply it to this problem.

The fundamental concept introduced in this work remains intact; however, with the
embedded processor (extended Kalman filter) replaced by a sequential Bayesian processor—
the particle filter to provide enhanced estimates to the focused localizer. In contrast to
other popular approaches in which the acoustic propagation model is just employed in the
measurement model, this model-based localization method integrates the normal-mode so-
lutions into both the state (forward propagator) and measurement (pressure-field) relations
[6]. Here the particle filter is the parametrically adaptive processor incorporating both an
ocean acoustic normal-mode model as well as the pressure-field measurement obtained from
a vertical sensor array deployed in the sound channel [7]. Thus we see that it is, in fact, the
parametrically adaptive processor that provides the heart of the model-based localization
scheme. This technique, as before in Refr. [6], is better thought of as a means to “focus” on
a target of interest, when the entire search region has already been specified. This approach
incorporates the particle filter as the primary method to provide the enhanced pressure-
field measurements as part of the joint estimation solution required to jointly extract the
modal functions estimates and extract the accompanying modal coefficients provided to the
optimizer for target localization.

In this manner, the combined model-based processing/optimization technique is able to
extract the target range and depth location. A simple diagram of this approach is shown
in Fig. 1 where we observe the raw pressure-field input from a vertical hydrophone sensor
array along with the sound-speed data available from current-temperature-density (CTD)
sensors or historical archive data. With the input data available, the parametrically adaptive
processor uses the embedded normal-mode, forward propagator, pressure-field measurement
and noise models to extract estimates of the modal functions and corresponding coefficients.
With these enhanced estimates now available on input, the coupled optimizer provides esti-
mates of the source position information (range/depth).

We first characterize the normal-mode model in terms of a state-space representation
enabling a general framework for signal processing in Sec. 2 leading to the formulation of the
forward propagators. We also develop the parametrically adaptive processor by augmenting
a random walk model of the modal coefficients into the normal-mode representation. In Sec.
3, we formulate the sequential Bayesian processor construct leading to the corresponding
“bootstrap” particle filter design for our application. In Sec. 4, the optimization scheme is
presented employing, as before [6], the Nelder-Meade simplex technique. Finally, we discuss
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the application of this approach to data from the well-known Hudson Canyon experiment
[23], [24] in Sec. 5 and then summarize our results.

2 BACKGROUND

In this section we provide a brief discussion of the underlying models employed to develop
the parametrically adaptive approach for source localization. We start with the normal-
mode and pressure-field ocean acoustic models and discuss how they are incorporated into
a state-space framework enabling the development of the subsequent processor followed by
the corresponding Gauss-Markov model and the representation utilized in the parametrically
adaptive processor to follow.

2.1 Shallow Ocean Model

Assuming a horizontally-stratified ocean of depth h with a known horizontal source range
rs and depth zs and the assumption that the acoustic energy from a point source can be
modeled as a trapped wave governed by the Helmholtz equation evolves [1]. Removing the
time dependence and performing the standard separation of variables technique and leads
to a set of ordinary differential equations, that is, we obtain a “depth only” representation
of the wave equation which is an eigenvalue equation in z with

d2

dz2
φm(z) + κ2

z(m)φm(z) = 0, m = 1, · · · , M, (1)

whose eigensolutions {φm(z)} are the modal functions and κz is the vertical wavenumber in
the z-direction. These solutions depend on the sound speed profile c(z) and the boundary
conditions at the surface and bottom as well as the corresponding dispersion relation given
by

κ2 =
ω2

c2(z)
= κ2

r(m) + κ2
z(m), m = 1, . . . ,M, (2)

where κr(m) is the horizontal wavenumber associated with the m-th mode in the r direction
and ω is the harmonic source frequency.

By assuming a known horizontal source range a priori, we obtain a range solution given
by the Hankel function, H0(κrrs) enabling the pressure-field to be represented by

p(rs, zs, z) =
M∑

m=1

θm(rs, zs)φm(z), (3)

where p is the acoustic pressure; φm is the mth modal function with the modal coefficient
defined by
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θm(rs, zs) := q H0(κrrs) φm(zs), (4)

a function of source location (rs, zs) with q the source amplitude scaling factor.

2.2 State-space Ocean Acoustic model

The depth-only eigen-equation can easily be transformed to state-space form by defining the
state vector of the m-th mode as

φm(z) :=

[
φm(z)
d
dz

φm(z)

]
=

[
φm1(z)
φm2(z)

]
. (5)

Thus, we have for the m-th mode the following state (vector) equation as:

d

dz
φm(z) = Am(z)φm(z), (6)

for

Am(z) =

[
0 1

−κ2
z(m) 0

]
. (7)

Assuming that the ocean acoustic noise can be characterized by additive uncertain-
ties, we can extend the deterministic state equation for the M -modes, that is, Φ(z) :=
[φ1(z)| · · · |φM(z)]′ leading to the following 2M -dimensional Gauss-Markov representation of
the model:

d

dz
φ(z) = A(z)φ(z) + w(z), (8)

where w(z) = [w1 w2 . . . w2M ]′ is additive, zero-mean, Gaussian random noise. The
system matrix A(z) is defined as

A(z) =


A1(z) · · · 0

...
. . .

