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 We are interested in developing the most accurate numeral models to simulate Ga-
dynamics of explosions. But we must first recognize that there is no unique way to discretize the 
partial differential equations (PDEs) of gas dynamics, and also, there is no unique method to 
integrate the discretized forms of these equations. This has spawned a variety of numerical 
methods (religions*) that attempt to solve this conundrum, for example: 
 

• Artificial Viscosity method created by the American mathematician John von Neumann 

• Flux-Corrected-Transport (FCT) method invented by Dr. Jay Boris, founder of the  
 Laboratory for Computational Physics (LCP) at NRL 

• WENO method developed by Professor Stan Osher of UCLA and Professor Bjorn  
 Enquist of U. Texas 

• Godunov method by Academician Sergei Konstantinovich Godunov, Professor of the 
Sobolev Institute of Mathematics, RAS, in Novosibirsk 

 
to name just a few. We believe that the numerical scheme must mimic, as closely as possible, the 
mathematical properties of the partial differential equations, such as:  
 

1. The governing equations for explosions are the inviscid gas-dynamic conservation laws 

2. In strong conservation form, the right-hand-sides of these equations are zero, 
 i.e., there are no viscosity terms in these equations—so there should be no viscosity 
 in the numerical algorithm 

3. The system is hyperbolic, with three real characteristics: 𝜆" = 𝑢	and	𝜆± = 𝑢 ± 𝑎 

4. Information travels along characteristics; domain of dependence is determined by the  
 Monge cone, thus the numerical stencil must be limited to neighboring cells. 

5. Flow fields develop discontinuities (shocks and contact surfaces), so the numerical  
 scheme must be designed to propagate discontinuities  

6. The scheme must be “monotone”, i.e., produce results that are devoid of artificially  
 induced numerical oscillations 

7. The PDEs must be solved on locally-uniform Eulerian grid patches—thereby eliminating 
 numerical diffusion induced by grid gradients 
                                                        
* We euphemistically call them “religions” because of the intensity that their proponents defend them—similar to 
religious doctrines. 
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 We believe that the high-order Godunov methods that we have developed, most closely 
conforms to the above delineated mathematical properties of the governing equations. Hence, we 
believe in the “Godunov Religion” of numerical methods. Presented here are key papers published 
in this journey.** 
 
 Part 1 describes the development of the high-order Godunov methods and adaptive mesh 
refinement needed to capture complex features of the flow. It starts with the formulation of this 
problem as presented by Godunov in his thesis defense [1] at Moscow State University in 1954, 
and later expounded in his reminiscences of the background to the development of this method [2]. 
A key element in this theory is summarized in the Godunov Theorem: Linear numerical schemes 
for solving partial differential equations, having the property of not generating new extrema (a 
monotone scheme), can be at most first-order accurate.  
 
 To overcome this limitation, Colella developed a non-linear scheme—the Piecewise 
Parabolic Method (PPM)—to give a second-order in time and fourth-order in space scheme, in 
smooth regions of the flow [3,4,5]. Bell, Colella and Miller then extended the PPM method to three 
dimensional flows [6,7,8]. With the integrator optimized, the next step was to improve mesh 
resolution. This produced the Adaptive Mesh Refinement (AMR) technique of Berger and Colella 
[9]. AMR was extended to 3 dimensions by Bell et al., [10]. It has recently been extended to run 
efficiently on exa-scale computers as described by Zhang et al., [11]; it is now called AMRex. 
 
 Part 2 describes the validation of these Godunov methods by comparison with 
experimental data, such as: shock reflections from wedges by Glaz [12] and Kuhl et al., [13,14], 
blast wave reflections from ideal surfaces by Colella et al., [15], and shear layers by Chien et al., 
[16]. 
 
 Part 3 describes the application of these Godunov methods to simulate turbulent mixing 
and combustion in explosions, such as: turbulent combustion in TNT explosions [17],  spherical 
combustion clouds [18], heterogeneous model of Aluminum particle combustion in explosions 
[19], and a 3-phase model of turbulent combustion in pyrotechnic explosions [20].  This is 
followed by an Appendix which gives a biography of S. K. Godunov from his web site. 
 
 We hope that this anthology will serve as a useful resource for researchers in this field. 
 
  

                                                        
** This is not intended to be a comprehensive review of Godunov methods, rather we present selected papers from our 
research over the last 35 years that directly contributed to the Godunov technology used in applications described in 
Part 3. 
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