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Executive Summary 

This is a literature review of published radioisotope identification (ID) methods, and an attempt 
at systematic organization of the approaches for solving this problem. In addition, there is an 
overview of the related open and closed source software, and patents related to radioisotope 
identification. This document is also part of the development plan for BARNI (Benchmarking 
Algorithm for RadioNuclide Identification) software, since it is meant to be a comparison tool, a 
summary of radiation ID performance evaluations is also included.  
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Introduction 

The following is a literature review of published radioisotope identification (ID) methods, open-
source software, commercial products and related patents. The motivation for this work is to 
characterize the landscape of the available technologies and minimize any unnecessary 
duplication of efforts as part of the development of the BARNI (Benchmark Algorithm for 
RadioNuclide Identification) software. For completeness, this work also includes a review of 
reports that evaluate the performance of radionuclide ID algorithms.   
 

Published Methods 

The process of determining the correct set of nuclides which contribute to a gamma-ray 
spectrum cannot be accomplished by a single “method”. Identification is a multistep process, 
and individual publications often focus on one of the steps in this process. Approaches to 
radionuclide identification can be placed in two broad categories: (1) peak search and match 
and (2) template matching. The first approach consists of extracting energy lines from a 
gamma-ray spectrum and matching them to a radionuclide library. In the second approach, the 
entire spectrum, or some rotation of the spectrum, is matched against a library of spectral 
“templates”.  
 
The peak search and match approach can be broadly broken into the following triad: 
 

1) Peak search: The photopeaks in the spectrum are located, and typically reported as 
“lines” at discrete energies. Sometimes the search includes Compton edges, which not 
only provide secondary confirmation but are also useful in estimating shielding.  

2) Feature extraction/design: Although not strictly necessary, this step serves the purpose 
of a dimensionality reduction which alleviates the problems of many different discrete 
line solutions originating from the peak search. Most commonly a feature group is 
defined by a range of energies that encompass all plausible extracted locations from a 
peak and includes any associated information about that peak (e.g. area).  

3) Classification: The results from the previous steps are matched against a known nuclide 
library, and the mixture of correct nuclides is identified. A well-designed classifier can 
overcome the shortcoming of the results fed to it by the previous steps, and may 
additionally leverage any prior probabilities of identifying a specific set of radionuclides.  

 
Template matching has different steps, but in some ways are analogous to those above: 
 



 

 

1) Template library:  Produce a representative library of gamma-ray spectra for different 
radionuclides under various shielding configurations, including dynamic template 
generation (e.g. account for scattering).  

2) Dimensionality reduction: There may be an intermediate step here that rotates the 
resulting data (e.g. Principal Component Analysis) from spectral space into some other 
constellation of features which are then used for the search.  

3) Mixture search: Solve the combinatorial optimization problem of finding the right 
mixture of radionuclide contributing to the sample spectrum. The most robust and 
clever mixture selection algorithm will fail if the underlying template library is not 
representative of the detection system.  

 
Both the peak search and classification can be automated, computed entirely by an algorithm, 
or performed manually through expert analysis. Furthermore, it is conceivable to automated 
one step without the other. For example, an expert could use a graphical interface to manually 
select location of each peak, and an automated classification scheme would match these 
choices against predefined nuclide library. Conversely, an expert could use any of the openly 
available peak finding tools and then perform the rest of the assignment of manually searching 
gamma-ray emission library [1].  
 

Peak Search 

If measured spectra were a smooth continuous curve, then the list of peaks could by definition 
be obtained by taking the derivative of the entire spectrum. However, discrete Poisson 
fluctuations in the underlying data necessitate a smoothing procedure before any number of 
derivatives is taken [2]. A wide variety of smoothing methods have been applied for gamma-ray 
spectroscopy from simple moving average [3] to more complex piecewise polynomials such as 
B-splines [4], or Savitzky-Golay filter [5] [6]. Fourier transforms have been employed since the 
early days of automated peak search [7], and more recently wavelet analysis has been 
investigated as a solution to finding peaks in noisy data [8] [9] [10].  
 