...
0 · · · AM(z)

 , (9)

with the overall state vector is

φ(z) = [φ11 φ12 | φ21 φ22 | . . . | φM1 φM2]
′. (10)

This leads to a set of measurement equations that can expressed as

p(rs, zs, z) = C′(rs, zs)φ(z) + v(z), (11)

where

6



C′(rs, zs) = [θ1(rs, zs) 0 | · · · | θM(rs, zs) 0] . (12)

The random noise terms w(z) and v(z) are assumed Gaussian and zero-mean with respective
covariance matrices, Rww and Rvv. The measurement noise (v(z)) is used to represent the
“lumped” effects of near-field acoustic noise field, flow noise on the hydrophone and electronic
noise. The modal noise (w) can be used to represent the “lumped” uncertainty of sound
speed errors, distant shipping noise, errors in the boundary conditions, sea state effects and
ocean inhomogeneities that propagate through the ocean acoustic system dynamics (normal-
mode model). These assumptions, with known model parameters lead to the optimal solution
of the state estimation problem (Kalman filter) [25].

Since a vertical array spatially samples the pressure-field discretizing depth, we choose
to discretize the state differential equations using a central difference approach for improved
numerical stability, that is, from Eq. 1 we have

d2

dz2
φm ≈

φm(z`)− 2φm(z`−1) + φm(z`−2)

4z2
`

, (13)

for 4z` := z` − z`−1.
Applying this approximation to Eq. 1 gives

φm(z`)− 2φm(z`−1) + φm(z`−2) +4z2
` κ

2
z(m)φm(z`−1) = 0,

where z` is the location of the `-th sensor. Defining the discrete modal state vector as
φm(z`) := [φm(z`−2) | φm(z`−1)]

′, we obtain the following set of difference equations for the
m-th mode as

φm1(z`) = φm2(z`−1)

φm2(z`) = −φm1(z`−1) + (2−4z2
` κ

2
z(m))φm2(z`−1),

(14)

with each of the corresponding modal submatrices given by

Am(z`) =

 0 1

−1 2−4z2
` κ

2
z(m)

 ; m = 1, · · · , M, (15)

and dispersion relation

κ2
z(m) =

(
ω2

c2(z)

)
− κ2

r(m), m = 1, · · · , M. (16)
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Substituting this model and combining all of the modes as in Eq. 8, the following complete
discrete Gauss-Markov representation of the normal-mode process and measurement system
is

Φ(z`) = A(z`)Φ(z`−1) + w(z`),

p(rs, z`) = C ′(rs, zs)Φ(z`) + v(z`), (17)

and Φ,w ∈ R2M×1, p, v ∈ R1×1 for w ∼ N (0, Rww), v ∼ N (0, Rvv) and Φ(z`) ∼ N (Φ(z0), P (z0))
and A ∈ R2M×2M , a block diagonal matrix defined by A(z`) := diag[A1(z`) · · ·AM(z`)],
C ′ ∈ R1×2M for M -modes and L-hydrophone sensors.

This completes the normal-mode/pressure-field representation of the shallow ocean in
state-space form. Next we consider augmenting incorporating the set of unknown modal
coefficients to create the parametrically adaptive processor.

2.3 Parametrically Adaptive State-space Model

A “parametrically adaptive” processor evolves from the normal-mode/pressure-field repre-
sentation by defining a parameter set of interest. Variations in the ocean can be represented,
parametrically, in a number of ways. For instance, modal variations can be reflected through
the measured pressure-field relations of Eq. 3 that can be parametrically captured by the
modal coefficients of Eq. 4. We note that these coefficients are a function of the source
location (rs, zs) making this parameter set desirable for location solutions. Therefore, we
choose to use the modal coefficients (individually) as the parameters of interest in adapting
to the changing shallow ocean environment especially since they depend on the unknown
source position [6].

The modal coefficients of Eq. 4 can be used to capture modal function variations; there-
fore, we define the set of unknown modal parameters for this problem as {θm(rs, zs)}; m =
1, · · · , M . and the new “augmented” state vector for the m-th mode incorporating the modal
coefficients as

Φm(z`; θm) := Φm(z`) = [φm1(z`) φm2(z`) | θm(z`)]
′.

With this choice of parameters (modal coefficients) the augmented state equations for
the m-th mode become

φm1(z`) = φm2(z`−1) + wm1(z`−1) [Modal Functions]

φm2(z`) = −φm1(z`−1) + (2−4z2
` κ

2
z(m))φm2(z`−1) + wm2(z`−1)

θm(z`) = θm(z`−1) + wθm(z`−1) [Modal Coefficients], (18)
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where we have modeled the unknown modal coefficients as a random walk (θ̇m(z) = wθm(z))
to capture the variations of the modal coefficients with additive, zero-mean, Gaussian noise
of covariance Rwθmwθm

.
Here the random walk model provides “soft” constraints in the simulation, since the

parameters are modeled as Gauss-Markov implying that 95% of the samples must lie within
confidence limits controlled by (±1.96σm,m). This constitutes a soft statistical constraint
of the parameter variations. For our problem, we use the implied soft statistical constraint
and choose to start the processor with initial parameter estimates close to those values other
researchers have meticulously estimated from this data set [25]. More succinctly for the m-th
mode, we can write

