
LLNL-SR-764802

User-level File Systems
Specialized for HPC Workloads
Year-End Report

W. Yu, K. Mohror, A. Moody

December 28, 2018

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

 User-level File Systems Specialized for HPC Workloads

Year-End Report
Weikuan Yu (yuw@cs.fsu.edu), Florida State University

1 Overview

High-performance computing (HPC) clusters attract the attention of Deep Learning (DL) training users

due to the clusters' powerful computation capabilities. While there have been many existing efforts to enable

deep neural works to leverage the powerful CPU and GPU processors from leadership high-performance

computing (HPC) systems, large-scale deep learning with larger datasets requires efficient I/O support from

the underlying file and storage systems. As some current and upcoming HPC clusters have large on-node

memory or are equipped with NVMe SSD on compute nodes, more distributed DL trainings are considered

to leverage those storages to store dataset for efficient dataset access. Our project goal is to design a

specialized DL-oriented file system to improve datasets loading performance of any DL training

applications.

Over the past year, the team at Florida State University has performed research activities in three

different aspects, including 1) completing a specialized memory-based I/O framework (DeepIO) for

improving dataset loading performance on DL applications; 2) proposing a more generalized file system

(DLFS) for DL applications on node-local SSDs; 3) completing the BeeGFS performance evaluation project

for Deep Neural Networks. Our progress and accomplishments are reported in detail in the next section.

2 Detailed Report on Progresses and Accomplishments

2.1 DeepIO

In order to achieve a high level of accuracy in the training model, datasets often have to be read from

the backend storage multiple times in a random order. The randomization process, often called shuffle, is

important to avoid bias and update parameters of the training model efficiently. The massive randomized

reading pattern has led to inefficiency in reading large datasets from backend storage for many DNN

training frameworks. In this research, we propose an efficient I/O framework for large-scale deep learning

on HPC systems. Our main objective is to coordinate the use of memory, communication, and I/O resources

for efficient training. To this end, we design and implement DeepIO with RDMA-assisted in-situ shuffling,

input pipelining, and entropy-aware opportunistic ordering for TensorFlow. In addition, to overcome the

performance impedance of TensorFlow dataset API, we design a portable storage interface so that efficient

I/O for deep learning can be enabled across a wide variety of underlying file and storage systems. Our

experiments show that DeepIO can outperform BeeGFS (a traditional parallel file system) and Octopus (an

RDMA based persistent memory file system published at ATC’17) by at least 6.12x and 1.17x, respectively.

This work has been accepted by MASCOT’18.

2.2 DLFS

As the current and upcoming HPC clusters (e.g., Summit at ORNL and Sierra at LLNL) are equipped

with NVMe SSD, we leverage the features of NVMe SSD and NVMe-over-Fabrics to propose a node-local

SSD based file system for DL applications. Currently, we have finished the initial implementation of DLFS,

and enabled batched file read and autonomous read on small files for further improving the read

performance.

2.2.1 Batched File Read

A certain number of file read requests are considered to be submitted at the same time through defined

API to saturate NVMe SSD's bandwidth. Then we can quickly locate file address based on the file IDs.

Then the incoming requests are evenly issued by multiple I/O issuers. A batched read request returns only

after the submitted N file having been read back.

Every I/O issuer is associated with an independent read buffer which is pre-registered through SPDK

API on pre-reserved huge pages for zero-copy data transfer when reading from local or remote SSDs. While

reading, the data read from SSD is first stored in the read buffer, then copied to the regular data buffer.

mailto:yuw@cs.fsu.edu

Although this involves one memcpy() between the read buffer and regular data buffer, it avoids additional

modification for adding SPDK library related memory management in DL training applications. As every

file is not in a constant size, we have to issue multiple data read requests if the file size is greater than the

size of the associated read buffer.

2.2.2 Autonomous Read on Small Files

As the performance of small size read is much lower than the large size read, we propose autonomous

read on small files. It is only to let the file system decides which file is going to access next instead of

allowing an application to submit a file request.

We divide a dataset into multiple large data chunks and allow random access to read data chunk across

nodes to read buffer. Application program only read randomly pick one data chunk on the read buffer, then

reads out the first valid file in this data chunk. A new data chunk read request is only issued when an

application has entirely consumed all small files in a data chunk. In this way, we enable large size read on

NVMe SSD at the backend, but the application still can read out small files at frontend. Although we

introduce additional work on managing large data chunk and small files in data chunk, the overall

performance can still benefit from the replacing the small size read by large size read at the backend.