Regardless of the implementation details, all these aforementioned methods require 
parameters to be tuned in order to function optimally. The right balance has to be achieved 
between smoothing away noise, while preserving features of interest in a spectrum, namely the 
peaks. This balancing act gets more complicated with low-count data, where real features of 
interest are difficult to discern from the underlying background.  
 
An alternative approach is a class of so-called “deconvolution” algorithms, which attempt 
inversely solve for the incident gamma-ray flux [11] [12] [13]. Deconvolution is strictly speaking 
a misnomer, since the measure pulse height spectrum can be represented as the Fredholm 
equation of the first kind: 



 

 

𝑃(𝐻) = &𝑅(𝐻,𝐸)𝑆(𝐸)	𝑑𝐸		 

 
where R(H,E) is the response function for pulse amplitude H for a given incident energy E [14]. 
The goal of the deconvolution algorithms is to recover the incident energy distribution S(E). 
Examples of deconvolution techniques include Maximum Likelihood Expectation Maximization 
(ML-EM), Maximum Entropy Method (MEM) and linear regularization [15].  
 
Deconvolution requires at least some approximation for R(H,E) but can yield a more robust 
peak search with less dependence on scenario specific “tuning” as compared with the 
derivative methods. Instead, there is the necessary burden on the user to provide even a crude 
model of the specific detector system. This model for detector response can attempt to 
approximate physical reality to a varying degree, from simple Gaussian kernel, and semi-
empirical models [16] to full detector response matrix developed from a detailed and 
computationally expensive Monte Carlo simulations [17]. Nominally the performance of the 
overall algorithm should scale with the details captured by the detector response model 
provided by the user.  

Feature Extraction and Design  

A feature is some measurable characteristic of a class and is typically represented as a 
numerical value. For radionuclide identification, an obvious feature would be counts under a 
peak at some discrete energy corresponding to a characteristic gamma-ray emission energy. 
Features that are well chosen and designed will maximize the potential for discriminating 
among numerous classes (i.e. radionuclides) of interest. A set of features that describe a class is 
called a feature vector, and large examples of which are ultimately used by the classifier for 
training and testing.  
 
If the space of possible radionuclides for identification is large, especially factoring in additional 
variables such as shielding, then numerous features may be necessary for the classifier to 
distinguish among various radionuclides. However, more accurate classification cannot be 
achieved by simply adding on more features ad infinitum, as the classifier performance begins 
to actually deteriorate as the dimensionality of the feature space increases. This so-called 
“curse of dimensionality” is the result of feature space becoming sparser, leading to problems 
such as overfitting. However, some of these negative side-effects can be avoided or minimized 
through the use of a sufficiently large and representative training set, or a prudent choice of a 
classifier algorithm.  
 
The problem with high dimensionality is especially acute for radionuclide identification. The 
continuous energy space in gamma-ray spectra presents the peak search algorithm with infinite 
line energies to extract. These estimated energies will necessarily deviate from expected 



 

 

gamma-ray emission energies due to imprecision of the peak center extraction, presence of 
shielding, count rate, calibration errors, and incident spectrum itself (e.g. presence of other 
near peaks). It would be difficult to assemble a training set sufficiently large to cover the space 
of solution directly from peak search, and it is therefore more practical to group various 
solution into features before feeding them into the classifier. 
 
This dimensionality reduction step is a familiar process for anyone applying machine learning 
for classification problems, it is also the least directly covered aspect of radionuclide 
identification in published literature. Properly engineered features necessitate domain 
knowledge and in-depth understanding of the problem space. As a result, this step can be 
rather expensive, and could be considered the “secret sauce” that makes a particular 
implementation stand out.  
 