Φm(z`) = Am(z`−1; θ)Φm(z`−1) + wm(z`−1) (19)

or expanding

 φm(z`)
−−−
θm(z`)


︸ ︷︷ ︸

Φm(z`)

=

 Am(z`−1) | 0
−− −−
0 | 1


︸ ︷︷ ︸

Am(z`−1;θ)

 φm(z`−1)
−−−

θm(z`−1)


︸ ︷︷ ︸

Φm(z`−1)

+

 Wφm(z`−1)
−−−

Wθm(z`−1)


︸ ︷︷ ︸

wm(z`−1)

, (20)

where Wφm ∼ N (0, RWφmWφm
), Wθm ∼ N (0, RWθmWθm

), φm(0) ∼ N (φm(0), Rφmφm), θm(0) ∼
N (θm(0), Rθmθm), and

Am(z`−1; θ) =


0 1 | 0
−1 2−4z2

`−1κ
2
z(m) | 0

− − −
0 0 | 1


with A a block diagonal matrix such that A(z`−1; θ) = diag[A1(z`−1; θ), · · · , AM(z`−1; θ)].

The corresponding nonlinear measurement model is given by

p(rs, zs, z`) =
M∑

m=1

θm(z`)φm(z`) + v(z`); ` = 1, · · · , L, (21)

with dispersion (sound-speed)

c(z`) =
ω√

κ2
z(m) + κ2

r(m)
, m = 1, · · · , M ; ` = 1, · · · , L (22)

To complete this representation, we combine all of the modes and unknown parameters
and therefore the state transition is characterized by the underlying augmented state-space
model as
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Φ(z`; Θ) = A(z`−1; Θ)Φ(z`−1; Θ) + w(z`−1),

and the measurement, on the other hand, is determined from the nonlinear pressure-field
measurement model,

p(rs, zs, z`) = c
[
Φ(z`); Θ(rs, zs)

]
+ v(z`). (23)

Note that the pressure-field is nonlinear in the states (modal functions) and parame-
ters (modal coefficients), since they are multiplicands and therefore lead to non-Gaussian
measurements.

It should also be noted that the initial model parameters are obtained from a prior
solution of the boundary value problem typically developed as part of the experimental
design process and/or after the experiment has been executed. Here the initial “guesses” at
modal coefficients and modal functions themselves are calculated based on the experimental
conditions such as frequencies, current-temperature-density (CTD), archival sound-speed
profiles (SSP), boundary conditions, horizontal wavenumber estimators (e.g. see [23], [24]
for more details) to provide the input to the normal-mode boundary-value problem (BVP)
solutions (SNAP [26], [27], KRACKEN [28], SAFARI [29]) yielding the required parameters.
These parameters are then input to the state-space, measurement, and noise/uncertainty
models as shown in Fig. 2.

This completes the section on the discrete state-space representation of the shallow ocean
acoustic (normal-mode) propagation model that is embedded as a “forward propagator” into
the subsequent processors for signal enhancement.

3 SEQUENTIAL BAYESIAN PROCESSOR

In this section we discuss the processor for the shallow oceanic problem [1], [27]. The basic
adaptive problem can be defined in terms of our mathematical models as:

GIVEN, [{p(rs, zs, z`)}, {c(z`)}], a set of noisy pressure-field and sound speed measurements
varying in depth along with the underlying state-space model of Eqs. 19, 21 and 22 with
unknown parameters {θ(z`)}, FIND the “best” (minimum error variance) estimates (joint)
of the modal functions and parameters, that is, {φ̂m(z`)}, {θ̂m(z`)}; m = 1, · · · , M and mea-
surements {p̂(rs, zs, z`)}.

The solution to this problem lies in the joint state/parameter estimation problem, that
is, defining the augmented state vector,

Φ(z`;Θ) :=

 Φ(z`)
−−−
Θ(z`)

 ,
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and starting with the joint distribution applying Bayes’ theorem, we obtain [30]

Pr[Φ(z`;Θ)|P`] =

Pr
[
p(rs, zs, z`)|Φ(z`;Θ)

]
× Pr

[
Φ(z`;Θ)|Φ(z`−1;Θ)

]
Pr
[
p(rs, zs, z`)|P`−1

]
×Pr[Φ(z`−1;Θ)|P`−1],

(24)
where we have assumed conditional independence and defined the set of measurements as
P` := {p(rs, zs, z1), · · · , p(rs, zs, z`)}.