2.2.3 Experimental Results

We have implemented the data access strategy mentioned above and collected a few experimental

results. In all test, the total read size is 16 GB. For testing the performance of batched file read, we vary the

transfer size from 4 KB to 1 MB. Based on the gathered results, we can achieve around 2.43 GB/s on a

local or remote device for both random and sequential batched read when the transfer size is 1 MB. For

testing the performance of autonomous read on small files, we can increase the read bandwidth by 1.58x

and 6.36x compared to the original batched read performance if the transfer size equals to 512 bytes and

4096 bytes. In the next phase, we plan to finish the optimizations on input pipeline to better overlap the file

reading time with training to better leverage the features of NVMe SSDs.

In the next phase, we plan to finish the optimizations on input pipeline to better overlap the file reading

time with training to better leverage the features of NVMe SSDs.

2.3 Characterization and Tuning of BeeGFS for Deep Neural Networks (DNN)

BeeGFS is a recently emerging Parllel File System (PFS) that has grabbed the attention of the research

and industry world because of its performance, scalability and ease of use. By taking the importance of a

systematic performance analysis of BeeGFS into consideration, we perform experimental evaluation using

cutting-edge I/O, Metadata and Deep Learning (DL) application benchmarks. Particularly, we have utilized

AlexNet and ResNet-50 models for the classification of ImageNet dataset using the Livermore Big

Artificial Neural Network Toolkit (LBANN). We perform extensive performance characterization and

tuning of BeeGFS for analyzing its performance.

2.3.1 File Access Pattern in DNN from PFS

DL applications are quickly emerging to solve pattern recognition and optimization problems. In its

workflow, training is the first and most lengthy phase which can act effectively when exposed in the

abundance of HPC resources. While in a training, the DL applications have to keep issuing file requests to

storage systems for forming training needed batches. The most common file requests in this case are file

stat, open, read, and close. The performance of reading various files of datasets largely depends on the

dataset size, files’ layout of datasets, and applications’ dataset access pattern. For instance, a dataset’s size

determines if it can leverage PFS’s “cache”, a large batched file imposes less pressure on PFS’s metadata

server than multiple small files, and applications can enable multi-processing and multi-threading for taking

advantage of the underlying PFS. However, the massive small random reads impose non-trivial

performance loss comparing with sequentially reading large batched files. We use LBANN as a

representative of DL frameworks to show how BeeGFS reacts to the massive small random read on images.

2.3.2 Observations from the Performance Evaluation

We enlisted a list of observations from our evaluation:

• N-N workload is almost always better than N-1.

• Increasing stripe count is not always necessary.

• Organizing data in a hierarchical structure can be helpful for metadata handling.

• DL applications put tremendous pressure on underlying PFS.

• I/O aggregation from application-side or in-built in PFS can be beneficial.

• Prefetching early and exchanging data later can be treated as an optimization opportunity for I/O

in DL applications.

2.4 Publications
We have put together a number of documents for publications in a variety of conferences. They are

listed in detail below.

1. [MASCOTS’18] Z. Yue, F. Chowdhury, H. Fu, A. Moody, K. Mohror, K. Sato, and W. Yu.

Entropy-Aware I/O Pipelining for Large-Scale Deep Learning on HPC Systems. 26th

International Conference on Modeling, Analysis and Simulation of Computer and

Telecommunication Systems. September 2018, Chicago, IL.

2. [SC’18 Poster] Z. Yue, F. Chowdhury, H. Fu, A. Moody, K. Mohror, K. Sato, and W. Yu. Multi-

Client DeepIO for Large-Scale Deep Learning on HPC Systems. 2018 International Conference

for High Performance Computing, Networking, Storage, and Analysis. November 2018.

3. [ROSS’18] Z. Yue, T. Wang, K. Mohror, A. Moody, K. Sato, M. Khan and W. Yu. Direct-

FUSE: Removing the Middleman for High-Performance FUSE File System Support. 8th

International Workshop on Runtime and Operating Systems for Supercomputers. Held together with

the HPDC conference. Tempe, AZ. June 2018.

4. [CCGrid’19 Under Review] Fahim Chowdhury, Yue Zhu, Todd Heer, Saul Paredes, Adam

Moody, Robin Goldstone, Kathryn Mohror, Weikuan Yu. Characterization and Tuning of

BeeGFS for Deep Neural Networks. 19th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing (CCGrid). Under Review.