One statistical procedure that is used generally for dimensionality reduction in feature design 
and can be applied to problems in gamma-ray spectroscopy is Principal Component Analysis 
(PCA). This technique can be applied to transform the spectral space into a principal component 
space where the first few of these uncorrelated components account for most of variation in 
the original (energy) space. The mechanics of PCA is the eigenvalue decomposition of the 
covariance or correlation matrix of underlying data, but in gamma-ray spectroscopy it is the 
pre-processing centering and normalization of the data that makes the difference in producing 
principal components that can maximally discriminate among radionuclides [18] [19]. 
Alternative approaches to decomposition related to PCA that have been applied to analysis of 
gamma-ray spectra are Independent Component Analysis (ICA) [20], Non-Negative Matrix 
Factorization (NNMF) [21] and Fisher’s Linear Discriminant (FLD)  [22] [23].   

Classification 

Classification is the process of selecting the correct solution (i.e. radionuclide mixture) based on 
the results of the peak search and subsequent extracted features. This step necessitates some 
form of nuclide library [24] to perform the matching, and the libraries size and scope can 
greatly impact the overall performance by dramatically changing the space of possible 
solutions. The size of the nuclide library has to be sufficient to cover the problem domain, but 
not so large as to make the classification task unwieldy. Any algorithm will struggle to find the 
correct solution, especially within a reasonable amount of time, if the space of possible 
solutions is infinitely large.    
 
Classifier algorithms are used for a wide area of applications, from sorting emails to medical 
diagnosis, which vastly exceeds their application for radionuclide identification. As a result, 
there are a plethora of openly available toolkits that one can leverage directly for radionuclide 
identification and perform the necessary calculations. In contrast, peak search and feature 
extraction and design require more domain specific knowledge and are generally not readily 



 

 

available outside of the gamma-ray spectroscopy community. Classifier algorithms that have 
been applied to radionuclide identification include: 
 

1) Expert systems: These are essentially hard coded decision trees that are typically found 
in commercially available RIIDs. The resulting procedural code is meant to emulate the 
radionuclide selections that would be made by an expert gamma-ray spectroscopist 
[25].  

2) Neural networks: As with the aforementioned classifier algorithms, neural networks are 
used in a wide area of pattern recognition problems. In gamma-ray spectroscopy it has 
been applied to identify mixture of many radionuclides using the entire spectrum of a 
low to medium energy resolution detector systems [26] [27] [28] [29]. The neural 
network can also be used on a reduced feature space [30]. One downside of neural 
networks is that the decision-making process is opaque, and this may preclude it from 
application that require the path to the final solution to be audited.   

3) Naïve Bayes: The posterior probability is calculated for each radionuclide where the 
maximum points to the correct solution [31] [32] [33]. Reasonable conditional 
probabilities, or likelihoods, have to be estimated from a training set, and any custom 
model can be developed for this purpose [34]. The prior probabilities are more 
subjective and should be adjusted depending on operating environment and problem 
space. 

4) Nearest neighbor: This approach involves calculating a distance metric between feature 
vectors, for example the Mahalanobis distance [18] [19], in order to find most similar 
samples. Classification can be derived directly from the proximity to one of the classes in 
the training data. A variant of this type of algorithm, k-nearest neighbors, can be used to 
calculate the relative density of each sample in an unlabeled dataset, which can be 
applied for anomaly detection.  

5) Support vector machines: This method constructs am optimal hyperplane (or 
hyperplanes) decision boundary, the shape of which is dependent on the chosen kernel 
(e.g. linear, polynomial, sigmoid). SVM has been applied for radionuclide identification, 
following peak extraction procedure [35] [36], and using the entire spectra to 
discriminate among a few classes [37]. 

 
The classifier algorithms can help sort the most likely radionuclides that contribute to the 
sample spectrum, but to find the most likely radionuclide mixture requires the following search 
optimization strategies 

Template Matching 

Template matching requires a separate class of algorithms that can search the space of possible 
radionuclides for the right mixtures which contributes to the spectrum. These types of 
algorithms fall into two broad categories: 



 

 

 
1) Heuristic: A strategy-based approach that can start from either the full set of possible 

nuclides and eliminate them on the way to a solution (strip down) [38] [39] [40] [41] or 
start with background and add nuclides until a solution is found (buildup). The removal 
or addition of candidate radionuclide is followed by an optimization step (e.g. non-linear 
least squares regression, gradient decent) to determine the proportions of new set of 
potential radionuclides. This approach can be efficient at finding the optimal solution, 
provided that certain conditions are met, and the problem size is not too large. There is 
also a path dependence, that can change the ultimate outcome (i.e. final solution 
depends on the initial guess). 