Define the joint weighting function in terms of the likelihood, transition and evidence
as

W (z`;Θ) :=

Pr
[
p(rs, zs, z`)|Φ(z`;Θ)

]
× Pr

[
Φ(z`;Θ)|Φ(z`−1;Θ)

]
Pr
[
p(rs, zs, z`)|P`−1

]
 , (25)

yielding the sequential Bayesian posterior distribution as

Pr[Φ(z`;Θ)|P`] = W (z`;Θ)× Pr[Φ(z`−1;Θ)|P`−1]. (26)

The processor for the non-Gaussian problem is the particle filter. It is a completely dif-
ferent approach to nonlinear filtering in that it removes the restriction of additive Gaussian
noise sources and is clearly capable of characterizing multi-modal distributions. The PF can
be thought of as a histogram or kernel density-like estimator in the sense that it generates
an empirical probability mass function (PMF) that approximates the desired posterior dis-
tribution such that statistical inferences can be performed and statistics extracted directly.
Here the idea is to develop an empirical estimation of the posterior distribution following a
purely Bayesian approach using Monte Carlo (MC) sampling theory as its enabling founda-
tion. The computational burden of the PF is much higher that of KF, since it must provide
an estimate of the underlying state posterior distribution component-by-component at each
z`-step and the number of samples to characterize the posterior distribution is equal to the
number of particles.

Here we are concerned with the joint estimation problem consisting of setting a prior
for θ and augmenting the state vector to solve the joint estimation problem as defined above
thereby converting the parameter estimation problem to one of optimal filtering. Thus, the
particle filter estimates the weights required to specify the posterior distribution, empirically,
that is,

P̂r[Φ(z`;Θ)|P`] ≈
1

Np

Np∑
i=1

Ŵi(z`;Θ)× δ (Φ(z`;Θ)−Φi(z`;Θ)) . (27)

The approach is to estimate these weights based on the concept of importance sampling
[30]-[33]. Importance sampling is a technique to compute statistics with respect to one dis-
tribution using random samples drawn from another. It is a method of simulating samples
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from a proposal or sampling (importance) distribution to be used to approximate a tar-
geted distribution (joint posterior) by appropriate weighting. For this choice, the weighting
function is defined by

W(z`;Θ) :=
Pr[Φ(z`;Θ)|P`]

I[Φ(z`;Θ)|P`]
, (28)

where I[·] is the proposed sampling or importance distribution.
For the “sequential” case, we have that the weighting function becomes [30]

W(z`;Θ) ∝

Pr
[
p(rs, zs, z`)|Φ(z`;Θ)

]
× Pr

[
Φ(z`;Θ)|Φ(z`−1;Θ)

]
I[Φ(z`;Θ)|Φ(z`−1;Θ), P`]

×W(z`−1;Θ), (29)

where ∝ means proportional to up to a normalizing constant (evidence).
There are a variety of PF algorithms available, each evolving by a particular choice of

the sampling or importance distribution, but perhaps the simplest is the bootstrap technique
which we apply to our problem. Here the importance distribution is selected as the transition
prior, that is,

I
[
Φ(z`;Θ)|Φ(z`−1;Θ), P`)

]
−→ Pr

[
Φ(z`;Θ)|Φ(z`−1;Θ)

]
. (30)

Substituting into Eq. 29 we obtain

W(z`;Θ) = Pr
[
p(rs, zs, z`)|Φ(z`;Θ)

]
×W(z`−1;Θ). (31)

Thus, we see that once the underlying posterior is available, the estimates of important
statistics can be inferred directly. For instance, the maximum a posteriori (MAP) estimate
is simply found by locating a particular particle φ̂i(z`) corresponding to the maximum of the
PMF, that is,

Φ̂i(z`;Θ)
MAP

= max
i

P̂r[Φi(z`;Θ)|P`], (32)

while the conditional mean or equivalently the minimum mean-squared error or the condi-
tional mean (CM) estimate is calculated by integrating the posterior as:

Φ̂i(z`;Θ)
CM

=
∫

Φi(z`;Θ)× P̂r[Φi(z`;Θ)|P`]dz ≈ 1

Np

Np∑
i=1

Wi(z`;Θ)×Φi(z`;Θ), (33)

and Np is the number of particles.
For the bootstrap implementation, we need only draw noise samples from the state

and parameter distributions and use the dynamic models above (normal-mode/random
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walk) in Eq. 19 to generate the set of particles, {Φi(z`;Θ)} −→ {Φi(z`),Θi(z`)} for
i = 1, · · · , Np. That is, both sets of particles are generated from the augmented models
(linear/nonlinear)(adaptive modal coefficients) from

Φi(z`; Θ) = A(z`−1)Φi(z`−1) + wi(z`−1) (34)

while the likelihood is determined from the nonlinear pressure-field measurement model

p(rs, zs, z`) = c
[
Φi(z`; Θ)

]
+ v(z`). (35)

Assuming additive Gaussian noise the likelihood is given by

Pr[p(rs, zs, z`)|Φi(z`)] =
1√

2πRvv

× exp
{
− 1

2Rvv

(
p(rs, zs, z`)− c

[
Φi(z`; Θ)

])2 }
. (36)

Thus, we estimate the posterior distribution using a sequential Monte Carlo approach
and construct a bootstrap particle filter using the following steps [30]:

• Initialize: Φi(0),wi ∼ N (0,Rww), Wi(0) = 1/Np; i = 1, · · · , Np;

• State Transition: Φi(z`; Θ) = A(z`−1)Φi(z`−1) + wi(z`−1)

• Likelihood Probability: Pr[p(rs, zs, z`)|Φi(z`)] of Eq. 36;

• Weights: Wi(z`;Θ) = Wi(z`−1;Θ)× Pr[p(rs, zs, z`)|Φi(z`)];

• Normalize: Wi(z`;Θ) = Wi(z`;Θ)∑Np
i=1

Wi(z`;Θ)
;

• Resample: Φ̃i(z`;Θ) ⇒ Φi(z`;Θ);

• Posterior: P̂r[Φ(z`;Θ)|P`] =
∑Np

i=1Wi(z` : Θ)× δ (Φ(z`;Θ)−Φi(z`;Θ)); and

• MAP Estimate: Φ̂i(z`;Θ)
MAP

= max
i

P̂r[Φi(z`;Θ)|P`];

• CM Estimate: Φ̂i(z`;Θ)
CM

= 1
Np

∑Np

i=1Wi(z`;Θ)×Φi(z`;Θ).

A detailed flow diagram of the particle filter (bootstrap) algorithm is shown in Fig. 3
illustrating the prediction and update steps along with a resampling algorithm to provide
convergence. Again more details can be found in the referenced textbooks and papers [30],
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4 NELDER-MEADE OPTIMIZER

Many techniques have been developed to perform source localization based on the pressure-
field representation which is essentially a product of the modal coefficients and current modal
function [6]. We choose to base our localization on a nonlinear least-squares cost function
that only incorporates the extracted set of modal coefficients available from the paramet-
rically adaptive processor. These coefficients inherently isolate source location information
providing another feature of the parametrically adaptive approach, since it has extracted Θ̂ as
part of the state estimation process. Here the PF provides estimates of the modal functions{
φ̂m(z`)

}
; ` = 1, · · · , L over the array, the set of modal coefficients

{
θ̂m(z`)

}
; m = 1, · · · , M

and the enhanced pressure-field
{
p̂(r̂s, ẑs; z`)

}
; ` = 1, · · · , L. With these estimates available,

we can solve a nonlinear optimization problem. In fact, rather than using the enhanced
pressure-filed exclusively as many of the previous works [3], we use the estimates of the PF
to provide the set of estimated modal coefficients to the numerical optimizer and take advan-
tage of the state-space model to propagate the modal functions throughout the correspond-
ing “search space”. This approach can offer a distinct advantage over simple interpolation
schemes, since the likelihood principle enables the proposed MAP estimates now available
at each iteration of the optimizer potentially providing more reliable estimates and a more
rapid convergence.

The localization problem solution evolves from the measurement equation of the “depth
only” Gauss-Markov model where we can write the sampled pressure-field in terms of range-
depth dependent terms as and evolve from the measurement model as

p(rs, zs, z`) = C ′(rs, zs)Φ(z`)+v(z`) = [θ1(rs, zs) 0 | · · · | θM(rs, zs) 0]︸ ︷︷ ︸
C′



φ11(z`)
φ12(z`)
−−−

...
−−−
φM1(z`)
φM2(z`)


︸ ︷︷ ︸

Φ

+v(z`)

(37)
or more compactly

p(rs, zs, z`) =
M∑

m=1

Θm(rs, zs)φm1(z`) + v(z`); ` = 1, · · · , L. (38)

and

θm(rs, zs) = q H0(kr(m)rs)φm(zs), (39)
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is the scaled modal coefficient, an implicit, separable function of rs and zs. The random noise
vectors wφ and v are assumed Gaussian, zero-mean with respective covariance matrices,
Rwφwφ

and Rvv. With these definitions in mind it is now possible to define (simply) the
model-based localization problem as:

GIVEN a set of estimated modal coefficients {Θ̂m(z`)}; m = 1, · · · , M (from the PF) ex-
tracted from noisy pressure-field and sound speed measurements, [{p(rs, zs, z`)}, {c(z`)}],
FIND the “best” estimate of the source position (rs, zs), that is, FIND r̂s and ẑs.

In order to solve this problem we must first estimate the “unknown” modal coefficients
θ̂m(rs, zs) from the noisy pressure-field measurement model and then use numerical optimiza-
tion techniques to perform the localization (rs, zs). In the design of a localizer we choose a
nonlinear least squares approach.[34] Thus, the optimization problem is to find the source
position (rs, zs) that minimizes the sum-squared error

J(r̂s, ẑs) :=
1

M

M∑
m=1


PF︷ ︸︸ ︷

θ̂m(rs, zs)−
N−M OPTIMIZER︷ ︸︸ ︷

H0 (κr(m)r̂s) φm(ẑs)


2

︸ ︷︷ ︸
ε

(40)

Since we know from our analysis [6] that a unique optimum does exist, we choose to use
a brute force, direct search method for our localizer primarily because it requires the minimal
amount of a-priori information and should slowly converge to the global optimum. For an on-
line application, more rapidly convergent algorithms requiring a-priori information (gradient
and Hessian) should be investigated, [34] but here we use an off-line search to investigate
the feasibility of the model-based localization and mention some of these alternatives in the
discussion.