2) Systematic (branch bounds/all subset regression): Considers multiple possible solutions 
at each decision node, therefore alleviating the problem of path dependence in heuristic 
methods [39] [42]. Unlike the heuristic approach, which can contain expert provided 
fallback strategies, this is a more mathematically rigorous approach for solving the 
combinatorial optimization. 

 
Full detector response information is required for this approach in order to generate the 
necessary templates [43]. Models are often used since a data-driven approach is not feasible, 
and these models have to be very accurate for the method to be successful [44].  Slight shifts in 
spectral shape are especially acute at high energy resolutions, therefore this technique is 
preferred for low to moderate energy resolution detection systems. 

Open Source Tools 

Open source tools are programs for which source code is published and available at no charge 
provided the user complies with any licensing requirements. For our purposes it will be 
instructive to distinguish between generic tools, those that have wide multidisciplinary 
application, and the much smaller universe of radionuclide identification software. 
 

Generic (Multidisciplinary) 

The following tools encompass various methods used in radionuclide identification, and could 
be pieced together to make a complete identification software suite:  

• SciPy [45]: The signal processing part of this python library (scipy.signal) has the 
smoothing and filtering functions used in peak search, it also includes some derivative 
and wavelet transformation based peak finding functions. The optimization and root 
finding packages (scipy.optimize) contain useful least squares solvers.   

• PeakUtils [46]: Finding and fitting peaks in 1D data, and higher level wrapper for some 
scipy.signal methods with additional functionality, such as baseline subtraction. 



 

 

• Octave [47]: Open source alternative to Matlab, with similar signal processing 
capabilities as SciPy.  

• Scikit-learn [48]: Collection of machine learning tools in python, including all the 
dimensionality reduction, regression, and classification packages. 

• TensorFlow [49]: Popular library for implementing high performance neural networks on 
both CPUs and GPUs.  

• Geant4 [50] : Tookit for simulating particle interaction through matter, which is useful 
for detector response modeling.  

 

Radionuclide Identification Specific 

Gamma-ray spectra analysis tools are rarely openly published, and none provide fully 
automated radionuclide identification – in contrast with the goals of the BARNI project. The few 
tools that are published are typically packaged as Graphical User Interfaces (GUIs) and are 
therefore not readily extendable for use directly with detector systems. Instead, these provide 
assisted analysis for expert gamma-ray spectroscopists. 

• InterSpec [51]: Peak-based interactive nuclide identification application and can 
estimate nuclide activities and shielding. Automatic nuclide identification is not 
performed, candidate peaks have to be highlighted by the user.  

• GammaSpy [52]: GUI wrapper around the non-linear curve fitting routines in SciPy for 
peak fitting and finding.  

• RASE [53] [54]: An acronym for Replicative Assessment of Spectrometric Equipment, this 
software is used for evaluating the performance of radiation detectors and radionuclide 
identification algorithms.  

 

Closed-Source and Commercial Products 

As with the open source radionuclide identification counterparts, these closed-source and 
commercial products are for the most part locked down GUIs that require some manual input 
for identification: 
 

• GADRAS [55]: Contains many functionalities ranging from modeling detector response, 
radiation transport and template matcher for radionuclide identification.  

• Radio-Nuclide Analysis Kit (RNAK) [56]: Template matching radionuclide identification 
tool which provides physical properties of the mixtures, summary of nuclide 
probabilities and source classification.  

• PeakEasy [56], GammaVision [57], GENIE 2000 [58], SODIGAM [59]: Gamma-ray spectra 
visualization tools with peak search and find algorithms.  These tools are grouped 
together because they all have similar functionality, mainly the user manually selects 



 

 

regions of interest that encompass a peak of interest which can then be labeled with 
assistance of a built-in library.  