The “direct search” localization algorithm follows the polytope method of Nelder-Meade
(N-M) [34]-[35]. At each stage of iteration, N + 1 points, say α1, · · · , αN+1, are retained
together with the function of these values, that is,

αn := (rn, zn) J(αn) for n = 1, 2, · · · , N + 1 (41)

where the functions are ordered such that

J(αN+1) ≥ J(αN) ≥ · · · ≥ J(α1) (42)

and constitute the vertices of the polytope in N−space. At each iteration, a new polytope
is generated producing a new point to replace the “worst” point αN+1—the point with the
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Figure 4: Model-Based Localization: Sequential Processor and Optimizer.

largest function value. If we define c(α) as the centroid of the “best” N vertices α1, · · · , αN

given by

c(α) =
1

N

N∑
n=1

αn (43)

then at the beginning of the nth-iteration a search or trial point is constructed by a single
reflection step using

αr = c(α) + (c(α)− αN+1) ∆r (44)

where ∆r is the reflection coefficient (∆r > 0). The function is evaluated at αr giving J(αr)
and yielding three possibilities:

• J(α1) ≤ J(αr) ≤ J(αN) and therefore αr −→ αN+1; or

• J(αr) < J(α1) and αr −→ α1 a new “best” point, since we are minimizing J . The
direction ∆r is assumed correct and we then expand the polytope by defining

αe = c(α) + (αr − c(α)) ∆e (45)

where ∆e is the expansion coefficient (∆e > 1). If J(αe) ≤ J(αr), αe −→ αN+1

otherwise αr −→ αN+1; or
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• J(αr) > J(αN), the polytope is too large and we must “contract” it using

αc =

{
α1 + (αN+1 − α1) ∆c for J(αr) ≥ J(αN+1)
α1 + (αr − α1) ∆c for J(αr) < J(αN+1)

(46)

where ∆c is the contraction coefficient. If J(αc) < min{J(αr), J(αN+1)}, then αc −→
αN+1.

Using the MATLAB Optimization Toolbox [36], we will apply the polytope N-M opti-
mization algorithm to measured pressure-field data obtaining a set of modal coefficients{θm(rs, zs)}, m =
1, · · · , M representing the shallow water discussed in the next section. We will see that the
nonlinear least squares fit of θ̂m to θm, the mean squared error function and the iteration
steps lead to the algorithm convergence. This is a well-posed, implicit optimization prob-
lem with an optimum solution available as long as the unknown functions {θ̂m(rs, zs)} can
be estimated from the noisy pressure-field measurements. We summarize the steps of this
parametrically adaptive approach to target localization in Fig. 5.

Before we discuss the details of the PF, let us see how we can utilize the model-based
approach to implement our localizer. From the cost function J(rs, zs) of Eq. 13, we see that
we must have an estimate of the modal coefficient function or perhaps more appropriately
range-depth function, θm(rs, zs) and this is provided by our PF. However, we must also have
estimates of the associated Hankel function, H0(κrrn) and the corresponding modal functions
evaluated at the current iterate depth, zn as φm1(zn). The PF provides us with estimates
of these modal functions {φ̂m1(z`)}, m = 1, · · · , M ; ` = 1, · · · , L at each sensor location
(in depth). Since the optimizer requires a finer mesh (in depth) than the modal function
estimates at each sensor to perform its search, we use the state-space propagator to generate
the estimates at a finer depth sampling interval

∆zn :=
∆z`

p
p ∈ I (47)

Thus for a given value of “search” depth zn, we find the closest available depths from the
estimator (array geometry) to bracket the target depth, z`−1 < zn < z`, and use the lower
bound z`−1 to select the initial condition vector for our propagator. We then propagate the
modal function at the finer ∆zn to obtain the desired estimate at φ̂m1(zn).

Note that the propagator evolves simply by discretizing the differential equation using
first differences

d

dz
φ(z) ≈ φ(zn)− φ(zn−1)

∆zn

(48)

which leads to the corresponding state-space propagator given by

φ̂(zn) = [I−∆znA(zn)] φ̂(zn−1) for φ̂(zn−1) = φ(z`−1) (49)
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In this way the state-space propagator is used to provide functional estimates to the
nonlinear optimizer for localization, so we see that the PF of the next section is designed to
not only provide estimates of the range-depth function, but also provide enhanced estimates
of the modal functions at each required depth iteration, that is[

{θ̂m(rs, zs)}, {φ̂m1(z`)}
]
−→

[
{φ̂m(zn)}, (r̂s, ẑs)

]
(50)

From an estimation viewpoint, it is important to realize the ramifications of the out-
put of the processor and its relationship to the position estimates. The respective modal
coefficient/range-depth and modal function estimates θ̂ and φ̂ provided by the processor
are minimum variance estimates (approximately) as illustrated in Fig. 4. In the case of
Gaussian noise, they are, if fact, the maximum likelihood (maximum a-posteriori) estimates
and therefore the corresponding maximum likelihood invariance theorem guarantees that the
solutions for the (rs,zs) are also the maximum likelihood estimates of position [4].

This completes the description of the model-based localizer, next we discuss how the
modal functions and their corresponding coefficients are estimated from noisy pressure-field
measurements by developing the PF.

5 LOCALIZATION: HUDSON CANYON EXPERI-

MENT

In this section we discuss the development of the model-based localizer for the Hudson
Canyon experiment performed in 1988 in the Atlantic with the primary goal of investigating
acoustic propagation (transmission and attenuation) using continuous wave data [23], [24].
The Hudson Canyon is located off the coast of New Jersey in the area of the Atlantic
Margin Coring project borehole 6010 . The seismic and coring data are combined with
sediment properties measured at that site. Excellent agreement was determined between
the model and data indicating a well-known, well-documented shallow water experiment
with bottom interaction and yielding ideal data sets for investigating the applicability of a
processor to measured ocean acoustic data. The experiment was performed at low frequencies
(50− 600Hz) in shallow water of 73m depth during a period of calm sea state as shown in
Fig. 6. A calibrated acoustic source was towed at roughly 36m depth along the 73m isobath
radially to distances of 4 to 26Km. The ship speed was between 2 and 4Kts. The fixed
vertical hydrophone array consisted of 24 phones spaced 2.5m apart extending from the
seafloor up to a depth of about 14m below the surface. The current-temperature-density
(CTD), sound-speed profiles (SSP), measurements were made at regular intervals and the
data were collected under carefully controlled conditions in the ocean environment. The
normalized horizontal wavenumber spectrum for a 50Hz temporal frequency is dominated
by 5 modes occurring at wavenumbers between 0.14 to 0.21m−1 with relative amplitudes
increasing at increased wavenumbers. A SNAP [26] simulation was performed and the results
agree quite closely, indicating a well-understood ocean environment.
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In order to construct the state-space localizer (see Fig. 2), we require the set of param-
eters which were obtained from the experimental measurements and processing. The hori-
zontal wavenumber spectra were estimated using synthetic aperture processing [23]. Eight
temporal frequencies were employed: four on the inbounds (75Hz, 275Hz, 575Hz, 600Hz)
and four on the outbound (50Hz, 175Hz, 375Hz, 425Hz). In this application we will confine
our investigation to the 50Hz case, which is well-documented, and to horizontal ranges from
0.5 − 4Km. The raw measured data was processed (sampled, corrected, filtered, etc.) and
supplied for this investigation.

5.1 Particle Filter Design and Analysis

The design and development of the parametrically adaptive PF proceeds through the fol-
lowing steps: (1) pre-processing the raw experimental data; (2) solving the boundary value
problem (BVP) [26] to obtain initial parameter sets for each temporal frequency (e.g. modal
coefficients, wavenumbers, initial conditions, etc.); (3) state-space forward propagator sim-
ulation of synthetic data for PF analysis/design; (4) application to measured data; and (5)
PF performance analysis as shown in Fig. 2.

Pre-processing of the measured pressure-field data follows the usual pattern of filtering,
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outlier removal and Fourier transforming to obtain the complex pressure-field as a function
of depth along the array. This data along with experimental conditions (frequencies, CTD
SSP boundary conditions, horizontal wavenumber estimators (see [7] for details) provide
the input to the normal mode BVP solutions (SNAP [27], KRACKEN [28], SAFARI [29])
yielding the output parameters. These parameters are then used as input to the state-space
forward propagator (see Fig. 2) developed in Sec. 2.

After obtaining a reasonable representation of the 50 Hz Hudson Canyon data, the
particle filter consisting of 10K-particles was developed and applied to the noisy pressure-
field measurements. A 100-member ensemble of PF runs were collected, each representing
a unique realization of the solution. Both the “average” maximum-a-posteriori (MAP) and
conditional mean (CM) estimates for the modal functions and coefficients as well as the
pressure-field measurements are shown in Figs. 7-9 providing a reasonable perspective of the
parametrically adaptive PF performance. In Fig. 7 we see the estimated, ensemble averaged,
modal functions (Φ̂(z`; Θ)) with reasonable estimates of the last 3 functions; however, those
of the first and second functions appear to be biased. These estimates will clearly affect the
accuracy of the localizer. The “average” modal coefficient parameter estimates are shown
in Fig. 8 where we observe instantaneous estimates of each at depth. The bias appearing in
the first modal estimate is now obvious from its corresponding coefficient estimate compared
to the true fixed mean value explaining the bias. The estimated pressure-field appears
to be quite reasonable for both the MAP and CM ensemble estimates with the exception
of the invalid start-up guesses. Classical metrics such as innovations zero-mean/whiteness
testing and weighted sum-squared residual test pass their bounds indicating a reasonable
performance of the particle filter. In fact, the pressure-field posterior distributions predicted
by the PF appear to be unimodal along the array indicating a good likelihood representation.
A glimpse of the modal function, Gaussian-like, set of posterior distributions for modal
functions 2 and 5 are shown in Fig. 9 (a) and (b) as well modal coefficient estimates of
2 and 3—all representing multi-modal posteriors indicating the correct choice of a PF for
solution. We also illustrate the multi-modal aspect of the oceanic data by observing the
modal function posterior PDF estimates for modes 1 and 5 in Fig. 10. It is clear from the
plots that for each depth, multiple peaks appear in the posterior estimates. The pressure-
field posterior is better behaved almost producing a near unimodal posterior for the predicted
field. Visualizing a peak at each depth produces a “smooth” estimate (MAP) as shown in
Fig. 11. This completes the analysis of the Hudson Canyon experimental data and the
adaptive (modal coefficient) PF processing performance.