 
We omit listing any RIIDs, such as Rad-ID and identiFINDER, which run hardware dependent 
non-portable firmware for identification. 

Patents 

The patents directly relating to radionuclide identification include areas cover variations on: 
principal component analysis [60], region of interest [61], support vector machines [63], 
shielding estimation [63] [64], template matching (branch and bound) [42]. 

Evaluations 

BARNI is intendent to be used as part of evaluation of other radioisotope identification 
algorithms and detector systems, therefore it is appropriate to include a summary of previously 
published reports and articles on the subject. One of the many issues with scoring identification 
performance is that unlike detection it is not a simple binary decision process, because multiple 
nuclides could contribute to as single spectrum. A common way to visualize the performance of 
a classification algorithm is through the construction of a confusion matrix, where each row is 
the predicted nuclide and the columns are the truth, or actual nuclides present. The F-score, 
the harmonic mean of precision and recall, can then be used to summarize these results into a 
single value. These scores can be modified with appropriate weighting factors which reflect the 
importance of identifying specific nuclides of interest [65].  
 
Using an appropriate scoring metric is only a part of the challenge of comparing radionuclide 
identification algorithms. Performance of the same algorithm can vary with the change in the 
selection of nuclides used for training and testing [66]. Defining appropriate categories of errors 
for identification is also a challenge [67], as reported performance can change depending on 
the chosen definition of category error. For this reason, pure algorithm requires that there are 
enough common elements shared between the algorithms to make the comparison fair and 
meaningful [68].  
 
The availability of relevant and representative spectral data is another challenge for both 
testing and training radionuclide identification algorithms [69]. Complicating matters are other 
factors that affect the final spectrum, such as calibration, threshold, pile-up rejection, which are 
not inherently tied to the measured radionuclide. To control for these factors the relevant 
sources are often modeled, which produces synthetic spectra that can cover the threat space of 
interest [70] [71]. These simulations results have to be validated and verified to ensure 
adherence to physical reality. The physics of photon transport is well understood, and so is the 



 

 

discrete gamma-ray emission from relevant nuclides. The challenge is often with including 
other details in the model, such as surrounding materials and details of detector response, 
which complicate matching measured and simulated spectra.  
 
Rather than testing stand-alone algorithms, the performance of commercially available 
instrumentation is often compared [72] [73] [74] [75] [76]. The advantage in those cases is that 
the algorithm is already coupled to the appropriate detector, and presumably the commercial 
vendor took all the necessary steps to tune instrument performance to the appropriate threat 
space. In addition, performance criteria for these instruments is already defined by ANSI 
standard N42.34. Beyond the algorithm itself there are other factors that affect overall 
performance, such us detector resolution, calibration, material, geometry, and extrinsic factors 
like count rate [77] [78] [79] [80].  
 

Conclusions 

This literature review has attempted to systematically organize the various algorithms and 
methods employed for the problem of radionuclide identification. Solutions to this problem can 
be broken down into two broad categories, peak search and template matching, each 
employing a unique set of approaches and methods. We hope that this document can serve as 
a guide for researchers in this field in helping sort out the myriad of relevant publications, 
which are often titled by one method used to solve a subset of the larger problem. This is 
especially relevant since the proliferation of openly available tools has made it easier to apply 
powerful methods to this problem, but it remains difficult to quantify the objective 
performance gains achieved by them. The review of the evaluation literature enumerates the 
various obstacles in obtaining objective measures of identification performance across different 
algorithms.  
 
Researchers have generous pool of open source tools which can tackle the various subset 
problems of radionuclide identification, but only a handful of software suites that deal with the 
problem in its totality, and none of them automatically provide identification from input 
spectra. The closed-source tools that do exist have a limited audience and are often unavailable 
for those without connections to government institutions or employment at private companies. 
Therefore, there exists a gap for a fully automated and flexible identification software like 
BARNI, which could serve as a benchmark for the wider community.  
 
While the final choice of the BARNI implementation will be derived from the project’s 
requirements, this review will provide the basis for choosing the most appropriate methods, 
leveraging knowledge from this literature search. 
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