A more thorough investigation of these distributions at various depth (slices: 2, 3, 6, 11
m) clearly substantiate this choice of processor as shown in Fig. 12. Another metric to
validate the performance of the processor is the Hellinger distance that compares the “true”
posterior distribution predicted by the model to that estimated distribution produced by
the PF from the measured data for both modal functions and coefficients. Again the results
(Hellinger [30] close to zero) indicates a reasonable PF design as observed by the posterior
distributions in Fig. 13. This completes the design and analysis of the particle filter for this
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shallow ocean application. These results can be compared to those obtained in Refr. [7]
before on similar data from the Hudson Canyon.

For a given realization, the modal coefficient estimates and relative error statistics com-
paring them to the mean values are shown in Table 1. Calculating the average relative error
from these estimates we see that they appear quite good (for this realization) with both
the CM (0.95%) and MAP (0.88%) estimates less than 1%. Over the 100-member ensem-
ble the MAP estimates yield approximately an average relative error of 2.5%—again quite
reasonable for this application.

Table I. Model-Based Identification: PF Modal Coefficient Estimation

Modal Coeff. Mean CM εCM(%) MAP εMAP (%) MAP εMAP (%)
θ1 1.000 1.002 0.281 1.003 0.330 0.983 1.675
θ2 0.673 0.677 0.633 0.675 0.327 0.665 1.192
θ3 0.163 0.165 1.374 0.164 0.246 0.161 1.553
θ4 0.166 0.167 0.661 0.169 1.651 0.165 0.809
θ5 0.115 0.117 1.816 0.117 1.757 0.118 7.487

AVG ε(%) 0.953 0.882 2.54

This completes the analysis of the performance of the adaptive particle filter for the
modal coefficient estimates. It is clear from these ensemble runs that the PF is capable of
parametrically adapting to the changing shallow ocean environment in both these cases pro-
viding reasonable tracking estimates of the modal functions while simultaneously estimating
the associated pressure-field and unknown parameters.

5.2 Model-Based Localization

With the PF design available, the development of the model-based localizer follows. Recall
that the cost function is based on the comparison of the estimated modal coefficients from the
PF to that calculated from the scaled, range (Hankel) and depth (state transition) functions
at the various search locations (r̂s, ẑs), that is,
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Figure 11: Sequential Bayesian Processor (100-Member Ensemble): Estimated Modal Dis-
tributions for No. 2/5 (a)/(b) and Modal Coefficient Distributions 2/3 (c)/(d).
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Figure 12: Sequential Bayesian Processor (100-Member Ensemble): Estimated Modal Dis-
tributions (Depth Slices) at 11, 6, 2, 3 meters.
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Figure 13: Sequential Bayesian Processor (100-Member Ensemble): Hellinger Distributions
for Mode Estimates (1− 5) and Modal Coefficients (1− 5).
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J(r̂s, ẑs) :=
1

M

M∑
m=1


PF︷ ︸︸ ︷

θ̂m(rs, zs)−
N−M OPTIMIZER︷ ︸︸ ︷

H0 (κr(m)r̂s) φm(ẑs)


2

︸ ︷︷ ︸
ε

(51)

Executing the model-based localizer over the Hudson Canyon pressure-field data yields
the following results for a typical data set. In Fig. 14(a) we see the modal coefficient esti-
mates compared to the true (mean values), mean (sum) squared errors and the search values
(r̂s, ẑs) at each iteration produced by the N-M optimizer. The true (mean) source depth was
measured at (500m, 36m) while the model-based localizer estimates were (495m, 35m)—quite
reasonable for a 5.2% relative error initial guess of (475m, 34.2m). In Fig. 14(b) we show
the results of the optimizer search over the range/depth space. Each step is shown for a
100-step limit producing the above results. It is also interesting to observe the final modal
coefficient estimates obtained from the median estimates across the array for each param-
eter. For this realization, it appears the 3rd coefficient has the largest error. We chose the
median rather than the average to account for outliers that might have resulted during the
estimation providing a more robust modal coefficient estimate.

As a final test of this approach, we generated an ensemble of 100-localization trials with
the average performance for range and depth estimates resulting in:

Range = 495.34 meters−−− (εREL = 0.93%)

Depth = 38.2 meters−−− (εREL = 6.1%)

with the accompanying relative errors. These results are quite reasonable for the target
localization in a noisy shallow ocean environment.

6 SUMMARY

In this report we have developed a model-based sequential Bayesian solution to the ocean
acoustic localization problem based on the normal-mode propagation model and a vertical
sensor array measurement system. We demonstrated that a parametrically adaptive particle
filter is capable of estimating the modal functions while jointly extracting modal coefficients
in an ever changing shallow ocean environment. These estimates were provided as input to
a numerical (simplex) optimizer and incorporated into a model-based localization scheme.

Over the 100-member ensemble the MAP estimates yield approximately an average rela-
tive error of 2.5% with the corresponding localizer (optimizer) producing relative range/depth
errors of 0.93% and 6.1%, respectively—again quite reasonable for this application. Thus,
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the performance of the PF over a 100-member ensemble to evaluate its performance and the
localizer was shown to produce a reasonable estimation of the target location.
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